June 20, 2005
(Draft for Discussion)

Concept for Chemical, Biological, Radiological, and Nuclear (CBRN),
Powered Air Purifying Respirator (PAPR)

1. **Purpose**

Specify minimum requirements for powered air-purifying respirators (PAPRs) that address CBRN materials identified as inhalation and/or possible terrorist hazards for emergency response activities (fire service, law enforcement, and emergency medical technicians) as well as others in potential CBRN environments.

In response to acts of terrorism and other natural disasters, air-purifying respirators are used to provide respiratory protection in work areas where the hazards are known, characterized and conditions of oxygen deficiency do not exist. Respirator use under these conditions must also be sufficient to provide for contingency use in the event of a secondary device or if additional unknown hazards are encountered exposing the responder to unexpected hazards. In these unexpected situations, the air-purifying respirator must be capable of delivering breathing protection as the responder escapes from the area.

This CBRN standard also needs to be universal in defining performance based requirements that meet the widely varying needs of hazard protection, work rate and comfort. In terms of PAPR requirements and respirators in general these needs can represent competing performance requirements. For example, work rates have an influence on physical size and weight of the respirator, which can affect the filter size, weight and comfort. In addition, the hazard protection required can range from fully known and characterized conditions to the unknown and uncharacterized hazards of the unforeseen event requiring immediate escape.

2. **Description**

The CBRN PAPR will use a blower to pass ambient air through an air-purifying canister(s) that will remove contaminants from the ambient air. They are to be designed for use in atmospheres where the concentrations of contaminants during use are not immediately dangerous to life and health and contain adequate oxygen to support life; in addition, they may be used to escape from hazardous atmospheres. The CBRN Tight-fitting PAPR will cover the eyes, nose and mouth, seal to the face or neck, and consist of a facepiece, helmet, hood, or a combination of these. The requirements for the CBRN Tight-fitting Respirator were focused on anticipated needs of the emergency responder (fire service, law enforcement, emergency medical technician) community. The CBRN Non-tight-fitting PAPR should not be used in emergency response applications where high physiological demand is expected. The CBRN Non-tight-fitting PAPR will include a shroud that provides dermal protection to the head and upper torso.

3.0 **Title 42 Code of Federal Regulations (CFR), Part 84**

The following paragraphs of 42 CFR, Part 84 are applicable.
3.1 42 CFR, Part 84, Subparts A, B, D, E, F, and G

Subpart A. General Provisions
Subpart B. Application for Approval
Subpart D. Approval and Disapproval
Subpart E. Quality Control
Subpart F. Classification of Approved Respirators: Scope of Approval
Atmospheric Hazard Service Time
Subpart G. General Construction and Performance Requirements

3.2 42 CFR, Part 84, Subpart KK

The following paragraphs apply in whole or in part:
84.1101 Definitions
84.1103 Approved Labels and Markings; Approval of Contents; use
84.1130 (b) Respirators; description
84.1131 Respirators; Required Components
84.1132 Breathing Tubes; Minimum Requirements
84.1133 Harnesses; Installation and Construction
84.1134 Respirator Containers; Minimum Requirements
84.1135 Half-Mask Face pieces, Full Face pieces, Hoods,
Helmets, and mouthpieces; fit; minimum requirements.
84.1136 Face pieces, Hoods, and Helmets; eyepieces; Minimum Requirements
84.1137 Inhalation and Exhalation Values, Minimum Requirements
84.1138 Head Harnesses; Minimum Requirements
84.1150 Exhalation Valve Leakage Test; Minimum Requirements
84.1154 Canister and Cartridge Requirements
84.1155 Filters used with Canisters and Cartridges; Location; Replacement

4.0 Requirements Based on Existing Standards

4.1 Respirator Containers; Minimum Requirements – CBRN Tight-fitting PAPR

4.1.1 Required Packaging Configuration: (Minimum Packaging Configuration): The CBRN Tight-fitting PAPR and the required components shall be subjected to the environmental and transportation portions of the Durability Conditioning in the manufacturer specified Minimum Packaging Configuration. The canisters shall also be subjected to an additional Rough Handling Drop Test in its designated Minimum Packaging Configuration.

4.1.2 The Minimum Packaging Configuration is the protective packaging configuration that the end user shall store or maintain the CBRN Tight-fitting PAPR and the required components inside after it has been issued for immediate use. The user’s instructions (UI) shall identify the Minimum Packaging Configuration and shall direct the end user how to store or maintain the CBRN Tight-fitting PAPR and the required components inside the manufacturer specified Minimum Packaging Configuration while in the
June 20, 2005
(Draft for Discussion)

possession of the end user. The same Minimum Packaging Configuration identified in the UI shall enlace the CBRN Tight-fitting PAPR and the components when NIOSH performs the Durability Conditioning. The level of the Minimum Packaging Configuration, if any, is left to the discretion of the manufacturer. Examples of common Minimum Packaging Configurations are mask carriers, clamshell containers, draw string plastic bags, hermetically sealed canister bags or nothing at all.

