# Vital and Health Statistics 

## Advance Data From Vital and Health Statistics: Numbers 61-70

Series 16:
Compilations of Advance Data From Vital and Health Statistics
No. 7
Data in this report from health and demographic surveys present statistics by age and other variables on ambulatory medical care; selected demographic characteristics of teenage wives and mothers; expected principal source of payment for hospital discharges; health practices among adults; and utilization of short-stay hospitals in the treatment of mental disorders. Estimates are based on the civilian noninstitutionalized population of the United States. These reports were originally published in 1980 and 1981.

[^0]
## Copyright information

All material appearing in this report is in the public domain and may be reproduced or copied without permission; citation as to source, however, is appreciated.

## Suggested citation

## National Center for Health Statistics

Manning Feinleib, M.D., Dr.P.H., Director<br>Jack R. Anderson, Deputy Director<br>Jacob J. Feldman, Ph.D., Associate Director for Analysis and Epidemiology<br>Gail F. Fisher, Ph.D., Associate Director for Planning and Extramural Programs<br>Peter L. Hurley, Associate Director for Vital and Health<br>Statistics Systems<br>Robert A. Israel, Associate Director for International Statistics<br>Stephen E. Nieberding, Associate Director for Management<br>Charles J. Rothwell, Associate Director for Data<br>Processing and Services<br>Monroe G. Sirken, Ph.D., Associate Director for Research and Methodology<br>David L. Larson, Assistant Director, Atlanta

## Contents

Selected Demographic Characteristics of Teenage Wives and Mothers. ..... No. 61
Expected Principal Source of Payment for Hospital Discharges: United States, 1977 ..... No. 62
Office Visits for Male Genitourinary Conditions: National Ambulatory Medical Care Survey: United States, 1977-78 ..... No. 63
Health Practices Among Adults: United States, 1977 ..... No. 64
Cough as the Reason for Office Visits, National Ambulatory Medical Care Survey: United States, 1977-78. ..... No. 65
1979 Summary National Ambulatory Medical Care Survey ..... No. 66
Headache as the Reason for Office Visits, National Ambulatory Medical Care Survey: United States, 1977-78 ..... No. 67
Stroke Survivors Among the Noninstitutionalized Population 20 Years of Age and Over: United States, 1977 ..... No. 68
Office Visits for Preventive Care, National Ambulatory Medical Care Survey: United States, 1977-78 ..... No. 69
Utilization of Short-Stay Hospitals in the Treatment of Mental Disorders: 1974-1978 ..... No. 70


FROM VITAL \& HEALTH STATISTICS OF THE NATIONAL CENTER FOR HEALTH STATISTICS

# Selected Demographic Characteristics of Teenage Wives and Mothers ${ }^{\text {a }}$ 

## INTRODUCTION

In the United States in 1976, about 1,129,000 women $15-19$ years of age were married, divorced, widowed, or separated; of these, 480,000 were mothers of at least one child. Another 332,000 women in this age group were never married mothers who had offspring living with them. The 1,122,000 ever married women 15-19 accounted for about 11 percent, and the 332,000 never married mothers, about 3 percent of the 10.4 million women 15-19 years of age in 1976.

This report provides the first and most recent national estimates of the current contraceptive practice and family background of teenage wives and mothers and their husbands. It also compares them with their counterparts 20-44 years of age in terms of these and other selected characteristics. These estimates are based on a special analysis of data from Cycle II of the National Survey of Family Growth (NSFG), conducted in 1976 by the National Center for Health Statistics.

A number of trends have prompted recent concern about teenage marriage and childbearing. These trends include the increasing number of women 15-19 years of age (a result of the high birth rate during the late 1950's), the increasing number of teenage marriages, and the increasing proportion of all birchs occurring to teenage mothers.

The U.S. Bureau of the Census has reported that the number of women 15-19 years of age increased by 57 percent from 1960 through

[^1]1976, from 6.6 million to 10.4 million. Reflecting this increase in the number of young women, the annual numbers of teenage marriages also increased over the same period.

However, the rates for teenage marriages and births did not increase. Data from the marriage registration system (table 1) show that of all brides marrying for the first time in 1976 about 38 percent (or 571,000 ) were under 20 years of age. In 1960 teenage brides had accounted for 48 percent (or 482,000 ) of all first marriages.

From 1940 through 1960, birth rates to women $15-19$ years of age (births per 1,000 women 15-19) increased from 54.1 to 89.1. From 1960 through 1976, however, this rate decreased from 89.1 to 53.5 , a 40 percent reduction, and approximately the 1940 level. Among women 20 years of age and older, however, birth rates declined even more from 1960 through 1976. ${ }^{1}$ As a result of this differential decline and the increase in the number of women 15-19 years of age, births to teenage mothers accounted for 18 percent of all births in 1976, compared with 14 percent in 1960. Since 1976, the birth rates for women 15-19 have remained at about the same levels.

The data for this report were collected by means of personal interviews with a multistage area probability sample of women $15-44$ years of age in the household population of the conterminous United States. Women were eligible for inclusion in the sample if they were currently married, previously married, or never married but with offspring presently living in the household. This report does not include the relatively small number of teenage mothers under 15 years of age. ${ }^{2}$ Similarly, never married teenage mothers whose offspring were not living with them were

Table 1. Number of first marriages and percent distribution by age of bride and age of groom at first marriage: United States, 1960 and 1976

| Age | Bride |  | Groom |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1976 | 1960 | 1976 | 1960 |
| Number of first marriages in thousands.......................................................... | 1.491 | 1,015 | 1,450 | 1,028 |
| Age at first marriage | Percent distribution |  |  |  |
|  | 100.0 | 100.0 | 100.0 | 100.0 |
| Under 18 years........................................................................................ | 11.9 | 15.1 | 2.1 | 1.8 |
| $18-19$ years............................................................................................. | 26.4 | 32.4 | 15.4 | 15.2 |
|  | 62.6 | 52.5 | 82.5 | 83.0 |
|  | 12.1 | 11.0 | 10.9 | 9.1 |

SOURCES: National Center for Health Statistics: Vital Stazistics of the United States, 1960, Vol. III, Marringe and Divorce. Public Health Service. Washington. U.S. Government Printing Office, 1964. table 2-6.

National Center for Health Statistics: First marriages, United States, 1968-1976, by B. F. Wilson and E. Hume. Vital and Health Statistics. Series 21-No. 35. DHEW Pub. No. (PHS) 79-1913. Public Health Service. Washingron. U.S. Government Printing Office, Sept. 1979, tables B and C and unpublished tabulations.
not included in the sample. (Approximately 7 percent of out-of-wedlock babies bom to women aged $15-19$ were not living with their mothers in 1976. The comparable figure for 1971 was about 14 percent. It should be noted, however, that these percents are based on only 148 cases in 1976 and 259 cases in 1971 and refer only to out-of-wedlock babies born from first conceptions. They should, therefore, be interpreted with some caution. ${ }^{3}$ )

From January through September 1976, 3,009 black women and 5,602 women of other races were interviewed in the NSFG. Of these, 448 women were $15-19$ years of age. This report is based on information provided by these teenage women, of whom 193 were black and 255 were of races other than black. The information from these women was inflated to provide national estimates of these statistics. Because they are based on a sample, estimates from the NSFG are subject to sampling error. Further discussion of sampling error, comparisons with other data, and definitions of selected terms can be found in the Technical Notes.

The statistics on women $20-44$ years of age are shown in this report only for purposes of comparison. Other groups could be used, but
this group is convenient for the purposes of this report-principally, to highlight some of the characteristics of teenage wives and mothers. It should not necessarily be inferred that teenage marriage or childbearing is the only or the principal cause of differences between teenagers and the older women described. These differences may be the result of such things as their ages at interview or the social customs prevailing when they were married or when they had their children.

## CHARACTERISTICS OF EVER MARRIED TEENAGE WOMEN AND THEIR HUSBANDS

Tables 2 and 3 present selected characteristics of the $1,122,000$ ever married teenage women and their husbands and of the $30,725,000$ ever married women $20-44$ years of age and their current or last husbands, in the United States in 1976. (In this report, for convenience, the ever married teenage women are referred to as "teenage wives," although a very small proportion of them were no longer currently married at the time of interview. See Definitions of Terms.)

Tabis 2. Number of ever married women $15-44$ years of age, by age and race, and percent distribution by selected characteristics, according to age and race: United States, 1976


Table 2. Number of ever married women $15-44$ years of age, by age and race, and percent distribution by selected characteristics, according to age and race: United States, 1976-Con.

| Characteristic | 15-44 years of age |  |  | 15-19 years of age |  |  | 20-44 years of age |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\text { races }^{1}}{\text { All }}$ | White | Black | $\underset{\text { races }}{\text { All }}$ | White | Black | $\underset{\text { races }}{\text { All }}$ | White | Black |
| Receipt of Aid to Families <br> With Dependent Children (AFDC) | Percent distribution |  |  |  |  |  |  |  |  |
| Received AFDC. Did not receive AFDC. | 7.192.9 | 5.494.6 | 20.4 | 9.490.6 | $\begin{aligned} & 8.5 \\ & 91.5 \end{aligned}$ | $\begin{array}{r} 19.8 \\ 80.2 \end{array}$ | $\begin{array}{r} 7.0 \\ 93.0 \end{array}$ | 5.394.7 | $\begin{aligned} & 20.4 \\ & 79.6 \end{aligned}$ |
| Living arrangements at age 14 |  |  |  |  |  |  |  |  |  |
| Living with both parents............................. | $\begin{aligned} & 76.7 \\ & 23.3 \end{aligned}$ | $\begin{aligned} & 79.1 \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 56.5 \\ & 43.5 \end{aligned}$ | $\begin{aligned} & 56.3 \\ & 43.7 \end{aligned}$ | $\begin{aligned} & 58.3 \\ & 41.7 \end{aligned}$ | $\begin{aligned} & 50.1 \\ & 49.9 \end{aligned}$ | $\begin{aligned} & 77.4 \\ & 22.6 \end{aligned}$ | $\begin{aligned} & 79.8 \\ & 20.2 \end{aligned}$ | $\begin{aligned} & 56.7 \\ & 43.3 \end{aligned}$ |
| Living with one or neither parent................ |  |  |  |  |  |  |  |  |  |
| Current contraceptive status |  |  |  |  |  |  |  |  |  |
| Sterile....................................................... | 29.6 | 30.2 | 26.5 | -1.8 | $\bullet 1.7$ | -3.2 | 30.7 | 31.3 | 27.3 |
| Pregnant, post partum............................... | 6.1 | 6.2 | 5.5 | 14.5 | 15.0 | -14.1 | 5.8 | 5.9 | 5.2 |
| Seeking pregnancy.................................... | 5.6 | 5.3 | 6.3 | -7.7 | -5.9 | -11.3 | 5.5 | 5.3 | 6.1 |
| Other nonuser........................................... | 10.7 | 9.7 | 18.5 | -6.9 | 6.551.6 | $\begin{array}{r} * 12.0 \\ 48.2 \end{array}$ | 10.8 | 9.8 | 18.8 |
| Oral contraceptive pill............................... | 22.7 | 23.0 | 21.6 | 50.7 |  |  | 21.7 | 22.0 | 20.7 |
| Intrauterine device..................................... | 6.6 | 6.5 | 7.1 | $\begin{array}{r} 6.5 \\ 12.0 \end{array}$ | 51.6 -6.3 | $\begin{array}{r} 48.2 \\ \quad 9.1 \end{array}$ | 6.6 | 6.519.3 | 7.114.9 |
| Other methods........................................... | 18.6 | 19.1 | 14.5 |  | 13.0 | -2.1 | 18.9 |  |  |

${ }^{1}$ Includes white, black, and other races.
NOTE: Statistics in tables 2, 3, and 4 are based on a sample of the household population of the conterminous United Statez. See Technical Notes for estimates of sampling variability and definitions of selected terms.

About 5 of 6 ( 83 percent) of the teenage wives were $18-19$ years of age. Only 17 percent were $15-17$ years of age. Table 2 shows that about 31 percent of ever married women 20-44 years of age had their first child before the age of 20. The differences described in this report between ever married teenagers and ever married women $20-44$ would probably be larger if women who had first married or had had their first child as teenagers were excluded from the age group 20-44. For an analysis of differences in fertility after the teen years between women who had a teenage birth and women who did not, and a review of the literature on some other differences between teenage mothers and other women, see reference 4.

Living arrangements of the respondent at age 14 may be viewed as an indicator of the stability of her family life while she was growing up. By this indicator the family background of teenage wives was more likely to have been unstable than that of other wives. About 44 percent of teenage ever married women, com-
pared with only 23 percent of ever married women 20-44 years of age, were living with only one or neither parent at age 14. A report by the U.S. Bureau of the Census indicates that about 21 percent of persons $10-17$ years of age were living with only one or neither parent in 1976. ${ }^{5}$

Although only 17 percent of teenage wives were under 18 years of age, about 53 percent had not completed high school by the date of the interview. This suggests that the education of some of the teenage wives was interrupted or terminated by marriage or childbearing. ${ }^{6}$ Teenage wives were significantly less likely to have completed high school than wives aged 20-44: 47 percent of teenage wives and 77 percent of wives $20-44$ had completed 12 years of education by the date of interview.

Teenage wives were significantly more likely than wives aged 20-44 to have had no births ( 57 percent compared with 17 percent) or only one birth ( 34 percent compared with 20 percent) by the date of interview. Teenage wives were also significantly more likely to be preg-

Table 3. Number of ever married women 15-44 years of age, by age and rece, and percent distribution by selected characteristics of their current or last husband, according to age and raca: United States, 1976

${ }^{1}$ Includes white, black, and other races.
NOTE: Statistics in tables 2,3 , and 4 are based on a sample of the household population of the conterminous United States. See Technical Notes for extimates of samplins variability and definitions of selected terms.
nant or post partum at the date of interview than wives $20-44$ years of age ( 15 percent compared with 6 percent).

Teenage wives were not significantly more likely than wives $20-44$ years of age to have had a premarital birth (8 percent compared with 7 percent). Similarly, the teenage wives were not significantly more likely to have had a premarital conception: the proportion of wives whose first birth occurred within 7 months of marriage was 17 percent for teenage wives and 15 percent for the women $20-44$ years of age, not a significant difference.

About 15 percent of ever married teenage women were living in households with below
poverty level incomes, compared with about 9 percent of ever married women $20-44$ years of age. This difference, although statistically significant, should be interpreted with caution (see "Definitions of Terms"). Ever married women 15-19 were less likely to be in the labor force than ever married women $20-44$ ( 41 percent compared with 52 percent). The ever married teenagers were not, however, significantly more likely to be receiving Aid to Families With Dependent Children (AFDC) than those 20 44 ( 9 percent compared with 7 percent).

Ever married teenagers were much more likely to be using the oral contraceptive pill at the date of the interview than ever married
women $20-14$ ( 51 percent compared with 22 percent-figure 1). Because use of the pill requires a doctor's prescription and medical followup, the high percent of teenage wives

Figure 1. PERCENT OF WOMEN 15-44 YEARS OF AGE USING THE ORAL CONTRACEPTIVE PILL, BY AGE AND MARITAL STATUS: UNITED STATES, 1976

using the pill may be related to a finding in an earlier report that teenage wives were more likely than other wives to have had a recent family planning visit. ${ }^{7}$ In that report, the place where the most recent family planning visit occurred was classified as either "with own physician" or at an "organized medical service" (clinic or other place). The teenage wives were more likely than other wives to have had their most recent family planning visit at an organized medical service. Table 2 indicates that there was no significant difference between teenage and other ever married women in the percents trying to become pregnant or using the intrauterine device (IUD). Teenage wives were less likely than the ever married women 20-44 to be using contraceptive methods other than the pill and IUD ( 12 percent compared with 19 percent).

Statistics in table 2 show that a larger proportion of ever married black women had their first child at a relatively young age than white ever married women did. About 28 percent of black ever married women $15-44$ had had their first birth before the age of 18 compared with about 9 percent of ever married white women. Similarly, overall and in both age groups, the percent of women with no birth by the date of interview was lower for black women than for white women.

The percent of ever married women who had a premarital birth was higher for black women among both teenagers and women 20-44 years of age. About 43 percent of black teenage wives and 5 percent of white teenage wives had a premarital birth. A recent study of teenage pregnancy may help to explain the larger percent of black ever married women than white ever married women who had a premarital birth (table 2). That study found that black single teenage women were more likely than white single teenage women to become premaritally pregnant, and much less likely than white single teenagers to marry before the outcome of a premarital pregnancy (see tables 1-3 of reference 3 ).

Selected characteristics of the husbands of teenage and other ever married women are shown in table 3. About 41 percent of the husbands of teenage wives were also teenagers at the wife's first marriage. Another 50 percent were 20-24 years of age; only 9 percent were 25 years of age or older. The data on the occupation of the
wife's current or last husband show that 85 percent of the husbands of teenage wives were in "blue collar" occupations-craft, operatives, labor, transportation, farm labor, service, and kindred. This compares with 52 percent of the husbands of wives $20-44$ years of age. Only 47 percent of teenage wives (table 2), but 66 percent of their husbands (table 3), had finished high school by the date of interview. This large difference may be explained in part by the older age of their husbands, but it may also reflect the wives' lower levels of educational attainment, or longer delays in completing high school. About 56 percent of teenage wives were living with both parents at the age of 14 , compared with 70 percent of their husbands. Thus teenage wives were less likely than their husbands to have finished high school by the date of the interview and less likely to have come from two-parent households.

## CHARACTERISTICS OF SINGLE (NEVER MARRIED) MOTHERS

From 1960 through 1976, the number of out-of-wedlock births in the United States increased from about 224,000 to 468,000 , a 109 percent increase (see table 5 of reference 1). One important reason for this increase was the rising number of young women during this period. Another was a widespread postponement of marriage. A third factor was an increase in the rate of out-of-wedlock births. The out-of-wedlock birth rate (out-of-wedlock births per 1,000 unmarried women $15-44$ years of age) rose from 21.6 to 24.7 from 1960 through 1976, a 14percent increase. ${ }^{1}$ For unmarried women 15-19 years of age, however, this rate increased 57 percent, from 15.3 in 1960 to 24.0 in $1976 .{ }^{8}$ The rates for 1977 and 1978 were about the same as in 1976.

If a woman has had an out-of-wedlock birth, has kept the baby, and has never married, she is classified in this report as single with her own offspring living in the household. Table 4 shows selected characteristics of the estimated 332,000 single (never married) mothers $15-19$ years of age and the 739,000 single mothers $20-44$ years of age who had offspring living with them in 1976. The single mothers were younger than the ever married women. About 65 percent of the
single mothers were under 25 years of age compared with only 21 percent of ever married women.

Table 4 shows that 67 percent of the 332,000 single teenage mothers and 70 percent of the 739,000 single mothers $20-44$ years of age were black women. So black women accounted for a larger percent of single mothers than of the general population. This difference appears to reflect different outcomes of out-of-wedlock pregnancies among white and black teenagers as much as any difference in the chances of becoming pregnant in the first place. One recent study of teenage pregnancy revealed that black single teenage women were more likely than white single teenage women to become single mothers through a combination of five factors: a higher percent of black teenage women had had intercourse; a higher percent of black sexually active women had had a premarital first pregnancy; a lower percent of black premaritally pregnant women had married before the baby was bom; a lower percent of black women had married soon after a premarital birth; and a larger percent of black than white teenage mothers had kept their babies. ${ }^{3}$

As mentioned previously, the living arrangements of the respondent at age 14 may be viewed as an indicator of the stability of her family life during her youth. About 42 percent of single mothers were living with only one or neither parent at age 14, compared with 23 percent of ever married women. Only about 1 in 5 ( 19 percent) single teenage mothers had finished high school by the date of interview, although 3 in 5 ( 61 percent) were 18 or 19 years of age at that date. This suggests that for many of these young women, motherhood interrupted their education. ${ }^{6}$

Table 4 also indicates that about 79 percent of single teenage mothers in 1976 had their first birth before the age of 18 , compared with 29 percent of single mothers $20-44$ years of age, 26 percent of teenage wives, and 11 percent of ever married women aged $20-44$ years. The high proportion of very early first births for single teenage mothers probably reflects two facts: first, teenage mothers cannot by definition include any women whose first births occurred after age 19 , so the proportion with a birth before 17 is higher. Secondly, on reaching the age of 18 and the completion of high school,

Table 4. Number of never married women 15-44 years of age who have their own offspring living with them and percent distribution by selected characteristics, according to age: United States, 1976

${ }^{1}$ Includes white, black, and other races.
NOTE: Statistics in tables 2, 3, and 4 are based on a sample of the household population of the conterminous United States. See Technical Notes for estimates of sampling variability and definitions of selected terms.
women marry at a sharply increased rate; 9 thus many single teenage mothers may eventually marry, perhaps after they complete their education. They would therefore not be classified as single mothers at some later time, but rather as ever married women with a premarital birth.

Single mothers (table 4) were much more likely than ever married women (table 2) to be receiving AFDC ( 70 percent compared with 7 percent) and to have incomes below the poverty level ( 61 percent compared with 9 percent).

Overall and in both age groups, single mothers were less likely than ever married women to be in the labor force. In addition, the teenage single mothers were less likely than single mothers 20 44 to be in the labor force.

About 41 percent of teenage single mothers and 35 percent of those $20-44$ years of age were using the oral contraceptive pill at the date of interview (figure 1). This difference was not statistically significant.

## REFERENCES

${ }^{1}$ National Center for Health Statistics: Facts of Life and Death. DHEW Pub. No. (PHS) 79-122.2. Public Health Service. Hyattsville, Md. Nov. 1978, table 4.
${ }^{2}$ National Center for Health Statistics: Teenage childbearing: United States, 1966-75, by S. J. Ventura. Monthly Vital Statistics Report. Vol. 26, No. 5, Supp. DHEW Pub. No. (HRA) 77-1120. Health Resources Administration. Hyattsville, Md. Sept. 8, 1977, tables 1 and 2.
${ }^{3}$ Zelnik, M., and Kantner, J. F.: First pregnancies to women aged 15-19: 1976 and 1971. Fam. Plann. Perspect. 10(1): table 6, Jan.-Feb. 1978.
${ }^{4}$ Millman, S. R., and Hendershot, G. E.: Early fertility and lifetime fertility: evidence from the National Survey of Family Growth, Cycle II. Fam. Plann. Perspect. 12. May-June 1980.
${ }^{5}$ U.S. Bureau of the Census: Marital status and living arrangements: March 1976, Current Population Reports, Series P-20, No. 306, table 4. Washington. U.S. Government Printing Office, Jan. 1977.
${ }^{6}$ Moore, K. A., and Waite, L. J.: Early childbearing and educational attainment. Fam. Plann. Perspect. 9(5): 220-225, Sept.-Oct. 1977.
${ }^{7}$ National Center for Health Statistics: Use of family planning services by currently married women $15-$ 44 years of age: United States, 1973 and 1976, by G. E. Hendershot. Advance Data From Vital and Health Statistics, No. 45. DHEW Pub. No. (PHS) 79-1250. Public Health Service. Hyattsville, Md. Feb. 7, 1979.
${ }^{8}$ National Center for Health Statistics: Advance report, final natality statistics, 1976. Monthly Vital Statistics Report, Vol. 26, No. 12, Supp. DHEW Pub. No. (PHS) 78-1120. Public Health Service. Hyattsville, Md. Mar. 29, 1978, table 12; and National Center for Health Statistics: Vital Statistics of the United States, 1960, Vol. I, Natality. Public Health Service. Washington. U.S. Government Printing Office, 1962, table I-X.
${ }^{9}$ National Center for Health Statistics: Advance report, final marriage statistics, 1976. Monthly Vital Statistics Report, Vol. 27, No. 6, Supp. DHEW Pub. No. (PHS) 78-1120. Public Health Service. Hyattsville, Md. Sept. 13, 1978, table 3.

| SYMBOLS |  |
| :---: | :---: |
|  | - |
| Category not applicable- | $\cdots$ |
| Quantity zero | - |
| Quantity more than 0 but less than 0.05 | 0.0 |
| Figure does not meet standards of reliability or precision | * |

## TECHNICAL NOTES

## RELIABILITY OF ESTIMATES

Because the National Survey of Family Growth (NSFG) is a sample of the household population of the conterminous United States rather than a complete count, the estimates in tables $2-4$ are subject to sampling variability. To calculate the standard error of an aggregate number or percent, the appropriate estimates of $A$ and $B$ from table I are used in the equations

$$
\begin{aligned}
& S E_{\left(N^{\prime}\right)}=\left(A+B / N^{\prime}\right)^{1 / 2} \times N^{\prime}, \text { and } \\
& S E_{\left(P^{\prime}\right)}=\left[B \times P^{\prime} \times\left(100-P^{\prime}\right) / X^{\prime}\right]^{1 / 2},
\end{aligned}
$$

where $N^{\prime}$ is the number of women, $P^{\prime}$ is the percent, and $X^{\prime}$ is the number of women in the denominator of the percent. Statements in the text of this report were tested using a 2 -tailed $t$-test with 40 degrees of freedom. The relative standard error is the ratio of the standard error to the statistic being estimated. In this report, numbers and percents that have a relative standard error that is greater than 25 percent of the estimate itself are considered unreliable. They are marked with an asterisk to caution the user but may be combined to make other types of

Table 1. Estimates of $A$ and $B$ for relative standard error curves, by marital status and race: National Survey of Family Growth, Cycle II

| Marital status and race | A | B |
| :---: | :---: | :---: |
| Ever married |  |  |
| All races........... | 0.0001700390 | 6.486.5185 |
| White........................ | 0.0000422037 | 7.111 .5185 |
| Black......................... | -0.0004520643 | 2,848.2362 |
| Never married with own offspring, and exer married |  |  |
| All races........... | -0.0001926913 | 6.494.6569 |
| White........................ | -0.0002362857 | 6,892.2852 |
| 8lack........................ | -0.0004813358 | 2,698.6043 |

comparisons of greater precision. Details of the procedure used to estimate standard errors can befound in "National Survey of Family Growth, Cycle I: Sample Design, Estimation Procedures, and Variance Estimation," Vital and Health Statistics, Series 2, No. 76, January 1978. A similar report is in preparation for Cycle II.

In Cycle II of the NSFG, missing data items were not imputed, and percent distributions are based on cases with known data.

The NSFG estimates of numbers of ever married women 15-19 years of age, ever married women 15-19 years of age who had ever had a live birth, and never married (single) women 15-19 years of age living with their own offspring are in close agreement with estimates from other sources. In "Fertility of American Women: June 1976': (Current Population Reports, Series P-20, No. 308, June 1977, table 43), the U.S. Bureau of the Census estimated a total of $1,125,000$ ever married women 15-19 years of age, and of these, 505,000 were estimated to have had at least one child. Researchers at The Johns Hopkins University have provided an estimate of 311,000 never married (single) women 15-19 years of age living with their own offspring. This unpublished estimate is based on a 1976 sample survey of women 15-19 years of age in the noninstitutional population of the conterminous United States. None of these estimated numbers is significantly different from the NSFG estimate.

## DEFINITIONS OF TERMS

## Demographic Terms

Age.-In this report, "teenager" refers to a woman 15-19 years of age at the date of interview.

Marital status.-Persons are classified by marital status as married, widowed, divorced, separated, or never married. Married, widowed, divorced, and separated women are referred to as "ever married." For convenience, ever married women $15-19$ years of age are also referred to as "teenage wives" since all but 7 percent of sampled ever married teenage women ( 19 cases)
were currently married at the survey. date. Never married women with offspring living in the household were included in the sample and classified separately in table 4.

Poverty level. -The poverty index ratio was calculated by dividing the total family income by the weighted average threshold income of nonfarm families with the head under 65 years of age based on the poverty levels shown in U.S. Bureau of the Census, Current Population Reports, Series P-60, No. 106, "Money Income in 1975 of Families and Persons in the United States," table A-3. Poverty level was not ascertained for 35 percent of sampled teenage mothers or for 18 percent of sampled teenage wives. Because missing data on income may be nonrandomly distributed with respect to other variables, small differences by poverty level income should be interpreted with great caution. "Below poverty level income" refers to a total family income that is less than the poverty threshold, while "poverty level income and above" refers to a total family income that equals or exceeds that threshold.

Receipt of Aid to Families With Dependent Children.-Respondents were asked, "Did you or any members of your family living here receive income in the past 12 months from . . . welfare payments for aid to your dependent children?" Respondents who replied "yes" were classified as having received AFDC.

Labor force status.-Respondents were asked "Last week were you working full-time, parttime, going to school, keeping house, or what?" "In the labor force" includes those working fullor part-time; those with a job but not at work because of temporary illness, vacation, strike, or maternity leave; and those unemployed, laid off, or looking for work. "Not in labor force" includes those in school, those keeping house, and those engaged in other activities not in the labor force. This classification gives priority to working over other activities. For example,
women who were both working and attending school, or working and keeping house, were classified as working.

## Current Contraceptive Status

Sterile.-A woman (or couple) was classified as sterile if she reported that it was impossible for her to have a baby. Most of the women (or couples) classified as sterile have had sterilizing operations (see Advance Data No. 36).

Seeking pregnancy.-A currently married woman was classified as seeking pregnancy if she reported that she was not using a contraceptive method at the time of interview because she wanted to become pregnant. Never married mothers and widowed, divorced, and separated women were not asked if they were trying to become pregnant.

Post partum.-A woman (or couple) was classified as post partum if she reported that she was not currently using a contraceptive method, that she was not seeking pregnancy, and that her last pregnancy had terminated within 2 months before the date she was interviewed.

Other nonusers.-Women (or couples) who reported that they were currently using no contraceptive method and were not sterile, pregnant, post partum, or seeking pregnancy were classified here.

Method users.-A woman (or couple) who reported use of a contraceptive method other than a surgical sterilization at the date of interview was classified according to the specific method used. For a detailed classification of currently married women by specific contraceptive methods, see Advance Data No. 36.

## Related Data

More extensive definitions of terms can be found in previous reports based on Cycle II of the NSFG-for example, see Advance Data Nos. $36,43,45,55$, and 56 .


FROM VITAL \& HEALTH STATISTICS OF THE NATIONAL CENTER FOR HEALTH STATISTICS

# Expected Principal Source of Payment for Hospital Discharges: United States, 1977a 

## INTRODUCTION

This report presents statistics based on data collected through the National Hospital Discharge Survey, a continuous survey conducted by the National Center for Health Statistics since 1965. In 1977 data were abstracted from the face sheets of medical records of approximately 224,000 patients discharged from 423 short-stay non-Federal hospitals. These data were used to produce estimates of hospital utilization by an estimated 35.9 million inpatients (excluding newborm infants) in the United States.

From 1968 through 1970, information on hospital charges from a subsample of the National Hospital Discharge Survey (NHDS) sample was collected. ${ }^{1}$ No information on charges or source of payment was collected from 1971 through 1976. In 1977, however, data on a patient's expected (in contrast with actual) principal source of payment and other expected sources of payment were collected from the face sheets of all medical records in the NHDS sample. Statistics in this report reflect only the patient's principal expected source of payment. The survey form used to collect these

[^2]data is reproduced in a previous publication of the National Center for Health Statistics. ${ }^{2}$ There is an obvious but important limitation to these data: the expected payment source recorded on the face sheet of the medical record may not have been the actual source of payment. For example, a patient admitted to a hospital following an automobile accident may have cited Blue Cross as the expected source of payment when, in fact, an automobile insurance company ultimately made restitution. Also, because of the manner in which this variable was collected, there is no way to determine the charge for the hospital stay or what proportions of the hospital stay and medical services provided were covered by the principal expected source of payment indicated.

## HIGHLIGHTS

## Private Insurance

Private health insurance, consisting of Blue Cross and other private or commercial insurance, was the principal expected source of payment for approximately 19.3 million discharges in 1977, or about 54 percent of all discharges (table 1). The average length of stay for patients using private insurance was 6.0 days compared

[^3]Table 1. Number and percent distribution of patients discharged from non-Federal short-stay hospitals by principel expected source of payment, age and sex of patient: United States, 1977

| Sex and age | All expected sources of payment | Private insurance | Workmen's Compensation | Medicare | Medic. aid | Other government peyments | Self-pay | No charge | Other payments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Both sexes | Number in thousands |  |  |  |  |  |  |  |  |
| All ages................ | 35,902 | 19,325 | 663 | 8,954 | 2,936 | 1,110 | 2,338 | 91 | 486 |
| Under 15 years................ | 3,775 | 2.549 | - | 45 | 635 | 213 | 250 | 13 | 71 |
| 15-44 years.................... | 15,180 | 10,334 | 446 | 238 | 1,636 | 607 | 1,574 | 56 | 289 |
| 45-64 years.................... | 8,604 | 6,135 | 195 | 883 | 546 | 266 | 452 | 14 | 113 |
| 65 years and over............ | 8,344 | 307 | 22 | 7,788 | 119 | 24 | 62 | 8 | 13 |
| Male |  |  |  |  |  |  |  |  |  |
| All ages..................... | 14,385 | 7,497 | 527 | 4,031 | 901 | 415 | 789 | 31 | 195 |
| Under 15 years............... | 2,137 | 1.444 | - | 23 | 362 | 124 | 139 | 8 | 37 |
| 15-44 years.................... | 4,553 | 3,091 | 362 | 124 | 306 | 160 | 405 | 11 | 95 |
| 45-64 years.................... | 4,042 | 2,807 | 153 | 499 | 184 | 120 | 216 | 7 | 56 |
| 65 years and over............. | 3,653 | 155 | 12 | 3,385 | 49 | 11 | 29 | 5 | 7 |
| Femaie |  |  |  |  |  |  |  |  |  |
| All ages..................... | 21.518 | 11,828 | 136 | 4,923 | 2,035 | 695 | 1,549 | 60 | 291 |
| Under 15 years $\qquad$ 15-44 years. $\qquad$ | 1,638 10,627 | 1,105 <br> 7,243 <br> 1228 | 84 | 22 114 | 273 1,330 | 89 447 | 111 1.169 | 5 45 | 34 194 |
| 45-64 years.................... | 4,562 | 3,328 | 42 | 384 | 362 | 146 | 236 | 7 | 57 |
| 65 years and over............ | 4,690 | 152 | 10 | 4,403 | 70 | 13 | 33 |  | 6 |
| Both sexes | Percent |  |  |  |  |  |  |  |  |
| All ages................ | 100.01 |  | 1.8 | 24.9 | 8.2 | 3.1 | 6.5 | 0.3 | 1.4 |
| Under 15 years................ | $\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$ | $\begin{array}{r} 67.5 \\ 68.1 \\ 71.3 \\ 3.7 \end{array}$ | 2.9 | 1.2 | 16.8 | 5.6 | 6.6 | 0.3 | 1.9 |
| 15-44 years................... |  |  |  | 1.6 | 10.8 | 4.0 | 10.4 | 0.4 | 1.9 |
| 45-64 years................... |  |  | 2.3 | 10.3 | 6.3 | 3.10.3 | $\begin{aligned} & 5.3 \\ & 0.7 \end{aligned}$ | $\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$ | 1.30.2 |
| 65 years and over............. |  |  | 0.3 | 93.3 | 1.4 |  |  |  |  |
| Male |  |  |  |  |  |  |  |  |  |
| All ages..................... | 100.0 |  | 3.7 | 28.0 | 6.3 | 2.9 | 5.5 | 0.2 | 1.4 |
| Under 15 years $\qquad$ 15-44 years $\qquad$ 45-64 years $\qquad$ 65 years and over. $\qquad$ | $\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$ | 67.6 |  | 1.1 | 16.9 | 5.83.5 | 6.58.9 | 0.4 | 1.7 |
|  |  | 67.9 | 7.9 | 2.7 | 16.9 6.7 |  |  | 0.2 | 2.1 |
|  |  | 69.44.2 | 3.8 | 12.492.7 | 4.6 | 3.00.3 | 5.3 0.8 | 0.2 | 1.4 |
|  |  |  | 0.3 |  | 1.3 |  | 0.8 |  | 0.2 |
| Female |  |  |  |  |  |  |  |  |  |
| All ages..................... | 100.0 | 55.0 | 0.6 | 22.9 | 9.5 | 3.2 | 7.2 | 0.3 | 1.4 |
| Under 15 years. <br> 15-44 years. $\qquad$ 45-64 years $\qquad$ <br> 65 years and over. $\qquad$ | $\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$ |  | - | 1.31.9 | 16.7 | 5.44.2 | 6.711.0 | 0.3 | 2.1 |
|  |  | 68.2 | 0.8 |  | 12.5 |  |  | 0.4 | 1.8 |
|  |  | 73.03.2 | 0.90.2 | 8.493.9 | 7.91.5 | 3.20.3 | $\begin{aligned} & 5.2 \\ & 0.7 \end{aligned}$ | $\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$ | 1.20.1 |
|  |  |  |  |  |  |  |  |  |  |

Table 2. Number and percent distribution of days of care and average length of stay for patients discharged from non-Federal short-stay hospitals by principal expected source of payment: United States, 1977

| Days of care | All expected sources of payment | Principal expected source of payment |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Blue Cross. and other private insurance | Workmen's Compensation | Medicare | Medicaid | Other government payments | Self-pay | No charge | Other payments |
| Number in thousands........ | 262,407 | 115,616 | 4,742 | 100,354 | 19,261 | 6,662 | 12,097 | 610 | 3,065 |
| Percent distribution.......... | 100.0 | 44.1 | 1.8 | 38.2 | 7.3 | 2.5 | 4.6 | 0.2 | 1.2 |
| Average length of stay...... | 7.3 | 6.0 | 7.3 | 10.9 | 6.6 | 6.1 | 5.2 | 6.8 | 6.4 |

with 7.3 days for all patients (table 2). This difference is partially a function of the age of these patients. That is, average length of stay increases with age, and the average age of patients using private insurance was 35.5 years, while the average age of all patients was just over 40 years (table 3). The shorter average length of stay means that a proportionately smaller number of days of care were used by these patients: while 54 percent of all discharges were covered by private insurance, only 45 percent of the total days of care in short-stay non-Federal hospitals were used by these patients.

