National Health Statistics Reports

Fertility of Men and Women Aged 15-49 in the United States: National Survey of Family Growth, 2015-2019
 by Gladys M. Martinez, Ph.D., and Kimberly Daniels, Ph.D.

Abstract

Objective-This report presents national estimates of selected fertility measures for men and women aged 15-49 in the United States in 2015-2019, based on data from the National Survey of Family Growth (NSFG). Overall estimates for 2015-2019 are compared with those for 2011-2015.

Methods-Data were collected through in-person interviews with a nationally representative sample of the household population aged 15-49 in the United States in 2015-2019. The sample was made up of 21,441 respondents aged 15-49, including 9,746 men and 11,695 women. The NSFG response rate for the 2015-2019 survey period was 65.9% for women and 62.4% for men. Fertility measures in this report include ever had a biological child, number of children born alive or fathered, timing and relationship context of the first birth, and birth spacing.

Results-Among women and men aged 40-49 in 2015-2019, 84.3\% of women had given birth and 76.5% of men had fathered a child. On average, women aged 15-49 had 1.3 biological children and men aged 15-49 had fathered 0.9 children. The mean age at first birth was 24.1 for women and 27.0 for men. Among women, 29.7\% of first births occurred during their teen years and 52.1% occurred during ages 20-29. Among men, 7.3% of first births occurred at ages younger than 20 and 58.0% occurred during ages 20-29. In 2015-2019, nearly one-third of women aged 15-49 with a birth only had one birth at the time of the interview, about one-third had a second birth within 36 months of their first birth, and one-third had a second birth more than 36 months after their first birth. Among women, roughly one-half of first births occurred before marriage and one-half of all premarital first births occurred within cohabiting unions.

Keywords: parity \bullet number of children \bullet age at first birth \bullet marital or cohabiting status at birth • birth spacing

Introduction

In 2019, the last year of National Survey of Family Growth (NSFG) data presented in this report, vital statistics data indicated that 3.7 million births occurred in the United States; the number of births declined steadily during 2007-2013, increased slightly in 2014, and decreased again from 2015 to 2019 (1). From 2018 to 2019, the birth rate (number of births per 1,000 females in a specific age group) decreased for teenagers aged 15-19 and women aged 20-34 but increased for women aged 35-44 (1). Between 1976 and 2018, the mean number of children ever born per woman aged 40-44 declined, from three children to two $(2,3)$.

Early childbearing, particularly in the teen years, is associated with negative social, economic, and health consequences for the young woman and her child (4-7). Additionally, based on NSFG data for 2006-2010, three out of four teen pregnancies that ended in live births were unintended at the time of conception (8). Women with unintended pregnancies that end in live births are more likely to delay prenatal care, smoke during pregnancy, and engage in other behaviors that may place them at higher risk for premature delivery and low
birthweight infants (9). The teen birth rate in the United States has declined since 2007 (except for 2014), and in 2019 was at a record low of 16.7 births per 1,000 females aged 15-19 (1).

Delayed childbearing, having a first child at age 35 or over, increased ninefold between 1972 and 2012 (10,11). By 2019 , birth rates generally continued to increase for women aged 35-39 (since 1990) and women in their 40s (since 1985) (1). Delayed childbearing has been associated with declines in U.S. total fertility rates (12). Reasons for delayed childbearing include access to reliable contraception, pursuit of higher education, increased labor force participation, changes in familial values, relationship instability, and financial considerations $(13,14)$. Having a first child at older ages has been associated with a positive impact on women's wages and career paths, in addition to having a positive impact on their children because they are more likely to have parents with greater family and economic stability (15). A potential negative consequence of delayed childbearing is that women are attempting to have children when their fecundity (ability to have children) is declining. Pregnancies, particularly first pregnancies, at older ages have been associated with greater risks for mother and child during gestation and delivery $(15,16)$.

Spacing of births can have a significant, adverse impact on the health of the baby and the mother. Short birth spacing, defined as having a pregnancy less than 18 months after a previous birth, has been associated with preterm delivery, low birth weight, congenital disorders, and health consequences for the mother, including folate depletion and incomplete recovery from the previous birth, especially following cesarean deliveries (17-21).

This report presents data on the fertility experiences of men and women aged 15-49 in the United States using 4 years of NSFG data collected during 2015-2019, and it updates previously published estimates based on 2011-2015 data (22). NSFG data complements birth certificate data and provides additional information on behavioral, social, and economic factors that affect fertility, such as timing of sexual activity, contraceptive
use, marital or cohabiting status at conception and birth, and pregnancy outcomes in addition to live births. NSFG also includes information on family background, such as mother's level of education, marital status at birth, and age at first birth.

