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An accurate procedure for estimating linear-duplex DNA base-pair numbers and protein mo-
lecular weights after electrophoresis in single concentration gels is presented. A robust modified
hyperbola was found to be superior for determining molecular weights and base-pair numbers
for a set of known standards when compared with the conventional log transformation and a
similar hyperbolic model. We describe the use of a soft laser-scanning densitometer to measure
band-migration distances of wet, stained polyacrylamide gels for proteins and photograhic negatives
of agarose gels containing DNA stained with cthidium bromide. This automated densitometric
method was more accurate than existing methods. A BASIC computer program detailing the

procedure is included. ® 1986 Academic Press, Inc.
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One of the first quantitative gel electropho-
resis methods for determining optimal sepa-
ration, resolution, and resultant extrapolation
of apparent molecular weights was described
by Ferguson (1). The Ferguson plot analysis,
whose theoretical basis was defined by Ogston
(2) and studied by others (3,4), requires elec-
trophoresis using several different gel concen-
trations since no single concentration is op-
timal for all electrophoretic separations (5,6).
This is the only electrophoretic technique cur-
rently available for determining molecular
weights of proteins with unequal surface
charge densities. The analysis is usually applied
to sample mixtures containing only a few
components of interest (5), and, although ex-
tremely reliable, some investigators have re-
ported nonlinearity in the plots (3), empha-
sizing the fact that no one method for molec-
ular weight determination is universally ideal.

Another method for determining molecular
weights of proteins with equal surface charge
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densities after gel electrophoresis is to compare
band-migration distances with a set of known
standards in a single concentration gel (3,6—
8). Standard sets, which include a broad range
of protein molecular weights or DNA base
pairs, frequently exhibit a curvilinear rela-
tionship between the migration distances of
the bands and their molecular weights or base-
pair numbers in single concentration gels {(9-
11). One way 1o examine these data is to form
a standard curve by fitting a simple linear
model relating the logarithm of the molecular
weights or base-pair numbers to the migration
distances of the various bands (7,8,12,13).
When band-migration distances are measured
for materials in a sample run, their respective
molecular weights or base-pair numbers are
then interpolated from this curve.

This approach is subject to errors from a
variety of sources. Numerous tools such as
rulers, calipers, and magnifying glasses used
to measure the migration distances are inher-
ently imprecise (5). Potentiometric (5) and
densitometric (14) measurements have been
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used to increase the precision of these mea-
surements and relative mobilities (Ry) are gen-
erally used to reduce measurement inaccura-
cies within a series of gels (8,15). The log
transform, however, often does not fully lin-
earize the data over the entire range of the
observations (3,8,15,16). Although measures
of fit, such as the Pearson correlation coeffi-
cient (17), may indicate that the log transfor-
mation works well, comparisons of the known
molecular weights or base-pair numbers with
their predicted values from the standard curve
may reveal the percentage error to be unac-
ceptably large. The inadequacy of the log
transformation cannot be clearly visualized
without considering graphs of the data with
the resultant fitted line and a table of known
and predicted values of molecular weights or
base-pair numbers derived from the standard
curve. When the data are clearly nonlinear
over the full range of observations, investiga-
tors will commonly fit the simple linear model
to just that portion of the data that are strictly
lincar and extend the line through the re-
maining points by hand (8). This method suf-
fers in that it is difficult to accurately predict
molecular weights or base-pair numbers out-
side the range of linearity and those predictions
are inevitably subjective and unreliable.
Investigators have introduced several mod-
els to describe the inherent curvature of pro-
tein and DNA gel electrophoresis data. Rod-
bard postulated a sigmoidal or logistic rela-
tionship relating the relative mobility of
proteins to their molecular weight (3,6). In ad-
dition to the logistic function, Rodbard out-
lined a number of alternative models to de-
scribe these data including a class of models
relating log molecular weight to simple linear
and polynomial functions in relative mobility
and another class of models relating molecular
weight to simple linear and polynomial func-
tions in log relative mobility. Duggelby et al.
(18) used a polynomial function in log base-
pair number to describe the relative mobility
of DNA fragments and Parker e/ al. (19) used
an exponential polynomial in relative mobility
to describe DNA base-pair numbers, Schaffer
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and Sederoff (8,20) implemented a program
to fit a hyperbola described by Southern (21)
to determine DNA fragment length, These
procedures account, to varying degrees, for the
inherent curvature of the data and achieve
greater degrees of accuracy than the simple
log transformation when dealing with protein
molecular weights and the base-pair number
of linear-duplex DNA.

In any experimental system there are oc-
casional readings which do not fit the general
trend of the data. These aberrant observations,
or outliers, can severely affect the outcome of
the log transformation and any other proce-
dure which uses the method of least squares
to describe the data (6). Tiede and Pagano (22)
addressed these difficulties when dealing with
the logit model used to form calibration curves
related to radioimmunoassay data. They fit a
more general modified hyperbola to their data,
which resembles the one proposed by South-
ern, but is more accurate over a wider range
of applications. They also implemented a ro-
bust fitting technique which is not sensitive to
outliers and minimizes the effect of these
aberrant observations on the overall fit of the
model.

We propose the application of a robust
modified hyperbola to develop standard curves
of gel electrophoresis data from single concen-
tration gels for proteins and linear-duplex
DNA after precisely measuring band-migra-
tion distances with a soft laser-scanning den-
sitometer,

DERIVATION

Standard curves for proteins and DNA have
traditionally been formed by fitting a simple
linear model relating the logarithm of the mo-
lecular weights or base-pair numbers to the
migration distances of the various bands in
the standard

yi=a+ blx;)+ e
i=

1, ..., n (the number of data pairs)

where y; = log of the molecular weights or
DNA base-pair numbers, x; = migration dis-
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tances of the respective bands, and e; = error
term associated with the fit. After band-mi-
gration distances in sample runs are measured,
their respective molecular weights or base-pair
numbers are interpolated from this curve,
given the calculated slope (b) and y-intercept
(a) terms. However, the following nonlinear
function describes the inherent curvature of
the data more accurately than the log trans-
formation:

S, O) =y = a+ bj(1 + c(x) + ¢

i=1,...,n

(1]

where y; is the known molecular weight or
number of DNA base pairs; x;is the migration
distance of the proteins or DNA fragments in
the gel measured by a soft laser-scanning
densitometer; ¢; is the error term associated
with the fit; and O is the vector of parameters,
a, b, ¢, and d of the model to be estimated.

When parameterized in this fashion, the
model coefficients may be interpreted as fol-
lows: the first coefficient, ¢, is an estimate of
the horizontal asymptote of the curve or that
point on the y axis (molecular weight or DNA
base-pair number)} where the hyperbola would
become horizontal if the curve were extended
indefinitely. The coefficient b is the point on
the y axis where the hyperbola would become
vertical, again, if the curve were extended in-
definitely. The coefficients ¢ and & are mea-
sures of curvature, determining the sharpness
of the curve, etc.; d was generally between (.25
and 1.5 in our trials.