The five most frequent first-listed diagnoses for patients using private insurance (table 4) were delivery (with or without mention of com-

Table 3. Private, public, and other expected sources of payment for patients discharged from non-Federal short-stay hospitals by total number of discharges, days of care, average length of stay, and age: United States, 1977

| Item | All expected sources of payment | Expected source of payment |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Private | Public | Self-pay, no charge. other |
| Total number of discharges in millions. $\qquad$ | 35.9 | 19.3 | 13.7 | 2.9 |
| Toul days of care in millions $\qquad$ | 262.4 | 115.6 | 131.0 | 15.8 |
| Average length of stay in days........... | 7.3 | 6.0 | 9.4 | 5.5 |
| Average age of patients in vears... | 40.6 | 35.5 | 58.8 | 31.8 |

plication), malignant neoplasms, benign neoplasms, hypertrophy of tonsils and adenoids, and chronic ischemic heart disease. The diagnostic categories used to determine this ranking are discussed in the Technical Notes. Of the 3.33 million patients hospitalized for deliveries in the United States in 1977, 2.05 million ( 62 percent) listed Blue Cross or another private insurance plan as the principal expected source of payment. This large proportion of deliveries contributed in part to the shorter average length of stay of patients using private insurance, because a delivery generally results in a relatively short length of stay-from about 3 to 5 days.

Table 5 provides data on all-listed surgeries for inpatients, with a maximum of three procedures recorded on the NHDS survey form. The five most frequent surgical procedures (see Technical Notes for a discussion of surgical categories) performed for patients using private health insurance were diagnostic dilation and curettage of uterus, hysterectomy, tonsillectomy with or without adenoidectomy, bilateral ligation and division of fallopian tubes, and oophorectomy or salpingo-oophorectomy. Of these five procedures, four are female specific, and private insurance was the principal expected source of payment for more than 75 percent of each of them.

The numbers of males and females discharged were relatively similar in all age groups except 15.44 years (table 1). Of the discharges in this age group listing Blue Cross or other private insurance as the expected source of payment, more than twice as many were females as males. This was due to the large number of

Table 4. Number of discharges for the 5 most frequent diagnostic categories for patients discharged from non-Federal short-stay hospitals for each principal expected source of payment, and percent of all discharges with the diagnosis: United States, 1977

| Most frequent diagnostic categories and ICDA codes | Nurber of discharges in thousands | Percent of all discharges |
| :---: | :---: | :---: |
| Private insurance |  |  |
| Delivery with or without mention of complication.....n.........ana............650661 | 2.049 | 61.5 |
| Malignant neoplasms..................................................................-.-.-...... 140-209 | 708 | 41.0 |
| Benign neoplasms and neoplasms of unspecified nature_.................-........210-239 | 593 | 72.2 |
| Hypertrophy of tonsils and adenoids.......................................................... 500 | 492 | 77.6 |
| Chronic ischemic heart disease....................................................................... 412 | 410 | 32.1 |
| Medicare |  |  |
| Malignant neoplasms................................................................................. 140-209 | 827 | 47.8 |
| Chronic ischemic heart disease..................................................................... 412 | 766 | 59.9 |
| Cerebrovascular disease..............................................................................-430-438 | 456 | 71.4 |
| Pneumonia, all forms............................................................................. 480-486 | 258 | 35.7 |
| Cataract..................................................................................................... 374 | 245 | 70.4 |
| Medicaid |  |  |
| Delivery with or without mention of complication................................650-661 | 411 | 12.3 |
| Abortion (induced or spontaneous).................................................640-645 | 93 | 19.9 |
| Melignant neoplasms......................................o.......................................... 140-209 | 83 | 4.8 |
| Preumonia, all forms........................................................................ 480-486 | 80 | 11.1 |
|  | 76 | 12.0 |
| Workmen's Compensation |  |  |
| Displacement of intervertebral disc............................................................. 725 | 74 | 18.7 |
|  | 66 | 18.3 |
| Lacerations and open wound (excluding eye, ear, and head).................. 874907 | 37 | 15.7 |
|  | 36 | 7.2 |
| Dislocation without fracture..........................................................830-839 | 32 | 15.2 |
| Other government paymants |  |  |
| Delivery with or without mention of complication...............................650-661 | 139 | 4.2 |
| Alcoholism.................................................................................................. 303 | 46 | 9.8 |
| Hypertrophy of tonsils and adenoids....................................................... 500 | 33 | 5.2 |
|  | 33 | 1.9 |
|  | 33 | 8.0 |
| Salf-pay |  |  |
|  | 613 | 18.4 |
| Abortion (induced or spontaneous)...................0...............................640-645 | 78 | 16.7 |
|  | 76 | 16.1 |
|  | 56 | 3.2 |
|  | 56 | 16.2 |
| Other payments |  |  |
|  | 80 | 2.4 |
|  | 16 | 0.9 |
|  | 17 | 3.6 |
| Intracranial injury (including skull fractura) ......................................850-854 | 12 | 3.1 |
|  | 11 | 1.3 |
| No charge |  |  |
|  | 26 | 0.8 |
|  | -4 | 0.6 |
| Abortion (induced or spontaneous) ...................................................640-645 | -3 | 0.6 |
| Cholelithiasis.......................................................................................... 574 | 2 | 0.4 |
| Psychoses.........................................................................................290-299 | $\bullet 2$ | 0.5 |

Table 5. Number of all-listed surgeries for the 5 most frequent surgical categories for patients discharged from non-Federal short-stay hospitals for each principal expected source of peyment, and percent of all such surgeries performed: United States, 1977

| Most frequent surgical categories and ICDA codes | Number of all-histed surgeries in thousands | Percent of all such surgeries |
| :---: | :---: | :---: |
| Private insurance |  |  |
|  | 766 | 77.0 |
|  | 554 | 78.6 |
|  | 479 | 77.6 |
|  | 440 | 75.2 |
| Oophorectomy; salpingo-oophorectorny............................................67.2-67.5 | 353 | 77.1 |
| Medicare |  |  |
| Extraction of lens...........................................................................14.4-14.6 | 249 | 70.1 |
|  | 214 | 71.6 |
| Reduction of fracture with fixation........................................................... 82.2 | 168 | 47.9 |
| Cholecystectomy............................................................................................ 43.5 | 115 | 25.8 |
| Repair of inguinal hernia...........................-...-.................................-38.2-38.3 | 110 | 20.6 |
| Medicaid |  |  |
| Dilation and curettage of uterus, diagnostic...........................................70.3 | 89 | 8.9 |
| Tonsillectomy with or without adenoidectomy.................................21.1-21.2 | 73 | 11.8 |
|  | 68 | 11.6 |
|  | 52 | 11.4 |
|  | 45 | 8.4 |
| Workmen's Compensation |  |  |
|  | 37 | 6.9 |
|  | 37 | 9.5 |
|  | 35 | 9.4 |
| Excision of intervertebral cartilage (prolapsed dixc)___ 86.4 | 34 | 20.5 |
| Suture of skin or mucous mernbrane....... 92.5 | 19 | 9.8 |
| Other government paymantz |  |  |
|  | 33 | 5.3 |
|  | 28 | 2.8 |
|  | 20 | 3.4 |
| Hysterectomy. $\qquad$ 69.1-69.5 | 18 | 2.6 |
|  | 17 | 3.7 |
| Self-pay |  |  |
|  | 70 | 15.4 |
|  | 50 | 18.4 |
|  | 46 | 4.6 |
|  | 46 | 7.7 |
|  | 43 | 14.8 |
| Other payments |  |  |
|  | 12 | 4.4 |
|  | 11 | 1.1 |
| Hysterectomy.......................................................6.1-69.5 | 10 | 1.4 |
|  | 10 | 2.2 |
|  | 8 | -1.4 |
| No charge |  |  |
|  | $\bullet 4$ | 0.9 |
|  | -2 | 0.2 |
|  | $\bullet 2$ | 0.3 |
|  | -2 | 0.4 |
| Dilation and curettage after delivery or abortion....enememenemenemenemenem | $\bullet 2$ | 0.7 |

females admitted for delivery and femalespecific surgery.

## Public Programs

Public programs for hospital care payments include Medicare, Medicaid, Workmen's Compensation, and other forms of government payments. Together these programs were listed as the principal expected source of payment for 13.7 million, or 38 percent, of all discharges (table 1). Of these, 66 percent were Medicare patients, 21 percent were Medicaid patients, 5 percent benefited from Workmen's Compensation, and 8 percent received other forms of govemment payments. While private insurance accounted for 54 percent of all discharges and only 45 percent of the total days of care, public health programs accounted for 38 percent of the total discharges and 49 percent of the total days of care. This disparity resulted from a greater average length of stay, 9.4 days, for patients covered by public programs. The longer average length of stay was itself due in great part to the fact that Medicare was the expected source of payment for 93 percent of all patients 65 years of age or over (table 1); as a result, the average age of patients covered by public programs was almost 59 years.

Because of their specific characteristics, the public programs showed considerable variability among the most frequent diagnoses and surgical procedures. The most obvious case was Workmen's Compensation, in which the five most frequent principal diagnostic conditions reflected injuries, accidents, and physical ailments related to the work environment (table 4). Likewise, the five most frequent surgical procedures covered by Workmen's Compensation reflected medical care provided for accidents and injuries (table 5). For Medicare, 3 of the 5 most frequent principal diagnoses reflected the age of the population using this program: chronic ischemic heart disease, cerebrovascular disease, and cataract. Medicare was the principal expected source of payment for 60,71 , and 70 percent, respectively, of all patients with these conditions. Also, 2 of the 5 most frequently performed surgical procedures, extraction of lens and prostatectomy, reflected the age of the Medicare population.

The most frequent diagnoses and surgical procedures for Medicaid and other govemment payments did not reflect as specific a class of patients as Workmen's Compensation and Medicare did. Rather, those patients covered by Medicaid and other government payments were more similar to patients covered by private insurance. Of the 5 most frequent diagnoses for Medicaid and other govemment payments, 3 (delivery, malignant neoplasms, and hypertrophy of tonsils and adenoids) were also among the 5 most frequent diagnoses for both Blue Cross and other commercial insurance (table 4). Also, of the 5 most frequent surgical procedures for Medicaid and other govermment payments, 4 were among the 5 most frequent surgeries performed for patients using private insurance. These were diagnostic dilation and curettage of uterus, bilateral ligation and division of fallopian tubes, tonsillectomy with or without adenoidectomy, and hysterectomy (table 5).

In the age by sex distribution in table 1, the most prominent sex difference in number of discharges was in the $15-44$ years category. For each expected source of payment except Workmen's Compensation and Medicare there were more than twice as many female as male discharges in this age category. In the Medicare class, the number of discharges for females and males was quite similar ( 114,000 and 124,000 , respectively), and, not unexpectedly, in the Workmen's Compensation class the sex difference was the reverse of that for other insurance sources: there were 362,000 males and 84,000 females discharged who were in the $15-44$ years age group.

## Self-Pay

More than 6 percent ( 2.3 million) of all patients expected to pay for their hospital care principally by themselves. Delivery, the leading diagnosis for this group (table 4), was the firstlisted diagnosis for 26 percent of these patients. No other diagnosis accounted for more than 14 percent of the total number of discharges in any source of payment category except for no charge (as discussed below). The large proportion of self-pay patients admitted for delivery largely accounts for two other characteristics of the self-pay group: 67 percent were between the
ages 15-44 years, and the average length of stay for them was only 5.2 days (table 2).

## No Charge

In 1977, an estimated 91,000 discharges (table 1) were not charged for approximately 610,000 days of care (table 2); this was only about two-tenths of 1 percent of all days of care in short-stay hospitals. When data in this cate-
gory are broken down into most frequent diagnoses and surgical procedures, the frequencies have relative standard errors greater than 30 percent and consequently are too small to be considered reliable estimates. The only exception was the most frequent diagnosisdelivery with or without mention of com-plication-for which there were 26,000 no charge deliveries in 1977 that accounted for 29 percent of all no charge patients.

## TECHNICAL NOTES

## SOURCE OF DATA

The National Hospital Discharge Survey encompasses patients discharged from short-stay noninstitutional hospitals, exclusive of military and Veterans Administration hospitals, located in the 50 States and the District of Columbia. Only hospitals with six beds or more and an average length of stay less than 30 days for all patients are included in the survey. Discharges of newbom infants are excluded from this report.

The universe of the survey consisted of 6,965 short-stay hospitals contained in the 1963 Master Facility Inventory of Hospitals and Institutions. New hospitals were sampled for inclusion into the survey in 1972,1975 , and 1977. In all, 535 hospitals were sampled in 1977. Of these hospitals, 68 refused to participate, and 44 were out of scope. The 423 participating hospitals provided approximately 224,000 medical records.

## SAMPLE DESIGN

All hospitals with 1,000 beds or more in the universe of short-stay hospitals were selected with certainty in the sample. All hospitals with fewer than 1,000 beds were stratified, the primary strata being 24 size-by-region classes. Within each of these 24 primary strata, the allocation of the hospitals was made through a controlled selection technique so that hospitals in the sample would be properly distributed with regard to type of ownership and geographic division. Sample hospitals were drawn with probabilities ranging from certainty for the largest hospitals to 1 in 40 for the smallest hospitals.

Sample discharges were selected within the hospitals using the daily listing sheet of discharges as the sampling frame. These discharges were selected by a random technique, usually on the basis of the terminal digit or digits of the patient's medical record number, a number assigned when the patient was admitted to the hospital. The within-hospital sampling ratio for selecting sample discharges varied inversely with the probability of selection of the hospital.

## SAMPLING ERRORS, NONRESPONSE, AND DATA EDITS

Since the estimates for this report are based on a sample rather than the entire universe, they are subject to sampling variability. The relative standard errors presented in table I are obtained by dividing the standard error of the estimate by the estimate itself and are expressed as a percent of the estimate.

About 8.5 percent of the discharges sampled for the 1977 NHDS did not have information conceming source of payment on the face sheet of the medical record. Therefore, all frequency estimates in this report have been adjusted for nonresponse by assuming that nonresponses are distributed among the principal expected sources of payment in the same proportions as responses are. However, the ratio estimates of average length of stay and average age in tables 1 and 5 do not incorporate nonresponse data.

There were several edits performed on the raw data. When a principal expected source of payment was not indicated, but a single expected source of payment was listed as a secondary source of payment, the indicated secondary source of payment was assumed to be the principal expected source of payment. When Workmen's Compensation was listed in conjunction with other insurance sources, Workmen's Compensation was taken as the principal expected source of payment; and when Medicare was listed in conjunction with other insurance sources (except Workmen's Compensation),

Table 1. Relative standard errors of estimates, by source of data

| Size of estimate | First-listed diagnosis and number of discharges |  | All-listed surgeries | Days of care |
| :---: | :---: | :---: | :---: | :---: |
|  | All principal expected sources of payment except self-pay | Self-pay only |  |  |
| 1,000............... | 35.0 | - | - | ... |
| 10,000............. | 19.5 | 27.4 | 21.8 | $\cdots$ |
| 100,000........... | 9.2 | 15.2 | 8.1 | 16.9 |
| 1,000,000....... | 6.2 | 13.6 | 4.0 | 10.1 |
| 10,000,000..... | 3.6 | - | - | 6.3 |
| 100,000,000.... | . . . | ... | ... | 4.0 |
| 150,000,000... | . . | $\ldots$ |  | 3.7 |

Medicare was taken as the principal expected source of payment.

## DIAGNOSTIC AND SURGICAL CATEGORIES

The most frequent diagnostic and surgical categories in this report come from a grouping scheme devised by NHDS for reporting purposes. ${ }^{3,4}$ For diagnoses, these categories are subsets of the 17 major diagnostic classes of the Eighth Revision International Classification of Diseases, Adapted for Use in the United States ${ }^{5}$
(ICDA-8) and were developed to reduce the detail of ICDA-8 while retaining specificity of conditions. For this report, two changes in this

[^4]grouping scheme were made: 1. deliveries without mention of complication (ICDA-8 code 650 ) and deliveries with mention of complication (ICDA-8 codes 651-661) were combined; and 2. neoplasms were categorized as malignant or benign without regard to site. For surgical procedures the categories used are subsets of the first 16 major surgical classes in ICDA-8 (biopsies are excluded). These surgical groups represent single surgical procedures or groups of associated surgical procedures that are performed frequently. In both diagnostic and surgical recoding schemes there are "other" categories that group diagnoses or surgeries into catch-all groups (e.g., "other abdominal surgery"). These categories were not used in determining the five most frequent diagnoses or surgeries.

## DEFINITIONS

First-listed diagnosis.-The coded diagnosis identified as the principal diagnosis or else listed first on the face sheet of the medical record. The number of first-listed diagnoses is equivalent to the number of discharges.

All-Listed operations.-All coded operations listed in positions 1-3 on the face sheet of the medical record exclusive of certain obstetrical procedures, diagnostic endoscopy and radiography, radiotherapy, and certain other treatments not generally considered as surgery.

## SYMBOLS

Data not available ..... -.
Category not applicable .....
Quantity zero ..... -
Quantity more.than 0 but less than $0.05-$ ..... 0.0
Figure does not meet standards ofreliability or precision*


FROM VITAL \& HEALTH STATISTICS OF THE NATIONAL CENTER FOR HEALTH STATISTICS


# Office Visits for Male Genitourinary Conditions: National Ambulatory Medical Care Survey: United States, 1977-78 ${ }^{1}$ 

This report combines estimates from the 1977 and 1978 National Ambulatory Medical Care Surveys to describe office visits made by men who, over the 2 -year period, sought treatment for problems of the genitourinary system. Conducted annually by the National Center for Health Statistics, the National Ambulatory Medical Care Survey (NAMCS) is a sample survey designed to explore the provision and utilization of ambulatory care in the offices of non-Federal, office-based physicians. (See the "Technical Notes" at the end of this report for information on the survey design and terminology.) Because the statistics used in this report are based on a sample rather than on the entire universe of office-based physicians, they are estimates only and are subject to sampling variability. Guidelines for judging the precision of the estimates may be found in the "Technical Notes." A premonitory note: any visit estimate that is under 340,000 , or its percentage equivalent, is preceded by an asterisk, signifying that it exceeds a relative standard error of 30 percent.

A genitourinary visit is an office visit for which the principal diagnosis was a condition classified in the major diagnostic group "Diseases of the Genitourinary System" (diagnostic codes 580-629), according to the Eighth Revision International Classification of Diseases, Adapted for Use in the United States

[^5](ICDA-8). ${ }^{2}$ Genitourinary visits are divided into two subgroups: a urinary visit, which is defined as a visit for which the principal diagnosis was a disease of the urinary system (ICDA subgroup 580-599), and a genital visit, which is defined as a visit for which the principal diagnosis was one of the conditions listed in the ICDA code range 600-629.

## DATA HIGHLIGHTS

Over the 2 -year span 1977-78, the male visit rate for genitourinary problems was estimated at 76 office visits per year for every 1,000 men in the population. As shown in tables 1 and 2, supplemented by figures 1 and 2, the genitourinary visit rate for men was modest compared with the corresponding visit rate for women. At an estimated 254 office visits per year per 1,000 women in the population, the female visit rate was over three times as great as the rate for males, chiefly due to the dramatic difference between the sexes in the visit rates for genital disorders. For genital problems, which unlike urinary problems, are sex-specific, the visit rate for women was 176 visits per year per 1,000 as opposed to 46 visits per year per 1,000 for men.

[^6]The male genitourinary visit rate increased directly and steeply with advancing age (table 2 and figure 2). Male patients 65 years of age and over made 8 times as many urinary visits and 11 times as many genital visits as those under 25 years of age did.

Visits made for genital ailments by men outnumbered visits made for urinary problems in a ratio of about 3 to 2 . Note in table 3 that the prostate is the organ requiring the most office treatment. The conditions of hyperplasia and prostatitis together account for 40 percent of all male genitourinary visits.

In a 1978 study of the national prevalence of urinary disease, women showed a higher rate for almost all urinary ailments than men did ( 36.4 urinary conditions per 1,000 women as opposed to 14.6 urinary conditions per 1,000 men). Only with calculus of the kidney and ureter was the prevalence among men ( 4.7 per 1,000 ) higher than among women ( 3.4 per $1,000) .{ }^{3}$ The NAMCS findings in table 4 show the impact of prevalence on one treatment setting-the doctor's office. These findings suggest an average of about 2 office visits per year for every person who suffered from a urinary disease and faithfully reflect the female-male differences found in the prevalence study.

[^7]The majority ( 52 percent) of all male genitourinary visits were made to an office-based urologist (table 5). Men were especially prone to visit this specialist when they suffered from a genital ailment. It would be shortsighted, however, to underestimate the role played by the primary-care physician. Table 5 shows that nearly one-half of the visits by men for urinary ailments were made to physicians in the primary-care specialties of general and family practice and internal medicine.

When the male genitourinary ailment was a new condition (in about 1 of every 3 visits), it resulted in roughly 2 retum visits during the course of a year (table 6). This finding is compatible with the earlier statistic derived from prevalence data. Referral of male patients was more than twice as common for genital disorders than it was for urinary disorders. The direction of this patient flow (from primary-care physician to urologist) underscores the prominence of this secondary-care provider in the treatment of male genital disease.

The NAMCS makes it possible to identify the patient's symptoms that are associated with the doctor's diagnosis. For male genitourinary visits, the leading 10 presenting symptoms in order of frequency were:

1. Frequency and urgency of urination.
2. Painful urination.

Tabie 1. Number of all office visits and of genitourinary visits and visit rate per year per 1,000 members of the civilian noninstitutionalized population, by sex of patient and principal diagnostic condition: United States, 1977-78

| Principal diagnostic condition and ICDA codes ${ }^{1}$ | Both sexes |  | Male |  | Female |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of visits in thousands | Number of visits per year per 1,000 population | Number of visits in thousands | Number of visits per year per 1,000 population | Number of visits in thousands | Number of visits per year per 1,000 population |
| All conditions, all visits .......... | 1.154,550 | 2.727 | 460.119 | 2,252 | 694,431 | 3,170 |
| Diseases of the genitourinary system ............ 580-629 | 71,224 | 168 | 15,593 | 76 | 55,630 | 254 |
| Diseases of the urinary system. $\qquad$ 580-599 | 23,867 | 56 | 6,141 | 30 | 17.725 | 81 |
| Diseases of the genital system.................................... 600-629 | 47,357 | 112 | 29,452 | 46 | 37,905 | 173 |

[^8]3. Other urinary dysfunctions (e.g., retention, hesitancy, large volume).
4. Symptoms of the scrotum and testes (e.g., pain, swelling, inflammation, growths, itching).
5. Prostate symptoms (e.g., swelling, infection).
6. Abnormalities of urine (e.g., presence of blood or pus, unusual color or odor).
7. Penile discharge.
8. Back symptoms.
9. Penis symptoms (e.g., pain, inflammation, swelling, growths).
10. Pain, site not referable to a specific body system (e.g., side or groin pain).

Table 7 explores the diagnostic procedures that were brought to bear on the presenting symptoms of male genitourinary disease. Predictably, the key diagnostic tool (applied in 2 of every 3 visits) was the laboratory test. A general examination was the exception, as it is throughout all male ambulatory care. The frequency of blood pressure checks during male genitourinary visits (22 percent) is primarily due to their

Table 2. Number of urinary and genital visits and visit rate per year per 1,000 members of the civilian noninstitutionalized population, by sex and age of patient: United States, 1977-78

| Age of patient | Urinary visits $(580-599)^{1}$ |  | Genital visits $(600-629)^{1}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Male | Fernale | Male | Female |
|  | Number in thousands |  |  |  |
| All ages ...... |  |  |  | 37,905 |
|  | Number per yaar per 1,000 population |  |  |  |
| Total .......... | 30 | 81 | 45 | 173 |
| Under 25 years.......... | 12 | 49 | 12 | 106 |
| 25-44 years ............... | 27 | 90 | 42 | 275 |
| 45-64 years ............... | 46 | 109 | 79 | 239 |
| 65 years and over ....... | 92 | 122 | 134 | 72 |

[^9]Figure 1. PERCENT DISTRIBUTION OF ALL GENITOURINARY VISITS,? BY SEX OF PATIENT AND GENITOURINARY SUBGROUP: UNITED STATES, 1977-78

'Total of all penhournory vats equals $7!\geqslant 23.523$.

Figure 2. NUMBER OF URINARY AND GENITAL VISITS PER YEAR PER 1,000 MEMBERS OF THE CIVILIAN NONINSTITUTIONALIZED POPULATION, BY SEX OF PATIENT: UNITED STATES, 1977-78


Table 3. Number and percent distribution of male geniţourinary visits and visit rate per year per 1,000 male members of the civilian noninstitutionalized population, by principal diagnostic condition associated with visit: United States, 1977-78

| Principal diagnostic condition associated with male genitourinary visit and ICDA codes ${ }^{1}$ | Male genitourinary visits |  |  |
| :---: | :---: | :---: | :---: |
|  | Number in thousands | Percent distribution | Number per vear per 1,000 male population |
| All male genitourinary diseases ...............................................................580-607 | 215,281 | 100.0 | 75 |
| All diseases, male urinary system ...........................................................................580-59.-59 | 6,141 | 40.2 | 30 |
| Diseases of the kidney and ureter .....................................................................580-593 | 1,909 | 12.5 | 9 |
| Calculus of kidney and ureter .......................................................................... 592 | 743 | 4.9 | 4 |
| Residual: nephritis and nephrosis; infections of kidney; hydronephrosis; other diseases of kidney and ureter. $\qquad$ | 1,166 | 7.6 | 6 |
| Diseases of the bladder and urethra and other diseases of the urinary tract ..........594-599 | 4,232 | 27.7 | 21 |
| Cystitis ........................................................................................................... 59. | 782 | 5.1 | 4 |
| Urethritis (nonvenereal).................................................................................. 59. | 803 | 5.3 | 4 |
| Stricture of urethra ........................................................................................ 598 | 694 | 4.5 | 3 |
| Residual: calculus; other diseases of the bladder and urinary tract ........................... | 1,953 | 12.8 | 10 |
| All diseases, male genital system..........................................................................600.60.607 | 9,140 | 59.8 | 45 |
| Hyperplasia of prostate ................................................................................ 600 | 2,354 | 15.4 | 12 |
| Prostatitis ....................................................................................................... 601 | 3,810 | 24.9 | 19 |
| Orchitis and epididymitis................................................................................ 604 | 779 | 5.1 | 4 |
| Sterility ......................................................................................................... 60. | 338 | 2.2 | 2 |
| Residual: other prostate disease; hydrocele; redundant prepuce and phimosis; other diseases of male genital organs $\qquad$ | 1,859 | 12.2 | 9 |

${ }^{1}$ Based on Eighth Revision International Classification of Diseases, Adapted for Use in the United States (ICDA-8).
${ }^{2}$ Excludes $\mathbf{~ 3 1 2 , 0 0 0 ~ v i s i t s ~ f o r ~ b r e a s t ~ d i s e a s e . ~}$

Table 4. Number of urinary visits and visit rate per year per 9,000 members of the civilian noninstitutionalized population, by sex of patient and principal diagnostic condition associated with visit: United States, 1977-78

| Principal diagnostic condition associated with urinary visit and ICDA codes ${ }^{1}$ | Maie |  | Female |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Number of visits in thousands | Number of visits per year per 1,000 population | Number of visits in thousands | Number of visits per year per 1,000 population |
| All diseases, urinary system ................................................58.50-599 | 6,141 | 30 | 17,725 | 81 |
| Diseases of the kidney and ureter ......................................................580-593 | 1,909 | 9 | 2,615 | 12 |
| Calculus of kidney and ureter $\qquad$ .592 <br> Residual: nephritis and nephrosis; infections of kidney; <br> hydronephrosis; other diseases of kidney and ureter. $\qquad$ | 743 1,166 | 4 4 | 445 2,170 | 2 10 |
| Diseases of the bladder and urethra and other diseases of the urinary tract $\qquad$ 594-599 | 4,232 | 21 | 15,111 | 69 |
| Cystitis ............................................................................................. 59. | 782 | 4 | 6,607 | 30 |
| Urethritis (nonvenereal).................................................................................................. 597 | 803 | 4 | 1,055 | 5 |
| Stricture of urethra............................................................................. 59. | 694 | 3 | 1,777 | 8 |
| Residual: calculus; other diseases of the bladder and urinary tract $\qquad$ | 1,953 | 10 | 5,672 | 26 |

[^10]Table 5. Number and percent distribution of male genitourinary visits (with component subgroups), by speciaity of physician visited: United States, 1977-78

| Physician specialty | Male genitourinary visits |  |  |
| :---: | :---: | :---: | :---: |
|  | Total | $\begin{aligned} & \text { Urinary } \\ & \text { visits } \\ & (580-599)^{1} \end{aligned}$ | $\begin{aligned} & \text { Genital } \\ & \text { visits } \\ & (600-607)^{1} \end{aligned}$ |
|  | Number in thousands |  |  |
| All specialties.......................................................................................................... | 15,281 | 6.141 | 29,140 |
|  | Percent distribution |  |  |
| Total ...................................................................................................................... | 100.0 | 100.0 | 100.0 |
| Urology ............................................................................................................................. | 51.6 | 36.0 | 62.2 |
| General and family practice ............................................................................................... | 28.3 | 35.8 | 23.2 |
| Internal medicine............................................................................................................... | 9.0 | 12.6 | 6.6 |
| All other specialties ${ }^{3}$................................................................................................... | 11.1 | 15.6 | 8.0 |

${ }^{1}$ Based on Eighth Revision International Classification of Diseases, Adapted for Use in the United States (ICDA-8).
${ }^{2}$ Excludes $* 312,000$ visits for breast disease.
${ }^{3}$ Chiefly general surgery and pediatrics.

Table 6. Number and percent distribution of all male visits and of male genitourinary visits (with component subgroups), by prior-visit status and referral status of patient: United States, 1977-78

| Prior-visit and referral status | All <br> male <br> visits | Male genitourinary visits |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | $\begin{gathered} \text { Urinary } \\ \text { visits } \\ (580-599)^{1} \end{gathered}$ | $\begin{gathered} \text { Genital } \\ \text { visits } \\ (600-607)^{I} \end{gathered}$ |
| Total .......................................................................................... | Number in thousands |  |  |  |
|  | 460,119 \|| 15,281|| |  | 6,141 | 29,140 |
|  | Percent distribution |  |  |  |
| Total ............................................... | 100.0 | 100.0 | 100.0 | 100.0 |
|  |  |  |  |  |
| New patient (a) .......................................................................................... | 16.4 | 17.6 | 13.8 | 20.2 |
| Old patient ................................................................................................ | 83.6 | 82.3 | 86.3 | 79.8 |
| New problem (b) .................................................................................... | 24.9 | 16.9 | 22.1 | 13.5 |
| Old problem (c)..................................................................................... | 58.7 | 65.4 | 64.2 | 66.3 |
| New problem visit (a+b) | 41.3 | 34.5 | 35.8 | 33.7 |
| Referral status |  |  |  |  |
| Referred by another physician $\qquad$ <br> Not raferred by another physician. $\qquad$ | 5.1 94.9 | 9.4 90.6 | $* 5.3$ <br> 9.7 | 12.1 87.9 |

[^11]relative rarity during genital visits. Symptoms of urinary disease, on the other hand, are much more likely to prompt a measurement of blood pressure, probably because a disorder of the urinary system can be more directly influenced by a circulatory malfunction. For example, with a suspected kidney disorder blood pressures were taken in 40 percent of the visits.

Table 7 also shows that physicians judged the average male urinary disorder to be markedly more serious in prognosis than the average male genital disorder.

The data in table 8 show that drug therapy was the treatment most frequently provided or ordered for male genitourinary conditions. Its use in 58 percent of male genitourinary visits exceeded its average application in all male office-based care. Data on disposition in the same table demonstrate that two-thirds of male genitourinary visits ended with the direction to return at a specified time. This directive is evidence of a need for continuing care that
somewhat exceeds the average experience for the entire range of male visits. Also noteworthy is the finding that the frequency of hospital admission (in 5 percent of the visits), a relatively rare form of disposition for male genitourinary conditions, was still more than double the proportion found for the entire group of male visits.

Data on the duration of the visit reveal that the average personal encounter between the physician and the male patient with a genitourinary disease lasted about 14 minutes, not markedly different from the 15 -minute average calculated for all male visits.

An additional 1,031,223 visits for which the principal diagnosis was a malignant neoplasm of the prostate were not included in the diagnostic scope of this report. An estimated 85 percent of these visits were made by men 65 years of age and over resulting in a visit rate for this condition of 47 per 1,000 members of the male population.

Table 7. Number and percent distribution of all male visits and of male genitourinary visits (with component subgroups), by selected diagnostic procedures and seriousness of condition: United States, 1977-78

| Selected diagnostic procedures and seriousness of condition | All male visits | Male genitourinary visits |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | $\begin{aligned} & \text { Urinary } \\ & \text { visits } \\ & (580-599)^{1} \end{aligned}$ | $\begin{aligned} & \text { Genital } \\ & \text { visits } \\ & (600-607)^{1} \end{aligned}$ |
|  | Number in thousands |  |  |  |
| Total ................................................................................................. - | 460,119 | 15,281 | 6,141 | 29,140 |
|  | Percent distribution |  |  |  |
| Total .............................................................................................. | 100.0 | 100.0 | 100.0 | 100.0 |
| Selected diagnostic procedures ${ }^{3}$ |  |  |  |  |
| None ............................................................................................................ | 11.4 | 6.4 | 7.1 | 6.0 |
| Limited examination .......................................................................................... | 59.0 | 58.1 | 59.2 | 57.3 |
| General examination .......................................................................................... | 21.7 | 18.9 | 18.6 | 19.2 |
| Clinical lab test................................................................................................... | 18.2 | 62.1 | 63.6 | 61.0 |
| X-ray .................................................................................................................. | 9.9 | 8.9 | 10.3 | 7.9 |
| Endoscopy ...................................................................................................... | 7.1 | 3.4 | -2.2 | 4.1 |
| Blood pressure check......................................................................................... | 27.0 | 22.2 | 30.7 | 16.6 |
| Seriousness of condition |  |  |  |  |
| Serious and very serious .................................................................................... | 21.0 | 18.7 | 29.3 | 11.6 |
| Siightly serious ................................................................................................ | 32.9 | 38.1 | 36.9 | 38.9 |
| Not serious ....................................................................................................... | 46.1 | 43.2 | 33.8 | 49.5 |

[^12]Table 8. Number and percent distribution of all male visits and of male genitourinary visits (with component subgroups), by selected therapeutic services ordered or provided and selected dispositions of visit: United States, 1977-78

| Selecred therapeutic services and dispositions of visit | All male visits | Male genitourinary visits |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | $\begin{gathered} \text { Urinary } \\ \text { visits } \\ (580-599)^{1} \end{gathered}$ | $\begin{gathered} \text { Genital } \\ \text { visits } \\ (600-607)^{I} \end{gathered}$ |
| Total ........................................................................................ | Number in thousands |  |  |  |
|  | 460,119 \|| 15,281 || |  | 6,141 | 29,140 |
|  | Percent distribution |  |  |  |
| Total $\qquad$ <br> Selected therapeutic services ${ }^{3}$ | 100.0 | 100.0 | 100.0 | 100.0 |
|  |  |  |  |  |
| None ....................................................................................................... | 18.9 | 19.7 | 13.9 | 23.5 |
| Drugs (prescription or nonprescription) ........................................................... | 51.2 | 57.7 | 61.1 | 55.4 |
| Diet counseling......................................................................................... | 6.3 | 3.6 | 6.3 | -1.8 |
| Medical counseling ........................................................................................ | 19.6 | 21.8 | 23.6 | 20.5 |
| Physiotherapy ...........................................................................................---- | 4.0 | 7.6 | ${ }^{*} 0.7$ | 12.2 |
| Office surgery ${ }^{4}$.................................................................................... | 9.4 | 7.7 | 12.6 | 4.3 |
| Selected dispositions of visit ${ }^{\mathbf{3}}$ |  |  |  |  |
| No followup .............................................................................................. | 13.2 | 4.8 | -2.8 | 6.1 |
| Return at specified time............................................................................... | 57.6 | 65.9 | 67.1 | 65.1 |
| Return if needed ........................................................................................ | 23.1 | 19.9 | 21.3 | 18.9 |
| Telephone followup planned ......................................................................... | 3.3 | 3.8 | 5.8 | -2.5 |
| Referred to other physician..................................................................................... | 2.6 | 4.5 | 4.0 | 4.9 |
|  | 2.2 | 4.6 | 4.1 | 4.9 |

${ }^{1}$ Based on Eighth Revision International Classiftaation of Diseases, Adapred for Use in the United States (ICDA-8).
2 Excludes $\mathbf{3 1 2 . 0 0 0}$ visits for breast disease.
${ }^{3}$ Will not add to 100.0 percent because more than 1 service or more than 1 disposition of visit was possible.
4 Any surgical procedure performed in the office during this visit, including suture of wounds;reduction of fractures; application or removal of casts; incision and draining of abscesses; and all irrigations, aspirations, dilatations, and excisions.