The fertility measures in this report include having ever had a biological child, number of children born alive to women or fathered by men, timing of the first child, birth spacing, and marital or cohabiting status at first birth. These fertility measures are shown by several key demographic characteristics, including age, marital or cohabiting status, education, household income relative to the federal poverty level, and Hispanic origin and race.

Methods

Data source

This report is based on combined NSFG data releases for 2015-2017 and 2017-2019. The combined 4 years of data collected for 2015-2019 come from 21,441 face-to-face interviews conducted from September 2015 to September 2019-with 11,695 women and 9,746 men-representative of the U.S. household population aged 15-49. The National Center for Health Statistics (NCHS) has been conducting NSFG since 1973 to collect data on fertility and the proximate determinants (23) that explain fertility in the United States. NSFG is jointly planned and funded by NCHS and other U.S. Department of Health and Human Services programs (see Acknowledgments). In 2015, NSFG expanded the age range from 15-44 to 15-49 in part to better understand the fertility experiences and reproductive health of women at the upper end of their reproductive years. The response rate for the 2015-2019 NSFG was 65.9% for women and 62.4% for men aged 15-49. More details on the sample design, fieldwork procedures, and variance estimations for the 2015-2017 and 2017-2019 NSFG were published previously (24).

Fertility measures

Fertility measures are shown for women and men. Information on these fertility measures as reported by men is limited (25). The results presented in this report are described separately for men and women because their fertility patterns differ across the life course. The average age at first birth is younger for women compared with men, so comparisons between men and women in the same age group would show differences solely for this reason (22). Although some results are presented that indicate whether the patterns of differences are similar for men and women, a systematic comparison of the fertility of men and women is not the focus of this report. The five fertility measures examined include:

- Ever had a biological child: Percentage of women who have had a biological child (Table 1); percentage of men who have fathered a biological child (Table 1)
- Number of biological children: Percent distribution of the number of children born alive to women (Table 2); percent distribution of the number of children fathered by men (Table 3)
- Timing of first birth: Percent distribution of age at first birth for men and women (Table 4); probability of a first birth by selected ages for men and women (Table 5)
- Birth spacing (for women with at least one child): Percent distribution of number of months from first birth to second birth (including percentage with no second birth at the time of the interview) (Table 6)
- Marital or cohabiting status at first birth: Percent distribution of marital or cohabiting status at first birth to women (Table 7); percent distribution of marital or cohabiting status at first child fathered by men (Table 8)

Selected demographic variables

The fertility measures presented in this report are shown for several key demographic characteristics, including age, marital or cohabiting status, education level, household income relative to the federal poverty level, and Hispanic origin and race. The 4-year combined data set provides a sample large enough for information from non-Hispanic Asian people to be presented in this report (detailed race information from NSFG is available through the NCHS Research Data Center). Apart from age and marital or cohabiting status at first birth shown in Table 6, and age at first birth and respondent's mother's education shown in Tables 7 and 8, all variables reflect the respondent's status at the time of the interview. Births that occurred to women who have never been married or to women before their first marriage are categorized as premarital births for the purposes of this report. Mother's education is shown in Tables 7 and 8 as a measure of socioeconomic status closer to the time of the respondent's first birth, especially for younger respondents. Education level is shown only for respondents aged 22-49 because many people aged 15-21 are still attending school. Household income relative to the federal poverty level, shown as the respondent's household income as a percentage of the federal poverty level accounting for the number of household members, is only shown for respondents aged 20-49 because of concerns about younger respondents' ability to accurately report their household incomes. The definition of Hispanic origin and race used in this report considers the reporting of more than one race, according to 1997 guidelines from the Office of Management and Budget (26), and while not shown separately, data from respondents reporting more than one race are included in the total. Hispanic respondents, regardless of their racial identification, are shown separately and further categorized by their nativity status, that is, whether or not they were born in the United States.

Statistical analysis

All estimates in this report are weighted to represent the approximately 71.9 million men and 72.4 million women aged 15-49 in the U.S. household population at the approximate midpoint (July 2017) of NSFG data collection for 2015-2019. SAS software (27) was used to produce statistics for this report. For most tables, PROC SURVEYFREQ was used to produce weighted percentages (weight variable wgt2015_2019) and variances that account for the complex sampling design of NSFG (28). All tables include standard errors as a measure of the precision of each point estimate.

Additionally, PROC KAPLAN MEIER was used for Table 5 to calculate probabilities of a first birth using life table or survival methodology. The Kaplan-Meier procedure fits its model, or product-limit estimator, to estimate the survival function for a given population $(29,30)$. This method considers the censored data and NSFG's complex survey design. These probabilities represent the expected proportion of people who will have a first birth by a certain age, based on the age-specific first birth rates from women and men during the 2015-2019 NSFG survey period. Probabilities were estimated based on retrospective reporting of the age at first birth and are shown by age $18,20,25,30$, 35 , and 40 . In this report, probabilities are described as percentages, such as the percentage of women who would have a first birth by age 18. Table 5 illustrates information beyond the distribution of age at first birth (Table 4) by showing the cumulative probability of having a first birth by specific ages.