The band-migration distances were nor-
malized to eliminate the variability that exists
with each experimental run. Variability as-
sociated with terminating the electrophoretic
run at a fixed distance causes the bands to be
offset by a small distance, After each run the
densitometer scaled the migration distances to
range from 0 to some maximum value set by
the operator (the maximum value is the length
of the graph produced by the densitometer in
inches). The migration distances were prepro-
cessed by first dividing each of the distances
by the graph length so that they would range
from 0.0 to 1.0:
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Xstandard revised
= migration distance/graph length

WHere Xyandard revised = Tevised calculated mi-
gration distances of the standard. This tech-
nique is also applicable to data collected by
other means if the Ryvalue (the migration dis-
tance of the protein or DNA fragment divided
by the migration distance of a tracking dye) is
used in place of Xyandard revisea 10 the following
derivation.

The shortest distance (corresponding to the
highest molecular weight or base-pair number
in the standard) was then subtracted from all
the values to correct for the problem of band-
distance offset. A correction factor of 0.01 was
added to each of the readings to avoid a 0 mi-
gration distance for the band associated with
the heaviest molecular weight or longest DNA
fragment, Each value was then multiplied by
100 to give readings which ranged from 1.00
to 101.0:

Xnormalized = (({xslandard revised
B minimum(xstandard revisea)) + 01) bt 100)

where minimum{(Xgangard revised) 15 the shortest
migration distance of the standard after having
been divided by the graph length, and X,omatized
is the final normalized migration distance val-
ues used in Eq. [1] to solve for the four pa-
rameters &, b, ¢, and d. If the beginning of the
gel is thought of as the position of the first
band (i.e., the heaviest molecular weight or
the longest DNA fragment), then each nor-
malized value can be thought of as the ap-
proximate percentage of the distance traveled
by the respective band 1o the total distance of
the gel.

Once the parameters a, b, ¢, and d have
been estimated, molecular weights or base-pair
numbers may be interpolated from the stan-
dard curves after the sample run data have
been preprocessed in the same way as the
standard data. Since the sample runs are ob-
tained from the same gel as the standard run,
the offset for the sample runs must still be the
minimum distance of the standard run. After
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the sample run migration distances have been
divided by the graph length, the final values
are obtained as

xsampl:: final = (((xsample revised

— MINIMUM{Xyandard revised)) + -01) X 100)

WhETe Xsample revised = Tevised calculated migra-
tion distances of the sample run (i.e., the orig-
inal readings divided by the graph length), and
Xsample finat 15 the final calculated migration dis-
tance values used in Eq. [1] to find the mo-
lecular weights or DNA base-pair numbers af-
ter the parameters a, b, ¢, and & have been
estimated.

Ordinary least squares may be unduly in-
fluenced by outliers in the data while the ro-
bust procedure produces estimates which
minimize the effect of these outlying obser-
vations. In the absence of outliers, the robust
fit will be similar to the least squares results.

Given the function y; = f{x;, 0), O, the vec-
tor of parameters, &, b, ¢, and d, may be esti-
mated using the Taylor series expansion or
linearization method (23). It can be shown that
the vector of parameters O may be expressed
in the form of a pseudo-weighted least-squares
estimate

where Oy is the former estimate and Oy, is
the revised estimate for the parameter vector;
A is the matrix of partial derivatives of the
function with respect to each of the parame-
ters, evaluated at O;.

Setting A, equal to the partial derivative of
Sf(x, O) with respect to O,,, where p =1, ...,
4 for a, b, ¢, and d, evaluated at the normalized
migration distance x;, then the matrix A is

Ay Ay A Ay

. . - .

i=1,...,.n

Af4

- . »* -

observations

. . - .

Aul Anz An} AM

It follows that A;equals the matrix A evaluated
at the former estimates for O = O; (i.e., a, b,
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¢, and d = a;, b;, ¢;, and d)). The partial deriv-
atives are defined as

A,‘l =1
A,‘z = (l + ax?')"
Ap = —bx{(1 + ex)?

A = —bxfc(logle))(1 + exH2

Examining the fourth partial derivative, it is
clear why the small correction factor was
added to the migration distances to avoid a 0
normalized distance for the band associated
with the heaviest molecular weight or longest
DNA fragment; the log of 0 is undefined.

R; are the residuals of the function (i.e., the
predicted weights or DNA base-pair numbers
derived from the function subtracted from the
actual molecular weights or DNA base-pair
numbers), again evaluated at O = O;:

R

The summation of the squares of the weighted
residuals, that is, the summation of the prod-
uct of the squared residuals with the jth weights
associated with each point, is one measure of
how well the present set of parameters, 0O;,
describe the data; the best fit will tend to min-
imize this sum. When this statistic is computed
for the nonrobust and unweighted fitting pro-
cedures, the weights are all assumed to be equal
to 1.0,

Weighting functions, as described by Rod-
bard, correct for nonuniformity in the vari-
ances of the molecular weights (3,6), whereas
the weighting function, W, incorporated in the
present robust procedure is used for the de-
tection and elimination of outlying observa-
tions (22,24). These weights determine the
“robustness” of the procedure. This factor
would simply be excluded from expression [2]
for the least-squares case. For the robust fit,
we chose the SINE estimator (24) which results
in an n X »n weight matrix composed of 0’s
with the following factors along the diagonal
clements:

nf
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se/Rfsin(Ry/sc)] if  [(Ry/s) < =

or _
0.0 if |(Ry/sO| >

The sine function is performed in radian mode
with = equal to 3.141593, | | indicates ab-
solute value, s is a robust estimate of scale,
and ¢ is a constant which determines how sen-
sitive the fit will be to the outlying observa-
tions. This sensitivity increases as ¢ decreases.
The value for ¢ is set equal to 2.1 and s is
defined as

median(largest(n — 3)|residuals|).

The weights range from 0.0 to 1.0 correspond-
ing to large or small residuals, respectively.
Data points which are close to the fitted line
(i.e., points with small residuals) will have
weights close to 1.0, whereas outlying obser-
vations will typically have weights near 0.0.

The solution for O can be obtained using
the standard Gauss-Newton least-squares al-
gorithm (23) which is detailed in the BASIC
program listing and documentation in the ap-
pendix. Initial starting values for the parameter
vector O are substituted for O; in expression
[2]. The matrices A;, W;, and R; are then cal-
culated using these initial estimates. The new,
revised estimates for O (Oj,,) are then calcu-
lated and used in the next round of calcula-
tions as Q. This iterative process continues
until the solution converges, that is until O
and Oy, are extremely close:

|(Oi{j+l) — OOyl < e

where e is set to some small tolerance level
{e.g., 0.00001).

As with all nonlinear estimation procedures
initial parameter estimates are required to start
the process. Schaffer and Sederoff (20) imple-
mented an algorithm to find the selutions to
the hyperbola described by Southern (21):

(c; — moXyi — b)Yy = h [3]

where x; is related 10 migration distance; y; to
DNA base-pair number, and, in our applica-
tions, protein molecular weight; and /1 is a
constant of proportionality. Their solution for
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the parameters #, Ly, and £ provides good
starting values for the iterative procedure.
Fundamental algebra leads to the following
relationship between the parameters @, &, ¢,
and 4 of [1] and my, &, and A of [3]. If 4 is set
equal to 1.0, then

a= !'(]
b=—hfmg
c=—1.0/myg.

The present strategy is to find the solution
1o [3] using Schaffer and Sederoft’s algorithm;
solve for a, b, and ¢; set & = 1.0; and use these
results as starting values for the iterative pro-
cess.

