Virta et al., 1983

AEROSOLS
In the Mining and Industrial Work Environments

VOLUME 2
Characterization

Edited by
Virgil A. Marple
Benjamin Y. H. Liu

ANN ARBOR SCIENCE
THE BUTTERWORTH GROUP
CHAPTER 47

SIZE AND SHAPE CHARACTERISTICS OF AMPHIBOLE
ASBESTOS (AMOSITE) AND AMPHIBOLE CLEAVAGE
FRAGMENTS (ACTINOLITE, CUMMINGTONITE)
COLLECTED ON OCCUPATIONAL AIR
MONITORING FILTERS

Robert L. Virta, Kim B. Shedd, Ann G. Wylie and Janet G. Snyder
Avondale Research Center
Bureau of Mines
U.S. Department of the Interior
Avondale, Maryland

ABSTRACT

The objective of this study by the Bureau of Mines (BOM) was to determine if particle populations from asbestiform and non-asbestiform mineral sources can be distinguished through least-squares regression analyses using the relationship:

$$\log_{10} \text{width} = F \log_{10} \text{length} + b$$

where F = fibrosity index, the slope of the regression line
b = intercept on the \log_{10} width axis

Amphibole particles on air monitoring filters from three mining and two industrial sites were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. The data are evaluated using particle length and width summary statistics and compared with analyses by linear regression.

Conclusions based on comparison of data manipulation using these two techniques follow: The mining site particle populations are morphologically