The significance of differences between any two estimates was determined by standard two-tailed t tests at the 0.05 level using point estimates and their standard errors. Survey clusters minus strata were used as the degrees of freedom for significance testing of pairwise comparisons. A weighted leastsquares regression method was used to test for linear trends across age, education, and household income using the number of categories minus two as the degrees of freedom. Significant differences between probabilities were tested using the PROC SURVIVAL procedure in

SUDAAN. Terms such as "increased" and "decreased" or "higher" and "lower" indicate a statistically significant difference was observed between the two estimates. When compared statistics did not demonstrate a statistically significant difference, terms such as "similar" or "no difference" were used.

In this report, data presentation standards for proportions are based on a minimum denominator sample size and on the absolute and relative widths of a confidence interval calculated using the Korn-Graubard approach (modified Clopper-Pearson) for complex surveys. SUDAAN PROC DESCRIPT was used to test the data suppression guidelines, and all estimates presented meet the NCHS guidelines for presentation of proportions (31). When a percentage or other statistic is not shown for this reason, the table contains an asterisk signifying that the statistic "does not meet National Center for Health Statistics standards of reliability."

This report also compares the totals of various fertility measures for men and women aged 15-44 during 2015-2019 with previous data for 2011-2015 (22). Statements describing an increase or decrease between two time points do not necessarily indicate a linear trend. The results presented in this report are descriptive and do not attempt to demonstrate cause-and-effect relationships. Differing age distributions may explain some of the differences shown in fertility measures across education, marital status, household income relative to the federal poverty level, and Hispanic origin and race. For example, non-Hispanic White women have fewer children on average, which may in part be explained by age, if Hispanic and non-Hispanic Black women have a younger age distribution than non-Hispanic White women, and non-Hispanic White women have children at older ages. Differences in other characteristics, such as household income relative to the federal poverty level across marital or cohabiting status, may also account for some of the differences seen in fertility measures by marital or cohabiting status. A full multivariate analysis of these fertility measures that controls for differences across groups or standardizes across
groups by other characteristics, such as age or household income relative to the federal poverty level, is beyond the scope of this report.

Results

Ever had a biological child

Table 1 shows the percentage of men and women who ever had a biological child by selected demographic characteristics. In 2015-2019, 56.7\% of women and 44.8\% of men aged 15-49 had ever had a child.

- In 2015-2019, 13.2\% of women aged 15-24 and 84.3% of those aged 40-49 had ever had a biological child. Among men, 6.2% of those aged 15-24 and 76.5\% of those aged 40-49 had ever had a child.
- Among currently married women aged $15-49,81.2 \%$ had ever had a child, higher than the percentage for currently cohabiting women, at 59.9%; both were higher than the 22.1% of never married, not cohabiting women who had ever had a child. A similar pattern by marital or cohabiting status was seen for men.
- Among men and women aged 22-49, the percentage who ever had a biological child was higher for people with lower levels of education. For example, 79.2% of women with a high school diploma or GED had ever had a child compared with 56.3% of women with a bachelor's degree or higher.
- For household income relative to the federal poverty level, shown for women aged 20-49, a higher percentage of women with household incomes below 150% of the federal poverty level had ever had a biological child (73.2\%) compared with women whose household incomes were 300% or higher than the federal poverty level (57.0\%).
- For Hispanic men and women aged 15-49, a higher percentage of those born outside of the United States had ever had a biological child (66.7% of men and 80.0% of women) compared with those born in the United States (38.7\% of men and 50.3% of women).
- A higher percentage of Hispanic women, regardless of nativity status (62.4%), and non-Hispanic Black women (61.0\%), had ever had a biological child, followed by non-Hispanic White (54.6\%) and non-Hispanic Asian (47.9\%) women.
- The percentage of Hispanic men, regardless of nativity status, who had ever fathered a child (50.1\%) was higher than non-Hispanic White (43.9\%) and non-Hispanic Asian (35.0\%) men, and was similar to the percentage for non-Hispanic Black men (46.0%). The percentages of non-Hispanic Black and non-Hispanic White men who had ever had a child also were similar. The percentage who ever had a biological child was lowest among non-Hispanic Asian men.

Table 1 also compares overall estimates for women and men aged 15-44 in 2015-2019 with estimates for women and men aged 15-44 in 2011-2015 because only people aged 15-44 were interviewed in 2011-2015.