If over cases, packaging, or shipping containers are provided by the applicant over and above the Minimum Packaging Configuration, these additional packaging levels may not be a substitute for the Minimum Packaging Configuration and will not be used by NIOSH in the Durability Conditioning of the application.

* End user: The definition of the end user is the person who will derive protection from the respirator by wearing it. It is assumed that the end user will store the respirator in a location where it will be available for immediate access and use during an emergency.

4.2 **Labels** – CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR

In addition to the requirements of Paragraph 3.2, the following paragraphs apply:

4.2.1 The battery part number must be prominently displayed with the part number on the respirator battery pack and on the PAPR blower, or other suitable location.

4.2.2 Additional cautions and limitations appropriate to CBRN PAPRs must be added as deemed necessary by NIOSH, such as “Observe low flow or pressure alarm indicators.”

4.3 **Breathing Performance** - CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR: (Reference STP CBRN – 0559)

4.3.1 **Breathing Rate**: Powered air-purifying respirators will be approved for breathing rate performance at either a moderate rate or a high rate as specified by the applicant.

4.3.2 **Moderate Breathing Rate Performance**: CBRN Tight-fitting PAPRs and CBRN Non-tight-fitting PAPRs designated for the moderate breathing rate will be tested using a breathing machine operating at 24 respirations per minute while delivering a minute volume of 40 L/min flow. A breathing machine with a Silverman Cam (622 kg·m/min) will be used. The breathing machine is specified in 42 CFR, Part 84 subpart H, Paragraph 84.88.
4.3.3 High Breathing Rate Performance: CBRN Tight-fitting PAPRs designated for the high breathing rate will be tested using a breathing machine operated at 30 respirations per minute while delivering a minute volume of 86 L/min, with an elevated interval at 30 respirations per minute delivering a minute volume of 103 L/min for 10 minutes. The breathing machine will be described in the supporting standard test procedure.

4.3.4 Breathing Performance Requirement: During operation of the breathing machine described in paragraphs 4.4.2 and 4.4.3, the PAPR shall be mounted on a manikin head equipped to continuously monitor pressure in the breathing zone of the respirator. During operation, the pressure shall be maintained greater than 0.0 and less than or equal to 3.5 inches water column pressure at all times for both inhalation and exhalation cycles of the breathing machine.

4.4 General Construction Requirements – CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR

4.4.1 Battery Requirements (reference STP: CBRN-0557)

4.4.1.1 User’s Instructions: The user’s instructions shall include the manufacturer’s operational battery life for all battery options for the respirator in increments of 30 minutes. The manufacturer specified battery service life will be used for Breathing Performance, Paragraph 4.3. The user’s instructions will also include descriptive information regarding the distinct warning for low battery indication at the 15-minute warning and information regarding the operational battery life in typical climates. This should include manufacturer information on how the battery functions at different temperatures, different operating temperature ranges, and expected duration. User instructions shall prominently list the operational battery life for all available battery options and provide adequate information on the function and operation of the battery charger. The user instructions shall also provide the specific indicator location and method of indication in a manner that the user can understand.

4.4.1.2 Low Battery Indicator: Each PAPR must contain an indicator, which alerts the user when 15 minutes of operational battery life remains. The indicator must be readily detectable to the wearer without manipulation of the PAPR by the user. The indicator must be capable of monitoring the battery conditions and signaling the user when the remaining operational battery life is sufficient to sustain the desired flow rate for at least 15 minutes after the low battery indicator is activated when tested at room temperature (25 ± 5 °C). The indicator shall also be capable of alerting the user prior to a negative pressure condition at the manufacturer’s lowest specified operating temperature when tested in accordance with CBRN STP 0557; at this temperature, there is no minimum time limit or maximum time limit.

4.4.2 Low Pressure Indicator (Reference STP: CBRN – 0558)
4.4.2.1 **Users Instructions:** User instructions shall provide adequate information on the function and operation of low pressure indicators to ensure proper use/attention/reaction to these indicators.

4.4.2.2 **Low Pressure Indicator:** Each PAPR shall have an indicator to alert the user when the airflow is insufficient to maintain positive pressure in the breathing zone when tested in accordance with STP CBRN 0558. The indicator will be tested at the manufacturer’s lowest specified operating temperature and 25 °C±2.5 °C. The PAPR must be capable of maintaining positive pressure in the breathing zone until the low flow alarm signals the user. The low flow indicator may be audible, visual, or vibratory.

4.5 **Field of View – CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR (Reference STP CBRN - 0312)**

The CBRN Tight-Fitting PAPR shall obtain a Visual Field Score (VFS) of 90 or greater. The VFS shall be obtained by using a medium size respirator or equivalent that is sized to fit the Head Form described in Figure 14 of EN 136, Respiratory protective devices – Full face masks – Requirements, testing marking; January 1998 or equivalent.

