MULTIPLE IMPUTATION OF MISSING INCOME DATA IN THE NATIONAL HEALTH INTERVIEW SURVEY*

Nathaniel Schenker Senior Scientist for Research and Methodology National Center for Health Statistics (nschenker@cdc.gov)

Joint work with Pei-Lu Chiu, Alan J. Cohen, Diane M. Makuc, Trivellore E. Raghunathan, and Guangyu Zhang

> Presented at the NCHS Data Users Conference July 12, 2006

* Article to appear in the Journal of the American Statistical Association Manuscript available by request

CONTENTS

1. THE NHIS AND MISSING DATA ON INCOME

2. MULTIPLE IMPUTATION FOR THE NHIS

3. RESULTS FOR FAMILY INCOME IN THE 2001 NHIS

4. FUTURE WORK

1. THE NHIS AND MISSING DATA ON INCOME

• National Health Interview Survey (NHIS)

- Principal source of information on the health of the civilian noninstitutionalized population

- Data collected at both family and person levels

- Multistage area probability sample of about 40,000 households including about 100,000 persons, with oversampling of Blacks and Hispanics

Allows national and subnational estimation

- Contains items on health, demographic, and socioeconomic characteristics

 Allows the study of relationships between health and other characteristics Income items collected in NHIS

- Personal earnings (wages, salaries, tips, commissions) in past calendar year for each adult who worked for pay

- Family income (including personal earnings and other sources) in past calendar year

- One of 2 categories (< $$20,000 \text{ or} \ge $20,000$) or
- One of 44 categories (up to \$75,000+)

• Family income (or its ratio to Federal poverty threshold) frequently used in analyses of NHIS data because of strong association with health and relevance to health policy

- Missing data on income in NHIS
 - High item nonresponse rates

- Missingness appears to be related to several other characteristics, such as health, health insurance, age, race, country of birth, and region of residence

⇒ Possible bias and higher variance in analyses that delete observations with missing data

• Nonresponse for most other variables is low (< 2%)

Percent distribution of types of family income responses by year for the NHIS in 1997 – 2004

 Nonresponse rates for personal earnings are similar to those for exact family income Results from a logistic regression, with an indicator variable for nonresponse on both the exact and 44-category values of family income as the outcome, and selected variables as predictors, for persons of ages less than 65: 2001 NHIS

	Odds	95% Confidence
variable	Ratio	Interval
Has health insurance?		
Νο	1.54	(1.43, 1.66)
Yes (reference)		
Has limitations of activities?		
Yes	0.77	(0.72, 0.83)
No (reference)		
Age		
< 18	0.64	(0.60, 0.69)
18 – 24	0.69	(0.63, 0.76)
25 – 34	0.58	(0.53, 0.62)
35 – 44	0.70	(0.64, 0.76)
45 – 54	0.82	(0.76, 0.88)
55 – 64 (reference)		
Gender		
Male	0.98	(0.96, 1.01)
Female (reference)		
Race/Ethnicity		
Hispanic	1.01	(0.91, 1.12)
Non-Hispanic Black	1.21	(1.09, 1.34)
Non-Hispanic Other	0.92	(0.78, 1.08)
Non-Hispanic White		
(reference)		
Born in the US?		
Νο	1.14	(1.05, 1.25)
Yes (reference)		
Region of residence		
Northeast	1.05	(0.90, 1.23)
South	0.79	(0.71, 0.88)
West	0.94	(0.84, 1.06)
Midwest (reference)		
Resides in metropolitan area?		
No	0.91	(0.79, 1.04)
Yes (reference)		

2. MULTIPLE IMPUTATION FOR THE NHIS

- Imputing just once and treating imputed values as true values ⇒ underestimates of uncertainty
 - Standard errors too small
 - P-values too small (i.e., tests too significant)

• Multiple imputation (Rubin 1987)

- Impute for missing values several (*M*) times using random draws from the predictive distribution of the missing data given the observed data

- Analyze each of the *M* completed data sets using methods designed for complete data; then combine point estimates and estimated variances

- Combined point estimate is average of point estimates from *M* data sets
- Total estimated variance is:
- (1) average of variances from *M* data sets, plus
- (2) variation among point estimates from *M* data sets
 - component (2) reflects extra uncertainty due to missing data