- A lower percentage of women aged 15-44 in 2015-2019 had ever had a biological child (52.1\%) compared with women aged 15-44 in 2011-2015 (54.9\%). Similarly, a lower percentage of men aged 15-44 in 2015-2019 had ever had a biological child (39.7\%) than men aged 15-44 in 2011-2015 (43.8\%).
Figure 1 describes the percentages of women aged 40-49 who have ever had a child by selected characteristics, because women in this age group have completed their fertility or are near completion.
- Among women aged 40-49, 84.3\% had ever had a biological child. The percentage of women aged 40-49 who had ever had a biological child was lower among never married, not cohabiting women (54.8\%) compared with women of other marital or cohabiting statuses. The percentage of women aged 40-49 who ever had a biological child decreased with additional education, from 95.3% of women with no high school diploma or GED to 78.2% of women with a bachelor's degree or higher. The percentage of Hispanic
women aged 40-49 who ever had a biological child (92.4\%) was higher than non-Hispanic White (81.8\%), non-Hispanic Black (86.7\%), and non-Hispanic women from other race groups (80.7\%).

Number of children ever born

Table 2 shows the percent distribution and mean number of children born alive to women aged 15-49 by selected demographic characteristics. Among women aged 15-49 in 2015-2019, 43.3\% had not had a biological child, 16.2% had one child, 21.7% had two children, 12.6% had three children, and 6.2% had four or more children at the time of the interview. The mean number of children ever born to women aged 15-49 in 2015-2019 was 1.3.

- Across marital or cohabiting status, the highest mean number of children ever born was seen among formerly married, not cohabiting women (2.0), followed by currently married (1.8) and currently cohabiting (1.3) women.
- Women with no high school diploma or GED had a higher average number of children (2.6) compared with women with higher levels of education (1.1-1.8). In addition, one in four women with no high school diploma or GED had four or more children (25.7%), higher than the percentage of women in other education groups (9.3% of women with a high school diploma or GED, 6.3% of women with some college, and 3.1% of women with a bachelor's degree or higher).
- Women aged 20-49 living in households with incomes at 300% of the federal poverty level or higher at the time of the interview were more likely to not have had a birth (43.0\%) compared with women living in households in the two lower income groups shown (26.8% and 33.9%).
- When comparing differences by nativity status for Hispanic women, a higher percentage of U.S.-born Hispanic women had not had a child (49.7\%) than Hispanic women born outside of the United States

Figure 1. Percentage of women aged 40-49 who have ever had a biological child, by selected characteristics: United States, 2015-2019

${ }^{1}$ Categories are single race.
${ }^{2}$ Includes people of other or multiple-race and origin groups.
NOTE: Differences across marital status, Hispanic origin and race, and education were significantly different ($p<0.05$).
SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019.
(20.0\%). Regardless of nativity status, a lower percentage of Hispanic (37.6%) and non-Hispanic Black (39.0\%) women had not had a child compared with non-Hispanic White (45.4\%) and non-Hispanic Asian (52.1\%) women.

- The mean number of children ever born for women aged 15-44 in 2015-2019 (1.1) was lower than the mean for women in 2011-2015 (1.2). A similar percentage of women aged 15-44 in 2015-2019 (5.6\%) and 2011-2015 (6.2\%) had four or more children.

Table 3 shows the percent distribution and mean number of children fathered by men aged 15-49 by selected demographic characteristics. The mean number of children fathered by men aged 15-49 in 2015-2019 was 0.9. Among men aged 15-49 in 2015-2019, 55.2\% had not fathered a biological child, 14.8% had fathered one biological child, 17.4%
had fathered two children, 8.2% had fathered three children, and 4.4% had fathered four or more children.

- Currently married men reported the highest mean number of children (1.7), higher than the mean for formerly married, not cohabiting (1.5); currently cohabiting (1.1); and never married, not cohabiting (0.2) men. Similar percentages of formerly married (8.0%), currently married (7.3\%), and currently cohabiting (6.8\%) men fathered four or more biological children, all higher than the percentage for never married men (0.6%).
- Men aged 22-49 with no high school diploma or GED had fathered a higher mean number of children (1.7) than men who had a high school diploma or GED (1.3) or those with some college (1.0) or a bachelor's degree or higher (1.0).
- Men aged 20-49 currently living in
households with incomes at 300\% of the federal poverty level or higher on average fathered 1.0 child, lower than the average of 1.3 children for men living in households with incomes at $0 \%-149 \%$ of the federal poverty level and 1.2 children for men living in households with incomes at $150 \%-299 \%$ of the federal poverty level.
- Higher percentages of U.S.-born Hispanic men had not fathered a child (61.3%) than Hispanic men who were born outside of the United States (33.3\%). A higher percentage of non-Hispanic White (56.1\%) and non-Hispanic Asian (65.0\%) men had not fathered a child compared with Hispanic men, regardless of nativity status (49.9\%). The percentage for Hispanic men was similar to the percentage for non-Hispanic Black men (54.0\%).
- The mean number of children ever born for men aged 15-44 in 2015-2019 (0.8) was lower than the mean for men in 2011-2015 (0.9). A similar percentage of men aged 15-44 in 2015-2019 (3.4\%) had four or more children compared with men in 2011-2015 (3.9\%).