The VFS is determined by using a VFS grid (dots on visual field) as defined in the *American Medical Association Guides to the Evaluation of Permanent Impairment, 5th Edition* (2000) that is overlaid on the diagram of the visual field plot obtained using the spherical shell of EN 136 aerometer or equivalent. The VFS score is the average of three fittings of the same respirator on the specified head form.

4.6 **Respiratory Inlet Covering: Lens Material Haze, Luminous Transmittance and Abrasion Resistance - CBRN Tight-fitting PAPR (Reference STP CBRN-0316)**

4.6.1 **Haze:** The haze value of the primary lens material shall be 3% or less when tested in accordance with ASTM D 1003-00.

4.6.2 **Luminous Transmittance:** The luminous transmittance value of the primary lens material shall be 88% or greater when tested in accordance with ASTM D 1003-00.

4.6.3 **Abrasion Resistance:** The haze and luminous transmittance of the primary lens material shall be determined in accordance with ASTM D 1003-00 before and after subjecting the lens material to the abrasion test. The abrasion test shall be conducted in accordance with ASTM D 1044-99 using a CS-10F Taber Calibrate wheel or equivalent at a minimum of 70 cycles under a 500-gram weight. After subjecting the lens material to the abrasion test, remove the residue from the test specimens in accordance with ASTM D 1044-99 or by using a cleaning method recommended by the applicant. After the residue
June 20, 2005
(Draft for Discussion)

is removed from the test specimens, the test specimens shall not exhibit an increase of haze greater than 4% and a decrease of luminous transmittance greater than 4%.

4.6.4 Test Specimens: The test specimens shall be the flat 4-inch (102 mm) square version as prescribed in ASTM D 1044-99 and shall have the same nominal thickness and within the tolerance range as the primary lens’ dominant viewing area (Directly in front of the eyes) of the CBRN Tight-fitting PAPR. The test specimens shall be subjected to the same coating process and any other processes, as the primary lens would be under normal production conditions. Six specimens shall be furnished to NIOSH for certification testing, three pre-abrasion specimens and three specimens after being tested for abrasion in accordance with ASTM D-1044-99.

4.7 Carbon Dioxide—CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR (Reference STPs CBRN -0515 and CBRN – 0555)

4.7.1 Machine Test: The maximum allowable average inhaled carbon dioxide concentration shall be less than or equal to 1 percent, measured at the mouth, while the respirator is mounted on a dummy head operated by a breathing machine with the blower running. The breathing rate will be 14.5 respirations per minute with a minute volume of 10.5 liters. Tests will be conducted at ambient temperature of 25°C ± 5°C. A concentration of 5% carbon dioxide in air will be exhaled into the respiratory inlet covering.

4.7.2 Human Subject Breathing Gas testing: During the testing required by this section, the concentration of inspired carbon dioxide gas at the mouth will be continuously recorded, and the calculated maximum range concentration during the inhalation portion of the breathing cycle shall not exceed 0.02 (or 2.0%) with the blower running. The inhaled fractional oxygen concentration shall be no less than 0.195 (or 19.5%) when tested with human subjects at the following work rates: standing and walking at 3.5 miles per hour. Two tests (standing and walking at 3.5 miles per hour) shall be performed, each using 12 test subjects. Each exercise will be performed for 10 minutes. Carbon Dioxide and oxygen data will be considered for the last 5 minutes of each exercise. For each of these last 5 minutes, a minimum of the last 5 breaths will be considered.

For each group of 12 subjects, 95% of the total number of trials must meet the stated criteria. Should a group of test trials not pass the 95% of trials, one addition run of test trials consisting of 12 test subjects may be performed to increase the total number of trials; the total number of trials (total of 48) will be the sum of trials from the first and second run of subjects. All trials shall be considered in the Practical Performance requirement criteria of paragraph 5.13.
4.8 **Hydration** - CBRN Tight-fitting PAPR (Reference STP CET-0414)

For CBRN Tight-fitting PAPR respirators equipped with a hydration facility, the CBRN Tight-fitting PAPR respirator shall meet all requirements of the CBRN Tight-fitting PAPR standard with the hydration facility in place. Dry drinking tube valves, valve seats, or seals will be subjected to a suction of 75 mm water column height while in a normal operating position. Leakage between the valve and the valve seat shall not exceed 30 mL/min.

4.9 **Noise Levels** - CBRN Tight-fitting PAPR (Reference STP CET-0030)

Noise levels generated by the CBRN Tight-fitting PAPR measured at each ear location shall not exceed 80 dBA. In the case of inlet coverings that cover the ear, the noise level will be measured inside the inlet covering.