## TECHNICAL NOTES

## SOURCE OF DATA AND SAMPLE DESIGN

The information presented in this report is based on data collected in the National Ambulatory Medical Care Survey (NAMCS) during 1977 and 1978. The target universe of NAMCS encompasses office visits within the conterminous United States made by ambulatory patients to nonfederally employed physicians who are principally engaged in office practice. The National Opinion Research Center, under contract to the National Center for Health Statistics, was responsible for the survey's field operations.

The NAMCS utilizes a multistage probability design that involves samples of primary sampling units (PSU's), physicians' practices within PSU's, and patient visits within practices. For 1977-78 a sample of 6,007 non-Federal, office-based physicians was selected from master files maintained by the American Medical Association and American Osteopathic Association. The physician response rate for 1977-78 was 75.1 percent. Sampled physicians were asked to complete Patient Records for a systematic random sample of office visits taking place within their practice during a randomly assigned weekly reporting period. During 1977-78, 98,335 Patient Records were completed by sampled physicians, of which 1,567 involved a male genitourinary disease as the principal diagnosis.

## SAMPLE ERRORS AND ROUNDING OF NUMBERS

The standard error is primarily a measure of the sampling variability that occurs by chance because only a sample, rather than the entire universe, is surveyed. The relative standard error of an estimate is obtained by dividing the standard error of the estimate by the estimate itself and is expressed as a percentage of the estimate. Relative standard errors of selected aggregate statistics are shown in tables I and II.

The standard errors for estimated percentages of visits are shown in tables III and IV.

Estimates of office visits have been rounded to the nearest thousand. For this reason detailed figures within tables do not always add to totals. Percents were calculated on the basis of original, unrounded figures and will not necessarily agree precisely with percents calculated from rounded data.

Table 1. Approximate relative standard errors of estimated number of office visits based on all physician specialties: NAMCS, 1977-78

| Estimated number of office visits in thousands | Relative standard error in percent |
| :---: | :---: |
| 500... | 24.9 |
| 1,000 ................................................................... | 17.7 |
| 2,000.................................................................... | 12.7 |
| 5,000................................................................... | 8.3 |
| 10,000................................................................. | 6.2 |
| 20,000................................................................ | 4.8 |
| 50,000................................................................. | 3.8 |
| 100,000................................................................ | 3.3 |
| 500,000............................................................... | 3.0 |

Example of use of table: An aggregate of $35,000,000$ visits has a relative standard error of 4.3 percent or a standard error of $1,505,000$ visits ( 4.3 percent of $35,000,000$ ).

Table II. Approximate relative standard errors of estimated number of office visits based on an individual physician specialty: NAMCS, 1977-78

| Estimated number of office visits in thousands | Relative standard error in percent |
| :---: | :---: |
| 500..................................................................... | 27.0 |
| 1,000................................................................. | 19.6 |
| 2,000................................................................ | 14.5 |
| 5,000.................................................................. | 10.3 |
| 10,000................................................................ | 8.5 |
| 20,000................................................................ | 7.4 |
| 50,000................................................................. | 6.7 |
| 100,000................................................................ | 6.4 |
| 200,000.............................................................. | 6.3 |

Example of use of mable: An aggregate of $7,500,000$ visits has a relative standard erró of 9.4 percent or a standard error of 705,000 visits ( 9.4 percent of $7,500,000$ ).

Table III. Approximate standard errors of percent of estimated numbers of office visits based on all physician specialties: NAMCS, 1977-78

| Base of percent (number of office visits in thousands) | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 or 99 | 5 or 95 | 10 or 90 | 20 or 80 | 30 or 70 | 50 |
| 500 ........................................................................................... | 2.5 | 5.4 | 7.4 | 9.9 | 11.4 | 12.4 |
| 1,000 .......................................................................................... | 1.7 | 3.8 | 5.3 | 7.0 | 8.0 | 8.8 |
| 2,000 ....................................................................................... | 1.2 | 2.7 | 3.7 | 5.0 | 5.7 | 6.2 |
| 5,000 ........................................................................................ | 0.8 | 1.7 | 2.3 | 3.1 | 3.6 | 3.9 |
| 10,000 ...................................................................................... | 0.6 | 1.2 | 1.7 | 2.2 | 2.5 | 2.8 |
| 20,000 ...................................................................................... | 0.4 | 0.9 | 1.2 | 1.6 | 1.8 | 2.0 |
| 50,000 ......................................................................................... | 0.2 | 0.5 | 0.7 | 1.0 | 1.1 | 1.2 |
| 100,000 .................................................................................. | 0.2 | 0.4 | 0.5 | 0.7 | 0.8 | 0.9 |
| 500,000 ................................................................................... | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 |

Example of use of table: An estimate of 20 percent based on an aggregate of $15,000,000$ visits has a standard error of 1.9 percent or a relative standard error of 9.5 percent ( 1.9 percent $\div \mathbf{2 0}$ percent).

Table IV. Approximate standard errors of percent of estimated numbers of office visits based on an individual physician specialty: NAMCS, 1977-78

| $\begin{aligned} & \text { Base of percent } \\ & \text { (number of office visits in thousands) } \end{aligned}$ | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 or 99 | 5 or 95 | 10 or 90 | 20 or 80 | 30 or 70 | 50 |
| 500 ........................................................................................... | 2.5 | 5.7 | 7.9 | 10.5 | 12.1 | 13.1 |
| 1,000 ....................................................................................... | 1.9 | 4.1 | 5.6 | 7.4 | 8.5 | 9.3 |
| 2.000 ....................................................................................... | 1.3 | 2.9 | 3.9 | 5.3 | 6.0 | 6.6 |
| 5,000 ....................................................................................... | 0.8 | 1.8 | 2.5 | 3.3 | 3.8 | 4.2 |
| 10,000 .................................................................................... | 0.6 | 1.3 | 1.8 | 2.4 | 2.7 | 2.9 |
| 20,000 ......................................................................................... | 0.4 | 0.9 | 1.2 | 1.7 | 1.9 | 2.1 |
| 50,000 ................................................................................... | 0.3 | 0.6 | 0.8 | 1.1 | 1.2 | 1.3 |
| 100,000 ..................................................................................... | 0.2 | 0.4 | 0.6 | 0.7 | 0.9 | 0.9 |
| 200,000 .................................................................................... | 0.1 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |

Example of use of table: An estimate of 50 percent based on an aggregate of $15,000,000$ visits has a standard error of 2.5 percent or a relative standard error of 5 percent ( 2.5 percent $\div 50$ percent).

## DEFINITIONS

Ambulatory patient.-An ambulatory patient is an individual presenting himself for personal health services who is neither bedridden nor currently admitted to any health care institution on the premises.

Office.-An office is a place that the physician identifies as a location for his ambulatory practice. Responsibility over time for patient care and professional services rendered there generally resides with the individual physician rather than an institution.

Visit.-A visit is a direct personal exchange between an ambulatory patient and a physician
or a staff member working under the physician's supervision for seeking care and rendering health services.

Physician.-A physician is a duly licensed doctor of medicine (M.D.) or doctor of osteopathy (D.O.) currently in an office-based practice who spends time in caring for ambulatory patients. Excluded from NAMCS are physicians who are hospital based; physicians who specialize in anesthesiology, pathology, or radiology; physicians who are federally employed; physicians who treat only institutionalized patients; physicians employed full time by an institution; and physicians who spend no time seeing ambulatory patients.

| SYMBOLS |  |
| :---: | :---: |
|  | -.. |
|  |  |
|  | - |
| Quantity more than 0 but less than 0.05- | 0.0 |
| Figure does not meet standards of reliability or precision $\qquad$ | * |



FROM VITAL \& HEALTH STATISTICS OF THE NATIONAL CENTER FOR HEALTH STATISTICS
U.S. DEPARTMENT OF HEALTH - Public Health Service
Office of Health Research, Statistics, and Technology Number 64 - November 4, 1980

## Health Practices Among Adults: United States, 1977a ${ }^{\text {a }}$

A study of the relationship between personal health practices and health consequences was conducted in Alameda County, California, in 1965 by the Human Population Laboratory of the Califormia State Department of Public Health. ${ }^{1}$ Findings indicated a positive relationship between good health practices and physical health status. A 9 -year followup study, examining mortality rates among the original sample of 6,928 adults, showed a strong inverse relationship between the total number of good health practices reported in 1965 and age-specific mortality rates. ${ }^{2}$ Seven good health practices were identified in this study: (1) sleeping an average of $7-8$ hours a night; (2) eating breakfast almost every day; (3) seldom, if ever, eating snacks; (4) controlling one's weight (weighing within 5 percent under and 19.9 percent over the desirable standard weight, if male, or weighing not more than 9.9 percent over the desirable standard weight, if female); (5) exercising: engaging in active sports, swimming, taking long walks, gardening, or doing physical exercises; (6) limiting alcohol consumption to less than five drinks at one sitting; and (7) never having smoked cigarettes. Persons reporting six or seven of these health practices were shown to have better health status and to live longer than persons reporting less than four of them.

In 1977 the National Health Interview Survey included a supplement designed to obtain data on the prevalence of seven preventive health practices among the noninstitutionalized U.S. population aged 20 years and over. The ques-

[^13]tions on health practices, modified somewhat from those of the Alameda County study, included (1) average number of hours of sleep per night; (2) frequency of eating breakfast; (3) frequency of eating snacks; ( 4 ) physical activity level relative to one's peers; (5) frequency and quantity of alcohol consumption; (6) smoking status (never smoked, former smoker, or current smoker) and amount smoked; and (7) body weight as compared with desirable body weight (weight for height). This report presents data on persons 20 years of age and over for these seven practices, by sex, race or ethnicity, age, income, and education.

## SLEEPING

Data on sleeping practices are presented in table 1. Approximately two-thirds of the respondents reported getting an average of $7-8$ hours of sleep a night, with about 2 in 10 reporting 6 hours of sleep or less. Nearly identical proportions of men and women reported sleeping 7-8 hours a night. Proportionately more men reported slecping 6 hours or less, while proportionately more women reported sleeping 9 hours or more.

Slight differences in sleeping habits were found among white, black, and Hispanic respondents. About 68 percent of white respondents reported sleeping $7-8$ hours a night, in contrast to about 61 percent of Hispanic respondents and 56 percent of black respondents.

## EATING BREAKFAST

Estimates of breakfast-eating habits of the U.S. population are shown in table 2. A majority of persons ( 58.1 percent) reported eating breakfast every day, about 16 percent reported eating

Table 1. Total population 20 years of age and over and percent distribution of persons 20 years of age and over by average number of hours of sleep a night, according to selected characteristics: United States, 1977

| Characteristic | Total population 20 years of age and over ${ }^{1}$ | Hours of sleep |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tota ${ }^{2}$ | 6 or less | 7 | 8 | 9 or more |
| All persons 20 years of age and over...... | Number in thousands | Percent distribution |  |  |  |  |
|  | 139,959 | 100.0 | 21.7 | 27.9 | 37.8 | 12.5 |
| Sex |  |  |  |  |  |  |
| Male............................................................... | 65,798 | 100.0 | 23.3 | 29.8 | 35.8 | 11.1 |
| Race or ethnicity |  |  |  |  |  |  |
| White.................................................................. | 108,055 | 100.0 | 20.5 | 29.4 | 38.2 | 11.9 |
| Black............................................................... | 13.544 | 100.0 | 28.2 | 21.2 | 34.3 | 16.2 |
| Hispanic....................................................... | 6,192 | 100.0 | 24.5 | 19.5 | 41.3 | 14.7 |
| Age |  |  |  |  |  |  |
| $20-34$ years................................................... | 51.230 | 100.0 | 20.2 | 28.9 | 38.2 | 12.6 |
| 35-44 vears................................................... | 23.106 | 100.0 | 21.9 | 31.2 | 37.7 | 9.2 |
| 45-54 years.................................................... | 23,190 | 100.0 | 23.0 | 31.5 | 36.8 | 8.8 |
| 55-64 years.................................................... | 20,166 | 100.0 | 22.8 | 25.4 | 38.6 | 13.3 |
| 65 years and over............................................ | 22,266 | 100.0 | 22.7 | 21.2 | 37.5 | 18.6 |
| Income |  |  |  |  |  |  |
| Less than \$5,000............................................ | 18.020 | 100.0 | 27.0 | 20.4 | 35.2 | 17.3 |
| \$5,000-\$9,999............................................... | 25,965 | 100.0 | 21.4 | 24.4 | 38.6 | 15.5 |
| \$10,000-\$14,999........................................... | 26,564 | 100.0 | 21.4 | 28.8 | 38.9 | 10.9 |
| \$15,000-\$24,999............................................ | 34,630 | 100.0 | 20.8 | 31.7 | 37.8 | 9.7 |
| \$25,000 or more............................................. | 21,679 | 100.0 | 19.3 | 33.6 | 38.0 | 9.2 |
| Education of individual |  |  |  |  |  |  |
| Loss than 12 years........................................... | 44,430 | 100.0 | 25.3 | 21.3 | 37.0 | 16.4 |
| 12 years....................................................... | 50,957 | 100.0 | 20.8 | 29.0 | 38.7 | 11.5 |
| More than 12 years......................................... | 42.349 | 100.0 | 19.1 | 33.8 | 37.7 | 9.3 |

${ }_{2}^{1}$ Includes uniknowns.
2 Excludes unknown hours of sleep.
breakfast sometimes, and about 26 percent said they never eat breakfast. There are almost no differences in this practice between men and women. A pattern emerges, however, with respect to age. The proportion of people eating breakfast every day increases steadily with advancing age, from about 42 percent for those 20-34 years of age to about 86 percent for those 65 years and over.

There are also differences in breakfast-eating habits according to race or ethnicity. About 60 percent of white respondents and about 56 per-
cent of Hispanic respondents reported that they eat breakfast every day, while only 47 percent of black respondents reported regular breakfasteating habits. Approximately 26 percent of black respondents and about 23 percent of Hispanic respondents reported that they sometimes eat breakfast, in contrast to 14.3 percent of white respondents. About equal proportions of black and white persons reported that they never eat breakfast ( 27.8 percent and 25.9 percent, respectively), compared with a smaller proportion of Hispanic persons (21.6 percent).

People in the lower income categories are relatively more likely to eat breakfast than those at the higher end of the income spectrum. Approximately 65 percent of those with incomes of less than $\$ 5,000$ reported eating breakfast every day, while only about 53 percent of persons with incomes of $\$ 15,000-\$ 24,999$ reported similar behavior. The proportion of persons eating breakfast every day rises slightly in the highest income category, to approximately 57 percent. The proportion of persons reporting

Table 2. Percent distribution of persons $\mathbf{2 0}$ years of age and over by frequency of eating breakfast, according to selected characteristics: United States, 1977

| Characteristic | Eats breakfast: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total ${ }^{1}$ | Every day | Sometimes | Never |
| All persons 20 years of age and over. $\qquad$ | Percent distribution |  |  |  |
|  | 100.0 | 58.1 | 15.9 | 26.1 |
| Sex |  |  |  |  |
| Male........................ | 100.0 | 57.3 | 15.8 | 27.0 |
| Female..................... | 100.0 | 58.7 | 15.9 | 25.4 |
| Race or ethnicity |  |  |  |  |
| White....................... | 100.0 | 59.8 | 14.3 | 25.9 |
| Black........................ | 100.0 | 46.6 | 25.6 | 27.8 |
| Hispanic................... | 100.0 | 55.8 | 22.6 | 21.6 |
| Age |  |  |  |  |
| 20-34 years................. | 100.0 | 41.6 | 22.7 | 35.8 |
| 35-44 years................ | 100.0 | 49.3 | 18.3 | 32.4 |
| 45-54 years................ | 100.0 | 61.5 | 14.1 | 24.3 |
| 55-64 years................ | 100.0 | 73.1 | 9.5 | 17.4 |
| 65 years and over........ | 100.0 | 86.2 | 5.7 | 8.0 |
| Income |  |  |  |  |
| Less than \$5,000......... | 100.0 | 64.9 | 14.8 | 20.3 |
| \$5,000-\$9,999............ | 100.0 | 59.6 | 15.3 | 25.1 |
| \$10,000-\$14,999......... | 100.0 | 56.4 | 16.8 | 26.8 |
| \$15,000-\$24,999........ | 100.0 | 53.3 | 17.2 | 29.5 |
| \$25,000 or more.......... | 100.0 | 56.5 | 15.3 | 28.1 |
| $\frac{\text { Education of }}{\text { individual }}$ |  |  |  |  |
| Less than 12 years....... | 100.0 | 62.2 | 14.5 | 23.3 |
| 12 years.................... | 100.0 | 54.0 | 17.1 | 28.9 |
| More than 12 years...... | 100.0 | 58.2 | 15.9 | 25.9 |

[^14]that they sometimes eat breakfast remains relatively constant across all income groups.

## EATING SNACKS

Table 3 shows that among American adults, approximately 38 percent eat snacks every day, about 27 percent sometimes snack, and about 35 percent never snack. The practice of eating between meals, like the practice of eating breakfast, appears to be related to age. The per-

Table 3. Percent distribution of persons 20 years of age and over by frequency of eating snacks, according to selected characteristics: United States, 1977

| Characteristic | Eats snacks: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total ${ }^{1}$ | Every day | Sometimes | Never |
| All persons 20 | Percent distribution |  |  |  |
| and over......... | 100.0 | 38.0 | 27.4 | 34.7 |
| Sex |  |  |  |  |
| Male.......................... | 100.0 | 40.1 | 25.4 | 34.4 |
| Female...................... | 100.0 | 36.3 | 28.9 | 34.8 |
| Race or ethnicity |  |  |  |  |
| White......................... | 100.0 | 38.4 | 26.9 | 34.7 |
| Black........................ | 100.0 | 37.0 | 29.1 | 34.0 |
| Hispanic..................... | 100.0 | 34.2 | 30.6 | 35.1 |
| Age |  |  |  |  |
| 20-34 years................ | 1.00 .0 | 43.2 | 31.7 | 25.1 |
| 35-44 years................ | 100.0 | 40.5 | 29.1 | 30.4 |
| 45-54 years................ | 100.0 | 36.6 | 26.4 | 37.1 |
| 55-64 years................ | 100.0 | 34.6 | 22.7 | 42.7 |
| 65 years and over........ | 100.0 | 28.3 | 21.1 | 50.5 |
| Income |  |  |  |  |
| Less than \$5,000....... | 100.0 | 33.9 | 25.3 | 40.8 |
| \$5,000-\$9,999........... | 100.0 | 37.2 | 27.6 | 35.3 |
| \$10,000-\$14,999........ | 100.0 | 39.6 | 28.8 | 31.6 |
| \$15,000-\$24,999........ | 100.0 | 40.7 | 28.0 | 31.2 |
| \$25,000 or more......... | 100.0 | 38.6 | 26.7 | 34.7 |
| $\frac{\text { Education of }}{\text { individual }}$ |  |  |  |  |
| Less than 12 years....... | 100.0 | 35.8 | 24.9 | 39.3 |
| 12 years..................... | 100.0 | 39.7 | 28.5 | 31.8 |
| More than 12 years...... | 100.0 | 38.2 | 28.6 | 33.3 |

[^15]NOTE: See table 1 for population.
cent of persons reporting that they snack every day declines from about 43 percent of those aged $20-34$ years to about 28 percent of those 65 years of age and over. The proportion of people reporting that they sometimes eat snacks similarly declines-from approximately 3 in 10 in the youngest group to about 2 in 10 among those 65 years of age and over. Together, the data on breakfast eating and snacking indicate that regular eating habits (eating breakfast every day and avoiding snacks) are positively associated with age.

## PHYSICAL ACTIVITY

The physical activity measure used in the National Health Interview Survey (table 4) provides only a rough approximation of the level of physical activity in the adult population. Respondents were asked to rate their own level of physical activity relative to other persons their age: more active, about as active, or less active. About half of the respondents judged their own activity level to be about the same as that of their peers, with slightly less than 4 in 10 saying they are more active than others. Among women, 54 percent indicated they are about as active as others their age; about 46 percent of men gave this response. Proportionately more men than women ( 42.1 percent and 33.3 percent, respectively) reported that they are more active than their peers. The self-perceived level of physical activity exhibits a positive relationship to income. As income level increases, the percent of persons who indicated that they are more active than their peers increases, and the percent of persons indicating that they are less active decreases.

## ALCOHOL CONSUMPTION

Estimates of the frequency and quantity of alcohol consumption are shown in table 5. Respondents were asked: "How often do you drink wine (beer, liquor)-never, occasionally, once or twice a week, or more than twice a week?" Separate questions were asked for each type of alcoholic beverage. The data in table 5 reflect the consumption frequency of the most frequently consumed beverage. Persons who stated that they drink two or three types of alcohol once or twice a week may be misclassified in this analysis. A person who drinks beer twice a week

Table 4. Percent distribution of persons 20 years of age and over by physical activity level relative to parsons of same age, according to selected characteristics: United States, 1977

| Characteristic | Physical activity level |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total ${ }^{1}$ | More active | Same | Less active |
| All persons 20 years of age and over........... | Percent distribution |  |  |  |
|  | 100.0 | 37.2 | 50.5 | 12.3 |
| Sex |  |  |  |  |
| Male...................... | 100.0 | 42.1 | 46.2 | 11.7 |
| Ferrale........................ | 100.0 | 33.3 | 54.0 | 12.7 |
| Race or ethnicity |  |  |  |  |
| White.......................... | 100.0 | 38.6 | 49.9 | 11.5 |
| Black......................... | 100.0 | 30.2 | 53.4 | 16.4 |
| Hispanic...................... | 100.0 | 33.8 | 51.1 | 15.2 |
| Age |  |  |  |  |
| 20-34 years................. | 100.0 | 33.6 | 56.2 | 10.2 |
| 35-44 years................. | 100.0 | 38.2 | 51.5 | 10.2 |
| 45-54 years................. | 100.0 | 35.6 | 52.4 | 12.0 |
| 55-64 years................. | 100.0 | 37.0 | 45.9 | 17.1 |
| 65 years and over......... | 100.0 | 44.7 | 40.1 | 15.2 |
| Income |  |  |  |  |
| Less than \$5,000......... | 100.0 | 31.1 | 47.5 | 21.5 |
| \$5,000-\$9,999............ | 100.0 | 34.6 | 50.4 | 15.0 |
| \$10,000-\$7 4,999........ | 100.0 | 36.8 | 52.9 | 10.3 |
| \$15,000-\$24,999........ | 100.0 | 38.4 | 52.8 | 8.9 |
| \$25,000 or more......... | 100.0 | 44.9 | 47.3 | 7.7 |
| $\frac{\text { Education of }}{\text { individual }}$ |  |  |  |  |
| Less than 12 years........ | 100.0 | 32.2 | 51.4 | 16.5 |
| 12 years..................... | 100.0 | 36.5 | 52.7 | 10.8 |
| More than 12 years...... | 100.0 | 43.4 | 47.2 | 9.4 |

1 Excludes unknown physical activity level.
NOTE: See table 1 for population.
and wine once a week, for example, is classified here as drinking "once or twice a week," while in fact he drinks three times a week. The magnitude of the potential error is small, however, with a maximum possible misclassification of only about $21 / 2$ percent of the adults who drink alcohol.

The data on quantity are based on responses to the questions: "When you drink wine (beer, liquor), how many drinks do you have at one sitting?" and "On any one occasion during the

Table 5. Percent distribution of persons 20 years of age and over by frequency of alcohol consurnption and percent of persons who drink alcohol who consumed 5 or more drinks at one sitting in past year, according to selected characteristics: United States, 1977


[^16]NOTE: See table 1 for population.
past 12 months, did you have five or more drinks of wine, beer, or liquor?" The data on quantity reflect the proportion of persons who had five or more drinks at any one sitting during the past 12 months. No distinction can be made between the habitual heavy drinker and the occasional heavy drinker.

Approximately 3 in 10 adults reported that they never drink any type of alcoholic beverage, and about 4 in 10 reported drinking only oc-
casionally. About 16 percent of American adults said they drink wine, beer, or liquor an average of once or twice a week, and the remaining 14 percent drink alcohol an average of three or more times a week. Among respondents who drink alcohol, about 3 in 10 indicated that they had consumed five or more drinks at a sitting at least once during the past 12 months.

Men and women exhibit different patterns of alcohol consumption. A greater proportion of
women reported that they never drink (34.2 percent compared with 21.5 percent of men) or only drink occasionally ( 46.7 percent compared with 35.9 percent of men). While less than 2 in 10 women reported that they drink at least once a week on a regular basis, more than 4 in 10 men reported this behavior. Similarly, among men and women who reported drinking alcohol, 43.1 percent of men and 18.5 percent of women reported having five or more drinks at least once during the past year.

Drinking habits are clearly related to age, income, and education. Both frequency and quantity of alcohol consumption decrease with advancing age and increase with income and education.

Among adults 20-34 years of age, 34 percent reported drinking at least once a week. In contrast, only about 18 percent of persons 65 years and over reported drinking this often. Similarly, the percent of alcohol drinkers who reported having had five or more drinks at one sitting declines steadily from about 43 percent in the youngest age group to about 7 percent among the oldest respondents.

Persons with higher incomes drink more than persons with lower incomes. The percent of persons who reported drinking three or more times a week increases from 8.5 percent among those with incomes of less than $\$ 5,000$ a year to about 22 percent among those with incomes of $\$ 25,000$ or more. The proportion of persons drinking once or twice a week increases from about 1 in 10 to about 2 in 10 between the lowest and the highest income groups. In the lowest income category, about 20 percent of adults who drink alcohol reported having had five or more drinks at one sitting, while about 37 percent of those in the highest income group reported this behavior.

Persons with higher levels of education reported more frequent alcohol consumption than did persons with less education. While 38 percent of respondents having more than 12 years of education reported drinking at least once a week, only 29 percent of those with 12 years of education and less than 23 percent of those with under 12 years of education reported drinking this often. About 42 percent of respondents having less than 12 years of education reported that they never drink alcohol, while only 17 percent of persons with more than

12 years of education reported abstaining. Quantity of alcohol consumption also increases with education. The proportion of alcohol drinkers who reported consuming five or more drinks at one sitting ranges from 22 percent of those with less than 12 years of education to about 35 percent of those with more than 12 years of education.

## SMOKING

Table 6 provides information on the smoking practices of the U.S. adult population in 1977. At the time that these data were collected, about 36 percent of adults aged 20 years and over currently smoked cigarettes, about 20 percent had smoked at least 100 cigarettes in their lifetimes but were not currently smoking (former smokers), and about 44 percent had never smoked. Men were more likely to currently be smoking than were women (40.9 percent and 32.1 percent, respectively). They were also more likely to have quit. Adjusting for differences in the proportions of men and women who had ever smoked shows that about 4 in 10 male smokers had quit, while only about 3 in 10 female smokers had quit.

More recent data on smoking, collected in 1978 and 1979, are currently available in The Health Consequences of Smoking for Women, A Report of the Surgeon General, ${ }^{3}$ an earlier Advance Data report, ${ }^{4}$ and Health, United States, 1979.5 Additional 1979 data will be available in Health, United States, 1980. ${ }^{6}$

## BODY WEIGHT

The final health measure included in the 1977 National Health Interview Survey was body weight as compared with desirable body weight. Respondents were asked to estimate their height and weight. ${ }^{\text {b }}$ This ratio was compared with a standard table of desirable weights prepared by the Metropolitan Life Insurance Company. ${ }^{8}$ People were classified according to how closely their height-weight ratio approximated the Metropolitan Life standard: 10 percent or more below desirable body weight; $5-9.9$ percent below; plus or minus 4.9 percent; 5-9.9 percent above; 10-19.9 percent above;

[^17]Table 6. Percent distribution of persons 20 years of age and over by smoking status and percent distribution of current smokers by number of cigarettes smoked daily, according to selected characteristics: United States, 1977

| Characteristic | Smoking status |  |  |  | Number of cigarettes smoked daily |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total ${ }^{1}$ | Never smoked | Former smoker | Current smoker | All current smakers ${ }^{2}$ | Less than 15 | 15-24 | 25-34 | 35 or more |
| All persons 20 years of age and over.... | Percent distributions |  |  |  |  |  |  |  |  |
|  | 100.0 | 43.9 | 20.1 | 36.0 | 100.0 | 30.3 | 43.2 | 12.8 | 13.7 |
| Sex |  |  |  |  |  |  |  |  |  |
| Male.......................................................... | 100.0 | 30.9 | 28.2 | 40.9 | 100.0 | 24.4 | 42.3 | 15.1 | 18.2 |
| Female....................................................... | 100.0 | 54.4 | 13.5 | 32.1 | 100.0 | 36.2 | 44.2 | 10.5 | 9.1 |
| Race or ethnicity |  |  |  |  |  |  |  |  |  |
| White......................................................... | 100.0 | 43.1 | 21.7 | 35.2 | 100.0 | 25.2 | 45.1 | 14.0 | 15.8 |
| Black........................................................ | 100.0 | 45.0 | 13.0 | 42.0 | 100.0 | 53.8 | 36.2 | 7.3 | 2.7 |
| Hispanic..................................................... | 100.0 | 54.1 | 12.3 | 33.5 | 100.0 | 59.1 | 27.0 | 4.9 | 8.7 |
| Age |  |  |  |  |  |  |  |  |  |
| 20-34 years................................................. | 100.0 | 45.3 | 14.6 | 40.1 | 100.0 | 33.3 | 45.1 | 11.7 | 9.9 |
| 35-44 years............................................................... | 100.0 | 37.1 | 19.5 | 43.4 | 100.0 | 23.8 | 42.7 | 15.4 | 18.0 |
| $45-54$ years................................................. | 100.0 | 36.8 | 23.4 | 39.8 | 100.0 | 26.3 | 40.7 | 13.7 | 19.3 |
| 55-64 years.................................................. | 100.0 | 40.3 | 25.2 | 34.5 | 100.0 | 29.0 | 44.1 | 12.4 | 14.5 |
| 65 years and over........................................ | 100.0 | 57.8 | 24.8 | 17.4 | 100.0 | 42.1 | 39.6 | 10.5 | 7.8 |
| Incorne |  |  |  |  |  |  |  |  |  |
| Less than \$5,000........................................ | 100.0 | 50.0 | 16.4 | 33.5 | 100.0 | 39.3 | 40.2 | 9.5 | 11.0 |
| \$5,000-\$9,999........................................... | 100.0 | 43.6 | 18.6 | 37.8 | 100.0 | 35.0 | 39.2 | 11.6 | 14.1 |
| \$10,000-\$14,999......................................... | 100.0 | 42.2 | 19.3 | 38.4 | 100.0 | 26.3 | 47.1 | 14.3 | 12.2 |
| \$15,000-\$24,999....................................... | 100.0 | 41.1 | 21.6 | 37.3 | 100.0 | 26.2 | 44.9 | 14.2 | 14.6 |
| \$25,000 ar more.......................................... | 100.0 | 40.9 | 25.3 | 33.9 | 100.0 | 26.8 | 43.9 | 12.7 | 16.6 |
| Education of individual |  |  |  |  |  |  |  |  |  |
| Less tha 12 yoars....................................... | 100.0 | 43.1 | 19.2 | 37.6 | 100.0 | 31.1 | 43.0 | 11.0 | 14.2 |
| 12 years.....................................o.o............. | 100.0 | 41.7 | 19.0 | 39.3 | 100.0 | 27.9 | 45.0 | 13.3 | 13.8 |
| More than 12 year3......................o.o.............. | 100.0 | 47.2 | 22.1 | 30.6 | 100.0 | 32.8 | 40.8 | 13.5 | 12.9 |

${ }_{2}$ Excludes uniknown smoking status.
2 Exciudes unknown a mount smoked.
NOTE: See table 1 for population.

20-29.9 percent above; and 30 percent or more above. The distribution is shown in table 7.

Only about 24 percent of the adults were found to be within 5 percent of their desirable body weight using this standard, with about 18 percent below and 58 percent above the optimal range. Almost 15 percent of the adult population is 30 percent or more overweight using the Metropolitan Life standard.