Timing of first birth

Table 4 focuses on men and women who have had at least one biological child and shows their mean age at first birth, as well as the percent distribution by age at first birth. In 2015-2019, the mean age at first birth among women aged 15-49 was 24.1, and among men aged 15-49 was 27.0.

- Among women aged 15-49 in 2015-2019, about one-half had their first births in their 20s (30.1% were aged $20-24$ and 22.0% were aged 25-29), and nearly one-third of first births occurred at ages younger than 20 (29.7\%). Among men, more than one-half fathered their first child in their 20s: 28.8% were aged $20-24$ and 29.2% were aged $25-29 ; 7.3 \%$ were under age 20 . Over one-third of men, 34.6%, and 18.2% of women had a first child between the ages of 30 and 49.
- A higher percentage of currently married women had a first birth at ages 30 and over (24.9\%) than those who were not married (6.7% 15.4%). This pattern also held for men; a higher percentage of currently married men had fathered their first child at ages 30 and over (43.2\%) than those who were not married (13.0\%-21.7\%).
- Women with a bachelor's degree or higher were more likely to have had a first birth at age 30 and over (42.9\%) compared with women with lower levels of education (3.3\%10.5%) (Figure 2). For women aged 22-49, the higher the level of education, the lower the percentage who had a first birth before age 20 . For example, 57.5% of women who had no high school diploma or GED had a first birth before age 20 compared with 6.4% of women with a bachelor's degree or higher. The same pattern held for men.

Figure 2. Age at first birth for women aged 22-49, by education: United States, 2015-2019

NOTES: Distribution of age at first birth by education was statistically significant ($p<0.05$). Education level was limited to people aged 22-49 at the time of the interview. Percentages may not add to 100 because of rounding. SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019.

- Women currently living in households with incomes at 300% of the federal poverty level or higher had a higher average age at first birth (27.0) than women living in households with lower incomes (21.9-23.5). The same pattern existed for men. Men currently living in households with incomes at 300% of the federal poverty level or higher had a higher average age at the birth of their first child (28.8) than those living in households with lower incomes (24.7-25.6).
- The mean age at first birth was highest for non-Hispanic Asian women (28.4), followed by non-Hispanic White (25.1), Hispanic (22.7), and non-Hispanic Black (22.0) women. A similar pattern existed for men, except the average age at the birth of their first child was similar for non-Hispanic Black and Hispanic men.
- The mean age at first birth for men and women aged 15-44 in 2015-2019 (26.4 and 23.7, respectively) was higher than the mean age at first birth for men and women in 2011-2015 (25.5 and 23.1, respectively).

Another way to examine the timing of first births in the U.S. population is to use life table methodology to calculate the cumulative probability of having had a birth by selected ages (Table 5 and Figure 3). For women aged 15-49 in 2015-2019, the probability of having had a birth was 11% by age $18,64 \%$ by age 30 , and 82% by age 40 (Figure 3). For men, the probability of having fathered a child was 3% by age $18,47 \%$ by age 30 , and 72% by age 40 .

- Among women aged 15-44, the probability of having a first birth by age 40 decreased from 83% in 2011-2015 to 81\% in 2015-2019. Among men aged 15-44, the probability of fathering a child by age 40 decreased from 78% in 2011-2015 to 72\% in 2015-2019.
- Women and men with lower levels of education were more likely to have had a child by age 20 than those with higher levels of education. For example, the probability of having a birth by age 20 was 59% among women aged 15-49 with no high school diploma or GED compared with 4% of those with a bachelor's degree or higher. A similar pattern was seen for men aged 15-49: The probability of having fathered a child

Figure 3. Probability of a first birth, by selected ages for men and women aged 15-49: United States, 2015-2019

NOTES: Differences in probability of a first birth were significantly different for men and women ($p<0.05$).
Women had a higher cumulative probability of a first birth at each age than men ($p<0.05$).
SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019.
by age 20 was 24% among men with no high school diploma or GED compared with 1% of those with a bachelor's degree or higher.