4.10 **Low Temperature/Fogging** - CBRN Tight-fitting PAPR (Reference STP CBRN - 0314)

The CBRN tight-fitting PAPR respiratory inlet covering shall demonstrate and average Visual Acuity Score (VAS) of greater or equal to 75 points for all measurements of acuity with the blower operating. The respirator shall be cold soaked for 4 hours and then worn in an environmental chamber maintained at minus 21°C.

4.11 **Communications** - CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR (Reference STP CBRN – 0513)

Communication requirements are based upon speech conveyance and intelligibility performance using a Modified Rhyme Test (MRT). The communication requirement is met if the overall performance rating is greater than or equal to seventy (70) percent. The MRT will be performed with a minimum steady background noise of 60 dBA consisting of noise generated by the operating blowers worn by test subjects. If the blowers do not generate a noise level of 60 dBA, then the noise generator that produces a broadband “pink” noise shall be activated to produce a level of 60 dBA + 3dBA. The distance between the listeners and speakers shall be 3 meters.

5.0 **Special CBRN Requirements** - CBRN Tight-fitting PAPR and CBRN Non-tight-Fitting PAPR

5.1 **Canister Test Challenge and Test Breakthrough Concentrations** - CBRN Tight-fitting PAPR (Reference STPs CBRN – 0501, 0502, 0503, 0504, 0505, 0506, 0507, 0508, 0509, 0510)
The gas/vapor test challenges and breakthrough concentrations shown in Table 1: Canister Challenge, Breakthrough Concentrations, and Canister Efficiency shall be used to establish the canister service life.

Canister Challenge agents and test concentrations for the CBRN Non-tight-fitting PAPR will be clarified following completion of the Hazard Assessment for that system

Table 1.—Canister test challenge and test breakthrough concentrations

<table>
<thead>
<tr>
<th></th>
<th>Test Concentration (ppm)</th>
<th>Breakthrough Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>2500</td>
<td>12.5</td>
</tr>
<tr>
<td>Cyanogen chloride</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>2600</td>
<td>10</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen cyanide</td>
<td>940</td>
<td>4.7*</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>1000</td>
<td>5.0</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>200</td>
<td>1 ppm NO₂ or 25 ppm NO†</td>
</tr>
<tr>
<td>Phosgene</td>
<td>250</td>
<td>1.25</td>
</tr>
<tr>
<td>Phosphine</td>
<td>300</td>
<td>0.3</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>1500</td>
<td>5</td>
</tr>
</tbody>
</table>

* Sum of HCN and C₂N₂
† Nitrogen Dioxide breakthrough is monitored for both NO₂ and NO. The breakthrough is determined by which quantity, NO₂ or NO, reaches breakthrough first.

5.2 Canister Capacity — CBRN Tight-fitting PAPR

The applicant shall specify the canister capacity as indicated in Table 2:

Table 2.—Canister capacity

<table>
<thead>
<tr>
<th>Filter Capacity</th>
<th>Test Time (min)</th>
<th>Filter Capacity (ppm-min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity # 1</td>
<td>15</td>
<td>Test Concentration X 15</td>
</tr>
<tr>
<td>Capacity # 2</td>
<td>30</td>
<td>Test Concentration X 30</td>
</tr>
<tr>
<td>Capacity # 3</td>
<td>45</td>
<td>Test Concentration X 45</td>
</tr>
<tr>
<td>Capacity # 4</td>
<td>60</td>
<td>Test Concentration X 60</td>
</tr>
<tr>
<td>Capacity # 5</td>
<td>90</td>
<td>Test Concentration X 90</td>
</tr>
<tr>
<td>Capacity # 6</td>
<td>120</td>
<td>Test Concentration X 120</td>
</tr>
</tbody>
</table>
Canister capacity tests will be performed at room temperature, 25 °C ± 2.5 °C; 25% ± 2.5% relative humidity; and 80% ± 2.5% relative humidity. Three canisters will be tested at each specified humidity. Canister capacity testing will be performed at flow rates determined by the flow output of the PAPR blower as determined by Table 3:

<table>
<thead>
<tr>
<th>Constant Flow PAPR</th>
<th>Moderate Breathing Rate Performance (reference Paragraph 5.4.2)</th>
<th>High Breathing Rate Performance (reference Paragraph 5.4.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested at constant flow of blower or 100 L/min which ever is greater for the specified test time.</td>
<td>Tested at constant flow of blower or 261 L/min which ever is greater for the specified test time.</td>
<td></td>
</tr>
<tr>
<td>Demand Responsive PAPR</td>
<td>Tested at a constant flow of 115 L/min</td>
<td>Tested at a constant flow of 300 L/min</td>
</tr>
</tbody>
</table>

Flow rates for PAPR systems will be established using a test procedure developed and conducted based on the existing procedure RCT-APR-STP-0012. The canisters shall meet or exceed the specified test times without exceeding the identified breakthrough concentrations in Table 1. Canister capacity testing shall be performed following Durability Conditioning described in paragraph 5.10. For systems with a single filter element, filters shall be tested at a continuous airflow rate determined as specified in this paragraph. Where multiple canisters are used, the PAPR airflow rate shall be divided by the number of canister elements used.