Approximately equal proportions of men and women are within 5 percent of their optimal weight ( 21.6 percent and 24.9 percent, respec-
tively). There are sex differences, however, in some of the other weight categories. Women are more likely to be underweight than men are ( 23.1 percent and 12.0 percent, respectively), and men are more likely to be 5-29.9 percent overweight (about 55 percent of men versus about 35 percent of women). A larger proportion of women than men, however, fall in the highest weight category, 30 percent or more overweight. About 17 percent of women are in this category, in contrast to about 12 percent of men. Overall, about 69 percent of men and

Table 7. Percent distribution of persons 20 years of age and over by body weight, ${ }^{1}$ according to selected characteristics: United States, 1977

| Characteristic | Total ${ }^{2}$ | 10 percent <br> or more <br> below <br> desirable <br> weight | 5-9.9 percent below destrable weight | Plus or minus 4.9 percent of desirable weight | 5-9.9 percent above desirable weight | 10-19.9 percent above desirable weight | 20-29.9 percent above desirable weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All persons 20 years of age and over...... | Percent distribution |  |  |  |  |  |  |  |
|  | 100.0 | 9.1 | 9.1 | 23.5 | 12.5 | 20.2 | 11.1 | 14.5 |
| Sex |  |  |  |  |  |  |  |  |
| Male.............................. | 100.0 | 5.2 | 6.8 | 21.6 | 16.3 | 24.4 | 14.0 | 11.7 |
| Female.......................... | 100.0 | 12.2 | 10.9 | 24.9 | 9.5 | 16.9 | 8.9 | 16.7 |
| Race or ethnicity |  |  |  |  |  |  |  |  |
| White............................ | 100.0 | 9.4 | 9.4 | 24.3 | 12.8 | 20.2 | 11.0 | 13.1 |
| Black............................. | 100.0 | 6.0 | 6.2 | 20.1 | 9.7 | 20.1 | 13.0 | 25.0 |
| Hispanic......................... | 100.0 | 5.8 | 8.6 | 19.0 | 11.6 | 23.2 | 13.0 | 18.8 |
| Age |  |  |  |  |  |  |  |  |
| 20-34 years..................... | 100.0 | 13.0 | 12.8 | 27.6 | 12.4 | 16.6 | 7.6 | 10.0 |
| 35-44 years..................... | 100.0 | 6.8 | 8.5 | 23.2 | 13.2 | 21.4 | 11.8 | 15.0 |
| 45-54 ү $\mathbf{4}$ ears..................... | 100.0 | 5.1 | 6.4 | 20.8 | 13.3 | 23.5 | 13.4 | 17.5 |
| 55-64 years..................... | 100.0 | 5.3 | 6.4 | 19.6 | 12.3 | 22.1 | 14.8 | 19.6 |
| 65 years and over............. | 100.0 | 10.2 | 6.4 | 20.5 | 11.4 | 22.2 | 12.8 | 16.4 |
| Income |  |  |  |  |  |  |  |  |
| Less than \$5,000............. | 100.0 | 11.5 | 8.8 | 20.5 | 9.8 | 18.9 | 11.4 | 19.2 |
| \$5,000-59,999................ | 100.0 | 9.2 | 9.0 | 22.9 | 11.5 | 19.7 | 11.1 | 16.5 |
| \$10,000-\$14,999............. | 100.0 | 9.0 | 8.3 | 23.1 | 12.8 | 21.2 | 11.0 | 14.5 |
| \$15,000-\$24,999............. | 100.0 | 8.0 | 9.7 | 24.4 | 13.5 | 20.3 | 11.3 | 12.6 |
| \$25,000 or more................ | 100.0 | 8.9 | 10.3 | 26.0 | 14.0 | 20.5 | 10.7 | 9.5 |
| Education of |  |  |  |  |  |  |  |  |
| Less than 12 years............ | 100.0 | 7.8 | 6.5 | 18.5 | 11.0 | 21.1 | 14.0 | 21.0 |
| 12 years......................... | 100.0 | 9.3 | 9.2 | 24.4 | 12.2 | 20.6 | 10.7 | 13.5 |
| More than 12 years........... | 100.0 | 10.3 | 11.5 | 27.6 | 14.4 | 18.7 | 8.7 | 8.8 |

${ }_{2}^{1}$ Desirable weight modified from 1960 Metropolitan Life Insurance Company data.
${ }^{2}$ Excludes unknown height or weight.
NOTE: See table 1 for population.
about 58 percent of women are in the weight categories identified as "good" by the Alameda County study. ${ }^{1}$

Desirable weight is inversely related to age in this population. With advancing age, there is a small but steady decline in the proportion of persons reporting optimal weight. About 28 percent of persons aged $20-34$, compared with about 21 percent of those 65 years and over,
reported height-weight ratios within 5 percent of the Metropolitan Life standard. Desirable weight is positively related to both income and education. As these increase, the proportion of persons in the optimal weight category (plus or minus 4.9 percent of desirable weight) increases, and the proportion of persons in the extreme overweight category ( 30 percent or more) decreases.

Black persons are overrepresented in the most extreme weight category. About one-quarter of all black persons are 30 percent or more overweight, compared with about 13 percent of white persons and about 19 percent of the Hispanic group. Racial and ethnic differences in the other weight categories are minimal.

## SUMMARY

This report has presented estimates of the prevalence of seven health practices pertaining to hours of sleep, eating breakfast, eating snacks, physical activity, alcohol consumption, smoking, and weight. In future publications from the National Center for Health Statistics, interrelationships found among these practices will be discussed in more detail and examined in relation to physical health status. The data presented here will be further examined in a Series 10 report in the Vital and Health Statistics
series. ${ }^{9}$ A comparison of the National Health Interview Survey findings with those of the Alameda County study is planned.

The health practices supplement to the National Health Interview Survey was designed to provide national estimates of the health habits found to be important in Alameda County so that their relationship to health status could be examined. The measures used were only rough approximations of those employed in the original Human Population Laboratory study. The National Center for Health Statistics is currently conducting a national telephone survey designed to include some of the features of the Alameda County study. Analysis of these data will shed light on the issue of the generalizability of the Alameda County findings on the relationship between health practices and physical health status.

## REFERENCES

${ }^{1}$ Belloc, N. B., and Breslow, L.: Relationship of physical health status and health practices. Prev. Med. 1(3):409-421, 1972.
${ }^{2}$ Breslow, L., and Enstrom, J. E.: Persistence of health habits and their relationship to mortality. Prev. Med 9:469-483, 1980.
${ }^{3}$ Department of Health, Education, and Welfare: The Health Consequences of Smoking for Women, A Report of the Surgeon General, 1980.
${ }^{4}$ National Center for Health Statistics: Changes in cigarette smoking and current smoking practices among ardults, United States, 1978, by A. J. Moss. Advance Data From Vital and Health Statistics, No. 52. DHEW Pub. No. (PHS) 79-1250. Public Health Service. Hyattsville, Md. Sept. 19, 1979.
${ }^{5}$ National Center for Health Statistics: Health, C'nited States, 1979. DHEW Pub. No. (PHS) 80-1232. Public Health Service. Washington. U.S. Govermment Printing Office, 1980.
${ }^{6}$ National Center for Health Statistics: Health, United States, 1980. DHHS Pub. No. (PHS) 81-1232. Public Health Service, DHHS, Hyattsville, Md. In preparation.
${ }^{7}$ The Rand Corporation: Conceptualization and Measurement of Health Habits for Adults in the Health Insurance Study: Vol. II, Overweight, by A. L. Stewart, R. H. Brook, and R. L. Kane. R-2374/2-HEW. Santa Monica, Calif. The Rand Corporation. In press.
${ }^{8}$ Metropolitan Life Insurance Company: Overweight, its prevention and significance. Statistical Bulletin of the Metropolitan Life Insurance Company, 1960.
${ }^{9}$ National Center for Health Statistics: Lifestyle and health of U.S. adults, 1977, by G. S. Bonham. Vital and Health Statistics. Series 10. Public Health Service, DHHS, Hyattsville, Md. To be published.

## TECHNICAL NOTES

Data presented in this report were obtained from household interviews of the National Health Interview Survey. These interviews were conducted among a probability sample of the civilian noninstitutionalized population of the United States. During 1977, approximately 111,000 persons living in about 41,000 households were included in the sample. The total noninterview rate for the National Health Interview Survey was about 3.3 percent, including 1.9 percent due to respondent refusal and 1.4 percent due to failure to find an eligible respondent at home after repeated calls.

Questions concerning health practices were asked of a one-third subsample of all persons 20 years of age and over, or approximately 23,000 persons. Self-reporting was generally required for these questions, but proxy responses were accepted when subsample persons were physically or mentally incapable of answering the questions for themselves. The noninterview rate for the subsample was about 9.4 percent. In addition, individual item nonresponse ranged from about 0.2 to 1.7 percent. Persons with unknown characteristics are excluded from the analysis.

Estimates for the white and black populations, shown in table 1, are based on self-

Table 1. Standard errors, expressed in percentage points, of estimated percents

| Base of percent in thousands | Estimated percent |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 2 \text { or } \\ 98 \end{gathered}$ | $\begin{gathered} 5 \text { or } \\ 95 \end{gathered}$ | 10 or 90 | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | 50 |
| 50............... | 5.0 | 7.8 | 10.7 | 14.3 | 17.9 |
| 70............... | 4.2 | 6.6 | 9.1 | 12.1 | 15.1 |
| 100............. | 3.5 | 5.5 | 7.6 | 10.1 | 12.7 |
| 300............. | 2.0 | 3.2 | 4.4 | 5.9 | 7.3 |
| 500............. | 1.6 | 2.5 | 3.4 | 4.5 | 5.7 |
| 700............. | 1.3 | 2.1 | 2.9 | 3.8 | 4.8 |
| 1,000.......... | 1.1 | 1.7 | 2.4 | 3.2 | 4.0 |
| 5,000.......... | 0.5 | 0.8 | 1.1 | 1.4 | 1.8 |
| 10,000......... | 0.4 | 0.6 | 0.8 | 1.0 | 1.3 |
| 20,000......... | 0.3 | 0.4 | 0.5 | 0.7 | 0.9 |
| 30,000........ | 0.2 | 0.3 | 0.4 | 0.6 | 0.7 |
| 50,000......... | 0.2 | 0.2 | 0.3 | 0.5 | 0.6 |
| 100,000....... | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 |

reported racial identifications and therefore are not identical to official U.S. Census estimates for the same period, which are based primarily on interviewer observation. Hispanic classification is also based on self-reporting. The white, black, and Hispanic categories are mutually exclusive. For detailed definitions of other sociodemographic terms used here, see appendix II in most Series 10 reports in the Vital and Health Statistics series.

Since the estimates shown in this report are based on a sample of the population rather than on the entire population, they are subject to sampling error. Standard errors appropriate for estimated percentages of persons are shown in table I. These standard errors may be somewhat underestimated for the Hispanic population. Information on vital statistics for Hispanic persons does not currently exist, and thus there are no benchmark population estimates that can be used to adjust the sample weights for this ethnic category.

In this report, terms such as "similar" and "the same" mean that no statistical significance exists between the statistics being compared. Terms relating to differences ("greater," "less," etc.) indicate that differences are statistically significant. The $t$-test with a critical value of 1.96 ( 0.05 level of significance) was used to test all comparisons that are discussed. Lack of comment regarding the difference between any two statistics does not mean the difference was tested and found to be not significant.

To better understand the limitations of the estimates presented in this report, data users are encouraged to familiarize themselves with the survey design, the methods used in estimation, and the general qualifications of the data, which are described in appendix I of the 1977 Current Estimates report (Series 10, No. 126, in the Vital and Health Statistics series). Definitions of certain terms used in this report but not specifically addressed in this section and the questionnaire and flashcards used during 1977 appear in appendixes II and III of that report.


FROM VITAL \& HEALTH STATISTICS OF THE NATIONAL CENTER FOR HEALIH STATISTICS

# Cough as the Reason for Office Visits, National Ambulatory Medical Care Survey: United States, 1977-781 

Cough was the principal reason for an estimated $29,059,242$ visits to office-based physicians during 1977-78. Cough ranked fifth among all principal reasons for visits but was the second most frequent symptomatic reason given by patients (table 1).

The estimates in this report are based on data collected in the National Ambulatory Medical Care Survey (NAMCS), a probability sample survey conducted yearly by the Division of Health Resources Utilization Statistics of the National Center for Health Statistics.

Since the estimates presented in this report are based on a sample rather than on the entire universe of office-based physicians, the data are subject to sampling variability. The Technical Notes at the end of this report provide a brief explanation and guidelines for judging the precision of the estimates presented. A more detailed description of the sample design and definitions of certain terms used in NAMCS have also been published elsewhere. ${ }^{2}$

Figure 1 is a facsimile of the 1977-78 Patient Record used by participating physicians to record information about office visits. The patient's complaint, symptom, or other reason for the visit, expressed as nearly as possible in the patient's own words, is recorded by the physi-

[^18]cian in item 6. The principal reason is the one that in the physician's judgment was most responsible for the patient making the visit. It is the first-listed reason in this item. These data were classified and coded according to a reason for visit classification (RVC) system presented in A Reason for Visit Classification for Ambulatory Care. ${ }^{3}$ Since 1977 was the first year that this classification system was used, caution should be exercised in comparing the data presented in this report with those of prior years.

## DATA HIGHLIGHTS

Table 2 provides the age and sex of patients who visited office-based physicians for medical care related to cough. Most of these visits ( 46 percent) were made by children under 15 years of age. Cough accounted for about 8 percent of all visits to pediatricians' offices, a higher proportion than to those of other specialties (table 3).

The rates of visits made because of cough were higher in the Northeast and the West than in the North Central and the South, and in metropolitan than in nonmetropolitan areas (table 4).

The principal diagnosis made by the physician for the patient who presents cough as the

[^19]Figure 1. NATIONAL AMBULATORY MEDICAL CARE SURVEY PATIENT RECORD FORM: 1977-78

|  |  |
| :---: | :---: |


|  |
| :---: |
|  |  |

PATIENT RECORD
NATIONAL AMBULATORY MEDICAL CARE SURVEY

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
2. DATE OF BIRTH \\
3.
\end{tabular} \& \begin{tabular}{l}
SEX
FEMALE \\
1 male
\end{tabular} \& 4. COLOA DR RACE
WHITE
negroi blacx
OTHER
unknown \& 5. was patient referred for THIS VISIT BY anOTHER PHYSICIAN?
\[
\begin{gathered}
\text { : पyes } \\
\text { - } \square \text { no }
\end{gathered}
\] \& \begin{tabular}{l}
6. PATIENTS COMPLAINTISI, SY REASON(S) FOR THIS VISIT (In petcert's own worcal \\
a. MOST important \(\qquad\) \\
b. OTMER \(\qquad\)
\end{tabular} \\
\hline 7. TIME SINCE ONSET OF COMPLAINT/ SYMPTOM IN ITEM Ge (Check one)
Less than ioay

1.6 DAYS

1.3 WEEKS

13 MONTHS

MORE THAN 3 MONTHS

$\square$ not applicable \& | 8. Physicia |
| :--- |
| a. Prin ITEM $\qquad$ |
| b. ОTM $\qquad$ $\qquad$ | \& | iagnoses |
| :--- |
| diag nosisip $\qquad$ |
| NIFICANT CU | \& | associated w |
| :--- |
| IAgnoses | \& | 9. HAVE YOU SEEN PATIENT BEFORE? |
| :--- |
| 1 [ yes $: \square$ No IF YES, FOATHE CONDITION IN ITEM Binf |
| - YES $\square$ No | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
11. DIAGNOSTIC SERVICES THIS \\
VISIT (Check all orotered or provided)
NONE
LIMITED EXAM/HISTORY
GENERAL EXAMA/HISTORY
PAPTEST
Clinsical lab test
X-AAY
EKG
VISIOM TEST \\
-
ENDOSCOPY
BLOOD PAESSURE CHECK \\
\(1:\) OTHER (Spercify) \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
12. THERAPEITIIC SERVICES THIS \\
VISTT (Chuck a/f ondernd or provided)

NOME
IMMUNIZATION/ <br>
DESENSITIZATION <br>

- DAUGS (PRESCRIPTION/ NONPRESCRIPTION)
DIET COUNSELING
Fmaily PLANNHNG
MEDICAL COUNSELING
PHYSIOTHERAPY
OFFICE SURGERY
PSYCHOTHERAPYI THE RAPEUTIC LISTENING <br>
$1 \cdot$ $\square$ OTHER APDecrfy) $\qquad$

 \& 

13. DISPOSITION THIS VISIT <br>
(Criock all that moply)
NO FOLLOW-UP PLANNED
return at specified time
hetumn if needed. P.f.n.
TELEPHONE FOLLOW-UP PLANNED
REFEMRED TO OTHER PHYSICIAN
hetunned to feferming PHYSICIAN
AOMIT TO HOSPITAL <br>

- OTHER (Sowify) $\qquad$
\end{tabular} \& 14. DURATION OF THIS VISIT TTime xeruatly spont with phvscian)

$\qquad$ minutes <br>

\hline \[
$$
\begin{aligned}
& \text { HRA-34-2 } \\
& \text { :IEV. } 9-76
\end{aligned}
$$

\] \& DEPAATMENT OF HEALTH, EDUCAT MUGIC HEALTH SEH health aesources admin NATIONAL CENTER FOR HEALT \& | AND WELFARE E |
| :--- |
| RATION STATISTICS | \& O.M.E. \#68-R1494 <br>

\hline
\end{tabular}

Table 1. Number, percent, and average annual rate of office visits, by most frequent principal reasons for visit: United States, 1977-78

| Principal reason for visit and RVC code ${ }^{1}$ | Number of visits in thousands | Percent | Average annual visit rate per 1,000 persons |
| :---: | :---: | :---: | :---: |
| All reasons........................................................................................................ | 1,154,550 | 100.0 | 2,727.1 |
| General medical examination...................................................................................... $\times 100$ | 59,115 | 5.1 | 139.6 |
| Prenatal examination, routine............................................................................................................. $\times 205$ | 40,394 | 3.5 | 95.4 |
| Symptoms referable to throat................................................................................ S455 | 34,884 | 3.0 | 82.4 |
| Postoperative visit............................................................................................... T205 | 29,674 | 2.6 | 70.1 |
| Cough............................................................................................................... S440 | 29,059 | 2.5 | 68.6 |

${ }^{1}$ Based on A Reason for Visit Classification for Ambulatory Care (RVC).

Table 2. Number, percent distribution, and average annual rate of office visits with cough as the principal reason for visit by age and sex of patient: United States, 1977-78

| Age and sex | Number of visits in thousands | Percent distribution | Average annual visit rate per 1,000 persons |
| :---: | :---: | :---: | :---: |
| Both sexes |  |  |  |
| All ages............. | 29,059 | 100.0 | 68.6 |
| Under 15 years............ | 13.438 | 46.2 | 132.3 |
| 15-24 years............... | 3,048 | 10.5 | 38.5 |
| 25-44 years................ | 4,706 | 16.2 | 42.2 |
| 45-64 years............... | 4,899 | 16.9 | 56.7 |
| 65 years and over........ | 2,969 | 10.2 | 66.1 |
| Fermale |  |  |  |
| All ages................. | 15,769 | 54.3 | 72.0 |
| Under 15 years............ | 6,103 | 21.0 | 122.6 |
| 15-24 years................. | 1,976 | 6.8 | 49.1 |
| 25-44 years................. | 2,794 | 9.6 | 48.5 |
| 45-64 years................. | 3,164 | 10.9 | 70.2 |
| 65 years and over......... | 1,732 | 6.0 | 65.6 |
| Male |  |  |  |
| All ages................. | 13,290 | 45.7 | 65.1 |
| Under 15 years............ | 7.335 | 25.2 | 141.5 |
| 15-24 years................ | 1,072 | 3.7 | 32.1 |
| 25-44 years................ | 1,912 | 6.6 | 35.5 |
| 45-64 years................ | 1.735 | 6.0 | 42.1 |
| 65 years and over......... | 1,237 | 4.3 | 66.7 |

Table 3. Number and percent of office visits with cough as the principal reason for visit, according to selected physician specialties: United States, 1977-78

| Specialty | Number in thousands |  | Percent |
| :---: | :---: | :---: | :---: |
|  | All visits | Visits for cough |  |
| All specialties.... | 1,154,550 | 29,059 | 2.5 |
| General and family practice. $\qquad$ | 433,936 | 15,185 | 3.5 |
| Internal medicine......... | 133,291 | 3,279 | 2.5 |
| Pediatrics.................... | 114,921 | 8,571 | 7.5 |
| General surgery............ | 69,223 | 567 | 0.8 |
| Otolaryngology ............. | 32,193 | *25i | 0.8 |

chief complaint is recorded in item 8 of the Patient Record. Diagnostic codes are based on the Eighth Revision, International Classification of Diseases (ICDA). ${ }^{4}$

Table 5 contains a list of the most frequent associated diagnoses. Bronchitis (acute, unqualified, and chronic) accounted for about 30 percent of these visits.

[^20]Table 4. Number, percent, and average annual rate of office visits with cough as the principal reason for visit, according to geographic region and type of ares of practice: United States, 1977-78

| Region and type of area | Number in thousands |  | Percent | Average annual visit rate per 1,000 persons |
| :---: | :---: | :---: | :---: | :---: |
|  | All visits | Visits for cough |  |  |
| Region |  |  |  |  |
| Northeast............................................................................................... | 271,440 | 7.600 | 2.8 | 78.3 |
| North Central..................................................................................... | 291,571 | 7.577 | 2.6 | 66.5 |
| South.................................................................................................. | 355,754 | 8.291 | 2.3 | 60.0 |
| West................................................................................................ | 235,785 | 5.591 | 2.4 | 75.3 |
| Type of area |  |  |  |  |
| Metropolitan.... | 865,549 | 21,365 | 2.5 | 73.8 |
| Nonmetropolitan...................................................................................... | 289,001 | 7,694 | 2.7 | 57.5 |

Table 5. Number and percent distribution of office visits with cough as the principal reason for visit by principal diagnosis: United States, 1977-78

| Principal diagnosis and ICDA code ${ }^{\mathbf{1}}$ | Number of visits in thousands | Percent distribution |
| :---: | :---: | :---: |
| Total............................................................................................................................... | 29,059 | 100.0 |
| Otitis media without mention of mastoiditis.............................................................................. 381 | 825 | 2.8 |
| Acute nasopharyngitis (common cold)...................................................................................... 460 | 910 | 3.1 |
| Acute pharyngitis................................................................................................................ 462 | 984 | 3.4 |
| Acute laryngitis and tracheitis................................................................................................... 464 | 602 | 2.1 |
| Acute upper respiratory infection of multiple or unspeeified sites................................................... 465 | 7.539 | 25.9 |
| Acute bronchitis and bronchiolitis............................................................................................ 466 | 2,177 | 7.5 |
| Influenza, unqualified............................................................................................................. 470 | 798 | 2.8 |
| Pneumonia, unspecified........................................................................................................... 486 | 894 | 3.1 |
| Bronchitis, unqualified............................................................................................................. 490 | 6,243 | 21.5 |
| Chronic bronchitis.................................................................................................................. 491 | 375 | 1.3 |
| Asthms................................................................................................................................. 493 | 1,012 | 3.5 |
| Chronic sinusitis..................................................................................................................... 503 | 757 | 2.6 |
| Hay fever.............................................................................................................................. 507 | 855 | 2.9 |
| Other diseases of respiratory system.......................................................................................... 519 | 837 | 2.9 |
| Symptoms referable to respiratory system.................................................................................. 783 | 453 | 1.6 |
| All other diagnoses........................................................................................................... residual | 3,798 | 13.1 |

[^21]Table 6 shows the percent of visits with selected diagnostic and therapeutic services. Drug therapy (either prescription or nonprescription) was used in 92 percent of the visits related to cough, a proportion that exceeded the average of 53 percent of all NAMCS visits.

Like most visits for acute, self-limiting conditions, most visits for treatment of conditions due to cough were of short duration. Table 7 shows that about 41 percent of such visits took only 6 to 10 minutes, and another 29 percent lasted no longer than 15 minutes.

Table 6. Percent of office visits with cough as the principal reason for visit, by selected diagnostic and therapeutic services ordered or provided: United States, 1977-78

| Diagnostic and therapeutic services | Percent of visits |
| :---: | :---: |
| Diagnostic service |  |
| None................................................................. | 3.0 |
| Limited exam/history .......................................... | 70.3 |
| General exam/history .......................................... | 23.0 |
| Clinical lab. test.................................................. | 13.6 |
| X-ray................................................................. | 11.5 |
| EKG | 1.2 |
| Blood pressure check ........................................... | 25.2 |
| Therapeutic service |  |
| None................................................................. | 3.3 |
| Immunization/desensitization................................. | 4.3 |
| Drugs (prescription/nonprescription)....................... | 92.3 |
| Diet counseling .................................................. | 2.7 |
| Medical counseling ............................................... | 21.8 |

Patients were most often instructed to return if needed ( 43 percent of visits) or to return at a specified time (about 36 percent).

Additional data on cough and other reasons for office visits will be presented in more detail in a forthcoming publication.

Table 7. Percent distribution of office visits with cough as the principal reason for visit by duration and disposition of visit: United States, 1977-78

| Duration and disposition | Percent distribution of visits |
| :---: | :---: |
| Duration |  |
| Total ............................................. | 100.0 |
| 0 minutes ${ }^{1}$ | 1.2 |
| 1-5 minutes.................................................. | 15.3 |
| 6-10 minutes................................................. | 40.8 |
| 11-15 minutes ............................................... | 29.0 |
| 16-30 minutes ............................................... | 12.7 |
| 31 minutes or more ......................................... | -1.1 |
| Disposition ${ }^{2}$ |  |
| No followup planned...................................... | 15.8 |
| Return at specified time.................................. | 35.5 |
| Return if needed, P.R.N. ................................ | 43.0 |
| Telephone followup planned............................ | 7.3 |
| Referred to other physician.............. ............... | ${ }^{*} 0.8$ |
| Admit to hospital.......................................... | 1.2 |
| Return to referring physician or other disposition $\qquad$ | -0.5 |

[^22]
## TECHNICAL NOTES

## SOURCE OF DATA

The information presented in this report is based on data collected in the National Ambulatory Medical Care Survey (NAMCS) during 1977 and 1978. The NAMCS universe is composed of office visits made within the conterminous United States by ambulatory patients to nonfederally employed physicians who are principally engaged in office practice and are not in the specialties of anesthesiology, pathology, or radiology: The National Opinion Research Center, under contract to the Niational Center for Health Statistics, is responsible for the NidMCS field operations.

## SAMPLE DESIGN

NAMICS utilizes a multistage probability design that involves samples of primary sampling units (PSC's), physician practices within PSU's, and patient visits within physician practices. For 1977-78 a sample of 6,007 nonFederal, office-based physicians was selected from master files maintained by the American Medical Association and the American Osteopathic Association. The physician response rate for this period was 75.1 percent. Sampled physicians were requested to complete Patient Records (figure 1) for a systematic random sample of office visits taking place during a randomly assigned weekly reporting period. During 1977-78, 98,335 Patient Records were completed by responding physicians.

## SAMPLING ERRORS

The standard error is primarily a measure of the sampling variability that occurs by chance because only a sample, rather than the entire universe, is sampled. The relative standard error of an estimate is obtained by dividing the standard error of the estimate by the estimate itself and is expressed as a percent of the estimate. Relative standard errors for aggregate statistics are shown in tables I and II. Standard errors for estimated percentages are shown in tables III and IV.

Table 1. Approximate relative standard errors of estimated num ber of office visits based on all physician specialties: NAMCS, 1977-78

| Estimated number of office visits in thousands | Relative standard error in percent |
| :---: | :---: |
| 500............................................................. | 24.9 |
| 1,000.......................................................... | 17.7 |
| 2,000.......................................................... | 12.7 |
| 5,000.......................................................... | 8.3 |
| 10,000........................................................ | 6.2 |
| 20,000......................................................... | 4.8 |
| 50,000........................................................ | 3.8 |
| 200,000....................................................... | 3.1 |
| 1,000,000...................................................... | 2.9 |

Example of use of table: An aggregate of $15.000,000$ visits has a relative standard error of 5.5 percent or a standard error of 825,000 visits ( 5.5 percent of $15,000,000$ ).

Table II. Approximate relative standard errors of estimated number of office visits based on an individual physician specialty: NAMCS, 1977-78

| Estimated number of offica visits in thousands | Relative standard error in percent |
| :---: | :---: |
| 500................................................................... | 27.0 |
| 1,000................................................................ | 19.6 |
| 2,000................................................................ | 14.5 |
| 5,000................................................................ | 10.3 |
| 10,000............................................................... | 8.5 |
| 20,000............................................................... | 7.4 |
| 50,000............................................................... | 6.7 |
| 100,000............................................................. | 6.4 |
| 400,000............................................................. | 6.2 |

Example of use of table: An aggregate of 7,500.000 visits has a relative standard error of 9.4 percent or a standard error of $\mathbf{7 0 5}, 000$ visits ( 9.4 percent of $7,500,000$ ).

## DEFINITIONS

Ambulatory patient.-An ambulatory patient is an individual presenting himself for personal health services who is neither bedridden nor currently admitted to any health care institution on the premises.

Office.-An office is a place that the physician identifies as a location for his ambulatory practice. Responsibility over time for patient care and professional services rendered there

Table 111. Approximate standard errors of percent of estimated numbers of office visits based on all physician spéecialties: NAMCS, 1977-78

| Base of percent (number of office visits in thousands) | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \text { or } \\ & 99 \end{aligned}$ | $\begin{aligned} & 5 \text { or } \\ & 95 \end{aligned}$ | $\begin{gathered} 10 \text { or } \\ 90 \end{gathered}$ | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | $\begin{gathered} 30 \text { or } \\ 70 \end{gathered}$ | 50 |
|  | Standard error in percentage points |  |  |  |  |  |
| 500............................ | 2.5 | 5.4 | 7.4 | 9.9 | 11.4 | 12.4 |
| 1,000......................... | 1.7 | 3.8 | 5.3 | 7.0 | 8.0 | 8.8 |
| 2,000......................... | 1.2 | 2.7 | 3.7 | 5.0 | 5.7 | 6.2 |
| 5,000......................... | 0.8 | 1.7 | 2.3 | 3.1 | 3.6 | 3.9 |
| 10,000....................... | 0.6 | 1.2 | 1.7 | 2.2 | 2.5 | 2.8 |
| 20,000........................ | 0.4 | 0.9 | 1.2 | 1.6 | 1.8 | 2.0 |
| 50,000....................... | 0.2 | 0.5 | 0.7 | 1.0 | 1.1 | 1.2 |
| 200,000...................... | 0.1 | 0.3 | 0.4 | 0.5 | 0.6 | 0.6 |
| 1,000,000................... | 0.1 | - 0.1 | 0.2 | 0.2 | 0.3 | 0.3 |

Example of use of table: An estimate of 20 percent based on un aggregate of 15.000 .000 visits has a standard error of 1.9 percent or a relative standard error of 9.5 percent ( 1.9 percent $\div 20$ percent).
generally resides with the individual physician rather than an institution.

Visit.-A visit is a direct personal exchange 'between an ambulatory patient and a physician or a staff member working under the physician's supervision for the purpose of seeking care and rendering health services.

Physician.-A physician is a duly licensed doctor of medicine (M.D.) or doctor of osteopathy (D.O.) currently in office-based practice

Table IV. Approximate standard errors of percent of estimated numbers of office visirs based on an individual physician specialty: NAMCS, 1977-78

| Base of percent (number of office visits in thousands) | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1 \text { or } \\ 99 \end{gathered}$ | $\begin{aligned} & 5 \text { or } \\ & 95 \end{aligned}$ | $\left\{\begin{array}{c} 10 \text { or } \\ 90 \end{array}\right.$ | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | $\begin{gathered} 30 \text { or } \\ 70 \end{gathered}$ | 50 |
|  | Standard error in percentage points |  |  |  |  |  |
| 500............................. | 2.6 | 5.7 | 7.9 | 10.5 | 12.1 | 13.1 |
| 1,000......................... | 1.9 | 4.1 | 5.6 | 7.4 | 8.5 | 9.3 |
| 2,000......................... | 1.3 | 2.9 | 3.9 | 5.3 | 6.0 | 6.6 |
| 5,000......................... | 0.8 | 1.8 | 2.5 | 3.3 | 3.8 | 4.2 |
| 10,000....................... | 0.6 | 1.3 | 1.8 | 2.4 | 2.7 | 2.9 |
| 20,000....................... | 0.4 | 0.9 | 1.2 | 1.7 | 1.9 | 2.1 |
| 50,000....................... | 0.3 | 0.6 | 0.8 | 1.1 | 1.2 | 1.3 |
| 100,000..................... | 0.2 | 0.4 | 0.6 | 0.7 | 0.9 | 0.9 |
| 400,000..................... | 0.1 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 |

Example of use of abble: An estimate of 90 percent based on an aggregate of $3,500,000$ visits has a standard error of 3.2 percent. or a relative standard error of 3.6 percent ( 3.2 percent $\div 90$ percent).
who spends time in caring for ambulatory patients. Excluded from NAMCS are physicians who are hospital based; physicians who specialize in anesthesiology, pathology, or radiology; physicians who are federally employed; physicians who treat only institutionalized patients; physicians employed full time by an institution; and physicians who spend no time seeing ambulatory patients.

| SYMBOLS |  |
| :--- | ---: |
| Data not available-- | $\cdots$ |
| Category not applicable <br> Quantity zero- | - |
| Quantity more than 0 but less than $0.05-$ <br> Figure does not met standards of <br> reliability or precision- | 0.0 |

# 1979 Summary National Ambulatory Medical Care Survey 

by Thomas McLemore, Division of Health Care Statistics

During 1979 an estimated 556.3 million office visits were made to nonfederally employed, officebased physicians in the conterminous United States, an average of 2.6 office visits per person per year. Although these estimates are approximately 5 percent lower than the corresponding estimates for 1978, the differences between the estimates for the 2 years are not statistically significant. The estimates presented in this report are based on data collected in the National Ambulatory Medical Care Survey, a probability sample survey conducted annually by the Division of Health Care Statistics of the National Center for Health Statistics. The physician sample for the survey was selected, with the cooperation of the American Medical Association and the American Osteopathic Association, from a list of nonfederally employed doctors of medicine and osteopathy who were principally engaged in office-based practice. Excluded were physicians practicing in Alaska and Hawaii, and physicians in the specialties of anesthesiology, pathology, and radiology.

Figure 1 is a facsimile of the 1979 National Ambulatory Medical Care Survey (NAMCS) Patient Record used by participating physicians to record information about their office visits. It will be useful as a reference when reviewing the survey findings presented in the following tables.

This report provides an overview of the data from the 1979 NAMCS. Utilization of ambulatory medical care services is described in terms of the number and percent of office visits and of annual visit rates. Data are presented on patient, physician, and visit characteristics as follows:

Table 1
Table 2
Table 3
Table 4 Referral status, major reason for visit, and prior visit status

Tables 5 and 6 Principal reason for visit as expressed by patient
Tables 7 and 8 Principal diagnosis rendered by physician
Table 9 Diagnostic and therapeutic services ordered or provided
Table 10 Disposition and duration of visit
Since the estimates presented in this report are based on a sample rather than on the entire universe of office visits, the data are subject to sampling variability. The technical notes at the end of this report provide a brief explanation of sampling errors and guidelines for judging the precision of the estimates. A more detailed description of the NAMCS sample design and survey methodology have been published elsewhere. 1

Caution should be exercised when comparing the 1979 NAMCS data with data from previous years because changes have been made in data collection and processing. Two major changes on the Patient Record should be noted in particular. First, the item on patient color or race (item 4) was expanded in 1979 to four categories: white, black, Asian or Pacific Islander, and American Indian or Alaskan native; and an item on patient ethnicity, of Hispanic or not of Hispanic origin, was included for the first time. Second, beginning in 1979 the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) was used to code the NAMCS diagnostic data (item 9 on the Patient Record). 2 Prior to 1979 the Eighth Revision International Classification of Diseases, Adapted for Use

[^23]Figure 1. 1979 Patient Record

in the United States had been used to code these data. ${ }^{3}$ Discussion of these changes and their effect on NAMCS data will be included in future Vital and Health Statistics series reports.
${ }^{3}$ National Center for Health Statistics: Eighth Revision International Classification of Diseases, Adapted for Use in the United States. PHS Pub. No. 1693. Public Health Service. Washington. U.S. Government Printing Office, 1967.

| Table 1. Number and percent distribution of office visits by race and ethnicity of patient: United States, 1979 |  |  |
| :---: | :---: | :---: |
| Race and ethnicity | Number of visits in thousands | Percent distribution of visits |
| All visits | 556.313 | 100.0 |
| Race |  |  |
| White. | 502,927 | 90.4 |
| All other. | 53,387 | 9.6 |
| Black . . . . . . . . . . . | 46,789 | 8.4 |
| Asian or Pacific Islander | 5,560 | 1.0 |
| American Indian or Alaskan native | 1,038 | 0.2 |
| Ethnicity |  |  |
| Hispanic . . . . | $26,731$ | $4.8$ |
| Not Hispanic. . | $529,583$ | $95.2$ |

Table 2. Number, percent distribution, and annual rate of office visits by sex and age of patient: United States, 1979

| Sex and age | Number of visits in thousands | Percent distribution of visits | Number of visits per person per year |
| :---: | :---: | :---: | :---: |
| Both sexes |  |  |  |
| All ages. . | 556,313 | 100.0 | 2.6 |
| Under 15 years | 101,352 | 18.2 | 2.0 |
| 15-24 years | 82,290 | 14.8 | 2.1 |
| 25-44 years | 151,714 | 27.3 | 2.6 |
| 45-64 years | 128,594 | 23.1 | 3.0 |
| 65 years and over | 92,363 | 16.6 | 4.0 |
| Female |  |  |  |
| All ages. | 337,096 | 60.6 | 3.0 |
| Under 15 years | 48,735 | 8.8 | 2.0 |
| 15-24 years | 52,345 | 9.4 | 2.6 |
| 25-44 years | 102,000 | 18.3 | 3.4 |
| 45-64 years | 76,003 | 13.7 | 3.4 |
| 65 years and over | 58,012 | 10.4 | 4.2 |
| Male |  |  |  |
| All ages. | 219,218 | 39.4 | 2.1 |
| Under 15 years | 52,617 | 9.5 | 2.1 |
| 15-24 years | 29,945 | 5.4 | 1.5 |
| 25-44 years | 49,714 | 8.9 | 1.8 |
| 45-64 years | 52,591 | 9.5 | 2.5 |
| 65 years and over . | 34,351 | 6.2 | 3.6 |

Table 3. Number and percent distribution of office visits by physician specialty and type of practice: United States, 1979

| Physician specialty and type of practice | Number of visits in thousands | Percent distribution of visits |
| :---: | :---: | :---: |
| All visits | 556,313 | 100.0 |
| Physician specialty |  |  |
| General and family practice | 190,194 | 34.2 |
| Medical specialties | 164,109 | 29.5 |
| Internal medicine | 66,908 | 12.0 |
| Pediatrics. | 58,126 | 10.4 |
| Other | 39,075 | 7.0 |
| Surgical specialties | 173,457 | 31.2 |
| General surgery | 33,740 | 6.1 |
| Obstetrics and gynecology. | 50,823 | 9.1 |
| Other | 88,894 | 16.0 |
| Other specialties. | 28,553 | 5.1 |
| Psychiatry | 17,093 | 3.1 |
| Other . . . | 11,461 | 2.1 |
| Type of practice |  |  |
| Solo. | 315,390 | 56.7 |
| Other ${ }^{1}$ | 240,924 | 43.3 |

[^24]Table 4. Number and percent distribution of office visits by patient's referral status, major reason for visit, and prior visit status: United States, 1979

| Visit characteristic | Number of visits in thousands | Percent distribution of visits |
| :---: | :---: | :---: |
| All visits | 556,313 | 100.0 |
| Referral status |  |  |
| Referred by another physician | 22,413 | 4.0 |
| Not referred by another physician | 533,900 | 96.0 |
| Major reason for visit |  |  |
| Acute problem | 200,012 | 36.0 |
| Chronic problem, routine | 160,603 | 28.9 |
| Chronic problem, flareup | 48,310 | 8.7 |
| Postsurgery or postinjury | 51,241 | 9.2 |
| Nonillness care ${ }^{7}$. | 96,148 | 17.3 |
| Prior visit status |  |  |
| New patient . | 88,136 | 15.8 |
| Old patient. . | 468,178 | 84.2 |
| New problem | 125,647 | 22.6 |
| Old problem. | 342,530 | 61.6 |

1includes, for example, routine prenatal care, general examination, or well-baby examination.