- Women currently living in households with incomes less than 150% of the federal poverty level were more likely to have had a birth by age 20 (36%) compared with women living in households with incomes between 150% and 299% of the federal poverty level (22%) and those living in households with incomes at 300% of the federal poverty level or higher (10%). Among men, those currently living in households with incomes at 300% of the federal poverty level or higher were less likely to have fathered a child by age 20 (5\%) compared with those with household incomes less than 150% of the federal poverty level (13\%).
- Significant differences were observed by Hispanic origin and race in the probability of having had a first birth by age 20. Hispanic women, regardless of nativity status (31\%), and non-Hispanic Black women (34\%), had higher probabilities of having had a first birth by age 20 than non-Hispanic

White (17\%) and non-Hispanic Asian (5\%) women. Hispanic (12\%) and non-Hispanic Black (16\%) men had higher probabilities of having fathered a first child by age 20 compared with non-Hispanic White (5\%) and non-Hispanic Asian (1\%) men. U.S.-born Hispanic men (9\%) and women (27%) were less likely to have had a first birth by age 20 than Hispanic men and women born outside of the United States (16% and 36%, respectively).

Birth spacing

Based on women aged 15-49 in 2015-2019 who had at least one birth in their lifetime, Table 6 shows variations in birth spacing (or birth intervals) between their first and second birth (if any at the time of the interview) by selected characteristics.

In 2015-2019, nearly one-third of women aged 15-49 in the United States with a birth had only one birth (29.5\%). About one-third of women who had at least one birth had a second birth within 36 months of the first birth (18.7% within 24 months and 17.3% within 25-36 months). About one-third of women had a second birth more than 3 years after their
first birth (10.7% within 37-48 months and 23.9% at 49 months or more).

The percentage of women who did not have a second birth increased with older age at first birth. For example, 47.5% of women aged $30-49$ at the time of their first birth did not have a second birth compared with 26.6% of women aged 20-24 at their first birth.

- Across all age groups shown in Table 6, between 15% and 21% of women had a second birth within 24 months of their first birth. Higher percentages of women under age 20 (21.0\%) and aged 20-24 (19.9\%) at the time of their first birth had a second birth within 24 months of the first birth compared with women aged 25-29 at their first birth (15.0\%).
- The percentage of women who had a second birth 49 months or later after their first birth decreased as their age at first birth increased. For example, 33.4% of women under age 20 at the time of their first birth had a second birth 49 months or later compared with 10.3% of women aged $30-49$ at their first birth.
- The percentage of women who had a second birth within 24 months of their first birth was similar among married (20.7\%) and cohabiting (18.5\%) women. The percentage of women who had a second birth within 24 months of their first birth was higher among those who were married (20.7\%) than among never married, not cohabiting women at the time of their first birth (14.8\%).
- A higher percentage of women who had never been married at the time of their first birth had a birth interval of 49 months or more (34.5\%), followed by women who were cohabiting (26.6%) or married (17.5%) at the time of their first birth.
- The percentage of women aged 22-49 who did not have a second birth increased with increasing education, from 13.0% among women with no high school diploma or GED to 33.8% among women with a bachelor's degree or higher.
- A larger percentage of women aged 20-49 with higher household
incomes relative to the federal poverty level did not have a second birth compared with women with lower household incomes. For example, 35.5% of women with household incomes at 300% or higher of the federal poverty level did not have a second birth compared with 25.2% of women with household incomes at less than 150% of the federal poverty level and 26.2% of women with household incomes at $150 \%-299 \%$ of the federal poverty level.
- A higher percentage of women with household incomes less than 150% of the federal poverty level had a second birth within 24 months of their first birth (22.7%) compared with women with household incomes at $150 \%-299 \%$ of the federal poverty level (18.1%) and women with household incomes 300% or higher of the federal poverty level (15.0%).
- The percentage of Hispanic women, regardless of nativity status, who did not have a second birth (23.5\%) was lower than the percentage of non-Hispanic White (31.8\%) and non-Hispanic Black (28.4\%) women.
- The percentage of Hispanic women born in the United States who had a second birth within 24 months of their first birth (20.7\%) was similar to the percentage of Hispanic women born outside of the United States (16.4\%). The percentage of Hispanic women (regardless of nativity status) who had a second birth within 24 months (18.6%) was similar to the percentage for non-Hispanic White (18.8\%), non-Hispanic Black (18.3\%), and non-Hispanic Asian (14.8\%) women.
- The percentages of women who did not have a second birth, as well as for each interval between first and second birth in 2015-2019, were similar to estimates in 2011-2015.

Marital or cohabiting status at first birth

Table 7 shows the percent distribution of marital or cohabiting status at time of first birth among women aged 15-49 who ever had a birth. The table describes marital or cohabiting
status at first birth for three categories: currently or formerly married, within a cohabiting union, and never married, not cohabiting. A subtotal for all premarital first births is also shown, combining those within a cohabiting union and those who were never married and not cohabiting. The category "currently or formerly married" is described in the text as currently married given the small percentage of first births in this group that occurred to women who were formerly married. The Technical Notes describe this in more detail.