Canister Capacity requirements for the CBRN Non-tight-fitting PAPR will be clarified following completion of the Hazard Assessment for that system.

5.2 **Particulate/Aerosol Test - CBRN Tight-fitting PAPR and CBRN Non-tight-Fitting PAPR (Reference STP CBRN – 0560)**

The canister shall meet the requirements of 99.97% particulate filter efficiency in accordance with the following criteria. Particulate filter efficiency testing shall be performed following the Durability Conditioning.

5.3.1 Twenty (20) canisters shall be tested for filter efficiency against a dioctyl phthalate or equivalent liquid particulate aerosol.

5.3.1.1 Additionally, six (6) canisters from the cyclohexane gas life test of Paragraph 5.1 shall be tested for filter efficiency against dioctyl phthalate or equivalent liquid particulate aerosol.

5.3.2 Canisters including holders and gaskets, when separable, shall be tested for filter efficiency level, as mounted on a test fixture in the manner as used on the respirator.
5.3.3 When the canisters do not have separable holders and gaskets, the exhalation valves shall be blocked to ensure that leakage, if present, is not included in the filter efficiency level evaluation.

5.3.4 For PAPRs with a single canister element, the canister shall be tested at a continuous airflow rate determined as specified in Paragraph 5.2, *Canister Capacity*. Where multiple canisters are used, the test-aerosol airflow rate shall be reduced in proportion to the number of canisters. The twenty production canisters will be tested at 85 L/min flow to verify the effectiveness of the filter media to filter housing interface.

5.3.5 A neat cold-nebulized dioctyl phthalate (DOP) or equivalent aerosol at 25°C ± 5°C that has been neutralized to the Boltzmann equilibrium state shall be used. Each filter shall be challenged with a concentration not exceeding 200 mg/m³.

5.3.6 The test shall continue until minimum efficiency is achieved or until an aerosol mass of at least 200 mg ± 5 mg challenge point is reached, the test shall be continued until there is no further decrease in efficiency.

5.3.7 The DOP aerosol shall have a particle size distribution with count median diameter of 0.185 μm ± 0.020 μm and a standard geometric deviation not exceeding 1.60 at the specified test conditions as determined with a scanning mobility particle sizer or equivalent.

5.3.8 The efficiency of the filter shall be monitored throughout the test period by a suitable forward-light-scattering photometer or equivalent instrumentation and recorded.

5.3.9 The minimum efficiency for each of the twenty filters shall be determined and recorded and be equal to or greater than 99.97%.

5.3 **Crisis (Panic Demand) Provision**—CBRN Tight-fitting PAPR (Reference STPs CBRN – 0501, 0502, 0503, 0504, 0505, 0506, 0507, 0508, 0509, 0510)

Each canister shall provide a minimum service life of 5 minutes when tested at 50±5 percent relative humidity, 25±5°C, at a flow rate determined by the number of canisters used on the PAPR system. The flow rate shall be determined by dividing 263 L/min by the number of canisters used on the system. For example, a PAPR with two canisters would have the canisters tested at a flow rate of 132 L/min. This test shall be conducted for each of the gases/vapors identified in Paragraph 5.1, Canister Test Challenge and Test Breakthrough Concentrations—CBRN Tight-fitting PAPR.

5.5 **Canisters in Parallel Resistance**—CBRN Tight-fitting PAPR and CBRN Nontight-fitting PAPR (Reference STP CBRN – 0561)
When two or more canisters are used in parallel, their resistance shall be uniform within the population when tested at 85 liters per minute continuous airflow. NIOSH may conduct a systems manifold and canisters evaluation if it is considered necessary based upon the applicant’s design. The manifold design must be such that the flow through the canisters is essentially equal. The canisters shall have an allowable resistance variation of ±10%, determined by one of the following options:

Option 1: For canisters sold in Replacement Packs, (Replacement Packs will contain the appropriate number of canisters to complete a change out of exhausted canisters) the average resistance of the canisters within a Replacement Packs will be determined.

Option 2: For canisters sold individually, Canister Uniformity will be based upon average resistance reported by the manufacture as reported at the time of application.

5.6 Chemical Agent Permeation and Penetration Resistance against Distilled Sulfur Mustard (HD) and Sarin (GB) Agent Requirement - CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR (Reference STPs CBRN - 0550 and 0551)

The PAPR, while the blower is running, and including all components and accessories, shall resist the permeation and penetration of distilled sulfur mustard (HD) and Sarin (GB) chemical agents when tested on an upper-torso manikin connected to a breathing machine operating at an airflow rate of 40 L/min, 36 respirations per minute, 1.1 liters tidal volume.

