HEALTH RISKS FROM EXPOSURE TO LOW LEVELS OF IONIZING RADIATION BEIR VII PHASE 2
HEALTH RISKS
FROM EXPOSURE TO
LOW LEVELS OF
IONIZING
RADIATION

BEIR VII PHASE 2

Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation

Board on Radiation Effects Research
Division on Earth and Life Studies

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C.
www.nap.edu
Contents

UNITS USED TO EXPRESS RADIATION DOSE xi

PUBLIC SUMMARY 1
Introduction, 1
How Ionizing Radiation Was Discovered, 1
How Ionizing Radiation Is Detected, 2
Units Used to Describe Radiation Dose, 2
What Is Meant by Low Doses of Ionizing Radiation, 2
Exposure from Natural Background Radiation, 3
Contribution of Man-Made Radiation to Public Exposure, 3
Scenarios Illustrating How People Might Be Exposed to Ionizing Radiation above Background Levels, 4
Evidence for Adverse Health Effects Such as Cancer and Hereditary Disease, 6
The BEIR VII Risk Models, 6
Research Reviewed by the Committee, 9
Conclusions, 10

EXECUTIVE SUMMARY 11
Introduction, 11
Evidence from Biology, 11
Estimation of Heritable Genetic Effects of Radiation in Human Populations, 12
Evidence from Epidemiology, 12
Integration of Biology and Epidemiology, 14
Estimating Cancer Risks, 14
Conclusion, 15
Recommended Research Needs, 15

1 BACKGROUND INFORMATION 19
Physical Aspects of Radiation, 19
Chemical Aspects of Radiation, 29
Molecular Mechanisms of DNA Repair, 32
Summary, 39
ANNEX 1A: Ionizing Radiation and Oxidative Damage—A Viewpoint from Saccharomyces cerevisiae, 40

xiii
2 MOLECULAR AND CELLULAR RESPONSES TO IONIZING RADIATION
 General Aspects of Dose-Response Relationships, 43
 Induction of Chromosome Aberrations, 45
 Induction of Gene Mutations in Somatic Cells, 46
 Radiation-Induced Genomic Instability, 47
 Cell Cycle Effects, 49
 Adaptive Response, 50
 Bystander Effects, 53
 Hyper-Radiation Sensitivity at Low Doses, 55
 Observed Dose-Response Relationships at Low Doses, 57
 Summary, 62

3 RADIATION-INDUCED CANCER: MECHANISMS, QUANTITATIVE EXPERIMENTAL STUDIES, AND THE ROLE OF GENETIC FACTORS
 Introduction, 65
 Mechanisms of Tumorigenesis, 66
 Radiation-Induced Genomic Instability in Radiation Tumorigenesis, 70
 Quantitative Studies in Experimental Tumorigenesis, 73
 Genetic Susceptibility to Radiation-Induced Cancer, 79
 Summary, 89

4 HERITABLE GENETIC EFFECTS OF RADIATION IN HUMAN POPULATIONS
 Introduction and Brief History, 91
 General Framework, 92
 Genetic Diseases, 92
 Risk Estimation Methods, 93
 Recent Advances with Respect to the Three Quantities Used with the DD Method of Risk Estimation, 94
 The Doubling Dose Estimate, 101
 Mutation Component of Genetic Diseases, 101
 MC Estimation for Chronic Multifactorial Disease, 105
 Other Potentially Relevant Data, 113
 Risk Estimation, 114
 ANNEX 4A: Models of Inheritance of Multifactorial Diseases in the Population, 120
 ANNEX 4B: The Doubling Dose, 122
 ANNEX 4C: Assumptions and Specifications of the Finite-Locus Threshold Model, 124
 ANNEX 4D: Differences Between Spontaneous Disease-Causing Mutations in Humans and Radiation-Induced Mutations in Experimental Systems, 124
 ANNEX 4E: Criteria Used to Assign Human Genes to One of Three Groups from the Standpoint of the Recoverability of Induced Mutations in Live Births, 125
 ANNEX 4F: Radiation Studies with Expanded Simple Tandem Repeat Loci in the Mouse and Minisatellite Loci in Human Germ Cells, 125
 ANNEX 4G: Doubling Doses Estimated from Genetic Data of Children of A-Bomb Survivors, 130