- Project to multiply impute income items in the NHIS, beginning with 1997
 - *M* = 5 sets of imputations of:
 - employment status for adults (< 4% missing)</p>
 - personal earnings for adults who worked for pay
 - family income (and ratio of family income to Federal poverty threshold)
 - Imputed income files for 1997 2004, with documentation, available at NHIS Web site:

www.cdc.gov/nchs/nhis.htm

- Used Sequential Regression Multivariate Imputation (Raghunathan *et al.* 2001), as implemented in IVEware (Institute for Social Research, University of Michigan)

- Complicating issues handled during imputation
 - Hierarchical structure of data
 - Families and persons
 - Structural dependencies between variables
 - e.g., employment status and personal earnings for adults
 - Imputation within bounds
 - e.g., families for which income not reported exactly, but rather within coarser categories
 - Several variables used as predictors
 - Different types (continuous, categorical, count)
 - Small amounts of missingness (mostly < 2%)</p>

- Used about 60 covariates for person-level imputations and for family-level imputations, including:
 - Demographic variables
 - Family structure
 - Geographic variables
 - Education
 - Employment status
 - Hours worked per week
 - Sources of income
 - Limitations of activities
 - Health conditions that caused limitations
 - Overall health
 - Health care use
 - Health insurance
 - Indicators for stratum-by-PSU combinations
 - Survey weights
 - SSU-level summaries of family income

• Question: OK to use health items as covariates in the model for imputing income, given that filled-in data will be used to analyze health by levels of income?

• Answer: Yes.

- Theory of multiple imputation implies that all observed data should be conditioned upon in drawing imputed values for missing data (Rubin 1987)

- If health items were not included as covariates in imputation, then the relationship between health and income in the filled-in data would be attenuated

- See Little (1992) and Little and Raghunathan (1997) for further discussion

3. RESULTS FOR FAMILY INCOME IN THE 2001 NHIS

 Estimated percentage of persons of ages 45-64 in fair or poor health, by ratio of family income to Federal poverty threshold: 2001 NHIS

Ratio to Poverty	No I (N	Imp. Single Imp NI) (SI)		e Imp. 5I)	Mult. Imp. (MI)		Ratio of SEs	
Threshold	Est.	SE	Est.	SE	Est.	SE	NI ÷ MI	SI ÷ MI
< 1.00	45.6	1.68	39.4	1.34	39.9	1.54	1.09	0.87
1.00 – 1.99	32.7	1.32	29.8	1.03	29.3	1.11	1.19	0.93
2.00 - 3.99	16.1	0.63	16.0	0.51	15.9	0.55	1.15	0.94
4.00+	5.9	0.34	6.1	0.27	6.2	0.30	1.11	0.90

• Estimated percentage of persons of ages 45-64 in fair or poor health, by 2-category family income, for reporters and non-reporters of exact family income: 2001 NHIS

2-Category Family Income	Exact Family Income Reported	Exact Family Income Not Reported
< 20k	41.6	33.5
<u>> 20k</u>	10.6	11.0

4. FUTURE WORK

 Additional research is needed regarding possible inconsistencies between total family income and total of personal earnings within family (total family income < total personal earnings within family)

- Attempts to enforce consistency through imputation appeared to increase bias

• Imputations for future years as data become available

REFERENCES

Little, R.J.A. (1992), "Regression With Missing X's: A Review," *Journal* of the American Statistical Association, 87, 1227-1237.

Little, R.J.A., and Raghunathan, T.E. (1997), "Should Imputation of Missing Data Condition on All Observed Variables?" *American Statistical Association Proceedings of the Section on Survey Research Methods*, 617-622.

Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J., and Solenberger, P. (2001), "A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models," *Survey Methodology*, 27, 85-95.

Rubin, D.B. (1987), *Multiple Imputation for Nonresponse in Surveys*, New York: John Wiley.

Schenker, N., Raghunathan, T.E., Chiu, P.-L., Makuc, D.M., Zhang, G., and Cohen, A.J. (forthcoming), "Multiple Imputation of Missing Income Data in the National Health Interview Survey," to appear in the *Journal of the American Statistical Association*.