MATERIALS AND METHODS

Sodium dodecy! sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE)? SDS-PAGE
of proteins was carried out with a modified
Laemmli gel system (25). A discontinuous
buffer system was used with a 4% stacking and
11% separating gel (pH 6.8 and 8.8, respec-
tively). The gels (1.5 X 180 X 160 mm) were
cast with 12.0 ml of distilled water, 10 ml of
acrylamide solution (30.0 g acrylamide, 0.95
g N,N'-methylenebisacrylamide, in 100 ml
water), 7.5 ml of 1.5 M Tris, pH 8.8, and 300
ul of 10% SDS; the gel solution was degassed
for 10 min. Polymerization was initiated with
10 pul of N,N,N',N'-tetramethylethylenedi-
amine (TEMED) and 150 ul of 10% am-
monium persulfate. A 10-mm stacking gel was
prepared by mixing 1.4 ml of acrylamide so-
lution, 2.5 ml of 0.5 M Tris (pH 6.8), 100 ul
of 10% SDS, 5.9 ml of distilled water, 5 gl of
TEMED, and 100 ul of 10% ammonium per-
sulfate. Known molecular weight standards
were diluted in 235 gl of distilled water, and an
equal volume of treatment buffer was added
[20% glycerol, 10% 2-mercaptoethanol, 4%
SDS, in 0.125 M Tris (pH 6.8), and 10 gl of

? Abbreviations used: SDS-PAGE, sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis; TEMED,
NN, N N'-tetramethylethylenediamine; bp, base pairs.
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0.05% bromphenol blue per milliliter of
buffer]. Preparations were heated to 100°C
and held for 5 min, cooled, and 25 ul was
loaded into each well of the gel and subjected
to electrophoresis. A constant voltage of 150
V and initial current of 50 mA were used for
electrophoresis. Each run took approximately
4.5 h for the tracking dye (bromphenol blue)
to migrate within 1 cm of the bottom of the
gel. The upper and lower chamber buffer con-
sisted of 0.025 M Tris, 0.192 M glycine, and
0.1% SDS, pH 8.3. The buffer was cooled to
approximately 5°C. Gels were stained over-
night at room temperature with 0.125%
Coomassie brilliant blue R-250 in a solution
of 50% methanol and 10% acetic acid. After
destaining, the wet gels were analyzed with a
soft laser-scanning densitometer (Biomed In-
struments, Fullerton, Calif.).

The following protein molecular weight
standards were used: phosphorylase b (92.5K),
bovine serume albumin (66.2K), ovalbumin
(45.0K), carbonic anhydrase (31.0K), soybean
trypsin inhibitor (21.5K), and lysozyme
(14.4K). Glycerol, methanol, and acetic acid
were obtained from Fisher Scientific, Fair
Lawn, New Jersey, and all other reagents used
were electrophoresis grade and obtained from
Bio-Rad Laboratories, Richmond, California.

Gel electrophoresis of DNA. Agarose powder
(FMC corporation, Rockland, Maine} was
used to prepare horizontal gels (11 X 13 X 4
cm) of varying concentrations (0.85 to 1.0%)
in Tris—acetate buffer (40 mMm Tris, 40 mm
sodium acetate, 2 mM EDTA, pH 8.2). One
microliter (about 0.5 ug) of a predigested lin-
ear-duplex DNA molecular weight marker
(210 and 12216 base pairs; Bethesda Research
Laboratories, Inc., Gaithersburg, Md.) was
suspended in 25 pl of buffer (50 ml Tris-hy-
drochloride, 1 mm EDTA, pH 8.0) and 7 ul
of stop mix (5% sodium dodecyl sulfate,
0.025% bromphencl blue). Then, 30 pl of each
sample was added to separate wells of agarose
gels and electrophoresed using varying cur-
rents (30 to 70 mA) and for varying periods
(2 to 3 h). After electrophoresis, gels were
stained in ethidium bromide (about 2 pg/ml)
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for 20 min, destained in distilled water over-
night, and photographed using a 302-nm uv-
transilluminator (Fotodyne, Inc., New Berlin,
Wisc.) and a Polaroid MP-4 Land Camera
(Cambridge, Mass.) equipped with a 23A Ko-
dak Wratten Filter (Eastman Kodak Co.,
Rochester, N. Y.) and film type 665. Photo-
graphic negatives were then analyzed with a
densitometer.

Densitometry. Band-migration distances for
SDS-polyacrylamide and agarose gels were
determined with a Model SL-2DUV two-di-
mensional soft laser-scanning densitometer
(Biomed Instruments). The densitometer was
fitted with a high-intensity, nonslit, mono-
chromatic red (633 nm) laser (3-um band-
width and 10-mm band length) and neutral
density filters (0.3 and 0.6). Binary data were
collected using an Apple Ilc personal computer
operated with an auto-stepover program
(Biomed Instruments) for data capture and
Videophoresis Il program (Biomed Instru-
ments) for data analysis (26).

RESULTS AND DISCUSSION

A robust modified hyperbola was compared
with the standard log transformation, the
nonrobust modified hyperbola (regular least
squares), and the Southern procedure as im-
plemented by Schaffer and Sederoff (8,20).
Various experimental conditions were used to
evaluate the robust fitting technique. Six pro-
tein standards of known molecular weights
ranging from 14.4 t0 92.5K and linear-duplex
DNA ranging from 1018 to 12216 bp were
separated by SDS-polyacrylamide and agarose
gel electrophoresis, respectively, and analyzed
by a soft laser-scanning densitometer.

The log transform did not adequately de-
scribe the data over the entire range of obser-
vations in any data set we examined. The
modified hyperbola accounted for the curva-
ture of the data more completely and predicted
molecular weights and base-pair numbers
more accurately throughout the range of the
observations, eliminating any subjectivity that
may be inherent with the log transformation.
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The results from a typical linear-duplex
DNA experiment are shown in Fig. 1A, Al-
though the robust modified hyperbola fits the
data with little error, the log fit appears ade-
quate as evidenced by the large correlation
coefficient of —0.9934 (Table 1). However, the
data in Table 1 indicate that the percentage
error for each observation of the log fit is as
high as 13.52% while the error of the robust
fit does not exceed 3.08% and is usually less
than 1.0%. The log transform compresses the
base-pair number scale in such a fashion that
the curvature of the data is suppressed, making
the observations appear linear enough for the
straight line (log transform) to describe the
data well, giving the high correlation coeffi-
cient, This statistic is deceptive because com-
parisons of the actual and predicted base-pair
numbers from the standard curve may indicate
the error rate to be excessive when the results
of such a fit arec examined on the original scale.
The error associated with the log fit and the
accuracy of the robust modified hyperbola are
seen more clearly when the data are displayed
on the original scale (Fig. 1 B).