- Overall, about one-half of first births to women aged 15-49 in 2015-2019 occurred to women who were currently married (52.8\%), and about one-half occurred to women who had never been married (47.2%). Onehalf of these premarital first births occurred to women who were in a cohabiting union.
- Older age at first birth was associated with a higher percentage of women having the birth occur within marriage. For example, 19.1\% of women under age 20 at the time of their first birth were married compared with 85.8% of women aged 30-49.
- Among women who lived with both parents at age $14,36.5 \%$ had a premarital first birth, compared with 65.7% of women who experienced other types of parental living arrangements at age 14 .
- Women whose mothers had higher levels of education were less likely to have had premarital first births. For example, the percentage of premarital first births among women whose mothers had a high school diploma was 48.7% compared with 31.9% among women whose mothers had a bachelor's degree or higher.
- An increasing linear trend was observed in the percentage of women whose first births occurred within marriage by current household income: from 34.4% of first births to women with current household incomes at $0 \%-149 \%$ of the federal poverty level, to 49.0% of women with household incomes at $150 \%-$ 299% of the federal poverty level, and 76.3% of births to women with
household incomes at 300% or more of the federal poverty level.
- A higher percentage of Hispanic women born outside of the United States had their first births within marriage (51.4\%) than did women born in the United States (41.7%). Similar percentages of women by nativity status had their first births within cohabiting unions, roughly 30.0%.
- The percentage of women whose first births occurred within marriage was highest among non-Hispanic Asian women (87.8\%) compared with the other Hispanic-origin and race groups shown ($18.7 \%-62.9 \%$). The percentages of women whose first births occurred within cohabiting unions were similar for non-Hispanic White (22.2\%) and non-Hispanic Black (22.4\%) women.
Figure 4 also presents marital and cohabiting status at time of first birth for Hispanic, non-Hispanic White, and non-Hispanic Black women. The estimates for non-Hispanic Asian women are not shown in Figure 4 because the percentages of first births to non-Hispanic Asian women who were never married and not cohabiting did not meet NCHS standards for presentation.
- The percentages of first births occurring within each marital or cohabiting status category in 2015-2019 were similar to the respective totals from 2011-2015.

Table 8 shows marital or cohabiting status at the time of their first child's birth for men aged 15-49 who ever fathered a biological child. The measure of marital or cohabiting status represents whether he was married to or cohabiting with the child's mother at the time of birth (see Technical Notes for more detail).

- Among men aged 15-49 in 2015-2019, 60.4\% of first births occurred to men who were married to the child's mother, and 39.6% of births occurred premaritally (26.3\% within a cohabiting union and 13.3% not cohabiting with the child's mother).
- As seen for women, men who were older at their first child's birth had higher percentages of

Figure 4. Marital or cohabiting status at first birth for women aged 15-49, by Hispanic origin and race: United States, 2015-2019

${ }^{1}$ Estimates significantly different across Hispanic origin and race ($p<0.05$).
${ }^{2}$ Estimate significantly higher for Hispanic women ($p<0.05$).
${ }^{3}$ Categories are single race.
NOTE: Estimates for non-Hispanic Asian women are not shown because two of three estimates did not meet National Center for Health Statistics standards of reliability.
SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019.
births occurring within marriage. For example, 14.7% of first births fathered by men under age 20 occurred within marriage compared with 85.1% of first births fathered by men aged 30-49.

- Similar to the pattern seen for women, parental living arrangement at age 14 was associated with having a premarital first birth. Among men who lived with both parents at age $14,35.3 \%$ had a premarital first birth compared with 48.8% of men who experienced other types of living arrangements at age 14.
- As seen for women, men whose mothers had higher levels of education were less likely to have fathered their first child premaritally. For example, among men whose mothers had a high school diploma or GED, 40.8% had their first child born premaritally compared with 32.3% among men whose mothers had a bachelor's degree or higher.
- In contrast to the findings for women, the percentage of first births fathered within marriage among Hispanic men was similar by nativity status, at 48.4% for men born in the United States and 50.2\% for those born outside of the United States.

Similar to the results for women, the percentage of men whose first child was born within a cohabiting union was similar by nativity status, at 35.6% for Hispanic men born in the United States and 38.8% for Hispanic men born outside of the United States.

