Generalizing Observational Study Results

Applying Propensity Score Methods to Complex Surveys

National Conference on Health Statistics
August 8, 2012
Objectives

- Provide a tutorial for using propensity score methods with complex survey data
- Present results from a simulation study investigating the performance of various propensity score methods with survey weights
- Original motivation: Effectiveness study of type of primary healthcare provider on healthcare spending in MEPS dataset
Background

- Nationally representative survey data represent important data sources for effectiveness studies
 - Challenge = potential confounding

- Lack of clear guidelines on how to use propensity score methods in this context
 - Wide variability in methods and inferences in current literature
Propensity Score Overview

- Propensity score = probability of receiving the treatment, conditional on covariates

\[p(x_i) = \Pr[T_i = 1 | X_i = x_i] \]

- Conditioning on propensity score will reduce confounding (Rosenbaum & Rubin, 1983)
Propensity Score Methods

- Multiple techniques to condition on propensity score:
 1. **Matching**: match individuals on propensity score
 2. **Subclassification**: create classes of individuals with similar propensity scores
 3. **Weighting**: weight individuals using propensity scores
Causal Estimands

- **Average Treatment Effect (ATE)**

- \(\text{ATE} = \text{compares mean outcome if } \text{entire population} \text{ had received Treatment to mean outcome if } \text{entire population} \text{ had received Control} \)
Causal Estimands

- **Average Treatment Effect (ATE)**

 ATE = compares mean outcome if *entire population* had received Treatment to mean outcome if *entire population* had received Control

- **Average Treatment Effect on Treated (ATT)**

 ATT = compares mean outcomes for *individuals who in reality received Treatment* to the mean outcomes if *these same* individuals had instead received Control
Conceptual Flowchart

Inference of Interest?

Target Population

Estimand of Interest?

- ATE
 - Include survey weights in final analysis model
 - Use weighting or subclassification

- ATT
 - Include survey weights in final analysis model
 - Use K:1 matching, weighting or subclassification

Survey Sample

Estimand of Interest?

- ATE
 - Do not include survey weights in final analysis model
 - Use K: 1 matching, weighting or subclassification

- ATT
 - Do not include survey weights in final analysis model
 - Use weighting or subclassification
Simulation Study Overview

- Performed simulation study to compare propensity score methods when generalizing results to original study population

- Setup
 - 100,000 individuals
 - single covariate
 - survey weight (no clustering)
 - 2,000 simulations
Estimating the ATE

- Reference methods
 - Naive (no propensity scores, no survey weights)
 - Survey weights only

- Appropriate propensity score methods
 - Weighting
 - Subclassification

- Evaluated each approach, with and without survey weights
ATE Results

Absolute Bias

- Naive
- SW
- PS method only
- PS method + SW

95% CI Coverage

- Naive
- SW
- PS method only
- PS method + SW
Estimating the ATT

- Reference methods
 - Naive (no propensity scores, no survey weights)
 - Survey weights only

- Appropriate propensity score methods
 - Weighting
 - Subclassification
 - Nearest Neighbor matching (1:1)

- Evaluated each approach, with and without survey weights
ATT Results

Absolute Bias

- Naive
- SW
- PS method only
- PS method + SW

95% CI Coverage

- Naive
- SW
- PS method only
- PS method + SW
Simulation Summary

- In general, combination of propensity score method and survey weighting is necessary to achieve unbiased treatment estimates
 - PS Weighting: multiply PS weights by SW
 - Subclassification: use SW to combine across subclasses
 - Nearest Neighbor Matching: SW regression within matched sample

- Propensity score methods perform similarly
 - ATE: weighting, subclassification
 - ATT: weighting, subclassification, nearest neighbor matching
Discussion

- First quantitative investigation of methods for combining propensity score methods and survey weights

- Future work could explore:
 - Further differentiating between performance of various PS methods
 - More complex survey designs
 - Effects of PS model misspecification
Thanks!
ATE Results

Absolute Bias

- Naive
- SW
- Weight
- Sub
- WeightSW
- SubSW

95% CI Coverage

- Naive
- SW
- Weight
- Sub
- WeightSW
- SubSW
ATT Results

Absolute Bias

<table>
<thead>
<tr>
<th>Method</th>
<th>Absolute Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>0.10</td>
</tr>
<tr>
<td>SW</td>
<td>0.08</td>
</tr>
<tr>
<td>Weight</td>
<td>0.06</td>
</tr>
<tr>
<td>Sub</td>
<td>0.04</td>
</tr>
<tr>
<td>NN</td>
<td>0.02</td>
</tr>
<tr>
<td>WeightSW</td>
<td>0.01</td>
</tr>
<tr>
<td>SubSW</td>
<td>0.00</td>
</tr>
<tr>
<td>NNSW</td>
<td>0.00</td>
</tr>
</tbody>
</table>

95% CI Coverage

<table>
<thead>
<tr>
<th>Method</th>
<th>95% CI Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>1.00</td>
</tr>
<tr>
<td>SW</td>
<td>0.99</td>
</tr>
<tr>
<td>Weight</td>
<td>0.98</td>
</tr>
<tr>
<td>Sub</td>
<td>0.97</td>
</tr>
<tr>
<td>NN</td>
<td>0.96</td>
</tr>
<tr>
<td>WeightSW</td>
<td>0.95</td>
</tr>
<tr>
<td>SubSW</td>
<td>0.94</td>
</tr>
<tr>
<td>NNSW</td>
<td>0.93</td>
</tr>
</tbody>
</table>