The robust and regular least-squares fit to
the same data in the presence of an artificially
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generated outlier are illustrated in Table 2.
This outlying observation was created by ar-
bitrarily selecting the migration distance 2.116
and increasing it 25% to 2.650. For the robust
fit the weight of each point determines that
point’s influence on calculations of the model
coefficients in succeeding iterations. Obser-
vations close 1o the line with weights near 1.0
exert greater influence on the resultant cal-
culations than distant observations with near
0 weights. In this manner outliers are deem-
phasized or ignored and the procedure at-
tempts to fit the line through the main body
of the data. The regular least-squares proce-
dure ignores this information and permits all
observations to influence the fit with a weight
of 1.0. This allows outliers to adversely affect
the outcome of the overall fit. The robust fit
is unaffected by the outlier in the data pre-
sented as demonstrated by the zero weight as-
sociated with the point (Table 2). The error
for the outlying point is large (20.79%) while
the error associated with the rest of the obser-
vations remains extremely low (mostly less
than 1%), indicating that the robust procedure
ignored this aberrant observation and fit the
ling through the main trend of the data. The

13.0

10.0

o
=]

Base Poir Number (kilobases)

i
[= I =]

B Normalized Migration Distance

FIG. 1. Comparison of the robust modified hyperbola (—) and log transformation (---) fit to linear-duplex
DNA base-pair numbers. Migration distances were normalized as described under Derivation. Electrophoresis
was performed in agarose gel as described under Materials and Methods. The DNA fragments contained

from 1018 to 12,216 base pairs (see Table 1).
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TABLE 1

RESULTS FROM A STANDARD CURVE FOR LINEAR-DUPLEX DNA
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Actual Normalized Known Predicted
migration migration base-pair base-pair
distance® distance® number® number? Residual® % Error’
Robust modified hyperbola
1,204 1.00 12216 12226.95 —=10.95 0.09
1.335 2.31 11198 11207.51 —9.51 0.08
1.497 3.93 10180 10118.43 61.57 0.60
1.660 5.56 9162 9185.05 —23.05 0.25
1.888 7.84 8144 809591 48,09 0.59
2,116 10.12 7126 7201.73 —75.73 1.06
2.454 13.50 6108 6139.11 =31.11 0.51
2,897 17.93 5090 5079.19 10.81 0.21
3483 23.79 4072 4054.16 17.84 0.44
4.310 32.06 3054 3049.55 4,45 0.15
5.664 45,60 2036 2008.03 27.97 1.37
6.380 52.76 1635 1629.21 5.79 0.35
7.891 67.87 1018 1049.32 -31.32 3.08
Model statistics
a* b ¢ d SSq"
—1422.28 14500.54 0.062 1.033 1.353 x 10¢
Log transformation
1.204 1.00 12216 10563.80 1652.20 13.52
1.335 2.31 11198 10068.04 1129.96 10.09
1.497 3.93 10180 9487.01 692.99 6.81
1.660 5.56 9162 8936.23 225.77 2.46
1.888 7.84 8144 8215.04 —75.04 0.92
2.116 10.12 7126 755941 —433.41 6.08
2.454 13.50 6108 6677.69 -569.69 9.33
2.897 17.93 5090 5675.86 —585.86 1151
3483 23.79 4072 4571.72 —505.72 12.42
4,310 32.06 3054 3379.58 —325.58 10.66
5.664 45.60 2036 2056.34 -20.34 1,00
6.380 52,776 1635 1581.23 53,77 3.29
7.891 67.87 1018 908.26 109.74 10.78
Model statistics
y Intercept Slope S5q* r
9.302 =0.0367 5,776 X 10° - —0.,9934

@ Actual migration distances measured with a soft laser-scanning densitometer scaled to a graph length of 10.
b Distances normalized as described under Derivation.
¢ Values published by manufacturer (see Materials and Methods).
4 Predicted values from standard curves.

¢ Predicled base-pair number subtracted from known base-pair number,

7 Absolute value of residual divided by known base-pair number multiplied by 100.

g, b, ¢, d are parameter estimates for the robust fit of the modified hyperbola (sce Derivation),

h §84, weighted sum of squares of the residuals.
Iy, Pearson's correlation coefficient (17).
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TABLE 2

COMPARISON OF THE ROBUST AND LEAST-SQUARES FIT FOR THE MODIFIED HYPERBOLA FOR DUPLEX DNA
WITH AN ARTIFICIALLY GENERATED QUTLYING OBSERVATION

Actual Normalized Known Predicted

migration migration base-pair base-pair

distance” distance” number® number? Residual® % Error” Weight?

Robust fit

1.204 1.00 12216 12219.87 —3.87 0.03 0.9994
1.335 2,31 11198 11211.68 —13.68 Q.12 0.9922
1.497 3.93 10180 10129.86 50.14 0.49 0.8983
1.660 . 5.56 9162 9199.96 -37.96 041 0.9409
1.888 7.84 8144 811240 31.60 0.39 0.9588
2.650* 15.46 7126 5644.66 1481.34 2079 0.0000
2.454 13.50 6108 6153.46 —-45.46 0.74 0.9160
2.897 17.93 5090 5090.48 —0.48 0.01 1.0000
3.483 23.79 4072 4061.72 10.28 0.25 0.9956
4,310 32,06 3054 3053.07 093 0.03 1.0000
5.664 45.60 2036 2007.42 28.58 1.40 0.9663
6.380 52.76 1635 1627.21 7.79 0.48 0.9975
7.891 67.87 1018 1045.47 —27.47 2,70 0.9688

Model statistics

a' b ¢ d SSq’
—1422.74 14477.52 0.061 1.038 8.351 x 10°

Least-squares fit

1,204 1.00 12216 12174.96 41.04 0.34
1.335 2.31 11193 1118599 12.01 0.11
1.497 3.93 10180 10167.70 12.30 0.12
1.660 5.56 9162 9303.64 —141.64 1.55
1.888 7.84 3144 8291.42 —147.42 1.81
2.650* 15.46 7126 593091 1195.09 16.77
2.454 13.50 6108 6428.74 —-320.74 5.25
1,897 17.93 5090 5379.81 —289.81 5.69
3.483 23.79 4072 4327.28 —255.28 6.27
4.310 32.06 3054 324922 —195.22 6.39
5.664 45.60 2036 2069.22 —33.22 1.63
6.380 52.76 1635 1620.61 14.39 0.88
7.891 67.87 1018 909.43 108.52 10.66

Model statistics

af b ¢ d SS5q/
—2768.85 15884.13 0.063 0.940 1.775 X 10¢

4 Actual migration distances measured with a soft laser-scanning densitometer scaled to a graph length of 10.

b Distances normalized as described under Derivation.

¢ Values published by manufacturer (see Materials and Methods).

¢ Predicted values from standard curves.

* Predicted base-pair number subtracted from known base-pair number.

f Absolute value of residual divided by known base-pair number multiplied by 100,

# Final weights assigned to cach point for the robust fit (see Derivation).

4 Artificial outlying obscrvation created by increasing original data point by 25%.

‘a, b, ¢, d are parameter estimates for the robust and regular least-squares fit for the modified hyperbola parameters
{sce Derivation).

/ 884, weighted sum of squares of the residuals,
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least-squares fit, on the other hand, is affected
by the outlier to the extent that the error as-
sociated with this fit is distributed over more
of the observations, indicating the influence
the point exerted in the final outcome of the
procedure; this is clearly illustrated in Fig. 2.
Without the outlier the least-squares fit would
be extremely close to the robust fit shown in
Table | and Figs. 1A and B. This robust treat-
ment of outliers has many advantages over the
techniques described by Rodbard (6). The
present methods identify aberrant observa-
tions and corrects for their presence automat-
ically without additional intervention by the
investigator.