Table 5. Number and percent distribution of office visits by patient's principal reason for visit: United States, 1979

| Principal reason for visit and RVC code ${ }^{1}$ | Number of visits in thousands | Percent distribution of visits |
| :---: | :---: | :---: |
| All visits | 556,313 | 100.0 |
| Symptom module. . . . . . . . . S001-S999 | 308,588 | 55 |
| General symptoms . . . . . . S001-S099 | 43,736 | 7.9 |
| Symptoms referable to psychological and mental disorders . . . . . . . . . . . S100-S199 | 15,864 | 2.9 |
| Symptoms referable to the nervous system (excluding sense organs) . . . . . . . . . S200-S259 | 16,492 | 3.0 |
| Symptoms referable to the cardiovascular and lymphatic systems. . . . . . S260-S299 | 3,561 | 0.6 |
| Symptoms referable to the eyes and ears. . . . . . . S300-S399 | 32,801 | 5.9 |
| Symptoms referable to the respiratory system. . . . . . S400-S499 | 54,488 | 9.8 |
| Symptoms referable to the <br> digestive system . . . . . . . S500-S639 | 27,414 | 4.9 |
| Symptoms referable to the genitourinary system . . . . S640-S829 | 27,840 | 5.0 |
| Symptoms referable to the skin, nails, and hair . . . . . S830-S899 | 30,650 | 5.5 |
| Symptoms referable to the musculoskeletal system . . . S900-S999 | 55,742 | 10.0 |
| Disease module . . . . . . . . D001-D999 | 42,748 | 7.7 |
| Diagnostic, screening, and preventive module. . . . . . . .X100-X599 | 101,203 | 18.2 |
| Treatment module . . . . . . . T100-T899 | 58,712 | 10.6 |
| Injuries and adverse effects module . . . . . . . . . . . . . . J001-J999 | 22,473 | 4.0 |
| Test results module . . . . . . .R100-R700 | 3,367 | 0.6 |
| Administrative module. . . . . A100-A140 | 9,154 | 1.6 |
| Other ${ }^{2}$. . . . . . . . . . . . . U990-U999 | 10,069 | 1.8 |

[^25]Table 6. Number and percent of office visits, by the 20 most common principal reasons for visit: United States, 1979

| Rank | Most common principal reason for visit and RVC code ${ }^{1}$ | Number of visits in thousands | Percent of visits |
| :---: | :---: | :---: | :---: |
| 1 | General medical examination . . . . X100 | 32,160 | 5.8 |
| 2 | Prenatal examination . . . . . . . . . X205 | 21.717 | 3.9 |
|  | Progress visit not otherwise | 14,827 | 2.7 |
| 4 | Symptoms referable to throat . . . . . $\mathbf{S 4 5 5}$ | 14,556 | 2.6 |
| 5 | Postoperative visit. . . . . . . . . . . T205 | 13,896 | 2.5 |
| 6 | Cough . . . . . . . . . . . . . . . . . . 5440 | 12,628 | 2.3 |
| 7 | Back symptoms . . . . . . . . . . . . . 5905 | 11,100 | 2.0 |
| 8 | Head cold, upper respiratory infection . . . . . . . . . . . . . . . . $S 445$ | 10,462 | 1.9 |
| 9 | Skin rash . . . . . . . . . . . . . . . . .S860 | 9,441 | 1.7 |
| 10 | Chest pain and related symptoms (not referable to body system) . . . . . .S050 | 8,798 | 1.6 |
| 11 | Blood pressure test . . . . . . . . . . X320 | 8,681 | 1.6 |
| 12 | Earache, or ear infection . . . . . . . .S355 | 8,575 | 1.5 |
| 13 | Vision dysfunctions. . . . . . . . . . .S305 | 8,498 | 1.5 |
|  | Abdominal pain, cramps, spasms . . . 5550 | 8,364 | 1.5 |
| 15 | Headache, pain in head. . . . . . . . . 5210 | 8,174 | 1.5 |
| 16 | Fever . . . . . . . . . . . . . . . . . . . 5010 | 7,285 | 1.3 |
| 17 | Well-baby examination . . . . . . . . X105 | 7,102 | 1.3 |
| 18 | Allergy medication . . . . . . . . . . T100 | 6,904 | 1.2 |
| 19 | Hypertension . . . . . . . . . . . . . D510 | 6,297 | 1.1 |
| 20 | Knee symptoms . . . . . . . . . . . . . 3925 | 6,272 | 1.1 |

Table 7. Number and percent distribution of office visits by principal diagnosis: United States, 1979

| Principal diagnosis and ICD-9-CM code ${ }^{1}$ | Number of visits in thousands | Percent distribution of visits |
| :---: | :---: | :---: |
| All diagnoses. | 556,313 | 100.0 |
| Infectious and parasitic diseases. . .001-139 | 19,711 | 3.5 |
| Neoplasms . . . . . . . . . . . . . . .140-239 | 14,205 | 2.6 |
| Endocrine, nutritional, and metabolic diseases and immunity disorders . . . . . . . . .240-279 | 22,856 | 4.1 |
| Mental disorders. . . . . . . . . . . .290-319 | 24,580 | 4.4 |
| Diseases of the nervous system and sense organs . . . . . . . . . . . . .320-389 | 50,560 | 9.1 |
| Diseases of the circulatory system . . . . . . . . . . . . . . . .390-459 | 49,607 | 8.9 |
| Diseases of the respiratory system . . . . . . . . . . . . . . . .460-519 | 73,433 | 13.2 |
| Diseases of the digestive system . . .520-579 | 24,711 | 4.4 |
| Diseases of the genitourinary system . . . . . . . . . . . . . . . . 580-629 | 36,632 | 6.6 |
| Diseases of the skin and subcutaneous tissue . . . . . . . . .680-709 | 29,132 | 5.2 |
| Diseases of the musculoskeletal system and connective tissue. . . . 710-739 | 37,004 | 6.7 |
| Symptoms, signs, and itl-defined conditions . . . . . . . . . . . . . . 780-799 | 17,251 | 3.1 |
| Injury and poisoning . . . . . . . .800-999 | 51,782 | 9.3 |
| Supplementary classification . . . V01-V82 | 87,903 | 15.8 |
| All other diagnoses ${ }^{2}$ | 8,161 | 1.5 |
| Unknown diagnoses ${ }^{3}$ | 8,786 | 1.6 |

${ }^{1}$ Based on International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM).
2 includes diseases of the blood and blood-forming organs (280-289): complications of pregnancy, childbirth, and the puerperium (630-676); congenital anomalies ( 740.759 ); and certain conditions originating in the perinatal period ( $760-779$ ).
$\mathbf{3}_{\text {Includes }}$ blank diagnosis, noncodable diagnosis, and illegible diagnosis.

Table 8. Number and percent of office visits, by the 20 most common principal diagnoses: United States, 1979

| Rank | Most common principal diagnosis and ICD.9-CM code ${ }^{1}$ | Number of visits in thousanets | Percent of visits |
| :---: | :---: | :---: | :---: |
| 1 | Essential hypertension . . . . . . . . . 401 | 23,607 | 4.2 |
| 2 | Normal pregnancy . . . . . . . . . . . V22 | 22,426 | 4.0 |
| 3 | General medical examination . . . . . V70 | 16,575 | 3.0 |
| 4 | Acute upper respiratory infections of multiple or unspecified sites . . . 465 | 14,946 | 2.7 |
| 5 | Health supervision of infant or child. V20 | 14.022 | 2.5 |
| 6 | Suppurative and unspecified otitis media . . . . . . . . . . . . . . . . . . 382 | 11,166 | 2.0 |
| 7 | Neurotic disorders . . . . . . . . . . . 300 | 11,102 | 2.0 |
| 8 | Allergic rhinitis . . . . . . . . . . . . 477 | 9,823 | 1.8 |
|  | Diabetes mellitus . . . . . . . . . . . . 250 | 8,947 | 1.6 |
| 10 | Disorders of refraction and accommodation . . . . . . . . . . . . 367 | 8,527 | 1.5 |
| 11 | Obesity and other hyperalimentation. 278 | 8,348 | 1.5 |
| 12 | Acute pharyngitis . . . . . . . . . . . . 462 | 8,149 | 1.5 |
| 13 | Diseases of sebaceous glands. . . . . . 706 | 7,385 | 1.3 |
| 14 | Special investigations and examinations. . . . . . . . . . . . . . V72 | 7.176 | 1.3 |
| 15 | Followup examinations . . . . . . . V67 | 6,792 | 1.2 |
| 16 | Asthma. . . . . . . . . . . . . . . . . 493 | 6,786 | 1.2 |
| 17 | Other forms of chronic ischemic heart disease . . . . . . . . . . . . . . 414 | 5,857 | 1.1 |
| 18 | Certain adverse effects not elsewhere classified | 5,697 | 1.0 |
| 19 | Contact dermatitis and other eczema. 692 | 5,683 | 1.0 |
| 20 | Acute tonsilitis . . . . . . . . . . . . 463 | 5,420 | 1.0 |

[^26]| Table 9. Number and percent of office visits, by diagnostic and therapeutic services ordered or provided: United States, 1979 |  |  |
| :---: | :---: | :---: |
| Diagnostic and therapeutic services | Number of visits in thousands | Percent of visits |
| Diagnostic service |  |  |
| None | 56,622 | 10.2 |
| Limited history/exam | 350,637 | 63.0 |
| General history/exam. | 93,358 | 16.8 |
| Pap test. | 27,414 | 4.9 |
| Clinical lab test | 129,187 | 23.2 |
| X-ray | 45.846 | 8.2 |
| Blood pressure check | 200,501 | 36.0 |
| Electrocardiogram | 15,228 | 2.7 |
| Vision test | 33,451 | 6.0 |
| Endoscopy. | 7,335 | 1.3 |
| Mental status exam | 8,261 | 1.5 |
| Other | 19,616 | 3.5 |
| Therapeutic service |  |  |
| None | 110,021 | 19.8 |
| Drug (prescription) | 260,332 | 46.8 |
| Drug (nonprescription) | 24,740 | 4.4 |
| Injection | 53,327 | 9.6 |
| Immunization/desensitization | 28,849 | 5.2 |
| Diet counseling | 33,154 | 6.0 |
| Family planning. | 7,943 | 1.4 |
| Medical counseling | 123,682 | 22.2 |
| Physiotherapy. | 17,084 | 3.1 |
| Office surgery | 40,989 | 7.4 |
| Psychotherapy/therapeutic listening | 24,719 | 4.4 |
| Other. | 19,215 | 3.5 |

Table 10. Number and percent distribution of office visits by disposition and duration of visit: United States, 1979

| Disposition and duration | Number of visits in thousands | Percent distribution of visits |
| :---: | :---: | :---: |
| All visits | 556,313 | 100.0 |
| Disposition ${ }^{1}$ |  |  |
| No followup planned. | 64,686 | 11.6 |
| Return at specified time | 344,029 | 61.8 |
| Return if needed | 114,069 | 20.5 |
| Telephone followup planned | 21,194 | 3.8 |
| Referred to other physician | 13,797 | 2.5 |
| Returned to referring physician. | 3,561 | 0.6 |
| Admit to hospital. | 11,431 | 2.1 |
| Other . | 3,764 | 0.7 |
| Duration |  |  |
| 0 minutes ${ }^{2}$. | 18,997 | 3.4 |
| 1-5 minutes | 67,610 | 12.2 |
| $6-10$ minutes. | 169,217 | 30.4 |
| 11-15 minutes. | 149,291 | 26.8 |
| 16-30 minutes. | 118,171 | 21.2 |
| 31 minutes or more. | 33,027 | 5.9 |

[^27]
## Technical notes

## Source of data and sample design

The information presented in this report is based on data collected in the National Ambulatory Medical Care Survey (NAMCS) during 1979. The target universe of NAMCS encompasses office visits made within the conterminous United States by ambulatory patients to nonfederally employed physicians who are principally engaged in office practice. The National Opinion Research Center, under contract to the National Center for Health Statistics, was responsible for the survey's field operations.

NAMCS utilizes a multistage probability design that involves samples of primary sampling units (PSU's), physicians' practices within PSU's, and patient visits within practices. For 1979 a sample of 3,023 non-Federal, office-based physicians was selected from master files maintained by the American Medical Association and the American Osteopathic Association. The physician response rate for 1979 was 71.8 percent. Sampled physicians were asked to complete Patient Records (figure 1) for a systematic random sample of office visits taking place during a randomly assigned weekly reporting period. During 1979, 45,351 Patient Records were completed by responding physicians.

## Sampling errors and rounding of numbers

The standard error is primarily a measure of the sampling variability that occurs by chance because only a sample, rather than the entire universe, is surveyed. The relative standard error of an estimate is obtained by dividing the standard error of the estimate by the estimate itself and is expressed as a percent of the estimate. Provisional relative standard errors of selected aggregate statistics are shown in
tables I and II. The provisional standard errors for estimated percents of visits are shown in tables III and IV.

Table 1. Provisional relative standard errors of estimated numbers of office visits based on all physician specialties: NAMCS, 1978
Estimated number of office

visits in thousands $\underbrace{$|  Relative  |
| :---: |
|  standard  |
|  error in  |
|  percent  |}

Example of use of table: An aggregate of $75,000,000$ visits has a relative standard error of 4.6 percent, or a standard error of $3,450,000$ visits ( 4.6 percent of $75,000,000$ ).

Table II. Provisional relative standard errors of estimated numbers of office visits based on an individual physician specialty: NAMCS, 1978

|  | Estimated number of office visits in thousands | Relative standard error in percent |
| :---: | :---: | :---: |
| 500 |  | 28.5 |
| 1,000. |  | 21.0 |
| 2,000. |  | 15.9 |
| 5,000. |  | 11.9 |
| 10,000 |  | 10.2 |
| 20,000 |  | 9.2 |
| 50,000 |  | 8.6 |
| 100,000 |  | 8.3 |
| 200,000 | - . . . . . . . . . - | 8.2 |

[^28] tive standard error of 9.7 percent, or a standard error of 1,455,000 visits ( 9.7 percent of $15,000,000$ ).

Table III. Provisional standard errors of percents of estimated numbers of office visits based on all physician specialties: NAMCS, 1978

| Base of percent Inumber of office visits in thousands) | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1 \text { or } \\ 99 \end{gathered}$ | $\begin{gathered} 5 \text { or } \\ 95 \end{gathered}$ | $\begin{gathered} 10 \text { or } \\ 90 \end{gathered}$ | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | $\begin{gathered} 30 \text { or } \\ 70 \end{gathered}$ | 50 |
|  | Standard error in percentage points |  |  |  |  |  |
| 500 | 2.5 | 5.5 | 7.6 | 10.2 | 11.7 | 12.7 |
| 1,000. | 1.8 | 3.9 | 5.4 | 7.2 | 8.2 | 9.0 |
| 2,000 | 1.3 | 2.8 | 3.8 | 5.1 | 5.8 | 6.4 |
| 5,000. | 0.8 | 1.8 | 2.4 | 3.2 | 3.7 | 4.0 |
| 10,000 | 0.6 | 1.2 | 1.7 | 2.3 | 2.6 | 2.8 |
| 20,000 | 0.4 | 0.9 | 1.2 | 1.6 | 1.8 | 2.0 |
| 50,000 | 0.3 | 0.6 | 0.8 | 1.0 | 1.2 | 1.3 |
| 100,000 | 0.2 | 0.4 | 0.5 | 0.7 | 0.8 | 0.9 |
| 500,000 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 |

> Example of use of table: An estimate of 30 percent based on an aggregate of $15,000,000$ visits has a standard error of 2.2 percent, or a relative standard error of 7.3 percent $(2.2$ percent $\div 30$ percent).


|  | Estimated percent |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base of percent |  |  |  |  |  |  |
| (number of office |  |  |  |  |  |  |  |
| visits in thousands) | 1 or | 5 or | 10 or | 20 or | 30 or | 50 |  |
|  | 99 | 95 | 90 | 80 | 70 | 50 |  |

Standard error in percentage points

| 500 | 2.7 | 6.0 | 8.2 | 10.9 | 12.5 | 13.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,000 | 1.9 | 4.2 | 5.8 | 7.7 | 8.9 | 9.7 |
| 2,000 | 1.4 | 3.0 | 4.1 | 5.5 | 6.3 | 6.8 |
| 5,000 | 0.9 | 1.9 | 2.6 | 3.5 | 4.0 | 4.3 |
| 10,000 | 0.6 | 1.3 | 1.8 | 2.4 | 2.8 | 3.1 |
| 20,000 | 0.4 | 0.9 | 1.3 | 1.7 | 2.0 | 2.2 |
| 50,000 | 0.3 | 0.6 | 0.8 | 1.1 | 1.3 | 1.4 |
| 100,000 | 0.2 | 0.4 | 0.6 | 0.8 | 0.9 | 1.0 |
| 200,000 | 0.1 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |

[^29]Estimates of office visits have been rounded to the nearest thousand. For this reason detailed figures within tables do not always add to totals. Percents were calculated on the basis of original, unrounded figures and will not necessarily agree precisely with percents calculated from rounded data.

## Definitions

Ambulatory patient.-An ambulatory patient is an individual presenting himself for personal health services who is neither bedridden nor currently admitted to any health care institution on the premises.

Office.-An office is a place that the physician identifies as a location for his ambulatory practice. Responsibility over time for patient care and professional services rendered there generally resides with the individual physician rather than an institution.

Visit.-A visit is a direct personal exchange between an ambulatory patient and a physician, or between a patient and a staff member working under the physician's supervision, for the purpose of seeking care and rendering health services.

Physician.-A physician is a duly licensed doctor of medicine (M.D.) or doctor of osteopathy (D.O.) currently in office-based practice who spends time in caring for ambulatory patients. Excluded from NAMCS are physicians who are hospital based; physicians who specialize in anesthesiology, pathology, or radiology; physicians who are federally employed; physicians who treat only institutionalized patients; physicians employed full time by an institution; and physicians who spend no time seeing ambulatory patients.

Duration of visit.-Duration of visit is time the physician spent in face-to-face contact with the patient, not including time the patient spent waiting to see the physician, time the patient spent receiving care from someone other than the physician without the presence of the physician, or
time the physician spent reviewing records, test results, etc. In cases where the patient received care from a member of the physician's staff, but did not see the physician during the visit, the duration of visit was recorded as zero minutes.

## Symbols

... Data not available
. . Category not applicable

- Quantity zero
0.0 Quantity more than 0 but less than 0.05
* Figure does not meet standards of reliability or precision



# Headache as the Reason for Office Visits, National Ambulatory Medical Care Survey: United States, 1977-78 

by Beulah K. Cypress, Ph.D., Division of Health Care Statistics

Headache was the principal cause of an estimated $18,341,923$ visits to office-based physicians during 1977-78. Headache was the seventh most frequent symptomatic reason for visits given by patients.

The estimates in this report are based on data collected in the National Ambulatory Medical Care Survey (NAMCS), a probability sample survey conducted yearly by the Division of Health Care Statistics of the National Center for Health Statistics. Since the estimates presented in this report are based on a sample rather than on the entire universe of officebased physicians, the data are subject to sampling variability. The Technical Notes at the end of this report provide a brief explanation of sampling errors and guidelines for judging the precision of the estimates presented. A more detailed description of the sample design and additional definitions of certain terms used in NAMCS have been published elsewhere. ${ }^{1}$

Figure 1 is a facsimile of the 1977-78 Patient Record used by participating physicians to record information about office visits. The patient's complaint, symptom, or other reason for the visit, expressed as nearly as possible in the patient's own words, is recorded by the physician in item 6. The principal reason (listed first in this item) is the one that in the physician's judgment was most responsible for the patient making the visit. Data on principal reason were classified and coded according to a reason for visit classification system presented in another report. ${ }^{2}$ Since 1977 was the first year that this classification system was used, caution should be exercised in comparing data presented in this report with those of prior years.

[^30]
## Data highlights

Table 1 provides the age and sex of patients who visited office-based physicians for medical care related to headache. The average annual rate of these visits increased with the advancing age group of the patients. Females over 15 years of age tended to visit more frequently for headache problems than males did. Visit rates for female patients over 44 years of age were about twice as high as those for their male counterparts.

Headache accounted for about the same proportion of total visits regardless of the geographic location of

[^31]| Sex and age | Number of visits in thousands | Percent distribution | Average annual visit rata per 1,000 persons |
| :---: | :---: | :---: | :---: |
| Both sexes |  |  |  |
| All ages. | 18,342 | 100.0 | 43.2 |
| Under 15 years | 1,793 | 9.8 | 17.6 |
| 15-24 years | 2,486 | 13.6 | 31.4 |
| 25-44 years | 5,996 | 32.7 | 53.8 |
| $45-64$ years | 5,196 | 28.3 | 60.2 |
| 65 years and over | 2,871 | 15.7 | 63.9 |
| Female |  |  |  |
| All ages. | 12,148 | 66.2 | 55.4 |
| Under 15 years | 787 | 4.3 | 15.8 |
| 15-24 years | 1,645 | 9.0 | 40.8 |
| 25-44 years | 3,858 | 21.0 | 67.0 |
| 45-64 years | 3,699 | 20.2 | 82.0 |
| 65 years and over. | 2,159 | 11.8 | 81.8 |
| Male |  |  |  |
| All ages. . | 6,194 | 33.8 | 30.3 |
| Under 15 years | 1,006 | 5.5 | 19.4 |
| 15.24 years | 847 | 4.6 | 21.7 |
| $25-44$ years | 2,138 | 11.7 | 39.7 |
| 45.64 years | 1.496 | 8.2 | 36.3 |
| 65 years and over. | 713 | 3.9 | 38.4 |

## Symbols

-     - Data not available
... Category not applicable
- Quantity zero
0.0 Quantity more than 0 but less than 0.05
* Figure does not meet standards of reliability or precision

Figure 1. NATIONAL AMBULATORY MEDICAL CARE SURVEY PATIENT RECORD FORM: 1977.78


Table 2. Number of office visits and number, percent, and average annual rate of office visits with hasdache as the principal reason for visit, by location of physician's practice: United States, 1977.78

| Location of practice | Number in thousencts |  | Percent | Averege annual visit rate per 1,000 persons |
| :---: | :---: | :---: | :---: | :---: |
|  | All visits | Visits for headache |  |  |
| Geographic region |  |  |  |  |
| Northeast | 271.440 | 4,580 | 1.7 | 47.1 |
| North Central | 291.571 | 4,404 | 1.5 | 38.6 |
| South. | 355,754 | 5,613 | 1.6 | 40.6 |
| West | 235,785 | 3,745 | 1.6 | 50.5 |
| Type of area |  |  |  |  |
| Metropolitarı. | 865,549 | 13,479 | 1.6 | 46.5 |
| Nonmetropolitan | 289,001 | 4.863 | 1.7 | 36.3 |

the physician's practice (table 2). However, visit rates varied, indicating higher utilization rates in the Northeast and West Regions than in the North Central and South, and in metropolitan than in nonmetropolitan areas.

The specialists most commonly visited by patients presenting headache as the reason for visit are shown in table 3. Eighteen percent of visits to neurologists were made by patients with a principal complaint of headache. Other specialists treated headache patients in 1 or 2 percent of their visits.

Table 3. Number of office visits and number and percent of office visits with headache as the principal reason for visit, by seleczed physician specialties: United States, 1977-78

| Specialty | Number in thousands |  | Percent |
| :---: | :---: | :---: | :---: |
|  | Al/ visits | Visits for headache |  |
| All specialties | ,154,550 | 18,342 | 1.6 |
| General and family practice | 433,936 | 9.528 | 2.2 |
| Internal medicine | 133.291 | 2.754 | 2.1 |
| Pediatrics. | 114,921 | 905 | 0.8 |
| General surgery | 69,223 | 584 | 0.8 |
| Ophthalmology | 58,851 | 1,053 | 1.8 |
| Neuratogy | 5,109 | 938 | 18.4 |
| Otolaryngology | 32,193 | 802 | 2.5 |

Patients who developed a headache that was a new problem were likely to visit their physicians within 3 weeks of its onset, with over 40 percent of visits occurring in less than a week (table 4).

About half the visits for headache involved a condjtion evaluated by the physician as not serious in nature (table 5). There was no statistically significant difference in this proportion by sex of the patient.

The principal diagnosis made by the physician for the patient who presents headache as the chief complaint is recorded in item 8 of the Patient Record. Diagnostic codes are based on the Eighth Revision International Classification of Diseases (ICDA). ${ }^{3}$ Table 6 contains a list of the diagnoses most frequently associated with headache. Headache, as a diagnosis, appeared in an estimated 31 percent of such visits (ICDA codes 306, 346, and 791). An additional 14 percent were attributed to hypertension.

[^32]Table 4. Percent of office visits with headache as a new problem, by sex of patient and time since onset of complaint: United States, 1977-78

| Time since onset of complaint | Female | Mo/e |
| :---: | :---: | :---: |
|  | Percent |  |
| Less than 1 week | 43.9 | 49.3 |
| 13 weeks. | 16.3 | 22.7 |
| 1.3 months. | 16.1 | 13.6 |
| More than 3 months | 20.5 | 13.7 |

Table 5. Percent distribution of office visits with headache as the principal reason for visit, by seriousness of problem, according to sax of patient:-United States, 1977.78

| Seriousness of probiem | Female | Male |
| :---: | :---: | :---: |
|  | Percent distribution |  |
| All visits | 100.0 | 100.0 |
| Not serious. . | 51.4 | 47.3 |
| Slightly serious | 35.6 | 38.3 |
| Serious or very serious. | 12.9 | 14.5 |

Table 6. Number and percent distribution of office visits with headache as the principal reason for visit by principal diagnosis: United States. 1977.78

| Principal diagnosis and ICDA code ${ }^{1}$ | Number of visits in thousands | Percent distribution |
| :---: | :---: | :---: |
| All diagnoses. | 18,342 | 100.0 |
| Neuroses . . . . . . . . . . . . . . . . . 300 | 653 | 3.6 |
| Special symptoms not elsewhere classified ${ }^{2}$ $\qquad$ | 1,692 | 9.2 |
| Migraine . . . . . . . . . . . . . . . . . . 346 | 1,635 | 8.9 |
| Refractive errors . . . . . . . . . . . . . 370 | 500 | 2.7 |
| Essential benign hypertension. . . . . . 401 | 2,494 | 13.6 |
| Acute upper respiratory infection of multiple or unspecified sites . . . . . . 465 | 640 | 3.5 |
| Chronic sinusitis. . . . . . . . . . . . . . 503 | 1,332 | 7.3 |
| Hay fever. . . . . . . . . . . . . . . . . . 507 | 420 | 2.3 |
| Hasdsche ${ }^{3}$. . . . . . . . . . . . . . . . 791 | 2,303 | 12.6 |
| Concussion. . . . . . . . . . . . . . . . . 850 | 345 | 1.9 |
| Alt other diagnoses . . . . . . . . . . residual | 6,328 | 34.5 |
| ${ }^{1}$ Bewed on the Eiahth Revision International Claszifleation of Disoases. Adsoted for Une in the United Staros (ICDA). |  |  |
| 2These records coded 306.8, the ICDA category for caphalalgla. inefuding hasdeche of nonorgenic origin and tension headache. |  |  |
| ${ }^{3}$ Exeluaser heodeche of nonorganic origin ( 306 zension hesdache (306.8). | 3), migraine | (346), and |

Table 7. Percent of office visits with headache as the principal reason for visit, by selected diagnostic and therapeutic services ondered or provided: United States, 1977-78

| Diagnostic and thorapeutic services | Percent of visits |
| :---: | :---: |
| Diagnostic sarvices |  |
| None | 6.1 |
| Limited exam/history | 62.2 |
| General exam/history. | 23.9 |
| Pap test. | -1.4 |
| Clinical lab test | 16.2 |
| X-ray | 9.0 |
| EKG | 3.5 |
| Vision test | 6.3 |
| Blood pressure check. | 49.2 |
| Other . | 7.1 |
| Therapeutic services |  |
| None | 12.2 |
| Immunization/desensitization. | 3.1 |
| Drugs (Drescription/nonprescription). | 73.8 |
| Diet counseling . | 6.5 |
| Medical counseling | 21.0 |
| Physiotherapy. | 4.0 |
| Offics surgery | -1.3 |
| Psychotherapy/therapeutic listening | 5.0 |
| Other . . . . . . . . . | 2.6 |

Table 8. Percent distribution of office visits with headache as the principal reason for visit by duration and disposition of visit: United States, 1977-78

| Duration and disposition | Parcent distribution of visits |
| :---: | :---: |
| All visits | 100.0 |
| Duration |  |
| 0 minutes ${ }^{1}$. | 2.2 |
| $1-5$ minutes | 11.2 |
| 6-10 minutes. | 26.9 |
| 11-15 minutes. | 30.5 |
| 16-30 minutes. | 21.7 |
| 31 minutes or more. | 7.5 |
| Disposition ${ }^{2}$ |  |
| No followup planned. | 9.4 |
| Return at specified time | 52.4 |
| Return if needed, p. r. n.. | 32.3 |
| Telephone followup planned | 3.3 |
| Referred to other physician . | 4.6 |
| Return to referring physician | -1.8 |
| Admit to hospital . . . . . . | -1.2 |
| Other disposition | $\bullet 0.8$ |

${ }^{1}$ Visits in which there war no face-to-face contact between the patient and the physician.
$\mathbf{2}^{\text {WIII }}$ not total $\mathbf{1 0 0 . 0}$ since more then one disposition was possible.

The potential presence of hypertension is reflected in the higher than average proportion of visits in which blood pressure was measured. Table 7 shows that blood pressure was checked during 49 percent of visits for headache compared with the NAMCS average of 34 percent of all visits.

Drug therapy (either prescription or nonprescription) was used in 74 percent of visits, a proportion that exceeded the average of 53 percent of all NAMCS visits. Table 7 also shows the percent of visits in which various diagnostic and therapeutic services were either ordered or provided.

Table 8 provides data on the duration and disposition of visits for headache.

Additional data on headache and other reasons for visits will be presented in more detail in a report from the Vital and Health Statistics series. Questions regarding this report may be directed to the Ambulatory Care Statistics Branch by calling 301-436-7132.

## Technical notes

## Source of data

The information presented in this report is based on data collected in the National Ambulatory Medical Care Survey (NAMCS) during 1977 and 1978. The NAMCS universe is composed of office visits made within the conterminous United States by ambulatory patients to nonfederally employed physicians who are principally engaged in office practice and are not in the specialties of anesthesiology, pathology, or radiology. The National Opinion Research Center, under contract to the National Center for Health Statistics, is responsible for the NAMCS field operations.

## Sample design

NAMCS utilizes a multistage probability design that involves samples of primary sampling units (PSU's), physician practices within PSU's, and patient visits within physician practices. For 1977-78 a sample of 6,007 non-Federal, office-based physicians was selected from master files maintained by the American Medical Association and the American Osteopathic Association. The physician response rate for this period was 75.1 percent. Sampled physicians were requested to complete Patient Records (figure 1) for a systematic random sample of office visits taking place during a randomly assigned weekly reporting period. During 1977-78, 98.335 Patient Records were completed by responding physicians.

## Sampling errors

The standard error is primarily a measure of the sampling variability that occurs by chance because only a sample, rather than the entire universe, is sampled. The relative standard error of an estimate is obtained by dividing the standard error of the estimate by the estimate itself and is expressed as a percent of the estimate. Relative standard errors for aggregate statistics are shown in tables I and II. Standard errors for estimated percentages are shown in tables III and IV.

| Table I. Approximate relative standard errors of estimated numbers of office visits based on all physician specialties: NAMCS, 1977-78 |  |  |
| :---: | :---: | :---: |
|  | Estimated number of office visits in thousands | Relative standero error in percent |
| 500. |  | 24.9 |
| 1,000 |  | 17.7 |
| 2,000. |  | 12.7 |
| 5,000. |  | 8.3 |
| 10,000 |  | 6.2 |
| 20,000 |  | 4.8 |
| 50,000 |  | 3.8 |
| 200,000 |  | 3.1 |
| 1,000,000 |  | 2.9 |

Example of use of table: An aggregate of $15,000,000$ visits has a relative standard arror of 5.5 percent, or a standard error of 825,000 visits ( 5.5 percent of 15,000,000).

[^33]Estimated number of office
visits in thousands $\underbrace{}_{\substack{\text { Relative } \\ \text { standard } \\ \text { error in } \\ \text { percent }}}$

Example of use of table: An aggregate of $7,500,000$ visits has a relative standard error of 9.4 percent, or a standard arror of 705,000 visits ( 9.4 percent of $7,500,000$ ).

## Definitions

Ambulatory patient.-An ambulatory patient is an individual presenting himself for personal health services who is neither bedridden nor currently admitted to any health care institution on the premises.

Office.-An office is a place that the physician identifies as a location for his ambulatory practice. Responsibility over time for patient care and professional services rendered there generally resides with the individual physician rather than an institution.

Visit.-A visit is a direct personal exchange between an ambulatory patient and a physician, or between a patient and a staff member working under the physician's supervision, for the purpose of seeking care and rendering health services.

Physician.-A physician is a duly licensed doctor of medicine (M.D.) or doctor of osteopathy (D.O.) currently in office-based practice who spends time in caring for ambulatory patients. Excluded from NAMCS are physicians who are hospital based; physicians who specialize in anesthesiology, pathology, or radiology; physicians who are federally employed; physicians who treat only institutionalized patients; physicians employed full time by an institution; and physicians who spend no time seeing ambulatory patients.

Table III. Approximate standard errors of percents of estimated numbers of office visits based on all physician specialties: NAMCS, 1977-78

|  |  |  | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base of percent <br> (number of office <br> visits in thousands) | 1 or | 5 or | 10 or | 20 or | 30 or | 50 |  |  |
|  | 99 | 95 | 90 | 80 | 70 | 50 |  |  |

Standard error in percentage points

| 500 | 2.5 | 5.4 | 7.4 | 9.9 | 11.4 | 12.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,000. | 1.7 | 3.8 | 5.3 | 7.0 | 8.0 | 8.8 |
| 2,000. | 1.2 | 2.7 | 3.7 | 5.0 | 5.7 | 6.2 |
| 5,000. | 0.8 | 1.7 | 2.3 | 3.1 | 3.6 | 3.9 |
| 10,000 | 0.6 | 1.2 | - 1.7 | 2.2 | 2.5 | 2.8 |
| 20,000 | 0.4 | 0.9 | 1.2 | 1.6 | 1.8 | 2.0 |
| 50,000 | 0.2 | 0.5 | 0.7 | 1.0 | 1.1 | 1.2 |
| 200,000 | 0.1 | 0.3 | 0.4 | 0.5 | 0.6 | 0.6 |
| 1,000,000 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 |

Example of use of table: An extimate of 20 percant based on an aggragate of $15,000,000$ visits has a standard arror of 1.9 percent, or a relative standard error of 9.5 percent ( 1.9 percent $\div 20$ percent).