Test requirements for distilled sulfur mustard (HD) are shown in Table 4:

Table 4.— Vapor–liquid sequential challenge with distilled sulfur mustard (HD)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Challenge Concentration</th>
<th>Duration Of Challenge (min)</th>
<th>Breathing Machine Airflow Rate (L/min)</th>
<th>Maximum Peak Excursion (mg/m³)</th>
<th>Maximum Breakthrough (concentration integrated over minimum test time) (mg-min/m³)</th>
<th>Number Of Systems Tested</th>
<th>Minimum Test Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-Vapor</td>
<td>50 mg/m³ *</td>
<td>30</td>
<td>40 @</td>
<td>0.30 ‡</td>
<td>3.0 §</td>
<td>3</td>
<td>8 ††</td>
</tr>
<tr>
<td>HD-Liquid</td>
<td>0.43 to 0.86 m³ †</td>
<td>120</td>
<td>40 @</td>
<td>0.30 ‡</td>
<td>3.0 ‡</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

* Vapor challenge concentration will start immediately after the test chamber has been sealed. Minimum test time for liquid exposure starts after the first liquid drop is applied.
† Liquid volume dependent on accessories used with the respirator. Minimum volume is 0.43 ml based on the respirator only. Liquid Challenge not required on CBRN Non-Tight-fitting PAPRs.
For Pressure Demand systems, the airflow rate will be increased to 60L/min at minutes 15 – 30 of each hour of the test.

Three consecutive sequential test data points at or exceeding 0.3 mg/m³ will collectively constitute a failure where each test value is based on a detector sample time of approximately two (2) minutes.

The cumulative Ct including all maximum peak excursion data points must not be exceeded for the duration of the test.

Liquid agent is applied to respirator at hour six (6) of the vapor test cycle.

The test period begins upon initial generation of vapor concentration and ends at eight (8) hours. Supplemental electrical power to the PAPR is permissible to allow the system to run for the purpose of this test.

Test requirements for Sarin (GB) agent are shown in Table 5:

<table>
<thead>
<tr>
<th>Challenge Concentration</th>
<th>Vapor Concentration (mg/m³)</th>
<th>Vapor Challenge Time (minutes)</th>
<th>Breathing Machine Airflow Rate (L/min)</th>
<th>Maximum Peak Excursion mg/m³</th>
<th>Maximum Breakthrough concentration (mg/min/m³)</th>
<th>Number of Systems Tested</th>
<th>Minimum Test Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>210†</td>
<td>30</td>
<td>40‡</td>
<td>0.044†</td>
<td>1.05§</td>
<td>3</td>
<td>8†</td>
</tr>
</tbody>
</table>

* The vapor challenge concentration generation will be initiated immediately after test chamber has been sealed.

† For Pressure Demand systems, the airflow rate will be increased to 60L/min at minutes 15 – 30 of each hour of the test.

The test period begins upon initial generation of vapor concentration and ends at 8 hours. Supplemental electrical power to the PAPR is permissible to allow the system to run for the purpose of this test.

† Three consecutive sequential test data points at or exceeding 0.044 mg/m³ will collectively constitute a failure where each test value is based on a detector sample time of approximately 2 minutes.

§ The cumulative Ct including all maximum peak excursion data points must not be exceeded for the duration of the test.

5.7 Laboratory Respiratory Protection Level (LRPL) Test Requirement – CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR (Reference STP CBRN 0352)

The measured laboratory respiratory protection level (LRPL) for each powered air-purifying respirator shall be 10,000 for ≥ 95% trials with the blower operating (Blower on mode). Should a group of test subjects result in LRPL trials where less than 95% of trials have passing results, one additional run of test subjects may be performed to increase the total number of trials: the total number of trials will be the sum of trials from the first and second run of subjects. All trials shall be considered in the Practical Performance criteria of paragraph 5.10. All sampling will be performed in the breathing zone of the respirator. The respirator is tested in an atmosphere containing 20–40 mg/m³ corn oil aerosol of a mass median aerodynamic diameter of 0.4–0.6 μm. The LRPL shall be calculated using eleven exercises: Normal Breathing, Deep Breathing, Turn Head Side to Side, Move Head Up and Down, Recite the Rainbow Reading Passage or equivalent, Sight a Mock Rifle
June 20, 2005
(Draft for Discussion)

(CBRN Tight-fitting PAPR only), Reach for the Floor and Ceiling, On Hands and Knees – Look Side to Side, Facial Grimace, Climb Stairs at a Regular Pace, and Normal Breathing.

All sampling will be performed in the breathing zone of the respirator. The respirator is tested in an atmosphere containing 20–40 mg/m3 corn oil aerosol of a mass median aerodynamic diameter of 0.4–0.6 μm. The atmosphere shall be maintained at normal operating conditions (ambient target) for LRPL Tests (70 °F, 50 % RH).