The hyperbola described by Southern (Eq.
[3]) fits these data with the same degree of ac-
curacy as the nonrobust least-squares fit. This
is not surprising as Schaffer and Sederoff es-
timate the coefficients of this hyperbola using
a least-squares method. Due to this estimation
procedure their technique is as severely af-

13.0

10.0

Base Pair Number (kilobases)
o
o

o N
o o

Normalized Migration Distance

FiG. 2. Comparison of the robust (—) fit and the non-
robust or least-squares fit {---) for the modified hyperbola
in the presence of an artificially generated outlier for linear-
duplex DNA basc-pair numbers. Migration distances were
normalized as described under Derivation. The actual mi-
gration distance of 2.116 was increased by 25% to 2,650
to generate the outlying point, Electrophoresis was per-
formed in agarose gel as described under Materials and
Mecthods. The DNA fragments conlained from 1018 to
12,216 base pairs (see Table 2).
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fected by the outlying observation as the least-
squares fit shown in Table 2 and Fig. 2.

The modified hyperbola is more accurate
than Southern’s model when dealing with
protein standard data ranging from 14.4 to
92.5 kDa. The analysis of a representative set
of data using these two procedures is presented
in Table 3, and the log fit is also seen to be
highly inaccurate.

Schaffer and Sederoff’s strategy for esti-
mating the parameters of [3] was to use least
squares to find the solutions for m1 and 4
which minimize the corrected sum of squares
of the predicted values for /# and then calculate
an average value for / for use in their predic-
tive equation. Although this solution is not
exact, it does provide a method for obtaining
good starting values for the iterative procedure
which solves for all the coefficients simulta-
neously and results in a solution which min-
imizes the sum of squares of the residuals. We
implemented the same iterative robust and
least-squares procedures to Southern’s model
to see if this hyperbola would be more accurate
after obtaining the exact solutions for the pa-
rameters. We found that the differences be-
tween the two models still existed. They were
similar in accuracy when dealing with the
DNA data, whereas the modified hyperbola
was consistently more accurate when analyz-
ing the protein standard data.

The modified hyperbola performed opti-
mally when used for analyzing data sets with
a fair number of observations (12-13 stan-
dards, as in the linear-duplex DNA in agarose
gels). We found the procedure to work well
with protein molecular weight data sets with
as few as five observations. However, trying
to estimate four parameters with as little as
five observations may occasiconally lead to
nonconvergence; this occurred with 2 of the
35 data sets examined. Good starting values
are essential for the success of any iterative
fitting procedure and we found that values
based on Schaffer and Sederoff’s solution to
Southern’s model to be quite adequate. How-
ever, if outliers are present in the data, Schaffer
and Sederoff’s solution will be influenced by
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TABLE 3

Actual Normalized
migration migration Known Predicted
distance” distance?® Ms# M Residual® % Error/
Robust medified hyperbola

0.913 1.00 92500 92560.61 —60.61 0.07
1.918 11.05 66200 65710.33 489.67 0.74
3736 29.23 45000 46145,75 —1145.75 2.55
6.204 53.91 31000 30405.25 594.75 1.92
8.352 g 75.39 21500 20576.83 923.17 4,29
9.753 89.42 14400 15244.26 —844.26 5.86

Model statistics

as b ¢ d S$Sg*
—287121.94 395166.44 0.041 0.449 3.338 X 10°
Southern hyperbola’

0.913 1.00 92500 91009.94 1490.06 1.61
1.918 11.05 66200 69010.95 —-2810.95 4.25
3,736 29.23 45000 45803.21 —-803.21 1.78
6.204 53.91 31000 28910.61 2089.39 6.74
8.352 75.39 21500 20167.36 1332.64 6.20
9.755 89.42 14400 16041.89 —1641.89 11.40

Model statistics

g l average h SSg"
—38.497 —17446.137 4283686.83 1.960 x 107
Log transformation

0.913 1.00 92500 85077.39 7422.61 8.02
1.918 11.05 66200 69901.69 —=3701.69 5.59
3736 29.23 45000 48993.21 -3993.21 8.87
6.204 53.91 31000 30241.12 758.88 245
8.352 75.39 21500 19871.40 1628.60 7.57
9.755 89.42 14400 15104.66 —704.66 4.89

Model statistics

y Intercept Slope S55q¢" ri
11.371 -0.0196 8.847 x 107 —0.9946

“ Actual migration distances measured with a soft laser-scanning densitometer scaled to a graph length of 10.
# Distances normalized as described under Derivation.
¢ Values published by manufacturer (see Materials and Methods).

 Predicted values from standard curves.
¢ Predicted M, subtracted from known Af,.

£ Absolute value of residual divided by known A, multiplied by 100.

fa, b, ¢, d are parameter estimates for the robust fit of the modified hyperbola (see Derivation).

4 §8g, weighted sum of squares of the residuals.
‘ Figures obtained by using Schaffer and Sedrofl”s least-squares algorithm.

/r, Pearson’s correlation coefficient {(17).
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these points and may lead to poor starting val-

ues. This may result in the algorithm failing
to converge to a solution. In this case coeffi-
cients from a previously successful run with
similar data may be substituted for the cal-
culated starting values and the iterative process
retried. Other suggestions are offered in the
Appendix in the description of the program.

The robust fitting techniques worked suc-
cessfully in a variety of applications. The pro-
cedures were applied to protein standards in
- both linear and gradient polyacrylamide gels
with weights ranging from 14.4 to 92.5K and
with other data sets with weights ranging from
14.4 to 200.0K (data not shown). It should
also be emphasized that the successful appli-
cation of these techniques is not restricted to
protein molecular weight or DNA fragment
length data. They may be extended to other
types of data which exhibit a curvilinear re-
lationship similar to the data presented in this
paper. Tiede and Pagano’s (22) application of
the techniques to radioimmunoassay data is
an example. Also, these methods are not re-
stricted to data collected solely by a densitom-
eter. Although measurement of migration dis-
tances by a ruler or calipers is not as accurate
as a densitometer, these methods can work
satisfactorily as long as the data retain the same
basic curvilinear structure.

Although the robust modified hyperbola
described the standard protein and lincar-du-
plex DNA data sets well, anomalous migration
behavior, due to compositional or physical
characteristics of proteins and DNA frag-
ments, has been observed (27,28) and these
types of proteins and DNA fragments do not
lend themselves to this analysis. In addition,
limitations of the electrophoresis process must
be considered in order to assure molecular
weight and base-pair number accuracy.

The robust modified hyperbola was consis-
tently more accurate when compared with the
log transformation and a similar hyperbola
proposed by Southern. Therefore, the present
modified hyperbola with the robust fitting
technique is recommended for general use, due
to the importance of determining accurate
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standard curves under a wide variety of ex-
perimental conditions and data types.

APPENDIX

The BASIC program listed in Table Al was
written, compiled, and tested on an IBM per-
sonal computer and, with minor modifica-
tions, will run on any personal or home com-
puter with a BASIC compiler or interpreter.
The speed of execution of the program will
increase substantially if it is compiled before
running. The data are entered at the end of
the program, as described by the comments at
the beginning of the listing.

The program may occasionally fail to con-
verge to a solution with some data sets. Qut-
liers will severely affect the outcome of Schaffer
and Sederoff’s algorithm, resulting in the
computation of poor starting values for the
iterative procedure. Additionally, because
Southern’s hyperbola is less accurate than the
modified hyperbola when dealing with protein
standards ranging from 14.4 to 92.5 kDa, even
in the absence of outliers, weak starting values
may result for this particular application, pre-
venting convergence to a solution. In this case
coefficients from a previously successful run
with similar data may be substituted for the
calculated starting values and the iterative
process retried. Another method for finding a
solution when the procedure does not con-
verge is to reexpress Eq. [2] as

O_,'+| = OJ' + Bj [4]

where B; = (AJW;A) AW R,.

