Literature Review of Workplace Breathing Rates & Filter Efficiency Testing under Moderate to High Flow Rates

David Caretti
Research Physiologist
Edgewood Chemical Biological Center
15 December 2004
Workplace Breathing Rates

- Objectives
 - Quantify ventilatory parameters based on workplace activities
 - Review literature and analyze compiled data to quantify impacts of respirators on ventilation
Workplace Breathing Rates

- Literature review published Sep 04 (ECBC-TR-0316)
- Limited empirical data to meet objectives

- Adopted approach for estimating minute volumes from energy expenditure literature
 - Exponential functions utilized to estimate minute volume (V_E) from energy expenditure literature when V_E not reported

- Predictions of peak flow rates
 - Based on linear relationship ($R^2 = 0.82, p < 0.001$) between V_E and PIF for individual subject data and prediction intervals
 - Range of PIF based on V_E
Estimation of Minute Volume

![Graph showing the relationship between Oxygen Consumption (L·min⁻¹) and Minute Volume (L·min⁻¹)]

- Baba et al. (2002)
Estimation of PIF Rates

$y = 3.19x + 4.49$

$R^2 = 0.82$

$V_E (L \cdot min^{-1})$

PIF (L \cdot min^{-1})
V_E Distribution for Work Tasks

![Histogram showing the distribution of minute volume (L/min).]
Workplace Breathing Rates

- **Minute volume distribution**
 - Mean = 38.5 \pm 16.6 \text{ L}\cdot\text{min}^{-1} (n = 565)
 - Median = 33.6 \text{ L}\cdot\text{min}^{-1}
 - 95\text{th} percentile = 73.3 \text{ L}\cdot\text{min}^{-1}
 - Peak = 162 \text{ L}\cdot\text{min}^{-1}

- **PIF ranges**
 - Mean V_E: 72 to 183 \text{ L}\cdot\text{min}^{-1}
 - 95\text{th} percentile V_E: 182 to 295 \text{ L}\cdot\text{min}^{-1}
 - Peak V_E:
 - Estimation not valid for V_E over \sim 120 \text{ L}\cdot\text{min}^{-1}
 - Peak V_E in range (\sim 102 \text{ L}\cdot\text{min}^{-1}): 273 to 389 \text{ L}\cdot\text{min}^{-1}
Peak Human Performance

- **Maximal V_E**
 - Males (20-29 yr) = $114 \pm 23 \text{ L} \cdot \text{min}^{-1}$
 - Females (20-29 yr) = $87 \pm 17 \text{ L} \cdot \text{min}^{-1}$
 - Extremes of 180 to 200 $\text{L} \cdot \text{min}^{-1}$

- **Peak flow rates**
 - Maximum exercise values $\sim 300 \text{ L} \cdot \text{min}^{-1}$
 - Peak in-house value $\sim 485 \text{ L} \cdot \text{min}^{-1}$ during hard work
 - Extremes of 500+ $\text{L} \cdot \text{min}^{-1}$ reported
Summary of Workplace V_E

- **Occupational V_E rarely approach $V_{E \text{ max}}$ values**
 - 73 L·min$^{-1}$ sufficiently represents the upper limit of minute volumes anticipated in the workplace
 - 114 L·min$^{-1}$ reasonable estimate for $V_{E \text{ max}}$

- **Peak inspiratory flows**
 - High end predictions based on V_E correspond with literature
 - Suggest upper limit of 430 L·min$^{-1}$ based on $V_{E \text{ max}}$ of 114 L·min$^{-1}$

- **Higher V_E and peak flows will occur!**
 - Literature suggests such instances are not the norm
Analysis of Respirator Data

• **Objectives**
 - Validate/update current knowledge on ventilation during respirator wear
 - Identify data gaps for further research

• **Status**
 - Gathered human ventilation data from 4 sources
 - Database variables defined and populated
 - Analysis of data initiated October 2004
 - Anticipate completion January 2004; report to follow
Preliminary Findings
Preliminary Findings

![Box plot diagram showing PIF (L/min) vs. Inhalation resistance (cmH2O/L/s). The mean is denoted with a red line.](image-url)
Filter Efficiency Testing

- Objectives
 - Assess effect of moderate to high flows on performance of NIOSH-approved particulate respirator filters
 - Compare efficiencies measured under constant and cyclic flow conditions
 - Compare efficiencies measured using inert and bioaerosol challenges
Test Materials

- Test filters
 - Eight NIOSH-approved N95 and P100 respirator filters
 - Non-powered APR particulate filters
- Cartridges: 2 N95 and 2 P100
- Filtering facepieces: 2 N95 and 2 P100

Challenge Aerosols

- Inert particles: 0.02 to 3 μm
- N95: NaCl, polystyrene latex spheres
- P100: DOP, Emery 3004
- Bioaerosols:
- Bacterial: Bg spores
- Viral: MS2 phage
Test Parameters

<table>
<thead>
<tr>
<th>Flow Condition</th>
<th>Minute Volume(^{(a)}) (L/min)</th>
<th>Tidal Volume (L)</th>
<th>Breathing Rate (#/min)</th>
<th>PIF(^{(b)}) (L/min)</th>
<th>MIF(^{(c)}) (L/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>85</td>
<td>N/A</td>
<td>N/A</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Constant</td>
<td>270</td>
<td>N/A</td>
<td>N/A</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>Constant</td>
<td>360</td>
<td>N/A</td>
<td>N/A</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>Cyclic</td>
<td>40</td>
<td>1.6</td>
<td>25</td>
<td>130</td>
<td>80</td>
</tr>
<tr>
<td>Cyclic</td>
<td>85</td>
<td>2.3</td>
<td>37</td>
<td>270</td>
<td>170</td>
</tr>
<tr>
<td>Cyclic</td>
<td>115</td>
<td>2.7</td>
<td>42</td>
<td>360</td>
<td>230</td>
</tr>
<tr>
<td>Cyclic</td>
<td>135</td>
<td>3.1</td>
<td>44</td>
<td>430</td>
<td>270</td>
</tr>
</tbody>
</table>

(a) Minute volume halved when testing single cartridge from dual cartridge respirator

(b) Peak Inspiratory Flow

(c) Mean Inspiratory Flow
Test Parameters

- Cyclic flow conditions based on Workplace V_E review and analysis
 - 40 L·min$^{-1}$: mean $V_E = 38.5$ L·min$^{-1}$
 - 85 L·min$^{-1}$: current test flow parameter
 - 115 L·min$^{-1}$: average $V_{E_{max}} = 114$ L·min$^{-1}$
 - 135 L·min$^{-1}$: $V_{E_{max}} + 1SD = 137$ L·min$^{-1}$
Preliminary Findings

- Effect of flow rate and particle size on measured penetration through a P100 cartridge.
Preliminary Findings

Comparison of penetrations measured under constant and cyclic flow conditions through a P100 cartridge.
Test Status

• **Inert submicron aerosol**
 – Testing complete
 – Initiated “large” particulate testing (0.7, 1.3, 3.0 μm)
 – Anticipate completion in February 2005

• **Bioaerosol testing**
 – Cartridge tests completed with Bg spore challenge
 – Initiated filtering facepiece Bg testing
 – MS2 phage testing will commence following Bg trials
 – Testing scheduled for completion in April 2005
Future Directions

- **Workplace breathing & respirator ventilation data**
 - Update findings based on any new found information
 - Evaluate human breathing during occupational task performance

- **Filter testing**
 - Study combination filters/CBRN filters
 - Determine filtration efficiency based on waveshapes and/or breathing profiles

- **Other**
 - Human factors review of CC SCBA