Table IV. Approximate siandard errors of percents of estimated numbers of offite visits bassed on an individual physician speciaity: NAMCs, 1977.78

| Besp of percent number of office visits in thousands) | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \text { or } \\ & 99 \end{aligned}$ | $\begin{gathered} 5 \text { or } \\ 95 \end{gathered}$ | $\begin{gathered} 10 \text { or } \\ \$ 0 \end{gathered}$ | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | $\begin{gathered} 30 \text { or } \\ 70 \end{gathered}$ | 50 |


|  | Standard efror in parcentagy points |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 500 | 2.6 | 5.7 | 7.9 | 10.5 | 12.1 | 13.1 |
| 1,000. | 1.9 | 4.1 | 5.6 | 7.4 | 8.5 | 9.3 |
| 2,000. | 1.3 | 2.9 | 3.9 | 5.3 | 6.0 | 6.6 |
| 5,000. | 0.8 | 1.8 | 2.5 | 3.3 | '3.8 | 4.2 |
| 10,000 | 0.6 | 1.3 | 1.8 | 2.4 | 2.7 | 2.9 |
| 20,000 | 0.4 | 0.9 | 1.2 | 1.7 | . 1.9 | 2.1 |
| 50,000 | 0.3 | 0.6 | 0.8 | 1.1 | 1.2 | 1.3 |
| 100,000 | 0.2 | 0.4 | 0.6 | 0.7 | 0.9 | 0.9 |
| 400,000 | 0.1 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 |

Example of use of table: An estimaze of 90 Dercent based on an ageregate of $3,500,000$ visits haz a standard error of 3.2 percent, or a relative standard error of 3.6 percant ( 3.2 percent $\div 90$ percent).


From Vital and Health Statistics of the National Center for Health Statistics

# Stroke Survivors Among the Noninstitutionalized Population 20 Years of Age and Over: United States, 1977 

by Abigaii J. Moss, Division of Health Interview Statistics

Findings from a special stroke supplement to the 1977 National Health Interview Survey questionnaire are presented in this report from the National Center for Health Statistics. The supplement was developed in response to a request from officials at the National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health. Their particular data needs centered around three major areas: (1) estimating the number of adults among the noninstitutionalized population who have survived a stroke, (2) gaining information on the relationship between selected chronic conditions and a history of stroke, and (3) describing the characteristics of persons who have had symptoms associated with stroke. This report addresses each of these objectives and presents related stroke data by three demographic variables-age, sex, and race.

According to data from the National Health Interview Survey (NHIS), in 1977 an estimated 2,692,000 persons 20 years of age and over in the U.S. civilian noninstitutionalized population had experienced a cerebrovascular accident-a stroke-and survived (table 1).

Some persons reported stroke in response to questions on the NHIS questionnaire concerning doctor visits or restricted activity in the past 2 weeks, chronic limitation of activity, or selected chronic conditions. However, the question that is the primary source of information on the prevalence of stroke survivors, asked of all persons who had not reported stroke in response to earlier questions, was "Has - - EVER had a stroke?"

Both self-respondents and proxy respondents were asked the stroke questions. Because of the characteristic manifestations of stroke, the use of proxy respondents probably produced little underreporting of this condition. At the same time, proxy respondents and self-respondents alike probably contributed to some overreporting of this condition.

Users of these data should remember that NHIS stroke estimates are representative only of the civilian noninstitutionalized population living at the time of interview. Excluded from the estimates are persons who had experienced a stroke but were not living at the time of the interview as well as those residing in long-term care facilities. (About one-fourth of all residents in nursing homes have cerebrovascular disease. ${ }^{1}$ )

Furthermore, the above estimate of about 2.7 million stroke survivors is based on respondents' perceptions of a stroke's occurrence; that is, it is based on self-diagnosed as well as medically diagnosed strokes. A stroke is classified as medically diagnosed whenever there was a positive response to the question: "Has a doctor EVER told -- he had a stroke?" While an estimate based only on medically confirmed strokes might be more precise than one based on both self-diagnosed and medically confirmed strokes, no significant differences were noted between medically confirmed and non-medically confirmed strokes by sex, age, or race to warrant separate treatment of the data. Limiting the data presented to medically confirmed strokes was considered, but there is evidence to suggest that some strokes are not actually medically diagnosed. Excluding all persons without a medical diagnosis would probably result in an undercount. No doubt the estimate in this report does include persons who would not have been medically diagnosed as having had a stroke had they been examined by a medical doctor. All NHIS data are subject to this kind of reporting error. Therefore, the fact that some persons might be misclassified is not sufficient reason to exclude all persons without a medical confirmation.

Specifically, medically confirmed strokes were reported for 92 percent of the stroke population (table 2). (Persons who did not know whether the stroke was medically confirmed were excluded from

Table 1. Number and percent distribution of persons 20 years of age and over by stroke status, according to race, sex, and age: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Race, sex, and age | Total ${ }^{1}$ | Ever had a stroke | Never had a stroke | Total ${ }^{2}$ | Ever had a stroke | Never had a stroke |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  | All races ${ }^{3}$ | Number in thousands |  |  | Percent distribution |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Both sexes 20 years and over |  | 139,965 | 2,692 | 134,487 | 100.0 | 2.0 | 98.0 |
| $20-44$ years |  | 74,341 | 287 | 72,639 | 100.0 | 0.4 | 99.6 |
| $45-64$ years |  | 43,357 | 881 | 41,605 | 100.0 | 2.1 | 97.9 |
| 65 years and over |  | 22,266 | 1,524 | 20,243 | 100.0 | 7.0 | 93.0 |
| Male 20 years and over. |  | 65,801 | 1,316 | 63,234 | 100.0 | 2.0 | 98.0 |
| 20-44 years |  | 35,904 | 125 | 35,136 | 100.0 | 0.4 | 99.6 |
| 45-64 years |  | 20,700 | 484 | 19,812 | 100.0 | 2.4 | 97.6 |
| 65 years and over |  | 9,197 | 708 | 8,286 | 100.0 | 7.9 | 92.1 |
| Female 20 years and over |  | 74,164 | 1,376 | 71,253 | 100.0 | 1.9 | 98.1 |
| 20-44 years |  | 38,437 | 163 | 37,503 | 100.0 | 0.4 | 99.6 |
| 45-64 years |  | 22,657 | 397 | 21,793 | 100.0 | 1.8 | 98.2 |
| 65 years and over |  | 13,070 | 817 | 11,957 | 100.0 | 6.4 | 93.6 |
|  | White |  |  |  |  |  |  |
| 20 years and over. |  | 123,626 | 2,314 | 118,928 | 100.0 | 1.9 | 98.1 |
| 20-44 years |  | 64,671 | 220 | 63,268 | 100.0 | 0.3 | 99.7 |
| 45-64 years |  | 38,792 | 751 | 37,266 | 100.0 | 2.0 | 98.0 |
| 65 years and over |  | 20.163 | 1,344 | 18,394 | 100.0 | 6.8 | 93.2 |
| Male |  | 58,519 | 1,162 | 56,277 | 100.0 | 2.0 | 98.0 |
| Female |  | 65,106 | 1,152 | 62,651 | 100.0 | 1.8 | 98.2 |
|  | Black |  |  |  |  |  |  |
| 20 years and over. |  | 14,420 | 362 | 13,672 | 100.0 | 2.6 | 97.4 |
| 20-44 years |  | 8,372 | 56 | 8,091 | 100.0 | 0.7 | 99.3 |
| 45-64 years |  | 4,098 | 130 | 3,878 | 100.0 | 3.2 | 96.8 |
| 65 years and over |  | 1,950 | 176 | 1,702 | 100.0 | 9.4 | 90.6 |
| Male |  | 6,339 | 148 | 6,031 | 100.0 | 2.4 | 97.6 |
| Female |  | 8,081 | 215 | 7,641 | 100.0 | 2.7 | 97.3 |

$1_{1}$ ncludes unknowns.
${ }^{2}$ Exclüdes unknowns.
$3_{\text {Includes all races not shown separately. }}$
the population base used to calculate this percent.) Men and women stroke victims had similar proportions of medically confirmed strokes. At first glance, it would appear that there are differences among the three age groups shown in table 2 and between black and white persons in the percent for whom medical attention was reported. In this sample, however, these variations were not statistically significant. ${ }^{\text {a }}$

As a measure of the approximate number of adult stroke survivors currently in the noninstitutionalized population, the figure of 2.7 million ${ }^{\text {b }}$ is probably a fairly complete estimate when compared with estimates of certain other chronic conditions that are derived from household interview surveys. Chronic

[^34]conditions are generally underreported in health interviews. A number of methodological studies have shown that respondents report only conditions that they know of and are willing to discuss. The conditions that are best reported in health interviews are those-such as stroke-with the most impact on a person, limiting participation in one's usual activities, resulting in costly treatment, or requiring medical care or days in bed. ${ }^{2}$

For further details on the survey design and procedures used to obtain data shown in this report, see the technical notes.

## Age, sex, and race

An estimated 2 percent of the 1977 civilian noninstitutionalized population 20 years of age and over had suffered a stroke and survived. The prevalence rates for the youngest and oldest age groups differed markedly, from a low of 4 persons per 1,000 population aged 20-44 years to a high of

| Table 2. Percent of persons with stroke for whom medical confirmation of stroke was reported, by age, sex, and race: United States, 1977 |  |
| :---: | :---: |
| [Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes] |  |
| Age, sex, and race | Percent medically confirmed |
| All persons 20 years and over | 92.0 |
| Age |  |
| 20-44 years | 87.0 |
| 45-64 years | 91.4 |
| 65 years and over | 92.9 |
| Sex |  |
| Male | 92.5 |
| Female | 91.4 |
| Race |  |
| White. | 92.5 |
| Black | 88.6 |

NOTE: Denominator of percent excludes unknown medical confirmation.

70 persons per 1,000 population 65 years of age or older. In fact, over one-half of the stroke victims surveyed were at least 65 years of age; this reflects the fact that stroke is a disease of the aged. ${ }^{3}$

The stroke prevalence rate was similar for men and women under 45 years of age. For ages 45 and over, however, the reported prevalence for men was somewhat higher-40 per 1,000 population compared to 34 per 1,000 population. National Health Interview Survey results further show black persons to have slightly higher stroke prevalence estimates than white persons have ( 2.6 and 1.9 percent, respectively). Similarly, when these data have been age adjusted to the U.S. adult population, the age-standardized estimates of stroke are higher for black persons ( 2.9 percent) than for white persons ( 1.9 percent).c These racial differences, for the most part, occurred regardless of age. Statistically different stroke estimates by sex and color, however, were observed only between black women ( 2.7 percent) and white women (1.8 percent).

## Age at time of first stroke

All respondents who reported stroke were asked: "How old was - at the time he had his first stroke?" Data derived from this question are shown in table 3. A higher proportion of male than female stroke sur-

[^35]vivors experienced their initial attack before they were 65 years old- 64.7 percent compared with 57.1 percent.

Data for black and white stroke victims seem to suggest that black persons are more likely than white persons to have their first stroke at an early age. However, the apparent black-white differences seen in table 3 are not statistically significant.

Further examination of table 3 suggests that the data shown there may partly reflect the disproportionate age distribution of black and white persons in the population. For 1977, the U.S. Bureau of the Census estimated that 11.4 percent of the white population and 7.7 percent of the black population were 65 years of age or older. ${ }^{4}$

> Table 3. Number and percent distribution of persons 20 years of age and over with stroke by age at time of first stroke, according to race and sex: United States, 1977
> [Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Race and sex | All persons 20 years and over with stroke | Age at time of first stroke |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Under 45 years | $\begin{aligned} & 45-64 \\ & \text { years } \end{aligned}$ | 65 years and over |


| All races ${ }^{1}$ | Number in thousands |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Both sexes | 2,692 | 476 | 991 | 945 |
| Male | 1,316 | 196 | 571 | 418 |
| Female | 1,376 | 280 | 420 | 527 |
| White |  |  |  |  |
| Both sexes. | 2,314 | 390 | 863 | 829 |
| Male | 1,162 | 165 | 505 | 385 |
| Female | 1,152 | 224 | 358 | 445 |
| Black |  |  |  |  |
| Both sexes | 362 | 84 | 129 | 111 |
| Male . | 148 | *29 | 67 | *34 |
| Female | 215 | 55 | 62 | 77 |
| All races ${ }^{1}$ | Percent distribution ${ }^{2}$ |  |  |  |
| Both sexes. | 100.0 | 19.7 | 41.1 | 39.2 |
| Male . | 100.0 | 16.5 | 48.2 | 35.3 |
| Fernale . | 100.0 | 22.8 | 34.3 | 43.0 |
| White |  |  |  |  |
| Both sexes . . | 100.0 | 18.7 | 41.5 | 39.8 |
| Male . | 100.0 | 15.6 | 47.9 | 36.5 |
| Female | 100.0 | 21.8 | 34.9 | 43.3 |
| Black |  |  |  |  |
| Both sexes. . | 100.0 | 25.9 | 39.8 | 34.3 |
| Male | 100.0 | *22.5 | 51.9 | *26.4 |
| Female | 100.0 | 28.2 | 31.8 | 39.5 |

[^36]NOTE: When a figure is shown with an asterisk, it is presented only for the purpase of combining with other cells. An estimate has a relative standard error of less than 30 percent when the aggregate is at least 35,000.

Table 4, which presents the percent of stroke survivors aged 65 years and over by age at time of first stroke, shows no appreciable difference between white and black persons with respect to age at first stroke.

Table 4. Number of persons 65 vears of age and over with stroke and percent distribution by age at time of first stroke, according to sex and race: United States. 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Sex and race | Number of persons 65 years and over with stroke in thousands | Tota/ ${ }^{1}$ | Age at time of first stroke |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Under 45 vears | $45-64$ <br> vears | 65 years and over |


| Total ${ }^{2}$ | 1,524 | Percent distribution |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 100.0 | 4.8 | 28.5 | 66.8 |
| Sex |  |  |  |  |  |
| Male | 708 | 100.0 | *4.4 | 31.9 | 63.7 |
| Female | 817 | 100.0 | 5.0 | 25.6 | 69.4 |
| Race |  |  |  |  |  |
| White , | 1,344 | 100.0 | 4.5 | 29.4 | 66.2 |
| Black | 176 | 100.0 | *7.0 | 22.3 | 70.7 |

${ }_{2}$ Excludes unknowns.
${ }^{2}$ includes all races not shown separately.
NOTE: When a figure is shown with an asterisk, it is presented only for the purpose of combining with other cells. An estimate has a relative standard error of less than 30 percant when the aggregate is at least 35,000.

## Hospitalization for stroke

During the NHIS interview, respondents were asked whether stroke survivors were hospitalized for their first stroke. Responses to this item indicate that about 62 percent of the stroke survivors were hospitalized for their first stroke (table 5). A hospitalization was reported for proportionately more men than women ( 66.5 compared with 58.3 percent).

Moreover, a higher percent of males under 65 than 65 years of age or older were hospitalized for their initial stroke ( 73.4 compared with 61.3 percent). In contrast, the proportion of females hospitalized for stroke did not vary appreciably among specific age groups.

The overall percents of white and black persons hospitalized for initial strokes are similar. When these data are compared for males and for females, it appears that a substantially greater proportion of black males than white males were hospitalized ( 74.6 compared with 65.6 percent). The difference between these estimates, however, could be due to sampling variability.

## Chronic activity limitation

Besides the frequent loss of life associated with stroke, a high proportion of stroke victims who survive are left with permanent disabilities. As an illustration, table 6 contrasts the percent of persons with and without stroke by the kind of activity limitation they had at the time of interview. These data are derived from a series of NHIS questions that enable sample persons to be classified into one of four broad limitation categories-unable to perform major activity, limited in amount or kind of major activity, limited in other activities, and not limited in any activities. Major activities include working, keeping house, and going to school. In NHIS, only activity limitations caused by at least one chronic condition are classified.

In 1977, an estimated 72 percent of the stroke population were limited in performance of their major or other activities in some way because of either a stroke or some other chronic condition. ${ }^{\text {d }}$ In contrast, 17.4 percent of adults without stroke were limited in some way. As expected, with each succeeding age group there was an increase in reported activity limitation for both the stroke and nonstroke populations. Among stroke victims, 39 percent of those 20-44 years of age reported some limitation, compared with 78.5 percent of persons 65 years of age or older.

Over 40 percent of the stroke population surveyed were unable to perform their major activity at all (compared with less than 5 percent of other adults in the population). While this estimate varied appreciably between males and females ( 58.1 and 25.1 percent, respectively), the dissimilarity may primarily reflect a sex difference in the NHIS definition of usual activity roles. For example, women who had to leave the work force because of a stroke and now consider their usual activity as "keeping house" are asked about any limitations associated with housework and classified accordingly. Men in the same situation are classified according to their ability to work outside the home.

All limitations combined were reported for a higher proportion of males with stroke ( 75.8 percent) than females ( 68.1 percent). The pattern is consistent with activity limitation estimates for males and females in the general population.

Some of the difference in the limitation-of-activity estimates for persons with and without stroke is attributable to the disproportionate number of older persons in the stroke population. When making comparisons between population groups with varying

[^37]Table 5. Number and percent distribution of persons 20 years of age and over with stroke by whether hospitalized for first stroke, according to race, sex, and age: United States, 1977
IData are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Race, sex, and age | All persons 20 years and over with stroke | Hospitalized for first stroke | Not hospitalized for first stroke | All persons 20 years and over with stroke ${ }^{1}$ | Hospitalized for first stroke | Not hospitalized for first stroke |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All races ${ }^{2}$ | Number in thousands |  |  | Percent distribution |  |  |
| Both sexes 20 years and over | 2,692 | 1,526 | 921 | 100.0 | 62.4 | 37.6 |
| 20-44 years | 287 | 132 | 76 | 100.0 | 63.5 | 36.5 |
| 45-64 years . | 881 | 530 | 271 | 100.0 | 66.2 | 33.8 |
| 65 years and over. | 1,524 | 864 | 574 | 100.0 | 60.1 | 39.9 |
| Male 20 years and over. | 1,316 | 797 | 401 | 100.0 | 66.5 | 33.5 |
| 20-44 years | 125 | 59 | -26 | 100.0 | 69.4 | 30.6 |
| 45-64 years | 484 | 329 | 116 | 100.0 | 73.9 | 26.1 |
| 65 years and over. | 708 | 409 | 259 | 100.0 | 61.3 | 38.8 |
| Female 20 years and over | 1,376 | 728 | 521 | 100.0 | 58.3 | 41.7 |
| $20-44$ years | 163 | 72 | 50 | 100.0 | 58.5 | 40.7 |
| 45-64 years | 397 | 200 | 155 | 100.0 | 56.2 | 43.5 |
| 65 years and over. | 817 | 456 | 315 | 100.0 | 59.1 | 40.9 |
| White |  |  |  |  |  |  |
| 20 years and over. | 2,314 | 1,308 | 798 | 100.0 | 62.1 | 37.9 |
| 20-44 years | 220 | 103 | 50 | 100.0 | 67.8 | 32.9 |
| 45-64 years | 751 | 447 | 236 | 100.0 | 65.4 | 34.6 |
| 65 years and over. | 1,344 | 758 | 512 | 100.0 | 59.7 | 40.3 |
| Male | 1,162 | 695 | 365 | 100.0 | 65.6 | 34.4 |
| Female | 1,152 | 613 | 433 | 100.0 | 58.6 | 41.4 |
| Black |  |  |  |  |  |  |
| 20 years and over. | 362 | 213 | 119 | 100.0 | 64.2 | 35.8 |
| 20-44 years | 56 | *27 | * 25 | 100.0 | * 52.9 | * 49.0 |
| 45-64 years | 130 | 83 | 35 | 100.0 | 70.3 | 29.7 |
| 65 years and over. | 176 | 104 | 59 | 100.0 | 63.8 | 36.2 |
| Male | 148 | 100 | *34 | 100.0 | 74.6 | 25.4 |
| Female | 215 | 113 | 85 | 100.0 | 56.8 | 42.7 |

${ }^{1}$ Excludes unknowns.
${ }^{2}$ Includes all races not shown separately.
NOTE: When a figure is shown with an asterisk, it is presented only for the purpose of combining with other cells. An estimate has a relative standard error of less than 30 percent when the aggregate is at least 35,000 .
age distributions, it is helpful to take these differences into account. Comparisons can be made within age groups or by using age-standardized percents.

Table 7 shows limitation-of-activity data with and without age adjustment. Age adjustment reduces the estimate of the proportion of the stroke population comprising the most severe limitation-of-activity category from 41.2 to 26.1 percent. However, the difference between the estimates of the most severe limitation for persons with and without stroke remained substantial ( 26.1 compared with 4.7 percent). Age adjustment had little or no effect on the estimates for the two remaining limitation-of-activity categories. (see footnote c.)

## Chronic conditions associated with stroke

Four health conditions associated with stroke were listed on the 1977 NHIS questionnaire: (1) diabetes or sugar diabetes, (2) high blood pressure or hypertension, (3) heart disease or heart trouble, and (4) blood clots in arms, legs, or lungs. Data obtained from responses to questions as to whether sample persons had any of these conditions in the 12 -month period preceding the interview are shown in tables 8 and 9.

The methodology employed for obtaining data on these conditions was not intended to produce prevalence figures similar to the estimates of chronic

Table 6. Number of persons 20 years of age and over and percent distribution by degree of activity limitation, according to stroke status, age, sex, and race: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Stroke status, age, sex, and race | Number of persons in thousands | Total | Activity limitation status |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | All degrees of limitation | Unable to perform major activity | Limited in amount or kind of major activity | Limited in other activities | No activity fimitation |
| With stroke |  | Percent distribution |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |
| 20 years and over. | 2,692 | 100.0 | 71.8 | 41.2 | 25.0 | 5.6 | 28.2 |
| 20-44 years | 287 | 100.0 | 39.0 | 12.5 | 20.9 | *5.6 | 61.0 |
| 45-64 years | 881 | 100.0 | 70.9 | 37.9 | 27.6 | 5.4 | 29.1 |
| 65 years and over. | 1.524 | 100.0 | 78.5 | 48.6 | 24.3 | 5.7 | 21.5 |
| Sex |  |  |  |  |  |  |  |
| Male | 1,316 | 100.0 | 75.8 | 58.1 | 13.9 | 3.8 | 24.2 |
| Female | 1,376 | 100.0 | 68.1 | 25.1 | 35.6 | 7.3 | 31.9 |
| Race |  |  |  |  |  |  |  |
| White | 2,314 | 100.0 | 71.4 | 40.8 | 24.6 | 6.0 | 28.6 |
| Black . | 362 | 100.0 | 77.3 | 45.6 | 27.9 | *3.6 | 22.9 |
| Without stroke |  |  |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |
| 20 years and over. | 134,487 | 100.0 | 17.4 | 4.6 | 9.0 | 3.8 | 82.6 |
| 20.44 years | 72,639 | 100.0 | 8.5 | 1.2 | 4.4 | 2.8 | 91.5 |
| 45-64 years | 41,605 | 100.0 | 22.0 | 5.6 | 12.0 | 4.5 | 78.0 |
| 65 years and over | 20,243 | 100.0 | 40.3 | 14.8 | 19.7 | 5.8 | 59.7 |
| Sex |  |  |  |  |  |  |  |
| Male | 63,234 | 100.0 | 18.2 | 7.6 | 7.0 | 3.6 | 81.8 |
| Female . | 71,253 | 100.0 | 16.7 | 2.0 | 10.8 | 3.9 | 83.3 |
| Race |  |  |  |  |  |  |  |
| White . | 118,928 | 100.0 | 17.2 | 4.4 | 9.0 | 3.9 | 82.8 |
| Black . | 13,672 | 100.0 | 20.3 | 7.1 | 10.5 | 2.8 | 79.6 |

NOTE: When a figure is shown with an asterisk, it is presented only for the purpose of combining with other cells. An estimate has a relative standard error of less than 30 percent when the aggregate is at least 35,000 .
conditions routinely produced from NHIS. Rather, the items were viewed as providing gross measures for observing any differences in the rates between stroke victims and the rest of the population. These qualifications should be considered when using the data shown in these tables.

For each condition included in table 8, the age-specific rates were markedly higher among stroke victims than among other persons. The most pronounced difference is for heart conditions, reported for almost one-third of the stroke population compared with only one-twentieth of other adults surveyed. A similar comparison of estimates for the three remaining condition groups reveals the following differences: diabetes-14.6 compared with 3.1 percent, hypertension-48.1 compared with 12.5 percent, and blood clots- 4.4 compared with 0.8 percent.

When data in table 9 are compared for diabetics and nondiabetics, hypertensives and nonhypertensives, and persons with and without heart disease, similar pattems are found. Specifically, there were proportionately more stroke victims among the groups with either diabetes, hypertension, or heart disease than among the group without these conditions. Futhermore, persons with all three of these conditions were considerably more likely than others to have had a stroke. Approximately 1 out of 5 persons ( 22.6 percent) with diabetes, hypertension, and heart disease was also reported to have had a stroke. Similarly, the rate of persons with all of these conditions was almost 15 times higher among the group of persons who had had a stroke than among those who had not ( 49.0 compared with 3.4 per 1,000 persons). Even after age adjustment, the variation between the estimates of stroke survivors

Table 7. Unadjusted and age-adjusted percent distributions of persons 20 years of age and over by limitation of activity status, according to stroke status: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes)

| Activity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| limitation |
| status |$\quad$


|  | Percent distribution |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| All persons 20 years and over. | 100.0 | 100.0 | 100.0 | 100.0 |
| All degrees of limitation | 71.8 | 17.4 | 55.2 | 17.7 |
| Unable to perform major activity. | 41.2 | 4.6 | 26.1 | 4.7 |
| Limited in amount or kind of major activity | 25.0 | 9.0 | 23.5 | 9.2 |
| Limited in other activities | 5.6 | 3.8 | 5.6 | 3.8 |
| No activity limitation. | 28.2 | 82.6 | 44.8 | 82.3 |

${ }^{1}$ Adjusted by the direct method to the age distribution of the total civilian noninstitutionalized population of the United States.
with and without these conditions remains substantial. These data are consistent with findings from several epidemiological studies in which high blood pressure, heart disease, and diabetes have been identified as cardinal risk factors for stroke. ${ }^{5,6}$

Symptoms associated with stroke and transient ischemic attack (TIA)

There is general agreement among researchers and the medical profession that the risk of stroke is substantially increased among persons who have experienced transient ischemic attack (TIA). ${ }^{5}$ TIA is most often described as a history of a neurological deficit that clears in a defined period of time, but there is less consensus in the criteria for its diagnosis. Diagnosis of TIA is difficult for several reasons: the transience of symptoms, the similarity of TIA symptoms to those of other diseases, the absence of residual disability, and the lack of a diagnostic test.

The symptom data contained in this report were derived from responses to a checklist of some of the symptoms associated with cerebrovascular disease and TIA. The specific symptoms chosen are those determined to be caused least often by conditions other than cerebrovascular disease and TIA.e The following symptom checklist was read to household

[^38]respondents: (1) sudden paralysis or weakness of an arm and leg on the same side of the body, (2) sudden numbness on one side of the body, (3) sudden loss of vision, and (4) sudden loss of speech. The reference period for this checklist was the 12 months immediately preceding the interview.

The duration of symptoms used to define TIA or to distinguish it from stroke is not standardized. ${ }^{7}$ Symptoms characteristic of TIA generally last from 5 to 30 minutes, but intervals of up to 24 hours also occur. Stroke diagnosis is linked to symptoms lasting more than 24 hours.

For this report, symptoms were classified according to whether they lasted for more than 24 hours or 24 hours or less. Because of the problems associated with identifying persons with TIA even in a clinical setting, however, symptom data in this report are not presented as prevalence estimates of TIA. Furthermore, the estimated number of persons with symptoms is small, further limiting analysis of data shown in the remaining tables of this report.

Only about 2 percent of the adult population surveyed were reported to have had one or more symptoms during the year preceding the interview (table 10). As expected, however, a considerably higher proportion of persons with a history of stroke were reported to have had symptoms. Approximately 1 out of 5 persons with stroke experienced symptoms during the year preceding the interview ( 17.9 percent compared with 1.7 percent of persons without a stroke). The population having suffered a stroke can also be classified by whether the stroke was suffered recently-within 12 months of the interview date. Of recent stroke victims, 48.1 percent had one or more symptoms, compared with 10.7 percent of the residual stroke population. Unfortunately, the number of sample persons with recent strokes is too small for detailed tabulation of the data.

When the population with one or more stroke-like symptoms is examined, it can be seen that approximately two-thirds ( 64.3 percent) of the population with no stroke, compared with less than one-half ( 47.5 percent) of the stroke population, had their symptoms completely disappear within 24 hours. For both population subgroups, the differences observed for duration of symptoms by age, sex, or race were not statistically significant.

The group of persons without a stroke who had symptoms lasting more than 1 day is also sizable ( 35.7 percent). As TIA symptoms usually disappear in less than 1 day, it appears that many of the persons surveyed reported symptoms that were associated with some other health condition.

About one-half of the stroke population experiencing stroke-like symptoms in the past year were 65 years of age and over, whereas almost one-half (46.8 percent) of persons without a stroke who had these

Table 8. Number of persons 20 years of age and over and percent by selected conditions, stroke status, sex, and age: United States, 1977 [Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Stroke status, sex, and age |  | Condition |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number of persons in thousands | Diabetes | Hypertension | Heart disease | Blood clots in arms. legs, or lungs |
| With stroke |  |  | Percent of persons |  |  |  |
| Both sexes 20 years and over |  | 2,692 | 14.6 | 48.1 | 31.8 | 4.4 |
| 20-44 years |  | 287 | *6.6 | 27.5 | 17.4 | *3.1 |
| 45-64 years |  | 881 | 13.4 | 52.7 | 29.7 | 5.3 |
| 65 years and over |  | 1,524 | 16.8 | 49.4 | 35.6 | 4.1 |
| Male 20 years and over. |  | 1,316 | 14.5 | 42.9 | 33.6 | 3.8 |
| 20-44 years |  | 125 | *8.0 | *27.2 | *20.0 | *1.6 |
| $45-64$ years |  | 484 | 13.2 | 54.1 | 32.9 | *4.3 |
| 65 years and over |  | 708 | 16.4 | 38.0 | 36.6 | *4.0 |
| Female 20 years and over |  | 1,376 | 14.7 | 53.2 | 30.0 | 4.9 |
| $20-44$ years |  | 163 | "5.5 | 27.6 | *16.0 | *4.3 |
| $45-64$ years |  | 397 | 13.6 | 50.9 | 25.9 | *6.5 |
| 65 years and over |  | 817 | 17.1 | 59.4 | 34.8 | 4.3 |
| Without stroke |  |  |  |  |  |  |
| Both sexes 20 years and over |  | 134,487 | 3.1 | 12.5 | 4.9 | 0.8 |
| $20-44$ years |  | 72,639 | 1.0 | 5.0 | 1.2 | 0.4 |
| 45.64 years |  | 41,605 | 4.6 | 18.2 | 6.4 | 1.0 |
| 65 years and over |  | 20,243 | 7.4 | 27.8 | 15.2 | 1.6 |
| Male 20 years and over. |  | 63.234 | 2.8 | 10.4 | 5.0 | 0.5 |
| 20.44 years |  | 35,136 | 0.9 | 4.9 | 1.1 | 0.2 |
| 45-64 years |  | 19,812 | 4.4 | 16.1 | 7.4 | 0.8 |
| 65 years and over |  | 8,286 | 7.4 | 19.9 | 16.1 | 1.1 |
| Female 20 years and over |  | 71,253 | 3.3 | 14.4 | 4.8 | 1.0 |
| $20-44$ years |  | 37,503 | 1.2 | 5.0 | 1.3 | 0.5 |
| 45-64 years |  | 21,793 | 4.8 | 20.1 | 5.4 | 1.2 |
| 65 years and over |  | 11,957 | 7.4 | 33.3 | 14.6 | 1.8 |

NOTE: When a figure is shown with an asterisk, it is presented only for the purpose of combining with other cells. An estimate has a relative standard error of less than 30 percent when the aggregate is at least 35,000 .
symptoms were aged $20-44$ years (table 11). Men and women with stroke were equally likely to have experienced stroke-like symptoms within the year. Among the population without a stroke, however, there were proportionately more women than men with symptoms.

About three-fourths of the persons with symptoms had only one of the symptoms listed on the questionnaire (table 12). About one-half of the stroke population, compared with only about 15 percent of persons without a stroke, had two symptoms or more during the year preceding the interview. Paralysis was the symptom most frequently reported for persons having had a stroke ( 65.8 percent), while numbness was experienced by the greatest number of persons who had never had a stroke ( 66.9 percent).

One or two additional questions were asked of persons reporting symptoms:
"Did -- see a doctor for his (symptoms) (at that time)?" and, if a doctor was seen, "Was -- hospitalized because of the (symptoms)?"
Table 13 contains data derived from answers to these questions. About 60 percent of persons with stroke-like symptoms during the year preceding the interview sought medical attention for the symptoms, and about 1 out of every 3 persons who saw a doctor was subsequently hospitalized. A greater proportion of persons with stroke than without stroke reported medical attention for the symptoms ( 78.3 percent compared with 56.4 percent). Of persons who saw a doctor for their symptoms, proportionately about 3 times as many persons with stroke as without stroke were hospitalized ( 62.8 percent compared with 22.0 percent).

Table 9. Number of persons 20 years of age and over and percent distribution and rate per 1,000 population by stroke status, according to selected groups of conditions: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Condition group | Number of persons in thousands | Total ${ }^{7}$ | With stroke | Without stroke | With stroke | Without stroke |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Percent distribution |  |  | Rate per 1,000 population |  |
| Diabetes . . <br> No diabetes | $\begin{array}{r} 4,593 \\ 135,314 \end{array}$ | $\begin{aligned} & 100.0 \\ & 1000 \end{aligned}$ | $\begin{aligned} & 8.6 \\ & 1.7 \end{aligned}$ | $\begin{aligned} & 91.4 \\ & 98.3 \end{aligned}$ | $\begin{aligned} & 146.0 \\ & 851.8 \end{aligned}$ | $\begin{array}{r} 30.9 \\ 968.8 \end{array}$ |
| Hypertension . . No hypertension | $\begin{array}{r} 18,269 \\ 121,508 \end{array}$ | $\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$ | $\begin{aligned} & 7.2 \\ & 1.2 \end{aligned}$ | $\begin{aligned} & 92.8 \\ & 98.8 \end{aligned}$ | $\begin{aligned} & 481.4 \\ & 514.5 \end{aligned}$ | $\begin{aligned} & 125.0 \\ & 873.8 \end{aligned}$ |
| Heart disease. . . <br> No heart disease. | $\begin{array}{r} 7,518 \\ 132,332 \end{array}$ | $\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$ | $\begin{array}{r} 11.5 \\ 1.4 \end{array}$ | $\begin{aligned} & 88.5 \\ & 98.6 \end{aligned}$ | $\begin{aligned} & 318.0 \\ & 680.2 \end{aligned}$ | $\begin{array}{r} 48.9 \\ 950.4 \end{array}$ |
| Diabetes only . . . <br> Hypertension only Heart disease only. | $\begin{array}{r} 2,100 \\ 13,235 \\ 3,513 \end{array}$ | $\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$ | $\begin{aligned} & 3.9 \\ & 4.8 \\ & 7.1 \end{aligned}$ | $\begin{aligned} & 96.1 \\ & 95.2 \\ & 93.0 \end{aligned}$ | $\begin{array}{r} 30.5 \\ 234.8 \\ 91.0 \end{array}$ | $\begin{aligned} & 14.9 \\ & 92.9 \\ & 24.0 \end{aligned}$ |
| Diabetes and hypertension. . . Diabetes and heart disease . . . Hypertension and heart disease | $\begin{array}{r} 1,348 \\ 388 \\ 2,608 \end{array}$ | $\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$ | $\begin{array}{r} 7.9 \\ 13.4 \\ 14.0 \end{array}$ | $\begin{aligned} & 92.1 \\ & 86.6 \\ & 86.0 \end{aligned}$ | 39.4 18.9 134.5 | 9.2 2.5 16.5 |
| Diabetes, hypertension, and heart disease | 590 | 100.0 | 22.6 | 77.4 | 49.0 | 3.4 |

${ }^{1}$ Excludes persons with unknown stroke status.