The most recent estimate for the parameter
vector O = Q4 is equal to the last estimate,
0;, plus an amount equal to B;. If B; is very
large then the solution may circle around some
value without actually converging or may rap-
idly expand and diverge to the point of causing
a numeric overflow in the program. To avoid
this the magnitude of B;can be decreased. The
program prompts the user to enter the pro-
portion for B update—usually 1.0. To start
the process, enter 1.0 which results in [4]. If
the solution does not converge or if it diverges
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TABLE Al

150

-
o
o

170
180
190
200
210

220
230
240

]
4
1

Iterative robust and approximate least squares solutions for the

modified hyperbola.

For input the data should be entered in the following order:

The graph length or total length of the gel;

the number of

readings for the standard curve; the individual data pairs -

the migration distance followed by the known molecular weight or
DNA fragment length., The observation corresponding to the
heaviest or longest band MUST be entered first. This is followed
by the number of unknown migration distances from which molecular
weights or DNA fragment lengths will be calculated. Use

if there are none. Finally enter the migration distances for the

unknowns.

# after a variable name or number indicates double precision.
OPTION BASE 1
DIM X#(50), X1#(50), Y#(50), B#(4), BL#(4), BB#(L), WE(50},

XTWX#(4,4)

DIM XTWXINVA#(4,4), XTWR#(4), YHAT#({50), RESIDUAL#{30), XX#(50,4)},

RES#(50)

DIM RESIDUAL1#(50)
DIM A#{16), L4}, M(4)
DIM PROD{50), DWT(50), DDIST(S0), DPROD(50), C(50), D(50)

250 '

260
270
280
290
300
310
320
330
340
3350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
230
240
550
560
370
580
590
600
610
620
630
640
650
660

IXPUT "Enter proportion for B update - usually 1.0";PROP¥
INPUT "Enter 1 for Robust fit; 2 for approximate least sguares
fic"; FIT
IF (FIT <> 1 AND FIT <> 2} THEN GOTD 210
READ GRAPH#
READ N1
Compute starting values For the iterative process.
LET SWT=0
LET SDIST = 0

LET SPROD = O

FOR T =1 TO N1

READ X1#(I), Y#({I)

LET X#(I)=X1#(I)/GRAPH#

1

F {I=1) THEN LET TEMPl#=X#{1)

LET X#(I)=({(X#{I)-TEMP1#)+.014)*(1004))
LET SWT = SWT + Y#{I)

LET SDIST = SDIST + X#(I)

LET PROD(I) = Y#(I)*X#(I)

L

ET SPROD = SPROD + PROD(I)
Initialize the weight vector W.
ET W#(I) = 14

NEXT I

LET MWT = SWT/N1

LET MDIST = SDIST/N1

LET MPROD = SPROD/N1

FOR T =1 TO N1

LET DWT{I} = Y#{I) - MWT

L
LET DPROD{I}

ET DRIST(I} = X#(I} - MDIST

PROD{I} - MPROD

NEXT 1

LET CSSL
LET CSSM = 0
LET CSCPML =
LET CSPMLL =
LET CSPMLM =

(]
[=]

0
0
0

FOR I =1 TO N1

LET CSSL = CSSL + DWT(I)" 2

LET CSSM = CSSM + DDIST(I)" 2

LET CSCPML = CSCPML + DWT(I)*DDIST(I)
LET CSPMLL = CSPMLL + DPROD(I)*DWT(I)
LET CSPMLM = CSPMLM + DPROD(I)¥DDIST(I)
NEXT I X

LET DET = CSSL¥CSSM - CSCPML" 2

LET MO = (CSSM#CSPMLL - CSCPML®CSPMLM})/DET
LET LO = (-CSCPMLA*CSPMLL + CSSL*CSPMLM)/DET
LET SC = 0

FORI = 1 TO Nl

LET C(I)} = (V#(I) - LO)®(X#(I} - MO)
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TABLE Al—Continued

670
680
690

700 '

710
720
730
740
750
760
770
780
790
800

810 !

820
830
840

850
860
870
BEO
890
900
210
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

1060 '

1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

1230 '

1240
1250
1260
1270
1280
1250
1300
1310
1320
1330
1340
1350

1360 '

1370
1380

LET 8C = 5C + (C(I) - C(1))
NEXT 1
LET CBAR = SC/N1 + C(1)
Compute starting values
LET B#(1) = LO -
LET B#(2) = -(CBAR/MO)
LET B#{3) = -(1/M0)
LET B#(4) = 1¥
' Start the iteration process
LET I1=0
LET I1 = I1 + 1
PRINT USING ™ ###";11;
PRINT USING "####445844. 85558 ;BE(1), BH(2), BE(3), BH(4)
' Caleculate the matrix of partial derivatives evaluated at X and
the current estimate of B,
LET S5Q1# = 04
LET 5S5QZ# = OF
' Initialize summation variable used for checking convergence of
solution
LET SUMB# = O#f
FOR II = 1 TO N1
" Calculate predicted Y's (YHAT) and RESIDUALS
LET YHATH({II) = BE(1) + (B#(2) / (18 + (BE(3) & (X#(II) ~B#(SIDID)
LET RESIDUAL#(II) = Y#(II) - YHAT#(II)
LET RESIDUALL#{II)=ABS{RESIDUAL#{IT})
' Calculate the sums of sqaures of the residuals
LET 55Q14 = 5SQ1# + (RESIDUALF(II) ~2) # Wa(II)
LET XXN#(II,1) = 1#
LET XX#(II,2) = L4/(14 + (B#{3) = (AH(LII) - BECSID)
LET XX#(11,3) = (=14) * B#(2) * (X#(I1)~ B#(4)) * (XX#(1L,2)" 2)
LET XX#(II,4) = XX#(II,3) ® BA(3) #* LOG(X#4(IL})
NEXT II
IF (FIT = 1) THEN GOSUB 3150
' initialize X'WX and X'W[Y-F(X)] and update BB
FOR J=1 TO 4
FOR K=J TO &
LET XTWX#(J,E} = Of
' Take advantage of the symmecry of the X'WX matrix
LET XTWX#(K,J) = O#
NEXT K
initialize X'W[Y-£f(X}]
LET XTWR#({J)} = Of
" update BB
LET BB#(J) = B#({J}
NEXT J
FOR II = 1 TO Nl
' Caleulate X'WX
FOR J=1 TO 4
FOR K=J TO &
LET XTWX#(J, K} = XTWXECS,KY + WH(TI) * XX#(IT,J) # XX#(IL,K)
' Take advantage of the symmetry of the X'WX matrix
LET XTWXA(K,J)=XTWX#(J,K)
NEXT K
' Calculate X'W[Y-E(X)]
LET XTWRA{J) = XTWRH{J) + WH{TT}=*XX#{I1,J)*RESTOUALS(II)}
NEXT J
NEXT 1T
compute INV[X'WX]
GOSUB 1950
' Compute new Beta vector (B)
FOR T1=1 TO 4
' Initialize the temporary B vector
LET B1#(I) = O4
FOR J=1 TO &
LET BI#(I) =
NEXT J
" Finally update the last estimate of B with this new calculation.
Make sure that the proporticon of change, inputted by the user,
is incorporated.
LET B#{I) = B#({1) + PROP¥ * BI#(I)
Now compute the difference between the old B vector (BB} and the
new B vector (B)
LET BI#{1)=B#{1)-BB4(1)

nww g

BLE(T) + XTWXINVE(L,J) * XTWR#(J)

v
t
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TABLE Al—Continted

1380
1400
1410
1420
1430

1440 '