5.8 Durability Conditioning - CBRN Tight-fitting PAPR (Reference STP CBRN-0311)

Durability Conditioning shall be performed in accordance with Table 7.

Table 7.—Durability conditioning

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Method</th>
<th>Test Condition</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Diurnal</td>
<td>Mil-Std-810F; Method 501.4;</td>
<td>Diurnal Cycle, 35°C (95°F) to 71°C (160°F)</td>
<td>3 Weeks</td>
</tr>
<tr>
<td></td>
<td>Table 501.4-II; Hot-Induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Constant</td>
<td>Mil-Std-801F, Method 502.4;</td>
<td>Basic Cold (C1), -32°C (-25.6°F); Constant</td>
<td>72 Hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>Mil-Std-810E, 507.3; Method</td>
<td>Natural Cycle, Cycle 1, Diurnal Cycle, 31°C (87.8°F) RH 88% to 41°C (105.8°F) RH 59%</td>
<td>5 Days, Quick Look</td>
</tr>
<tr>
<td></td>
<td>507.3; Table 507.3-II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>Mil-Std-810F, 514.5</td>
<td>U.S. Highway Vibration, Unrestrained Figure 514.5C-1</td>
<td>12 Hours/Axis, 3 Alexander; Total Duration = 36 Hours, equivalent to 12,000 miles</td>
</tr>
<tr>
<td>Drop</td>
<td>3 foot drop onto bare concrete surface</td>
<td>Canister only; In individual canister packaging container</td>
<td>1 drop/filter on one of the 3 axes.</td>
</tr>
</tbody>
</table>

Notes:
(1) Extra batteries (not subjected to the Durability Conditioning) are required for certification testing.
(2) Batteries may be recharged after conditioning if used for certification testing.

5.9 Test Sequence - CBRN Tight-fitting PAPR
June 20, 2005
(Draft for Discussion)

<table>
<thead>
<tr>
<th>Order</th>
<th>Bench Testing</th>
<th>Human Factors</th>
<th>Service Life Testing, Face Mode</th>
<th>Service Life Testing</th>
<th>Particulate Canister Degradation</th>
<th>Penetration and Permeation Testing</th>
<th>Efficiency Particulate Canister</th>
<th>LRPL Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty</td>
<td>3 PAPR systems; 3 exhalation valve assy.</td>
<td>9 PAPR Systems, 6 lens samples</td>
<td>30 sets of canisters</td>
<td>54 sets of canisters</td>
<td>6 sets of canisters</td>
<td>6 PAPR systems</td>
<td>20 sets of canisters</td>
<td>25 to 38 systems</td>
</tr>
<tr>
<td>1.</td>
<td>42 CFR, Part 84 Requirements, Low Temperatur e Fogging</td>
<td>Hot Diurnal</td>
<td>Hot Diurnal</td>
<td>Hot Diurnal</td>
<td>Hot Diurnal</td>
<td>Hot Diurnal</td>
<td>Human subject Breathing Gas Test</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Breathing Performance, Field of View</td>
<td>Cold Constant</td>
<td>Cold Constant</td>
<td>Cold Constant</td>
<td>Cold Constant</td>
<td>Cold Constant</td>
<td>LRPL</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Battery Requirements, Noise levels</td>
<td>Transportation/ Vibration</td>
<td>Transportation/ Vibration</td>
<td>Transportation/ Vibration</td>
<td>Transportation/ Vibration</td>
<td>Transportation/ Vibration</td>
<td>Commo,</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Low Flow Indicator,</td>
<td>Drop,</td>
<td>Drop,</td>
<td>Drop,</td>
<td>Drop,</td>
<td>Drop,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Determine CO₂ levels, Canisters in parallel resistance</td>
<td>Canisters in parallel resistance</td>
<td>Canisters in parallel resistance</td>
<td>System Testing,</td>
<td>Particulate/ Aerosol Canister,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Hydration</td>
<td>Service Life Testing, Less Cyclohexane</td>
<td>Service Life Testing, Less Cyclohexane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Results from section 5.2 are needed to perform these tests

5.10 Quality Assurance Requirements - CBRN Tight-fitting PAPR and CBRN Non-tight-fitting PAPR

5.10.1 Quality Control Plan

Respirators submitted for CBRN powered air-purifying respirator approvals shall be accompanied by a complete quality control plan meeting the requirements of Subpart E of Title 42, *Code of Federal Regulations* (CFR), Part 84.