Table 10. Number of persons 20 years of age and over and percent distributions by whether stroke-like symptoms present in past year and duration of symptoms, according to stroke status, age, sex, and race: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Stroke status, age, sex, and race | Number of persons in thousands | Total ${ }^{1}$ | Symptoms in past year |  | Total with 1 symptom ormore ${ }^{1}$ | Duration of symptoms |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | None | 1 or more |  | 24 hours or less | More than 24 hours |
| Total |  | Percent distributions |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |
| 20 years and over ${ }^{2}$. | 139,965 | 100.0 | 97.9 | 2.1 | 100.0 | 61.6 | 38.4 |
| 20-44 years | 74,341 | 100.0 | 98.5 | 1.5 | 100.0 | 64.2 | 35.8 |
| 45-64 years | 43,357 | 100.0 | 97.5 | 2.5 | 100.0 | 60.3 | 39.7 |
| 65 years and over | 22,266 | 100.0 | 97.1 | 2.9 | 100.0 | 59.0 | 41.0 |
| Sex |  |  |  |  |  |  |  |
| Male . | 65,801 | 100.0 | 98.1 | 1.9 | 100.0 | 57.1 | 42.9 |
| Female. | 74,164 | 100.0 | 97.8 | 2.2 | 100.0 | 64.8 | 35.3 |
| Race |  |  |  |  |  |  |  |
| White. | 123,626 | 100.0 | 98.0 | 2.0 | 100.0 | 62.9 | 37.1 |
| Black. | 14.420 | 100.0 | 96.9 | 3.1 | 100.0 | 53.5 | 46.3 |
| With stroke |  |  |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |
| 20 years and over ${ }^{2}$. | 2,692 | 100.0 | 82.1 | 17.9 | 100.0 | 47.5 | 52.5 |
| 20-44 years | 287 | 100.0 | 84.7 | 15.3 | 300.0 | *65.9 | *34.1 |
| 45-64 years | 881 | 100.0 | 78.1 | 21.9 | 100.0 | 44.9 | 55.1 |
| 65 years and over. | 1,524 | 100.0 | 83.9 | 16.1 | 100.0 | 46.4 | 53.6 |
| Sex |  |  |  |  |  |  |  |
| Male | 1,316 | 100.0 | 80.6 | 19.4 | 100.0 | 45.0 | 55.0 |
| Female . | 1,376 | 100.0 | 83.5 | 16.5 | 100.0 | 50.0 | 49.5 |
| Race |  |  |  |  |  |  |  |
| White . | 2,314 | 100.0 | 82.5 | 17.5 | 100.0 | 49.9 | 50.1 |
| Black. | 362 | 100.0 | 78.5 | 21.5 | 100.0 | *35.9 | 64.1 |
| Without stroke |  |  |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |
| 20 years and over ${ }^{2}$ | 134,487 | 100.0 | 98.3 | 1.7 | 100.0 | 64.3 | 35.7 |
| 20-44 years | 72,639 | 100.0 | 98.5 | 1.5 | 100.0 | 63.7 | 36.3 |
| 45-64 years | 41,605 | 100.0 | 98.0 | 2.0 | 100.0 | 63.8 | 36.1 |
| 65 years and over . . . . . . | 20,243 | 100.0 | 98.1 | 1.9 | 100.0 | 67.0 | 33.0 |
| Sex |  |  |  |  |  |  |  |
| Male | 63,234 | 100.0 | 98.5 | 1.5 | 100.0 | 60.5 | $39.5$ |
| Female . . . . . . . . . . . | 71,253 | 100.0 | 98.1 | 1.9 | 100.0 | 66.8 | 33.2 |
| Race |  |  |  |  |  |  |  |
| White | 118,928 | 100.0 | 98.4 | 1.6 | 100.0 | 65.3 | 34.7 |
| Black. . . . . . . . . . . . . . . . | 13.672 | 100.0 | 97.4 | 2.6 | 100.0 | 57.8 | 42.2 |

${ }_{2}{ }^{1}$ Excludes unk nowns.
2 Includes all races not shown separately.
NOTE: When a figure is shown with an asterisk, it is presented only for the purpose of combining with other cells. An estimate has a relative standard error of less than $\mathbf{3 0}$ percent when the aggregate is at least 35,000 .

Table 11. Number and percent distributions of persons 20 years of age and over with stroke-like symptoms by age and sex, according to duration of symptoms and stroke status: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]


${ }^{1}$ includes unk nown duration.
NOTE: When a figure is shown with an asterisk, it is presented only for the purpose of combining with other cells. An estimate has a relative standard error of less than 30 percent when the aggregate is at least 35,000 .

Table 12. Number and percent of persons 20 years of age and over with stroke-like symptoms, by stroke status, number of symptoms, and kind of symptom: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Number and kind of symptoms | Total with 1 symptom or more ${ }^{1}$ | With stroke | Without stroke | Total with 1 symptom or more ${ }^{1}$ | With stroke | Without stroke |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Number of symptoms |  | Number in thousands |  |  | Percent distribution |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Total |  | 2,877 | 482 | 2,326 | 100.0 | 100.0 | 100.0 |
| 1 |  | 2,236 | 236 | 1,962 | 77.7 | 49.0 | 84.4 |
| 2 |  | 474 | 160 | 293 | 16.5 | 33.2 | 12.6 |
| 3 |  | 116 | 60 | 50 | 4.0 | 12.4 | 2.1 |
| 4 |  | 52 | *26 | *20 | 1.8 | *5.4 | *0.9 |
| Kind of symptom ${ }^{2}$ |  | Number in thousands |  |  | Percent |  |  |
|  |  |  |  |  |  |  |  |
| Paralysis |  | 978 | 317 | 629 | 34.0 | 65.8 | 27.0 |
| Numbness |  | 1,861 | 260 | 1,555 | 64.7 | 53.9 | 66.9 |
| Vision loss. |  | 593 | 110 | 462 | 20.6 | 22.8 | 19.9 |
| Speech loss. |  | 305 | 152 | 132 | 10.6 | 31.5 | 5.7 |

${ }^{1}$ includes unknown stroke status.
2Percents by kind of symptom add to more than 100 as categories are not mutually exclusive.
NOTE: When a figure is shown with an asterisk, it is presented only for the purpose of combining with other cells. An estimate has a relative standard orror of less than 30 percent when the aggragate is at least 35,000 .

Table 13. Number and percent distributions of persons 20 years and over with stroke-like symptoms by whether doctor seen and, if so, whether hospitalized, according to stroke status: United States, 1977
[Data are based on household interviews of the civilian noninstitutionalized population. The source of data, sampling, and limitations and qualifications of data are given in the technical notes]

| Doctor visit and hospitalization status | Total with 1 symptom or more ${ }^{1}$ | With stroke | Without stroke | Total with 1 symptom or more ${ }^{7}$ | With stroke | Without stroke |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total ${ }^{2}$ Doctor visit status | Number in thousands |  |  | Percent distributions |  |  |
|  |  |  |  |  |  |  |
|  | 2,877 | 482 | 2,326 | 100.0 | 100.0 | 100.0 |
| Doctor seen | 1,492 | 329 | 1,121 | 60.4 | 78.3 | 56.4 |
| Doctor not seen. | 978 | 91 | 866 | 39.6 | 21.7 | 43.6 |
| Hospitalization status ${ }^{3}$ |  |  |  |  |  |  |
| Total ${ }^{4}$ | 1,492 | 329 | 1,121 | 100.0 | 100.0 | 100.0 |
| Hospitalized. . . Not hospitalized. | $\begin{array}{r} 458 \\ 1,027 \end{array}$ | $\begin{aligned} & 203 \\ & 121 \end{aligned}$ | $\begin{aligned} & 247 \\ & 874 \end{aligned}$ | $\begin{array}{r} 30.8 \\ 69.2 \end{array}$ | $\begin{array}{r} 62.8 \\ 37.5 \end{array}$ | $\begin{array}{r} 22.0 \\ 78.0 \end{array}$ |

1 Includes unk nown stroke status.
${ }_{3}$ Numbers include unknown if doctor seen; percents exclude unknown if doctor seen.
${ }^{3}$ Excludes persons who did not see a doctor.
$4_{\text {Numbers }}$ include unknown if hospitalized; percents exclude unknown if hospitalized.

## References

${ }^{1}$ National Center for Health Statistics: Chronic conditions and impairments of nursing home residents, United States, 1969, by A. Sirrocco. Vital and Health Statistics. Series 12-No. 22. DHEW Pub. No. (HRA) 74-1707. Health Resources Administration. Washington. U.S. Government Printing Office, Dec. 1973.
${ }^{2}$ National Center for Health Statistics: Prevalence of chronic circulatory conditions, United States, 1972, by C. S. Wilder. Vital and Health Statistics. Series 10-No. 94. DHEW Pub. No. (HRA) 75-1521. Health Resources Administration. Washington. U.S. Government Printing Office, Sept. 1974.
${ }^{3}$ Lilienfeld, A. M., and Gifford, A. J.: Chronic Diseases and Public Health. Baltimore. The Johns Hopkins Press, 1966. p. 284.
${ }^{4}$ U.S. Bureau of the Census: Statistical Abstract of the United States, 1978, 99th ed. Washington, D.C., 1978. p. 29.
${ }^{5}$ Mules, J.: A population survey of symptoms suggestive of transient ischemic attacks. Stroke. 2:114-127, Mar.-Apr. 1971.
${ }^{6}$ Lavy, S.: Hypertension and diabetes as risk factors in stroke patients. Stroke. 4:751-759, Sept.-Oct. 1973.
${ }^{7}$ Kuller, L. H.: Survey of stroke epidemiology studies. Stroke. 3:579-585, Sept.-Oct. 1972.

## Technical notes

The information from the National Health Interview Survey presented in this report is based on data collected during 1977 in a continuing nationwide survey by household interview. Each week a probability sample of households was interviewed by personnel of the U.S. Bureau of the Census to obtain information about the health and other characteristics of each member of the household in the civilian noninstitutionalized population of the United States.

During 1977, there were about 41,000 interviewed households including about 111,000 persons. The total noninterview rate was about 3.3 percent, of which 1.9 percent was due to respondent refusal, and the remainder was primarily due to the failure to find an eligible respondent at home after repeated calls. Stroke data were obtained for each household member 20 years of age and over. This sample included approximately 73,000 persons.

Since the estimates shown in this report are based on a sample of the population rather than on the entire population, they are subject to sampling error. Many tables in this report contain cells in which the estimate of a given characteristic is small. When an estimate or the numerator or denominator of a percent is small, the sampling error may be relatively high. Therefore, differences observed in many of the tables between figures for specific population groups may be due to sampling variability.

Cells containing estimates of questionable statistical reliability are noted by an asterisk (*) and are provided solely to allow readers to recombine cells into useful groupings with greater reliability.

Standard errors appropriate for estimates of the number of persons are shown in table I; standard errors appropriate for estimated percents are shown in table II.

To better understand the limitations of the estimates presented in this report, data users are encouraged to familiarize themselves with the survey design, methods used in estimation, and general qualifications of the data, which are described in appendix I of the 1977 Current Estimates report (Series 10, No. 126, in the Vital and Health Statistics series).

Definitions of certain terms used in this report and the questionnaire used during 1977 appear in appendixes II and III of the 1977 Current Estimates report.

Whenever possible, data users should seek other data sources to provide comparative statistics derived from a variety of data-collection mechanisms.

|  | Size of estimate in thousands | Standard error in thousands |
| :---: | :---: | :---: |
| 35. |  | 11 |
| 50. |  | 13 |
| 70. |  | 15 |
| 100 |  | 18 |
| 200. |  | 26 |
| 300 |  | 31 |
| 500. |  | 40 |
| 700 |  | 48 |
| 1,000. |  | 57 |
| 3,000. |  | 98 |
| 5,000. |  | 125 |
| 10,000 |  | 174 |
| 30,000 |  | 278 |
| 50,000 |  | 325 |
| 70,000 |  | 340 |

Table II. Standard errors, expressed in percentage points, of estimated percents

| Base of percent in thousands | Estimated percent |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 2 \text { or } \\ 98 \end{gathered}$ | $\begin{aligned} & 5 \text { or } \\ & 95 \end{aligned}$ | $\begin{aligned} & 10 \text { or } \\ & 90 \end{aligned}$ | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | 50 |
| 50. | 3.6 | 5.6 | 7.7 | 10.2 | 12.8 |
| 70. | 3.0 | 4.7 | 6.5 | 8.6 | 10.8 |
| 100 | 2.5 | 3.9 | 5.4 | 7.2 | 9.0 |
| 200 | 1.8 | 2.8 | 3.8 | 5.1 | 6.4 |
| 300 | 1.5 | 2.3 | 3.1 | 4.2 | 5.2 |
| 500 | 1.1 | 1.8 | 2.4 | 3.2 | 4.0 |
| 700 | 1.0 | 1.5 | 2.0 | 2.7 | 3.4 |
| 1,000 | 0.8 | 1.2 | 1.7 | 2.3 | 2.9 |
| 3,000. |  | 0.7 | 1.0 | 1.3 | 1.6 |
| 5,000. | 0.4 | 0.6 | 0.8 | 1.0 | 1.3 |
| 10,000 | 0.3 | 0.4 | 0.5 | 0.7 | 0.9 |
| 30,000 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| 50,000 |  | 0.2 | 0.2 | 0.3 | 0.4 |
| 70,000 | 0.1 | 0.1 | 0.2 | 0.3 | 0.3 |

## Symbols

-.- Data not available
... Category not applicable

- Quantity zero
0.0 Quantity more than 0 but less than 0.05
* Figure does not meet standards of reliability or precision



# Office Visits for Preventive Care, National Ambulatory Medical Care Survey: United States, 1977-78 

by Beulah K. Cypress, Ph.D., Division of Health Care Statistics

This report provides an estimate of public utilization of office-based physicians for purposes of preventive care. Its focus is on visits for certain examinations and tests that are likely to be undertaken because of the patient's interest in good health maintenance or early detection of disease.

Data on visits for such health-monitoring activities are collected in the National Ambulatory Medical Care Survey (NAMCS) of the National Center for Health Statistics. In this survey the patient's complaint, symptom, or other reason for visit, expressed as nearly as possible in the patient's own words, is recorded by the physician in item 6 of the data collection form. Physicians are instructed to record key words or phrases verbatim to the extent possible. Figure 1 is a facsimile of the 1977-78 Patient Record used by participating physicians to record information about office visits. The principal reason (the reason that is listed first in item 6) is the one that in the physician's judgment was most responsible for the patient making the visit. Data on reasons were classified and coded according to a reason for visit classification system presented in another report. ${ }^{1}$

NAMCS is a probability sample survey conducted yearly by the Division of Health Care Statistics. Since the estimates presented in this report are based on a sample rather than on the entire universe of officebased physicians, the data are subject to sampling variability. The technical notes at the end of this report provide a brief explanation of sampling errors and guidelines for judging the precision of the estimates presented as well as definitions of certain terms used in NAMCS. A more detailed description of the

[^39]sample design and additional definitions have been published elsewhere. ${ }^{2}$ The reader should note that estimates of numbers of visits contained in this report are for a 2 -year period, but ratios and rates represent average annual estimates.

Pain, discomfort, and other morbidity-related symptoms classified in the symptom module of the reason for visit classification system, because of their compelling nature, were the reasons given most frequently by patients. These reasons constituted 56 percent of all office visits during the 2 -year period 1977-78 (table 1). Visits for diagnostic, screening, and preventive care-usually made by asymptomatic patients for reasons other than illness-made up the second largest group, accounting for about 18 percent. The examinations and tests listed in table 2 composed the major part of the diagnostic, screening, and preventive care group and were responsible for about 17 percent of all visits. These specific reasons for visits were selected for this analysis because they are likely to be patient motivated rather than physician initiated; they are also the reasons for visits that are least likely to be related to a morbid condition. Thus they offer a measure of patients' interest in preventive care.

As a group, illness-related reasons in the symptom module exceeded those not necessarily related to illness. Among all specific reasons, however, two nonillness reasons were predominant, ranking first and second. These were general medical examinations and routine prenatal examinations, which accounted for about 5 percent and 4 percent of visits, respectively (table 2). For women, prenatal

[^40]

Figure 1. National Ambulatory Medical Care Survey Patient Record Form: 1977-78

Table 1. Number and percent distribution of office visits by reason for visit module: United States, 1977-78

| Reason for visit module and RVC code ${ }^{1}$ | Number of visits in thousands | Percent distribution of visits |
| :---: | :---: | :---: |
| All modules | 1,154,550 | 100.0 |
| Symptom module. . . . . . . . . S001-S999 | 648,990 | 56.2 |
| Disease module . . . . . . . . . .D001-D999 | 100,902 | 8.7 |
| Diagnostic, screening, and preventive module. . . . . . . . $\times 100 \times 599$ | 211,690 | 18.3 |
| Treatment module . . . . . . . . T100-T899 | 103,586 | 9.0 |
| Injuries and adverse effects module . . . . . . . . . . . . . . J001-J999 | 48,941 | 4.2 |
| Test results module . . . . . . . .R100-R700 | 6,237 | 0.5 |
| Administrative module . . . . . . A100-A140 | 19,029 | 1.7 |
| Other² . . . . . . . . . . . . . . . U990-U999 | 15.185 | 1.3 |

[^41]examinations were proportionately more frequent than general medical examinations. A rough measure of patient motivation toward health care is the ratio of return visits to new-problem visits. On the average, patients giving prenatal care as the reason for visit made about 5.3 return visits for each new-problem visit. Because of these and other sex-specific examinations, the preventive measures shown in table 2 accounted for about 20 percent of visits made by women, compared with 11 percent of those made by men.

Table 3 presents the percent distribution and average annual rates of visits for the selected preventive care measures by sex and age of patients. When the visits were for general medical examinations, eye examinations, or family planning, visit rates for females in all age groups exceeded those for their

Table 2. Number of office visits and percent of visits for preventive care, by, sex of patient and selected principal reasons for visit: United States, 1977-78

| Principal reason for visit and RVC code ${ }^{1}$ | Both sexes | Female | Male |
| :---: | :---: | :---: | :---: |
|  | Number of visits in thousands |  |  |
| All reasons . . . . . . . . . . . . . . . . . $1,154,550$ 694,431 460,119 |  |  |  |
|  | Percent of visits |  |  |
| General medical examination . . $\times 100$ | 5.1 | 5.0 | 5.3 |
| Well-baby examination . . . . . . X105 | 1.2 | 1.0 | 1.5 |
| Prenatal examination, routine . . X205 | 3.5 | 5.8 | . . |
| Postpartum examination . . . . . X215 | 0.4 | 0.6 | $\ldots$ |
| Breast examination . . . . . . . . X220 | 0.1 | 0.1 | ${ }^{0} 0.0$ |
| Gynecological examination . . . $\times 225$ | 1.2 | 1.9 | . . |
| Eye examination . . . . . . . . . X230 | 1.0 | 1.1 | 1.0 |
| Blood pressure test . . . . . . . . X320 | 2.1 | 2.0 | 2.2 |
| Pap smear . . . . . . . . . . . . . X365 | 0.7 | 1.1 | -.. |
| Prophylactic inoculations . . . . $\times 400$ | 0.7 | 0.6 | 0.8 |
| Family planning. . . . . . . $\times 500-\times 510$ | 0.7 | 1.0 | 0.2 |

male counterparts. Figure 2 demonstrates how visit rates for general medical examinations increased with advancing age of the patients, regardless of sex. Rates for well-baby examinations and prophylactic inoculations were similar for both sexes, as might be expected.

Visits for blood pressure tests were more common among men 15-44 years of age than among women the same age, but the comparison is reversed for ages 55 and over. During the middle years, $45-54$, women were as likely to visit for blood pressure tests as men were. Figure 3 highlights this phenomenon. Additional information on blood pressure measurement (not necessarily related to the reason for visit) has been published earlier. ${ }^{3}$

Women 25-44 years of age had higher visit rates for gynecological examinations and Pap smears than women in other age groups had. Although professional opinions vary regarding the optimal age and interval for testing for cervical cancer, it appears from these data that women in the childbearing years are more likely than other women to have concern for this aspect of health status.

Table 4 presents data on the utilization for preventive care of the four most visited physician specialties. More than half the visits to specialists in

[^42]Table 3. Number, percent distribution, and average annual rate of office visits for preventive care by sex and age of patient, according to selected principal reasons for visit: United States, 1977-78

| Principal reason for visit and RVC code ${ }^{1}$ | Number of visits in thousands | Both <br> sexes, all ages | Female |  |  |  |  | Male |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Under 15 years | $\begin{aligned} & 15.24 \\ & \text { years } \end{aligned}$ | $\begin{aligned} & 25-44 \\ & \text { years } \end{aligned}$ | $\begin{aligned} & 45-64 \\ & \text { years } \end{aligned}$ | 65 years and over | Under 15 years | $\begin{aligned} & 15-24 \\ & \text { years } \end{aligned}$ | $\begin{aligned} & 25-44 \\ & \text { years } \end{aligned}$ | $\begin{aligned} & 45-64 \\ & \text { years } \end{aligned}$ | 65 years and over |
|  |  | Percent distribution of visits |  |  |  |  |  |  |  |  |  |  |
| General medical examination. . . $\times 100$ | 59,115 | 100.0 | 17.7 | 5.4 | 12.5 | 13.5 | 10.0 | 17.0 | 2.5 | 5.3 | 9.6 | 6.6 |
| Well-baby examination. . . . . . X105 | 13,726 | 100.0 | 48.9 |  |  |  | ... | 51.1 | ... | ... | ... | ... |
| Prenatal examination, routine . . $\times 205$ | 40,394 | 100.0 | -0.5 | 47.2 | 51.8 | -0.4 | ... | ... |  | ... | $\ldots$ |  |
| Postpartum examination. . . . . . $\times 215$ | 4,114 | 100.0 | 3.6 | 43.1 | 52.6 | -0.7 |  |  |  | $\ldots$ |  |  |
| Breast examination . . . . . . . . $\times 220$ | 915 | 100.0 | - | -12.8 | 35.1 | -35.7 | -15.2 | - | - | - |  | 1.3 |
| Gynecological examination . . . . X225 | 13,262 | 100.0 | -0.1 | 19.7 | 50.9 | 25.1 | 4.3 | . |  | $\cdots$ |  |  |
| Eve examination. . . . . . . . . . $\times 232$ | 11,952 | 100.0 | 7.6 | 10.0 | 12.7 | 19.7 | 12.5 | 5.9 | 5.6 | 7.1 | 11.0 | 8.0 |
| Blood pressure test . . . . . . . . X320 | 23,696 | 100.0 | -0.6 | * 0.4 | 4.7 | 26.0 | 26.5 | -0.1 | ${ }^{-} 0.9$ | 6.8 | 20.5 | 13.6 |
| Pap smear . . . . . . . . . . . . . $\times 365$ | 7,631 | 100.0 | -0.7 | 21.5 | 50.6 | 23.3 | 4.1 |  |  |  | ... |  |
| Prophylactic inoculations . . . . . $\times 400$ | 8,152 | 100.0 | 22.9 | 5.4 | 8.0 | 9.5 | 7.2 | 23.9 | *3.7 | 7.7 | 6.9 | 4.9 |
| Family planning . . . . . . $\times 500-\times 510$ | 7.948 | 100.0 | -1.5 | 40.9 | 46.6 | $\bullet 1.3$ | -0.8 | - | * 0.6 | 7.1 | -1.2 | - |
|  |  | Average annual visit rate per 1,000 persons |  |  |  |  |  |  |  |  |  |  |
| General medical examination. . . $\times 100$ |  | 139.6 | 209.8 | 79.1 | 128.1 | 176.2 | 224.4 | 193.4 | 38.1 | 58.3 | 137.6 | 211.3 |
| Well-baby examination. . . . . . . $\times 105$ |  | 2758.4 | 2760.1 |  |  |  | .... | 2758.3 | ... |  |  |  |
| Prenatal examination, routine . . X205 |  | ${ }^{3} 184.2$ | -3.9 | 473.6 | 363.2 | -3.6 | ... | ... |  |  | . |  |
| Postpartum examination. . . . . $\times 215$ | -.. | ${ }^{3} 18.8$ | -3.0 | 44.0 | 37.6 | -0.3 | $\cdots$ | ... | $\ldots$ |  | ... |  |
| Breast examination . . . . . . . $\times 220$ | ... | 2.2 | - | * 2.9 | -5.6 | -7.2 | -5.3 | - | - | . | - | *0.6 |
| Gynecological examination . . . . $\times 225$ | -.. | ${ }^{3} 60.5$ | ${ }^{0} 0.2$ | 64.7 | 117.3 | 73.6 | 21.6 | $\cdots$ |  | … | $\cdots$ |  |
| Eye examination. . . . . . . . . $\times 230$ |  | 28.2 | 18.2 | 29.7 | 26.4 | 52.1 | 56.5 | 13.6 | 17.1 | 15.7 | 31.9 | 51.3 |
| Blood pressure test . . . . . . . . $\times 320$ |  | 56.0 | - 2.6 | $\stackrel{2.3}{ }$ | 19.4 | 136.4 | 238.2 | -0.4 | ${ }^{-5} 5$ | 30.1 | 117.5 | 173.9 |
| Pap smear . . . . . . . . . . . . . $\times 365$ |  | ${ }^{3} 34.8$ | * 1.0 | 40.6 | 67.0 | 39.3 | * 11.8 | ... |  |  | ... |  |
| Prophylactic inoculations . . . . . $\times 400$ | ... | 19.3 | 37.5 | 10.9 | 11.3 | 17.2 | 22.2 | 37.5 | *.7.9 | 11.7 | 13.6 | 21.4 |
| Family planning . . . . . . $\times 500-\times 510$ | ... | 18.8 | -2.3 | 90.0 | 70.5 | *2.4 | -2.4 | - | $\bullet 1.2$ | 20.0 | 2.8 |  |

[^43]

Figure 2. Average annual rate of office visits for general medical examinations, by sax and age of patient: United States, 1977-78


Figure 3. Avarage annual rate of office visits for blood pressure tests, by sex and age of patient: Unitad States, 1977-78
obstetrics and gynecology were for preventive care, with prenatal examinations the predominant type of visit. Because of the large proportions of general medical examinations and well-baby examinations, about one-fourth of the average pediatrician's practice included visits chiefly for preventive care. Inter-
nists and physicians in general and family practice provided proportionately about the same amount of preventive care (about 14 percent of visits for the former and 13 percent for the latter). However, general medical examinations and blood pressure tests constituted a larger share of preventive care

Table 4. Number of office visits and perceritt of visits for preventive care, by physician specialty, type of practice, and selected prihcipal reasons for visit: United States, 1977-78


[^44]visits for internists than they did for general and family practitioners, probably because internists see proportionately more older patients.

Eye examination is not included in table 4 since 94 percent of such visits were to ophthalmologists. Eye examination as a reason for visit was responsible for 19 percent of the visits to ophthalmologists.

According to the data on type of practice shown in table 4, certain types of preventive care are more common in offices with practice arrangements other than solo. Except for breast examinations, prophylactic inoculations, and blood pressure tests, preventive care visits made up a smaller proportion of visits to solo practitioners than of visits to physicians with other practice arrangements. Blood pressure tests were proportionately more frequently the reason for visits to physicians in solo practice than to others. It is not possible to determine from NAMCS data why visits for certain kinds of preventive care were more common in group than in other practice arrangements. However, the availability of more than one specialty may be a factor since, according to an American Medical Association report, multispecialty groups constituted 59 percent of group practice arrangements in $1975 .{ }^{4}$

Often, patients who visit primarily for illnessrelated problems also seek preventive care. The

[^45]secondary reason for visit is also recorded on the Patient Record (figure 1). It is noteworthy that the kinds of preventive care shown in table 5 were mentioned as second reasons for 19.6 million visits in 1977-78. There were almost as many visits with breast examination mentioned second as there were with the same examination given as the principal reason. Obtaining a Pap smear was also frequently a second reason for a visit. A well-baby examination or a routine prenatal examination was likely to be the sole reason for a visit since a relatively small number of records listed either of them second.

An exhaustive list of preventive care activities comprises more than the examinations and tests discussed in this report. Depending on the definition of preventive care that is used, NAMCS preventive

Table 5. Number of office visits with preventive care as second reason for visit: Unitad States, 1977-78.

| Second reason for visit and RVC code ${ }^{1}$ |  | Number of visits in thousinds |
| :---: | :---: | :---: |
| General medical examination | $\times 100$ | 2,936 |
| Prenatal examination, routine | $\times 205$ | - 773 |
| Breast examination | $\times 220$ | - 852 |
| Gynecological examination | $\times 225$ | 1,480 |
| Eye examination | $\times 230$ | 852 |
| Blood pressure test | $\times 320$ | 4,252 |
| Pap smear | X365 | 4,395 |
| Prophylactic inoculations | $\times 400$ | 1.727 |
| Family planning. | - $\times 510$ | 2,345 |

care visits also include visits for such reasons as patient education, diet and nutritional counseling, social problem counseling, and glucose level determination. Additional data on these and other types of preventive care as well as on other reasons for visit will be presented in more detail in a forth-
coming report from the Vital and Health Statistics series. Questions regarding this report may be directed to the Ambulatory Care Statistics Branch by calling 301-436-7132.

## Technical notes

## Source of data

The information presented in this report is based on data collected in the National Ambulatory Medical Care Survey (NAMCS) during 1977 and 1978. The NAMCS universe is composed of office visits made within the conterminous United States by ambulatory patients to nonfederally employed physicians who are principally engaged in office practice and are not in the specialties of anesthesiology, pathology, or radiology. The National Opinion Research Center, under contract to the National Center for Health Statistics, is responsible for the NAMCS field operations.

## Sample design

NAMCS utilizes a multistage probability design that involves samples of primary sampling units (PSU's), physician practices within PSU's, and patient visits within physician practices. For 1977-78 a sample of 6,007 non-Federal, office-based physicians was selected from master files maintained by the American Medical Association and the American Osteopathic Association. The physician response rate for this period was 75.1 percent. Sampled physicians were requested to complete Patient Records (figure 1) for a systematic random sample of office visits taking place during a randomly assigned weekly reporting period. During 1977-78, 98,335 Patient Records were completed by responding physicians.

## Sampling errors

The standard error is primarily a measure of the sampling variability that occurs by chance because only a sample, rather than the entire universe, is sampled. The relative standard error of an estimate is obtained by dividing the standard error of the
estimate by the estimate itself and is expressed as a percent of the estimate. Relative standard errors for aggregate statistics are shown in tables I and II. Standard errors for estimated percents are shown in tables III and IV.

Table I. Approximate relative standard errors of estimated numbers of office visits based on all physician specialties: NAMCS, 1977-78

| Estimated number of office visits in thousands | ficlative standard urror in percent |
| :---: | :---: |
| 500 | 24.9 |
| 1,000. | 17.7 |
| 2,000. | 12.7 |
| 5,000. | 8.3 |
| 10,000 | 6.2 |
| 20,000 | 4.8 |
| 50,000 | 3.8 |
| 200,000 | 3.1 |
| 1,000,000 | 2.9 | tive standerd error of 5.5 percent, or a standard error of 825,000 visite (5.5 percent of $15,000,000$ ).

Table 11. Approximate relative standard errors of estimated numbers of office visits based on an individual physician specialty: NAMCS, 1977-78

| Estimated number of office visits in thousands | Fielative standard afror in puercent |
| :---: | :---: |
| 500 | 27.0 |
| 1,000. | 19.6 |
| 2,000. | 14.5 |
| 5,000 . | 10.3 |
| 10,000 | 8.5 |
| 20,000 | 7.4 |
| 50,000. | 6.7 |
| 100,000 | 6.4 |
| 400,000 | 6.2 |

Example of use of table: An aggragete of $7,500,000$ visits has a relative standerd error of 9.4 percent, or standard error of 705,000 visits (9.4 percant of $7,500,000$ ).

Table III. Approximate standard errors of percents of estimated numbers of office visits based on all physician specialties: NAMCS, 1977-78

| Base of percent (number of affice visits in thousands) | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \text { or } \\ & \text { g9 } \end{aligned}$ | $\begin{gathered} 5 \text { or } \\ 95 \end{gathered}$ | $\begin{gathered} 10 \text { or } \\ 90 \end{gathered}$ | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | $\begin{gathered} 30 \text { or } \\ 70 \end{gathered}$ | 50 |
|  | Standard error in percentage points |  |  |  |  |  |
| 500. | 2.5 | 5.4 | 7.4 | 9.9 | 17.4 | 12.4 |
| 1,000. | 1.7 | 3.8 | 5.3 | 7.0 | 8.0 | 8.8 |
| 2,000. | 1.2 | 27 | 3.7 | 5.0 | 5.7 | 6.2 |
| 5,000. | 0.8 | 1.7 | 2.3 | 3.1 | 3.6 | 3.9 |
| 10,000 | 0.6 | 1.2 | 1.7 | 2.2 | 2.5 | 2.8 |
| 20,000 | 0.4 | 0.9 | 1.2 | 1.6 | 1.8 | 2.0 |
| 50,000 | 0.2 | 0.5 | 0.7 | 1.0 | 1.1 | 1.2 |
| 200,000 | 0.1 | 0.3 | 0.4 | 0.5 | 0.6 | 0.6 |
| 1,000,000 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 |

Example of use of table: An estimate of 20 percent based on an aggregate of $15,000,000$ visits has a standard orror of 1.9 percent, or a relative standard error of 9.5 percent ( 1.9 percent $\div 20$ percent).

Table IV. Approximate standard errors of percents of estimated numbers of office visits based on an individual physician specialty: NAMCS, 1977-78

| Base of percent (number of offic: visits in thousands) | Estimated percent |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \text { or } \\ & 99 \end{aligned}$ | $\begin{gathered} 5 \text { or } \\ 95 \end{gathered}$ | $10 \text { or }$ $90$ | $\begin{gathered} 20 \text { or } \\ 80 \end{gathered}$ | $\begin{gathered} 30 \text { or } \\ 70 \end{gathered}$ | 50 |
|  | Standard error in percentage points |  |  |  |  |  |
| 500 | 2.6 | 5.7 | 7.9 | 10.5 | 12.1 | 13.1 |
| 1,000. | 1.9 | 4.1 | 5.6 | 7.4 | 8.5 | 9.3 |
| 2,000. | 1.3 | 2.9 | 3.9 | 5.3 | 6.0 | 6.6 |
| 5,000. | 0.8 | 1.8 | 2.5 | 3.3 | 3.8 | 4.2 |
| 10,000 | 0.6 | 1.3 | 1.8 | 2.4 | 2.7 | 2.9 |
| 20,000 | 0.4 | 0.9 | 1.2 | 1.7 | 1.9 | 2.1 |
| 50,000 | 0.3 | 0.6 | 0.8 | 1.1 | 1.2 | 1.3 |
| 100,000 | 0.2 | 0.4 | 0.6 | 0.7 | 0.9 | 0.9 |
| 400,000 | 0.1 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 |

[^46]
## Definitions

Ambulatory patient.-An ambulatory patient is an individual presenting himself for personal health services who is neither bedridden nor currently admitted to any health care institution on the premises.

Office.-An office is a place that the physician identifies as a location for his ambulatory practice. Responsibility over time for patient care and professional services rendered there generally resides with the individual physician rather than an institution.

Visit.-A visit is a direct personal exchange between an ambulatory patient and a physician, or between a patient and a staff member working under the physician's supervision, for the purpose of seeking care and rendering health services.

Physician.-A physician is a duly licensed doctor of medicine (M.D.) or doctor of osteopathy (D.O.) currently in office-based practice who spends time in caring for ambulatory patients. Excluded from NAMCS are physicians who are hospital based; physicians who specialize in anesthesiology, pathology, or radiology; physicians who are federally employed; physicians who treat only institutionalized patients; physicians employed full time by an institution; and physicians who spend no time seeing ambulatory patients.