1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560

1570
1580
1590
1600
1610
1620

1630

1640
1650
1660

1670
1680
1650
1700
1710
1720
1730
1740
1750
1760
1770
1780

1790

1800
1810
1820
1830
1840

1850
1860
1870
188U
1890
1900
1910
1920

1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

' Add up these differences to check for convergence later on

LET SUMB#=SUMB# + ABS(B1#(I)/BB#{I))

NEXT I

' MNow compute a second sums of squares of residuals. This
statistic is what the least squares procedure is really
minimizing: Y-f(X)-
[BICLIXNCL)4BIC2)XX{2)+B1{3IXA{3)+BL{4)XX(4) ]

' where Bl=B-BB (or the new estimate-the old estimate)

FOR I= 1 TO N1

' Initialize the temporary variable RES.

LET RES#(1} = O#

FOR J=1TO 4

' now compute [BI{1)XX(1}+BL{2)XX(2}+B1{3INX(3)+Bl{4&)IXN(4)]
LET RES#{I)=RES#(1) + B1A(J) * XXF(I1,J)

WEXT J

' Now compute the second modified sum of Squares,
hEITS§02#=SSQ2# + {{RESIDUALA{I}-RES#(L)) 2} * W&(I)

PRINT "Regular and adjusted sums of squares = "; : PRINT USING
"HY L HRARERE T " 53018, SSQ24

PRINT " "

' Check for convergence of former and present B estimate

IF ((SUMB# <= .00Q01#) OR (I1 >100)) THEN GOTO 1610

GOTO 770

PRINT ™ "

IF (FIT = 1) THEN PRINT " ) Results of
Robust Fit"™; : PRINT " "

IF (FIT = 2) THEN PRINT " Results of approximate
least squares fit"; : PRINT" "

PRINT " " ; PRINT " "

PRINT " Migr. Rel. Known Pred,”

PRINT " Dist. Positn MW, MW, Residual
Z Error Weight"

PRINT " ™

FOR I =1 TO N1

PRINT USING “##.488"; X08(1);

PRINT USING "S$@4#R4KE HE"; XH(I);

FRINT USING "#e#dsdsddss™; Y8(I1;

FRINT USING "##4#4848004. 88" YHATH(L);

FRINT USING “4##4F4F4F484. 48" RESIDUALE(I);

PRINT USING “####4#4. 44" ; (ABS{RESIDUALE(I))/YE(L))*1004;

PRINT USING “ANA#4F, FA84"; WHI)

NEXT I

PRINT " ™ : PRINT " The final coefficients are:" ; PRINT " "
PRINT USING “#A#RFRAREVE.AHERE"; BBE(1), BB#(2), BB#(3), BBE(4) :
PRINT " ' ; PRINT " "

PRINT "Regular and adjusted sums of squares = "; : PRINT USING
THEL AARRRRR o M SSQLE, 58Q24

PRINT " "

' Compute molecular weights or DNA fragment lengths for unknowns.
READ N1

IF (N1 < 1) THEN GOTO 1940

PRINT "Calculation of molecular weights or DNA fragment lengths" :
PRINT " "

PRINT " Migr. Rel, Pred."

PRINT " Dist, Positn MJWL" o PRINT ™

FOR I = 1 TO N1

READ XUNKN#

LET XUNKN1# = XUNKN#/GRAPH#

LET XUNKN1#&=({(XUNKN1#-TEMP1#)+.0014)*(100#))
LET YUNEN# = BBA(L) + (BB&(2) / (14 + (BBH(3)} # (XUNKNL# " BB#(4))0))
14;

FRINT USING "##4.444"; XUNKNG; : PRINT USING “##&8456. 68" XUNKN

: PRINT USING “d445858588, §8"; YUNKN#

NEXT I

EXD

TEEEHEHSHEN S SUTRROUTINE INVERT #awed B R S

: Subroutine transcribed from the TBM FORTRAN SSB routine MINV

' Method

' The standard Gauss-Jordan method is used, The determinant

! is also calculated, A determinant of zero indicates that the
' matrix is singular,
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TABLE Al—Continued

2030
2040
2050
2060
2070
2080
2050

2100 '

2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230

2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480

2490

2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720

LET N=4

FOR I= 1 TON

FOR J=1TO N

LET LJ=i#({J-1} + I

LET A#{IJ)=XTWX#{1,J}

NEXT J

NEXT 1

Search for the largest element
LET Df=1#

LET NK==N

FOR EK=1 TO N

LET NE=NE+N

LET L{K)=K

LET M{K)=K

LET KK=NK+K

LET BIGA#=A#(KK)

FOR J=K TO N

LET IZ=N#®{J-1}

FOR I=X TO N

LET LJ=IZ+1

IF (ABS(BIGA#) < ABS(A#(IJ))) THEN LET BIGA#=A#(IJ} : LET L{K}=I :
LET M(K}=J

NEXT I

NEXT J

' Interchange rows

LET J=L{K)}

IF (J <= K) THEN GOTO 2380
LET KI=K-N

FOR I=1 TO N

LET KI = KI+H

LET HOLD#=-A#(KI}

LET JI=KI-K+J

LET AN(KI)=A#{J1)

LET A#{JI)=NOLD#

NEXT 1

' Interchange columns

LET I=M{K}

IF (I <= K) THEN GOTO 2490
LET JP=N#{I-1}

FOR J=1 TO N

LET JE=KK+J

LET JI=JP+J

LET HOLD#==-A#(JK)

LET a#{JK)=A4{J1}

LET A#{JI)=NH0LD#

NEXT J

'divide column by minus pivot {valuc of pivot element is contained
in BIGA)

IF (ABS{BICA#) <= .000000UOUVODUOLRY THEN LET D#=0# ; PRINT
“"derrminant=0 — the matrix is singular™ : END
FOR I=1 TO N
IF (I = K) THEN GOTQ 2540
LET IK=NK+1
LET A#(TK}=A#{ IR/ {-BIGA#)
NEXT I
' Reduce matrix
FOR I=1 TO KW
LET IE=NK+1
LET HOLDM=AK{ LK}