5 BACKGROUND FOR EPIDEMIOLOGIC METHODS
 Introduction, 132
 Collection of Epidemiologic Data, 133
 Analysis of Epidemiologic Data, 136
 Interpretation of Epidemiologic Data, 139
6 ATOMIC BOMB SURVIVOR STUDIES
 Introduction, 141
 Description of the Cohort, 142
 Statistical Methods, 143
 All Solid Cancers, 144
 Site-Specific Cancers, 147
 Cancers Resulting from Exposure In Utero, 151
 Benign Neoplasms, 151
 Nonneoplastic Disease, 152
 Life Shortening, 153
 Summary, 154

7 MEDICAL RADIATION STUDIES
 Introduction, 155
 Medical Uses of Radiation, 156
 Evaluation of Risk for Specific Cancer Sites, 173
 Discussion, 187
 Summary, 187

8 OCCUPATIONAL RADIATION STUDIES
 Introduction, 189
 Nuclear Industry Workers, 190
 Workers from the Mayak Facility, 201
 Chernobyl Cleanup Workers, 202
 Airline and Aerospace Employees, 204
 Medical and Dental Occupational Exposures, 204
 Summary, 205

9 ENVIRONMENTAL RADIATION STUDIES
 Introduction, 207
 Populations Living Around Nuclear Facilities, 208
 Populations Exposed from Atmospheric Testing, Fallout, or Other
 Environmental Release of Radiation, 212
 Populations Exposed from the Chernobyl Accident, 215
 Populations Exposed from Natural Background, 228
 Children of Adults Exposed to Radiation, 228
 Exposure to Radioactive Iodine 131, 233
 Discussion, 235
 Summary, 237

10 INTEGRATION OF BIOLOGY AND EPIDEMIOLOGY
 Introduction, 239
 DNA Damage Response and Cancer Risk, 239
 Projection of Risks Over Time, 239
 The Transport of Cancer Risk Between Different Populations, 240
 Form of the Dose-Response for Radiation Tumorigenesis, 245
 Dose and Dose-Rate Effects on Tumor Induction, 246
 Other Forms of Cellular and Animal Response to Radiation, 250
 Genetic Susceptibility to Cancer, 251
 Heritable Effects of Radiation, 252
 Summary, 252

ANNEX 10A: Application of the Moolgavkar and Knudson Two-Stage Clonal
 Expansion Model to the Transport of Radiation Cancer Risk, 253
ANNEX 10B: Evidence for the Connection Between Dose Effects and
 Dose-Rate Effects in Animal Experiments, 254
11 RISK ASSESSMENT MODELS AND METHODS
Risk Assessment Methodology, 259
Risk Models, 261
Variables That Modify the Dose-Response Relationship, 264

12 ESTIMATING CANCER RISK
Introduction, 267
Data Evaluated for BEIR VII Models, 267
Measures of Risk and Choice of Cancer End Points, 268
The BEIR VII Committee’s Preferred Models, 269
Use of the Committee’s Preferred Models to Estimate Risks for the U.S. Population, 274
Quantitative Evaluation of Uncertainty in Lifetime Risks, 278
Results of Risk Calculations, 278
Uncertainties in Lifetime Risk Estimates, 284
Coherence of Models with Other Studies, 286
Summary, 290
ANNEX 12B: Committee Analyses of Data on the LSS Cohort to Develop BEIR VII Models for Estimating Cancer Risks, 296
ANNEX 12C: Details of LAR Uncertainty Analysis, 308
ANNEX 12D: Additional Examples of Lifetime Risk Estimates Based on BEIR VII Preferred Models, 310

13 SUMMARY AND RESEARCH NEEDS
Evidence from Biology, 313
Genetic Effects of Radiation on Human Populations, 316
Epidemiologic Studies of Populations Exposed to Ionizing Radiation, 317
Integration of Biology and Epidemiology, 321
Models for Estimating the Lifetime Risk of Cancer, 322
Conclusion, 323

APPENDIXES

A BASIC BIOLOGICAL AND GENETIC CONCEPTS

B COMMENTARY ON “RADIATION FROM MEDICAL PROCEDURES IN THE PATHOGENESIS OF CANCER AND ISCHEMIC HEART DISEASE: DOSE-RESPONSE STUDIES WITH PHYSICIANS PER 100,000 POPULATION” 329

C ISSUES RAISED BY THE INSTITUTE FOR ENERGY AND ENVIRONMENT RESEARCH (IEER)

D HORMESIS

E FIFTEEN-COUNTRY WORKERS STUDY

REFERENCES

GLOSSARY

COMMITTEE BIOGRAPHIES

INDEX