
Materials and Methods 
 
Seven healthy male subjects participated in this study and performed one of the most 
common roofing tasks—a shingle installation task. Each person was asked to perform three 
trials of the shingle installation task. We collected whole-body marker data (total 79 makers 
placed on each subject) using a Vicon motion capture system with 14 optical cameras 
(Vantage V16, Vicon Motion System Ltd., Oxford, UK). Additionally, three video cameras were 
used to record the subject's movement from three perspectives simultaneously. The original 
video resolution was 1280x720, and the frame rate was 100 Hz. The video data set contains 63 
videos of 7 subjects, and each with 3 trials and 3 perspectives. The whole-body joint positions 
of the subjects were estimated from three sources—the “ground truth” estimation based on 
the marker data, and two outputs from a two-stage deep-learning-based motion estimation 
using the video data (where the first stage used a multi-view model to estimate the 3D pose 
in a single frame and the second stage used a multi-frame model to apply temporal 
convolutions to refine the multi-view outputs). 
 

The ground truth estimations of the joint positions were based on the marker data recorded 
by the Vicon system, which is currently the gold standard method to obtain the joint 
kinematics. An open-source musculoskeletal modeling software—OpenSim—was used to 
estimate the joint positions based on the recorded marker locations. The joint kinematics 
were estimated by matching the virtual markers placed on the OpenSim musculoskeletal 
models to the recorded real markers on the human subjects, which was referred as the 
inverse kinematics approach. The missing marker issue was also resolved by the inverse-
kinematics approach in OpenSim. In the present study, the joint definitions were similar as in 
the largest existing public dataset of 3D human poses—Human3.6M.  

  
The multi-view model estimated the 3D joint locations from three different views for each 
frame. The algebraic model from “Learnable Triangulation of Human Pose” was served as the 
base model since it is one of the state-of-art multi-camera 3D human pose models. This 
network uses ResNet-152 as the backbone to obtain heat maps of 2D human pose and 
computes the softmax across the spatial axes to get the 2D positions of the joints. The 
algebraic model was pre-trained offline using the public Human3.6M video data and refined 
using the recorded roofing video data. Moreover, the 3D coordinates of the algebraic model 
results are normalized for each subject.  
 
The multi-frame model further improved the precision and stability of a 3D pose sequence 
by combining multi-frame information. The model had several grouped temporal convolution 
layers and the dilation was used to change the size of the receptive field. The input of the 
multi-frame model was a 3D joint coordinate sequence. We used a convolution layer of 
kernel size 3 to preprocess the sequence and then sent it into four residual blocks 
surrounded by a skip connection. With the accumulation of residual blocks, the dilation 
values increased to expand the size of the receptive field. Before using the ground truth to 
train our model, the model was pre-trained using the human pose data with random noise. 
Human pose data with noise has been used as both the input and the label of the network 
to train the network. Mean Squared Error was used to calculate the error between the 
processed coordinate sequence and the ground truth as a loss function. A temporal 
smoothness constraint was used in the loss function by calculating the mean of the L2 norm 
of the first order derivative of the 3D joint locations. 