LET IJ=I-HN

FOR J=1 TO N

LET [J=TJ+N

IF (I=K) THEN GOTO 2660
IF (J=K) THEN GOTO 2660
LET KJ=1J-T+K

LET A#(ID)=NOLDF*A#(EII+A# (1)
NEXT J

NEXT 1

' Divide row by pivot
LET KJ=K-N

FOR J=1 TO N

LET KJ=KJ+N

IF (J=K) THEN COTO 2740

361
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TABLE Al—Continued

2730 LET A#(KJ)}=A#(KJ)/BIGA#
2740 NEXT J
2730 ' Product of pivets
2760 LET D#=D#*BICA#
2770 ' Replace pivot by reciprocal
2780 LET A#(KK)=1#/BIGA#
2790 NEXT K
2800 ' Final row and column interchange
2810 LET K=N
2820 LET K=K-1
2830 IF (K <= 0} THEN GOTO 3070
2840 LET I=L({K)
2850 IF (I <= K) THEN GOTO 2950
2860 LET JQ=N*({kK-1)
2870 LET JR=N#{I-1)
2580 FOR J=1 TO N
2850 LET JE=JQ+J
2900 LET HOLD#=A#(JK)
2910 LET JI=JR+J
2920 LET A#(JK)=-a#(JI)
2930 LET A#(JI)=HOLD#
2940 NEXT J
2950 LET J=M(K)
2960 IF {J <= K) THEN GOTOQ 2820
2970 LET KI=K-N
2980 FOR I=1 TO N
2990 LET KI=KI+H
3000 LET NOLD#=A#(KI)
3010 LET JI=KI-K+J
3020 LET A#(KI)=-A#(JI}
3030 LET A#(JI)=HOLD#
3040 NEXT I
3050 GOTO 2820
3060 convert vector back to matrix array
3P0 FOR I= 1 TON
3080 FOR J= 1 TO N
3090 LET IJ=N®#(J-1) + I
3100 LET XTWXINVE(I,J)=A4(1J)
3110 KEXT J
3120 NEXT I
3130 RETURN
3140 END
3150 Podesheshia e S R SUBEOU[INL u]_:l(_'"T HHER TR ERER LR
3160 ' This subroutine computes the weight vector [or the robust fit.
3170 LET IE=N1
3180 LET J1 =1
3190 FOR I5=1 TO N1
3200 ' Set the lower relative index of the array to be sorted.
3210 LET IB=IS
3220 GOSUB 3380
3230 NEXT IS
3240 ' Compute 5D for cheose times N1 is even
3250 LET IND=3 + INT({(N1-2)/2)
3260 LET SD#=RESIDUALI#{IND)
3270 ' If Nl is odd then use the average of the two middle values of
3280 ' the last N1-3 elements of RESIDUALL
3290 IF ((N1 MOD 2) <>0) THEN LET
SD#=( (RESIDUAL1#(IND)+RESIDUALIA(IND+1))/2¢)
3300 ' Now set up the weight vector
3310 FOR I=1 TO N1
3320 LET W#(I) = O#
3330 LET TEMP#=(RESIDUAL#(1)/(SD##2,1#))
3340 IF ((-3.141592654# <= TEMP#} AND (TEMP# <= 3,141592654%)) THEN LET
© WHCL)Y=SD##2, 4% ( (SIN(TEMP#) }/RESIDUAL#(I))
3350 NEXT I
3360 RETURN

3370 END

3380 0 emedd SURROUTINE ORDERS RS

3300 °

3400 This subroutine finds the i'th order statistic from an array of

'
3410 " numbers. HESIDUALY is the array; Jl is the order statistic
3420 ' desired; IB is the lower index of the array to be examined;
3430 ' IE is the upper index of the array to be examined.
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TABLE Al—Continued

3440 '

3450 LET JO = IB + J1-1
3460 LET NN = IE + 1
3470 LET 1J = IB - 1

3480 LET K=NN
3490 LET I=IJ
3500 LET T#=RESIDUAL1#(JO)

3510 LET K=K-1

3520 LET W1#=RESIDUALL#(K)

3530 IF (Wl# > T#) THEN GOTO 3510
3540 IF (W14 < T#) THEN GOTO 3570
3550 IF (K <> JO) THEN GOTO 3510
3560 IF (I = K) THEN RETURN

3570 LET I I+ 1

3580 LET 24 = RESIDUALL#(I)

3590 IF (Z# < T#) THEN GOTO 3570
3600 IF (Z# > T#) THEN GOTO 3680
3610 IF (I <> JO) THEN GOTO 3570
3620 1F (I = K) THEN RETURN

3630 LET RESIDUALI#(TI) = W1#
3640 LET RESIDUALL#(K) = Z#
3650 LET T = 1J

3660 LET NN = K

3670 GOTO 3500

3680 IF (I = K) THEN RETURN

3690 LET RESIDUALIA(I) = WL#
3700 LET RESIDUALL#(K) = Z#

3710 IF (K <> JO) THEN GOTO 3510
3720 LET K = NN

3730 LET 1J = 1

3740 GOTO 3500

3750 END

3760 DATA 10, 13

3770 DATA 1.204, 12216
3780 DATA 1,335, 11198
3790 DATA 1.497, 10180
3800 DATA 1.660, 9162
3810 DATA 1.888, 8144
3820 DATA 2.116, 7126
3830 DATA 2,454, 6108
3840 DATA 2,897, 5090
3850 DATA 3.483, 4072
3860 DATA 4,310, 3054
3870 DATA 5.664, 2036
3880 DATA 6.380, 1635
3890 DATA 7.891, 1018

3900 DATA 3
3910 DATA 1,497, 1,888, 6,380

to numeric overflow, then try a smaller pro-
portion, e.g., 0.5, which would modify Eq. [4]
1o

0.1 = O; + (0.5)B,.

The proportion may be altered at will to com-
pute smaller and smaller increments of change
for the O; vector.

If the solution does not diverge but circles
around a solution without actually converging,
then examine the sum of squares of the resid-
uals that is returned after each iteration. The
solution will tend to minimize this sum. The
coeflicients that return the smallest sum of
squares can be used as starting values for an-

other attempt at finding a solution. Locate the
statements in the program where the initial
starting values are computed and assigned
(program line numbers 710-740) and replace
them with these revised starting values. When
executing the program, select 0.5 or 0.25 for
the proportion for B update and monitor the
iterative process. If the solution continues to
circle around a set of values without actually
converging, select those four values which re-
turn the smallest sum of squares of the resid-
uals and test them by computing predicted
values for each of the known standards. If the
error rates are acceptable, then these coeffi-
cients may be used to form the standard curve.
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The program with the attached data set
should produce the results for the robust fit
listed in Table [. If the value 2.116 on the
seventh DATA card is changed to 2.650, the
program will return the results listed in Ta-
ble 2.

To avoid transcription errors while entering
the program listed in Table Al, the authors
will supply a copy of the program formatted
for an IBM PC after receiving a blank, 55-in.
diskette.
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ERRATUM

Volume 152, Number 2 (1986), in the article “Robust Estimation of Standard
Curves for Protein Molecular Weight and Linear-Duplex DNA Base-Pair Number
after Gel Electrophoresis,” by Brian D. Plikaytis, George M. Carlone, Paul Edmonds,
and Leonard W. Mayer, pages 346-364: On page 355, in Fig. 2 the outlying point
described in the legend was inadvertently deleted during the printing process. For the
reader’s convenience, the correct Fig. 2 and its legend are reproduced below.

13.0
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Base Pair Number (kilobases)

1.0

Normalized Migration Distance

FI1G. 2. Comparison of the robust (—) fit and the non-
robust or least-squares fit (---) for the modified hyperbola
in the presence of an antificially generated outlier for linear-
duplex DNA base-pair numbers. Migration distances were
normalized as described under Derivation. The actual mi-
gration distance of 2.116 was increased by 25% to 2.650
to generate the outlying point. Electrophoresis was per-
formed in agarose gel as described under Materials and
Methods. The DNA fragments contained from 1018 to
12,216 base pairs (see Table 2).
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