## Symbols

[^47]
# Utilization of Short-Stay Hospitals in the Treatment of Mental Disorders: 1974-1978 

by Edmund Graves, Division of Health Care Statistics, and Chris Lovato, formerly with this Division

## Introduction

This report presents national estimates on the utilization of non-Federal short-stay hospitals by patients discharged with a diagnosis of mental disorder. Included in the report are data on patients whose firstlisted diagnosis is psychosis, neurosis, personality disorder (including alcoholism and drug dependence), or other nonpsychotic mental disorder coded according to the Eighth Revision International Classification of Diseases, Adapted for Use in the United States. ${ }^{1}$ Information on the number of mental disorder discharges, average length of stay, and most frequent diagnostic categories are presented according to patient characteristics for 1974-78. Also included are data on the average length of stay according to patient's expected source of payment for 1978. Discharges of newborn infants are excluded from this report.

The statistics presented are based on data collected through the National Hospital Discharge Survey, a continuous survey which has been conducted since 1965 by the National Center for Health Statistics. A brief description of the sample design, source of data, and definitions of terms used in this report can be found in the technical notes. Several factors should be kept in mind in using the data discussed in this report. It should be noted that the survey does not include persons discharged from long-stay psychiatric facilities. Also, statistics are presented on discharges, not individual patients, since an individual may have been discharged from a hospital more than once.

Since the data presented in this report are based on a sample of all discharges, they are subject to sampling error. See the technical notes for further discussion of sampling error.

## Findings

## General trends

From 1974 to 1978 an average of 1.5 million persons with a first-listed diagnosis of mental dis-
order were discharged each year from short-stay hospitals in the United States. The incidence of discharges increased from 1974 to 1978 (table 1). There were an estimated 1.3 million such discharges in 1974 and 1.7 million in 1978, an increase of 28 percent.

When the number of mental disorder discharges are compared with the number of all patients discharged from short-stay hospitals, an average annual mental disorder discharge rate of 44 per 1,000 is indicated across 5 years of data. This rate increased slightly from 41 per 1,000 discharges in 1974 to 48 in 1978. For a given hospital subpopulation, the mental disorder discharge rate is the number of mental disorder discharges divided by the total number of discharges multiplied by 1,000 . The rate can be expressed as:

$$
\mathrm{MDDR}=\frac{\begin{array}{c}
\text { number of first-isted mental } \\
\text { disorder discharges } \times 1,000
\end{array}}{\text { total number of discharges }}
$$

Table 1 also presents the average length of stay for all mental disorder discharges for each year from 1974 to 1978. During this period, the average length of stay for patients diagnosed as having a mental disorder was 11.0 days, compared with 7.5 days for all other diagnoses.

| Table 1. Number of patients with a diagnosed mental disorder and average length of stay: United States, 1974-78 <br> [Discharges from non-Federal short-stay hospitals. Excludes newborn infants] |  |  |
| :---: | :---: | :---: |
| Year | Number of discharges in thousands | Averaga length of stay in days |
| 1978 | 1,713 | 11.2 |
| 1977 | 1,613 | 10.9 |
| 1976 | 1.471 | 10.5 |
| 1975 | 1,476 | 11.1 |
| 1974 | 1,338 | 11.3 |

## Patient characteristics

As indicated in figure 1, the mental disorder discharge rate was higher for all other patients than for white patients. The largest difference is seen for 1975, in which there was a mental disorder discharge rate of 40 for white patients discharged and 52 for all other patients. It should be noted that color was not stated in a large number of cases (approximately 15 percent). As a result, interpretations should be made with caution.

Table 2 shows, by age and sex group, the number and rate of patients diagnosed as having a mental disorder who were discharged from short-stay hospitals. From 1974 through 1978, the number of


Figure 1. Mental disorder discharge rate, by color: United States, 1974-78
males and females hospitalized with a mental disorder was about the same. The rate of hospitalization per 1,000 civilian noninstitutionalized population was higher in 1978 than in 1974. The rates for males were 8.3 and 6.6 , respectively, and those for females were 7.8 and 6.3.

In 1974-78 a total of 3 million patients in the age groups $25-34$ and $35-44$ with a diagnosed mental disorder were discharged from short-stay hospitals. Together these age groups accounted for 39 percent, or almost 4 out of every 10 patients with a mental disorder. The age groups 15-24 and 45-54 accounted for 33 percent, or a little over 3 out of every 10 patients with a mental disorder. The remaining 30 percent was distributed among the other three age groups, with the under 15 years group accounting for less than 5 percent of the discharges during this period.

## Most frequent diagnostic categories

During 1974-78, the two most frequent diagnostic categories for all mental disorder discharges were alcoholism and neurosis (table 3). Together these two categories accounted for almost 6 out of every 10 persons diagnosed with a mental disorder ( 56 percent). Schizophrenia and effective psychosis ranked third and fourth, respectively, over the 5 -year period. These two diagnostic categories accounted for an average of 18 percent of these discharges.

Of the four most common diagnoses described above, affective psychosis and schizophrenia had the two longest average lengths of stay, with an average of 17.5 and 16.6 days, respectively. The average length of stay for neurosis and alcoholism was 9.9 and 8.2 days, respectively.

For females, neurosis was the most common diagnosis for each of the 5 years from 1974 through 1978. This diagnostic category accounted for approximately 38 percent of all females diagnosed with a mental disorder. Alcoholism and schizophrenia were the next two leading categories of female discharges in the 5 -year period under discussion. Together these two categories accounted for approximately 26 percent of all diagnoses of mental disorders for females. For males, alcoholism was the leading mental disorder diagnostic category for each year of data analyzed. Approximately 45 percent of all males with a mental disorder diagnosis were discharged with a diagnosis of alcoholism. The second and third most frequent diagnoses were neurosis and schizophrenia, respectively. Together these two diagnostic categories accounted for 29 percent of all males diagnosed with a mental disorder.

## Expected source of payment

In 1977, the National Hospital Discharge Survey began collecting data on patient's expected principal

Table 2. Number and rate of patients with a diagnosed mental disorder discharged from short-stay hospitals, by sex and age: United States, $1974-78$
[Discharges from non-Federal short-stay hospitals. Excludes newborn infants]

| Sex and age |  |
| :--- | :--- |
|  |  |

source of payment. This section describes these data for patients with and without mental disorders who were discharged in 1978.

Figure 2 depicts the percent distribution of firstlisted diagnosis by source of payment for those patients with and without mental disorders. Approximately 50 percent of all patients without mental disorders and 43 percent of patients with mental disorders listed private or commercial insurance as their principal source of payment. The second leading payment category for patients with and without mental disorders was Medicare. For patients without mental disorders it was 26.1 percent, while for patients with a mental disorder it was 16.6 percent. Together these two payment sources were used by 75.6 percent of all patients without a mental disorder, and 58.8 percent of all patients with a mental disorder. At the other end of the spectrum, Workmen's Compensation was a source of payment for 1.6 percent of all patients without a mental disorder, and 0.3 percent with a mental disorder. "Other" was a source of payment for 1.4 percent of all patients without a mental disorder, and 2.3 percent with a mental disorder. There was no charge for 0.1 percent of all patients without a mental disorder,
and 0.2 percent with a mental disorder. Fourteen percent of the patients with mental disorders and 6 percent of the patients without mental disorders did not state their source of payment.

As shown in table 4, the distribution of days of care by source of payment was similar to the distribution of discharges. Individuals with a diagnosed mental disorder expecting to pay hospital charges through private or commercial insurance carriers used the largest proportion of days of care ( 45.6 percent, or approximately 8.8 million days). Medicare patients utilized the second highest percent of total days of care ( 19.3 percent, or 3.7 million days). Of the major sources of payment, the smallest proportion of days of care was utilized by patients with Workmen's Compensation ( 0.2 percent, or 46,000 days of care).

Overall, there was little significant variation in length of stay by source of payment. The most noticeable difference was that patients using private or commercial insurance carriers as a method of payment stayed an average of 3.8 days longer than those utilizing their own resources as a source of payment.

Table 3. Number of patients with a diagnosed mental disorder discharged from short-stay hospitals and average length of stay, by selected first-listed diagnostic categories and sex: United States, 1974-78
[Discharges from non-Federal short-stay hospitals. Excludes nawborn infants]

| Selected first-listed diagnostic categories, ICDA code, ${ }^{1}$ and sex | 1974 | 1975 | 1976 | 1977 | 1978 | 1974 | 1975 | 1976 | 1977 | 1978 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of discharges in thousands |  |  |  |  | Average length of stay in days |  |  |  |  |
| Both sexes . | 1,338 | 1,476 | 1,471 | 1,613 | 1,713 | 11.25 | 11.06 | 10.50 | 10.85 | 11.23 |
| Male . . <br> Female . | $\begin{aligned} & 657 \\ & 680 \end{aligned}$ | 711 765 | 713 758 | $\begin{aligned} & 810 \\ & 803 \end{aligned}$ | $\begin{aligned} & 853 \\ & 860 \end{aligned}$ | $\begin{aligned} & 10.36 \\ & 12.10 \end{aligned}$ | $\begin{array}{r} 9.90 \\ 12.14 \end{array}$ | $\begin{aligned} & 10.18 \\ & 10.80 \end{aligned}$ | $\begin{aligned} & 10.30 \\ & 11.42 \end{aligned}$ | $\begin{aligned} & 10.49 \\ & 11.96 \end{aligned}$ |
| Alcoholism (303) |  |  |  |  |  |  |  |  |  |  |
| Both sexes | 339 | 424 | 429 | 468 | 519 | 7.98 | 7.90 | 8.08 | 8.54 | 8.50 |
| Male | 274 | 324 | 328 | 362 | 397 | 7.69 | 7.71 | 8.22 | 8.66 | 8.06 |
| Fernale | 65 | 100 | 102 | 106 | 122 | 9.19 | 8.53 | 7.65 | 8.13 | 9.93 |
| Neuroses (300) |  |  |  |  |  |  |  |  |  |  |
| Both sexes. | 424 | 421 | 391 | 426 | 437 | 10.12 | 10.22 | 9.37 | 9.29 | 10.25 |
| Male . . | $131$ | 123 | $118$ | $133$ | $136$ | $10.30$ | $9.91$ | $10.43$ | $8.99$ | $10.20$ |
| Female . | $293$ | 298 | 273 | 293 | 301 | 10.05 | $10.34$ | 8.92 | 9.43 | $10.27$ |
| Schizophrenia (295) |  |  |  |  |  |  |  |  |  |  |
| Both sexes . . . | 153 | 165 | 179 | 221 | 222 | 18.17 | 17.21 | 15.99 | 15.69 | 16.59 |
| Male . . |  | 73 | 84 | $101$ | 108 | $16.61$ | $14.46$ | $14.96$ | $13.88$ | $16.61$ |
| Female. | 82 | 93 | 95 | 120 | 114 | 19.51 | 19.36 | 16.91 | 17.22 | $16.56$ |
| Affective psychosis (296) |  |  |  |  |  |  |  |  |  |  |
| Both sexes. . | 77 | 83 | 85 | 97 | 124 | 19.35 | 18.71 | 16.71 | 16.71 | 16.73 |
| Male . | 25 | 26 | 24 | 35 | 41 | 19.62 | 20.31 | 16.51 | 18.02 | 15.84 |
| Female. | 52 | 56 | 62 | 62 | 83 | 19.22 | 17.97 | 16.76 | 15.97 | 17.17 |

${ }^{1}$ Eighth Revision International Classification of Diseases, Adapted for Use in the United States, 1965.

Table 4. Days of care, number of first-listed diagnosis, and average length of stay for inpatients with and without mental disorders discharged from short-stay hospitals, by sources of payment: United States, 1978
[Discharges from non-Federal short-stay hospitals. Excludes newborn infants]

| Source of payment | With mental disorders |  |  | Without mental disorders |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Days of care | Number of first-listed diagnosis | Average length of stay | Days of care | Number of first-listed diagnosis | Average length of stay |
|  | In thousands |  | In days | In thousands |  | In days |
| All sources of payment. | 19,232 | 1,714 | 11.2 | 242.736 | 33,902 | 6.9 |
| Self pay | 1,204 | 144 | 8.3 | 9,920 | 1,936 | 5.1 |
| Workmen's compensation | 46 | 5 | 9.7 | 3,689 | 556 | 6.6 |
| Medicare | 3,714 | 284 | 13.1 | 93,778 | 8,834 | 10.6 |
| Medicaid | 1.753 | 181 | 9.7 | 16,142 | 2,547 | 6.3 |
| Other government payments. | 812 | 91 | 9.0 | 4,484 | 783 | 5.7 |
| Blue Cross, other private or commercial insurance | 8,772 | 723 | 12.1 | 97,283 | 16,787 | 5.8 |
| No charge | 31 | 3 | 10.1 | 254 | 38 | 6.7 |
| Other . | 413 | 40 | . 10.2 | 2,870 | 461 | 6.2 |
| Not stated | 2,487 | 243 | 10.2 | 14,316 | 1,961 | 7.3 |



Figure 2. Percent distribution of first-listed diagnosis, by source of payment: United States, 1978

## References

${ }^{1}$ National Center for Health Statistics: Eighth Revision International Classification of Diseases, Adapted for Use in the United States. PHS Pub. No. 1693. Public Health Service. Washington. U.S. Government Printing Office, 1967.
${ }^{2}$ National Center for Health Statistics: Utilization of shortstay hospitals, annual summary for the United States, 1974, by A. L. Ranofsky. Vital and Health Statistics. Series 13-No. 26. DHEW Pub. No. (HRA) 76-1777. Health Resources Administration. Washington. U.S. Government Printing Office, Sept. 1976.
${ }^{3}$ National Center for Health Statistics: Utilization of shortstay hospitals, annual summary for the United States, 1975, by A. L. Ranofsky. Vital and Health Statistics. Series 13-No. 31. DHEW Pub. No. (HRA) 77-1782. Health Resources Administration. Washington. U.S. Government Printing Office, Apr. 1977.
${ }^{4}$ National Center for Health Statistics: Utilization of shortstay hospitals, annual summary for the United States, 1976, by A. L. Ranofsky. Vital and Health Statistics. Series 13-No.
37. DHEW Pub. No. (PHS) 78-1788. Public Health Service. Washington. U.S. Government Printing Office, June 1978.
${ }^{5}$ National Center for Health Statistics: Utilization of shortstay hospitals, annual summary of the United States, 1977, by B. J. Haupt. Vital and Health Statistics. Series 13-No. 41. DHEW Pub. No. (PHS) 79-1557. Public Health Service. Washington. U.S. Government Printing Office, Mar. 1979.
${ }^{6}$ National Center for Health Statistics: Utilization of shortstay hospitals, annual summary for the United States, 1978, by B. J. Haupt. Vital and Health Statistics. Series 13-No. 46. DHEW Pub. No. (PHS) 80-1797. Public Health Service. Washington. U.S. Government Printing Office, Mar. 1980.
${ }^{7}$ National Center for Health Statistics: Utilization of shortstay hospitals, summary of nonmedical statistics, United States, 1973, by W. F. Lewis. Vital and Health Statistics. Series 13-No. 23. DHEW Pub. No. (HRA) 76-1774. Health Resources Administration. Washington. U.S. Government Printing Office, July 1976.

## Technical Notes

## Survey methodology

## Source of data

The scope of the National Hospital Discharge Survey encompasses patients discharged from shortstay noninstitutionalized hospitals, exclusive of military and Veterans Administration hospitals, located in the 50 States and the District of Columbia. Only hospitals with six beds or more and an average length of stay less than 30 days for all patients are included in the survey.

The universe of the survey consisted of 6,965 short-stay hospitals contained in the 1963 Master Facility Inventory of Hospitals and Institutions. New hospitals were sampled for inclusion into the survey in 1968, 1972, 1975, and 1977.

The sample size and number of medical records provided for the survey are presented below. Detailed information in regard to the sample can be found in certain Vital and Health Statistics Series reports. ${ }^{2-6}$
$\left.\begin{array}{ll}\hline \text { Year } & \begin{array}{c}\text { Number of } \\ \text { participating } \\ \text { hospitals }\end{array}\end{array} \begin{array}{c}\text { Number of } \\ \text { records } \\ \text { provided }\end{array}\right]$

## Sample design

All hospitals with 1,000 beds or more in the universe of short-stay hospitals were selected with certainty in the sample. All hospitals with fewer than 1,000 beds were stratified, the primary strata being 24 size-by-region classes. Within each of these 24 primary strata, the allocation of the hospitals was made through a controlled selection technique so that hospitals in the sample would be properly distributed with regard to type of ownership and geographic division. Sample hospitals were drawn with probabilities ranging from certainty for the largest hospitals to 1 in 40 for the smallest hospitals.

Subsamples of discharges were selected within the sample hospitals using the daily listing sheet of discharges as the sampling frame. These discharges were selected by a random technique, usually on the basis of the terminal digit(s) of the patient's medical record number, a number assigned when the patient was admitted to the hospital. The within hospital sampling ratio for selecting sample discharges varied
inversely with the probability of selection of the hospitals.

## Sampling errors

Since the estimates for this report are based on a sample rather than the entire universe, they are subject to sampling variability. The standard error is primarily a measure of the variability that is attributed to using a value obtained from a sample as an. estimate of a population value. The value that would have been obtained had a complete enumeration of the population been made will be contained in an interval represented by the sample estimate plus or minus 1 standard error about 68 out of 100 times, and plus or minus 2 standard errors about 95 out of 100 times.

The relative standard error is obtained by dividing the standard error by the estimate. The resulting value is multiplied by 100 , which expresses the standard error as a percentage. The relative standard error applicable to patients discharged (or first-listed diagnosis) and days of care for 1978 data presented in this report are provided in table I. Relative standard error estimates for 1974 through 1977 can be found in earlier publications. ${ }^{2-5}$ The formula used for computing the variance of average length of stay has also been published. ${ }^{7}$ The two-tailed Bonferroni test for multiple comparisons was performed for testing the difference between two estimates.

| Table I. Approximate relative standard errors of estimated number of first-listed diagnoses and days of care |  |  |
| :---: | :---: | :---: |
| Size of estimate in thousands | First- <br> listed diagnoses | Days of care |
|  | Relative standard error |  |
| 1 | . 370 | --- |
| 10. | . 165 | . 290 |
| 100 | . 080 | . 165 |
| 1,000. | . 050 | . 100 |
| 10,000 | . 035 | . 060 |

## Definition of terms

Patient.-A person who is formally admitted to the inpatient service of a short-stay hospital for observation, care, diagnosis, or treatment. In this report the number of patients refers to the number of discharges during the year including any multiple

NOTE: A list of references follow text
discharges of the same individual from one or more short-stay hospitals.

Discharge.-The formal release of a patient by a hospital; that is, the termination of a period of hospitalization by death or by disposition to place of residence, nursing home, or another hospital. "Discharges" and "patient discharges" are used synonymously.

Days of Care.-The total number of patient days accumulated at the time of discharge by patients discharged from short-stay hospitals during a year. A stay of less than 1 day (patient admitted and discharged on the same day) is counted as 1 day in the summation of total days of care. For patients admitted and discharged on different days, the number of days of care is computed by counting all days from (and including) the date of admission to (but not including) the date of discharge.

Average Length of Stay.-The total number of patient days accumulated at time of discharge by patients discharged during the year divided by the number of patients discharged.

Mental Disorder Discharges.-Discharges discussed in this report are those designated with a first-listed diagnosis of mental disorder in the Eighth Revision International Classification of Diseases, Adapted for Use in the United States. ${ }^{1}$ Included are three-digit code numbers 290 through 309. Mental Retardation, code 310, is not included in this report.

First-Listed Diagnosis.-The coded diagnosis identified as the principal diagnosis or else listed first on the face sheet of the medical record. The number of first-listed diagnoses is equivalent to the number of discharges.

Age.-Patient's age refers to age at birthday prior to admission to the hospital inpatient service.

Color.-Patients are classified into two groups, "white" and "all other." The all other classification includes all categories other than white.

[^48]
## Symbols

## -.. Data not available

... Category not applicable

- Quantity zero
0.0 Quantity more than 0 but less than 0.05
* Figure does not meet standards of reliability or precision


## Vital and Health Statistics series descriptions

Programs and Collection Procedures - These reports describe the data collection programs of the National Center for Health Statistics. They include descriptions of the methods used to coilect and process the data, definitions, and other material necessary for understanding the data.
SERIES 2. Data Evaluation and Methods Research - These reports are studies of new statistical methods and include analytical techniques, objective evaluations of reliability of collected data, and contributions to statistical theory. These studies also include experimental tests of new survey methods and comparisons of U.S. methodology with those of other countries.
SERIES 3. Analytical and Epidemiological Studies - These reports present analytical or interpretive studies based on vital and health statistics. These reports carry the analyses further than the expository types of reports in the other series.
SERIES 4. Documents and Committee Reports-These are final reports of major committees concerned with vital and health statistics and documents such as recommended model vital registration laws and revised birth and death certificates.
SERIES 5. International Vital and Health Statistics Reports - These reports are analytical or descriptive reports that compare U.S. vital and health statistics with those of other countries or present other international data of relevance to the health statistics system of the United States.
SERIES 6. Cognition and Survey Measurement-These reports are from the National Laboratory for Collaborative Research in Cognition and Survey Measurement. They use methods of cognitive science to design, evaluate, and test survey instruments.
SERIES 10. Data From the National Health Interview Survey-These reports contain statistics on illness; unintentional injuries; disability; use of hospital, medical, and other health services; and a wide range of special current health topics covering many aspects of health behaviors, health status, and health care utilization. They are based on data collected in a continuing national household interview survey.
SERIES 11. Data From the National Health Examination Survey, the National Health and Nutrition Examination Surveys, and the Hispanic Health and Nutrition Examination SurveyData from direct examination, testing, and measurement on representative samples of the civilian noninstitutionalized population provide the basis for (1) medically defined total prevalence of specific diseases or conditions in the United States and the distributions of the population with respect to physical, physiological, and psychological characteristics, and (2) analyses of trends and relationships among various measurements and between survey periods.
SERIES 12. Data From the Institutionalized Population Surveys Discontinued in 1975. Reports from these surveys are included in Series 13.
SERIES 13. Data From the National Health Care Survey - These reports contain statistics on health resources and the public's use of health care resources including ambulatory, hospital, and long-term care services based on data collected directly from health care providers and provider records.

SERIES 14. Data on Health Resources: Manpower and Facilities Discontinued in 1990. Reports on the numbers, geographic distribution, and characteristics of health resources are now included in Series 13.
SERIES 15. Data From Special Surveys - These reports contain statistics on health and health-related topics collected in special surveys that are not part of the continuing data systems of the National Center for Health Statistics.
SERIES 16. Compilations of Advance Data From Vital and Health Statistics-Advance Data Reports provide early release of information from the National Center for Health Statistics' health and demographic surveys. They are compiled in the order in which they are published. Some of these releases may be followed by detailed reports in Series 10-13.
SERIES 20. Data on Mortality - These reports contain statistics on mortality that are not included in regular, annual, or monthly reports. Special analyses by cause of death, age, other demographic variables, and geographic and trend analyses are included.
SERIES 21. Data on Natality, Marriage, and Divorce - These reports contain statistics on natality, marriage, and divorce that are not included in regular, annual, or monthly reports. Special analyses by health and demographic variables and geographic and trend analyses are included.
SERIES 22. Data From the National Mortality and Natality SurveysDiscontinued in 1975. Reports from these sample surveys, based on vital records, are now published in Series 20 or 21.
SERIES 23. Data From the National Survey of Family Growth - These reports contain statistics on factors that affect birth rates, including contraception, infertility, cohabitation, marriage, divorce, and remarriage; adoption; use of medical care for family planning and infertility; and related maternal and infant health topics. These statistics are based on national surveys of childbearing age.
SERIES 24. Compilations of Data on Natality, Mortality, Marriage, Divorce, and Induced Terminations of PregnancyThese include advance reports of births, deaths, marriages, and divorces based on final data from the National Vital Statistics System that were published as supplements to the Monthly Vital Statistics Report (MVSR). These reports provide highlights and summaries of detailed data subsequently published in Vital Statistics of the United States. Other supplements to the MVSR published here provide selected findings based on final data from the National Vital Statistics System and may be followed by detailed reports in Series 20 or 21.

For answers to questions about this report or for a list of reports published in these series, contact:

[^49]
## DEPARTMENT OF <br> HEALTH \& HUMAN SERVICES

Public Health Service
Centers for Disease Control and Prevention
National Center for Health Statistics
6525 Belcrest Road
Hyattsville, Maryland 20782
OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300


[^0]:    U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

    Public Health Service
    Centers for Disease Control and Prevention
    National Center for Health Statistics
    Hyattsville, Manyland
    December 1993
    DHHS Publication No. (PHS) 94-1866

[^1]:    ${ }^{2}$ This report was prepared by Sarz Millman, M.A., and William D. Mosher, Ph.D., Division of Vital Statistics.

[^2]:    ${ }^{2}$ This report was prepared by Robert Pokras and Gloria Gardocki, Division of Health Resources Utilization Statistics.
    ${ }^{1}$ National Center for Health Statistics: Patient charges in short-stay hospitals, United States, 19681970, by M. Moien. Vital and Health Statistics. Series 13-No. 15. DHEW Pub. No. (HRA) 74-1766. Public Health Service. Washington. U.S. Government Printing Office, May 1974.

[^3]:    ${ }^{2}$ National Center for Health Statistics: Inpatient utilization of short-stay hospitals, annual summary of the United States, 1977, by B. J. Haupt Vital and Health Statistics. Series 13-No. 41. DHEW Pub. No. (PHS) 79-1792. Public Health Service. Washington. U.S. Government Printing Office, Mar. 1979.

[^4]:    ${ }^{3}$ National Center for Health Statistics: Inpatient utilization of short-stay hospitals by diagnosis, United States, 1974, by L. S. Glickman. Vital and Health Statistics. Series 13-No. 30. DHEW Pub. No. (HRA) 77-1783. Public Health Service. Washington. U.S. Government Printing Office, July 1977.
    ${ }^{4}$ National Center for Health Statistics: Surgical Operations in short-stay hospitals, United States, 1975, by A. L. Ranofsky. Vital and Health Statistics. Series 13.-No. 34. DHEW Pub. No. (PHS) 78-1785. Public Health Service. Washington. U.S. Government Printing Office, July 1977.
    ${ }^{5}$ National Center for Health Statistics: Eighth Revision International Classification of Diseases, Adapted for Use in the United States. (PHS) Pub. No. 1693. Public Health Service. Washington. U.S. Government Printing Office, 1967.

[^5]:    $\mathbf{1}^{\text {This report was prepared by Hugo Koch, Division }}$ of Health Resources Utilization Statistics.

[^6]:    ${ }^{2}$ National Center for Health Statistics: Eighth Revision International Classification of Diseases, Adapted for Use in the United States. PHS Pub. No. 1693. Public Health Service. Washington. U.S. Government Printing Office, 1967.

[^7]:    ${ }^{3}$ Unpublished findings from the Health Interview Survey, 1978, a household survey conducted yearly by the National Center for Health Statistics.

[^8]:    ${ }_{2}^{1}$ Based on Eighth Revision Intemational Classification of Diseases, Adapted for Use" in the United States (ICDA-8).
    ${ }^{2}$ Includes $* 312,000$ visits for breast disease.

[^9]:    ${ }^{1}$ Based on Eighth Revision International Classification of Diseases, Adapted for Use in the United Steres (ICDA-8).
    ${ }^{2}$ Excludes ${ }^{*} 312,000$ visits for breast disease.

[^10]:    ${ }^{1}$ Based on Eighth Revision International Classificavion of Diseases, Adapted for Use in the United Stares (3CDA-8).

[^11]:    ${ }_{2}{ }^{1}$ Based on Eighth Revision International Classiftcation of Diseases, Adapted for Use in the United States (ICDA-8).
    ${ }^{2}$ Excludes ${ }^{\mathbf{3}} \mathbf{3 1 2 , 0 0 0}$ visits for breast disease.

[^12]:    ${ }^{1}$ Based on Eighth Revision International Classification of Diseases, Adapted for Use in the United States (1CDA-8).
    2Excludes "312,000 visits for breast disease.
    ${ }^{3}$ Will not add to 100.0 percent because more than 1 procedure was possible.

[^13]:    ${ }^{2}$ This report was prepared by Charlotte A. Schoenborn, M.P.H. and Kathleen M. Danchik, Division of Analysis.

[^14]:    ${ }^{1}$ Excludes unknown breakfast-eating habits.
    NOTE: See table 1 for population.

[^15]:    ${ }^{1}$ Excludes unknown snacking habits.

[^16]:    ${ }^{1}$ Excludes alcohol consumption.

[^17]:    ${ }^{\mathrm{b}}$ For a discussion of the validity and reliability of self-reported height and weight data, see reference 7 .

[^18]:    ${ }^{1}$ This report was prepared by Beulah K. Cypress, Ph.D., and Thomas McLemore, M.S.P.H., Division of Health Resources Utilization Statistics.
    ${ }^{2}$ National Center for Health Statistics: The National Ambulatory Medical Care Survey, 1977 Summary: United States, January-December 1977, by T. Ezzati and T. McLemore. Vital and Health Statistics. Series 13-No. 44. DHEW Pub. No. (PHS) 80-1795. -Public Health Service. Washington. U.S. Government Printing Office, Apr. 1980.

[^19]:    ${ }^{3}$ National Center for Health Statistics: A reason for visit classification ior ambulatory care, by D. Schneider, L. Appleton, and T. McLemore. Vital and Health Statistics. Series 2-No. 78. DHEW Pub. No. (PHS) 79-1352. Public Health Service. Washington. U.S. Government Printing Office, Feb. 1979.

[^20]:    ${ }^{4}$ National Center for Health Statistics: Eighth Revision International Chassification of Diseases, Adapted for Use in the United States. PHS Pub. No. 1693. Public Health Service. Washington. U.S. Govermment Printing Office, 1967.

[^21]:    ${ }^{1}$ Based on the Eighth Revision International Classification of Diseases, Adapted for Use in the United States (ICDA).

[^22]:    ${ }^{1}$ Visits in which there was no face-to-face contact between the patient and the physician.
    ${ }^{2}$ Will not add to 100.0 since more than one disposition was possible.

[^23]:    ${ }^{1}$ National Center for Heaith Statistics: The National Amhulatory Medical Care Survey, 1977 summary, United States, January-December 1977, by T. Ezzati and T. McLemore. Vital and Health Statistics. Series 13-No. 44. DHEW Puh. No. (PHS) 80-1795. Public Health Service. Washington. U.S. Government Printing Office, Apr. 1980.
    2Commission on Professional and Hospital Activities: International Classification of Diseases, 9th Revision, Clinical Modification. Ann Arbor. Edwards Brothers, Inc., 1978.

[^24]:    Includes partnership, group practice, and other.

[^25]:    ${ }^{1}$ Based on "A Reason for Visit Classification for Ambulatory Care," Vital and Health Statistics, Series 2-No. 78, Feb. 1979.
    2 Includes blanks, problems and complaints not elsewhere classified, entries of "none," and illagible entries.

[^26]:    ${ }^{1}$ Based on International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM).

[^27]:    1will not add to 100.0 since more than one disposition was possible.
    2 Represents visits in which there was no face-to-face contact between the patient and the physician.

[^28]:    Example of use of table: An aggregate of $15,000,000$ visits has a rela-

[^29]:    Example of use of table: An estimate of 90 percent based on an aggregate of $7,500,000$ visits has a standard error of 2.2 percent, or a relative standard error of 2.4 percent ( 2.2 percent $\div 90$ percent).

[^30]:    ${ }^{1}$ National Center for Health Statistics: The National Ambulatory Medical Care Survey, 1977 summary: United States, January-December 1977, by T. Ezzati and T. McLemore. Vital and Health Statistics. Series 13-No. 44. DHEW Pub. No. (PHS) 80.1795. Public Health Service. Washington. U.S. Government Printing Office, Apr. 1980.
    ${ }^{2}$ National Center for Health Statistics: A reason for visit classification for ambulatory care, by D. Schneider, L. Appleton, and T. McLemore. Vitat and Health Statistics. Series 2-No. 78. DHEW Pub. No. (PHS) 79-1 352.
    U.S. Government Printing U.S. Government Printing Office, Feb. 1979.

[^31]:    Table 1. Number, percent distribution, and average annual rate of office visits with headache as the principal reason for visit by sex and age of patient: United States, 1977-78

[^32]:    3National Center for Health Statistics: Eighth Revision Intemational Clastification of Diseases, Adapted for Use in the United States. PHS Pub. No. 1693. Public Health Service. Washington. U.S. Government Printing Office, 1967.

[^33]:    Table II. Approximate relative standard errors of estimated numbers of office visits based on an individual physician specialty: NAMCS, 1977-78

[^34]:    a The $t$-test with a critical value of 1.96 ( 0.05 level of significance) was used to test all comparisons discussed in this report.
    ${ }^{\mathrm{b}}$ For comparative purposes, the stroke prevalence estimate derived from data collected by NHIS was 1.5 million persons in 1972, and in 1978 it was 1.7 million persons. During these years a checklist of chronic conditions which included stroke was read to the household respondent.

[^35]:    ${ }^{\text {c }}$ Data were adjusted to the age distribution of the 1977 U.S. civilian noninstitutionalized population 20 years of age and over. The reader should use the age-adjusted rates only for examination of the relationships within a given variable. Any quotation of percents and age-specific rates should be of the crude rates rather than the age-adjusted data.

[^36]:    ${ }_{2}$ Includes all races not shown separately.
    ${ }^{2}$ Excludes unknowns.

[^37]:    ${ }^{\mathrm{d}}$ For this analysis, no data were available on whether a stroke survivor's activity limitation was related to the stroke.

[^38]:    ${ }^{\mathrm{e}} \mathrm{In}$ this survey, no attempt was made to limit reporting of symptoms to those caused by certain conditions, such as stroke or TIA. However, symptoms were excluded if the respondent voluntered the information that they occurred over a gradual period of time or resulted from an accident or injury (e.g., loss of vision due to old age or a blow to the head).

[^39]:    ${ }^{1}$ National Center for Health Statistics: A reason for visit classification for ambulatory care, by D. Schneider, L. Appleton, and T. McLemore. Vital and Health Statistics. Series 2-No. 78. DHEW Pub. No. (PHS) 79-1352. Public Health Service. Washington. U.S. Government Printing Office, Feb. 1979.

[^40]:    ${ }^{2}$ National Center for Health Statistics: The National Ambulatory Medical Care Survey, 1977 summary: United States, January-December 1977, by T. Ezzati and T. McLemore. Vital and Health Statistics. Series 13-No. 44. DHEW Pub. No. (PHS) 80-1795. Public Health Service. Washington. U.S. Government Printing Office, Apr. 1980.

[^41]:    ${ }_{2}^{1}$ Based on the reason for visit classification (RVC). See reference 1.
    2 includes blanks, problerss and complaints not alsewhare classified, entries of "nons." and iliegible entries

[^42]:    ${ }^{3}$ National Center for Health Statistics: Office visits for diseases of the circulatory system, the National Ambulatory Medical Care Survey: United States, 1975-76, by B. K. Cypress. Vital and Health Statistics. Series 13-No. 40. DHEW Pub. No. (PHS) 79-1791. Public Health Service. Washington. U.S. Government Printing Office, Jan. 1979.

[^43]:    ${ }^{1}$ Based on the reason for visit classification ( $\mathrm{R} \vee \mathrm{C}$ ). See reference 1.
    2 Based on the population under 3 years of age.
    $3_{\text {Based on }}$ the female population only.

[^44]:    ${ }_{2}^{1}$ Based on the reason for visit classification (RVC). See refarence 1.
    $2_{3}$ includes partnership, group practice, and other.
    3 Includes patiants 3 years of age and over.
    4 Includes patients under 3 years of age.

[^45]:    ${ }^{4}$ Goodman, L. J., Bennett, E. H., and Odem, R. J.: Group Medical Practice in the U.S., 1975. Chicago. Center for Health Services Research and Development. American Medical Association, 1976.

[^46]:    Example of use of table: An estimate of 90 percent based on an aggregate of $3,500,000$ visits has a standard error of 3.2 percent, or a relative standard error of 3.6 percent ( 3.2 percent $\div 90$ percent).

[^47]:    ... Data not available
    ... Category not applicable

    - Quantity zero
    0.0 Quantity more than 0 but less than 0.05
    * Figure does not meet standards of reliability or precision

[^48]:    NOTE: A list of references follow text.

[^49]:    Data Dissemination Branch
    National Center for Health Statistics
    Centers for Disease Control and Prevention
    Public Health Service
    6525 Belcrest Road, Room 1064
    Hyattsville, MD 20782
    (301) 436-8500