5.10.2 Failure Modes Effects Analysis (FMEA).
Respirators submitted for CBRN Tight-fitting PAPR or CBRN Non-Tight-fitting PAPR approval shall include a FMEA that accompanies the quality control plan. This document will identify that the PAPR has undergone a failure mode and effects analysis that assures that the PAPR will not fail under specified conditions of use. The FMEA is required to demonstrate that reasonable precautions have been taken such that when all manufacturer specified maintenance, use and pre-use procedures are followed, critical failures are unlikely to occur.
5.10.3 Sampling/Test/Inspection Plan

The applicant shall specify a sampling/test/inspection plan for respirator parts and materials to ensure the construction and performance requirements of this standard are established through the manufacturing process. As a minimum, specific attributes to be addressed are:

a). Materials of construction used for respirator parts that form a barrier between the user and ambient air.

b). Integrity of mechanical seals that comprise a barrier between the user and ambient air.

c). Final performance quality control tests on complete filter canisters demonstrating compliance with the gas life and particulate filter requirements of this standard.

5.11 Practical Performance - CBRN Tight-fitting PAPR and CBRN Non-tight-Fitting PAPR (Reference STP CBRN-0556)

The Practical Performance of the powered air-purifying respirator shall be evaluated as part of the test procedures of paragraph 5.7, Laboratory Respirator Protection Level, and paragraph 4.7.2, Human Subject Breathing Gas. The Practical Performance of the respirator shall evaluate human interface issues associated with the use of the respirator. As a minimum, factors which will be evaluated (if applicable based upon the respirator design) are: the inability for the user to accidentally turn the power switch off; and the inability for hoses and electrical wires to tangle, causing the respirator position on the wearer to move to an improper position, such as the respirator facepiece or hood being removed from the wearer's head. Test subjects shall be trained on proper use of the respirator in accordance with the applicant’s user instructions.

Practical Performance trials shall be accumulated from the test procedure of paragraph 5.7, Laboratory Respirator Protection Level, and paragraph 4.7.2, Human Subject Breathing Gas. For the total of these accumulated trials, 95% of these trials shall exhibit acceptable Practical Performance. Should less than 95% of the Practical Performance test trials not be acceptable, one additional run of test trials of paragraph 5.7 or paragraph 4.7.2, may be performed to increase the total number of trials. The total number of trials will be the sum of trials from the first and second run of subjects.

5.12 General Requirements

In addition to the requirements of Title 42, Code of Federal Regulations (CFR), Subpart G – General Construction and Performance Requirements, the following requirements apply:
Prior to making or filing any application for approval or modification of approval, the applicant shall conduct, or cause to be conducted, examinations, inspections, and tests of respirator performance, which are equal to or exceed the severity of those prescribed in the standard. Paragraph 5.6 tests are excluded from this requirement.

5.13 Cautions and Limitations

- Not for use in atmospheres containing less than 19.5 percent oxygen

- Failure to properly use and maintain this product could result in injury or death

- Follow the manufacturer's User's Instructions for changing canisters

- All approved respirators shall be selected, fitted, used, and maintained in accordance with MSHA, OSHA, and other applicable regulations

- Refer to User's Instructions, and/or maintenance manuals for information on use and maintenance of these respirators

- Special or critical User's Instructions and/or specific use limitations apply. Refer to User's Instructions before donning

- Some CBRN agents may not present immediate effects from exposure, but can result in delayed impairment, illness, or death

- Direct contact with CBRN agents requires proper handling of the respirator after each use and between multiple entries during the same use. Decontamination and disposal procedures must be followed. If contaminated with liquid chemical warfare agents dispose of the respirator after decontamination.

- Not for entry into atmospheres immediately dangerous to life and health or where hazards have not been fully characterized

- Use replacement parts in the configuration as specified by the applicable regulations and guidance

- Consult manufacturer's User Instructions for information on the use, storage, and maintenance of these respirators.

- This respirator provides respiratory protection against inhalation of radiological and nuclear dust particles. Procedures for monitoring radiation exposure and full radiation protection must be followed.

- If during use, an unexpected hazard is encountered such as a secondary CBRN device, pockets of entrapped hazard or any unforeseen hazard, immediately leave the area for clean air
June 20, 2005
(Draft for Discussion)

- Follow established canister change out schedules or observe End of Service Life Indicators to ensure that canisters are replaced before breakthrough occurs.

- Use in conjunction with personal protective ensembles that provide appropriate levels of protection against dermal hazard. Failure to do so may result in personal injury even when the respirator is properly fitted, used, and maintained. Appropriate dermal protection for use with CBRN Non-tight-fitting PAPRs should include a shroud that provides dermal protection to the head and upper torso.

- The respirator should not be used beyond eight (8) hours after initial exposure to chemical warfare agents to avoid possibility of agent permeation. If liquid exposure is encountered, the respirator should not be used for more than two (2) hours.

- The CBRN Non-tight-fitting PAPR should not be used in emergency response (fire service, law enforcement, emergency medical technician) applications where high physiological demand is expected.

- The CBRN Non-tight-fitting PAPR should not be used for escape purposes.