- A similar pattern by Hispanic origin and race for first births within marriage was seen for men as for women. The percentage of men whose first children were born within marriage was highest among non-Hispanic Asian men (83.3\%) compared with other Hispanic-origin and race groups shown (30.1\%-71.6\%).
- The percentage of men whose first child was born within a cohabiting union was higher for Hispanic (37.2\%) and non-Hispanic Black (35.8\%) men than for non-Hispanic White (19.6\%) and non-Hispanic Asian (9.8\%) men.
- Similar percentages of men aged 15-44 in 2011-2015 (57.2\%) and in 2015-2019 (56.8\%) were married to the mothers of their first children at the time of the birth.

Summary

This report presents selected fertility indicators for men and women aged 15-49 in the United States based on 2015-2019 NSFG data. Measures of fertility include having had any biological children, the number of biological children, age at first child's birth, birth intervals for women with at least one child, and marital and cohabiting status at first child's birth. The fertility experience of men and women differs across various characteristics, including education, household income relative to the federal poverty level, and Hispanic origin and race.

In 2015-2019, 56.7\% of women and 44.8% of men aged $15-49$ in the United States had a biological child. The mean number of births reported by women aged 15-49 in 2015-2019 was 1.3 , and the mean number of biological children reported by men aged 15-49 was 0.9 . About one-third of women had their first birth before age 20, and about one-half in their 20s. Among men, 1 in 14 fathered their first child before age 20, and more than 1 in 2 in their 20s. This difference may be explained in part by age differences between women and men in sexual relationships (30).

The well-documented differences in birth rates and birth timing by Hispanic origin and race were seen in 2015-2019 ($1,3,32$). On average, the number of children ever born was higher for Hispanic and non-Hispanic Black women than for non-Hispanic White and non-Hispanic Asian women, which is explained partly by a higher age at first birth for non-Hispanic White and non-Hispanic Asian women. In 2015-2019, non-Hispanic Asian women had the fewest number of children and the oldest average age at first birth, followed by non-Hispanic White women. These differences may also be explained in part by differences in age structure among these groups. The probability of having a first birth before age 20 was highest for Hispanic and non-Hispanic Black women and lowest for non-Hispanic Asian women. Among men, the probability of fathering a child before age 20 was highest for non-Hispanic Black men, followed by Hispanic, non-Hispanic White, and non-Hispanic Asian men.

Looking at differences by education level, men and women with lower levels of education were more likely to have had a biological child, to have had more children, and to have had their first child at younger ages than men and women with higher levels of education. Men and women whose mothers had higher levels of education were less likely to have a premarital first birth than those whose mothers had lower levels of education. In addition, differences were found by parental living arrangement at age 14 . Men and women who lived with both parents at age 14 were less likely to have a premarital first birth than those who had other types of living arrangements.

In presenting these key findings on selected fertility measures for men and women in the United States, some limitations of the data must be noted. Some measures are assessed at the time of the interview, such as household income relative to the federal poverty level, and may have differed at the time of the first birth. Bivariate associations described in this report may be explained by other factors included or not included in this report and do not necessarily reflect cause-and-effect relationships. Additionally, the age range of NSFG does not allow for examination of birth spacing or completed fertility of women who start childbearing at a later age and who may go on to have the same number of children as women who started childbearing at an earlier age. Similarly, these fertility measures may be less complete for men because men are more likely than women to have children after age 49.

Despite these limitations, this report uses the most recent NSFG data to provide national estimates on whether people have had a biological child, number of biological children, timing of first birth, birth spacing between first and second birth, and marital and cohabiting status at first birth. This report provides greater context to better understand fertility patterns in the United States. In addition, the NSFG age range expansion from 15-44 to 15-49 allowed descriptions and analyses of the fertility of men and women aged 45-49. This is especially important because the birth rate for women aged 40 and over has continued to increase in the

United States. NSFG is a rich source of data on proximate determinants of fertility such as sexual activity, union status, and contraceptive use, which can be used to help explain patterns described in this report and variations in birth rates obtained from the National Vital Statistics System.

References

1. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK. Births: Final data for 2019. National Vital Statistics Reports; vol 70 no 2. Hyattsville, MD: National Center for Health Statistics. 2021. DOI: https://dx.doi. org/10.15620/cdc:100472.
2. Monte LM, Ellis RR. Fertility of women in the United States: 2012. U.S. Census Bureau, Current Population Reports, P20-575. 2014. Available from: https://www.census. gov/content/dam/Census/library/ publications/2014/demo/p20-575.pdf.
3. U.S. Census Bureau. Table 3. Children ever born and percent childless by age and marital status: June 2018. Available from: https:// www.census.gov/data/tables/2018/ demo/fertility/women-fertility. html\#par_list_58.
4. Tilley EH, Barnett MA. Bridging the gap: Fertility timing in the United States, effective public policy, and prevention design. Sex Res Social Policy 12(2):92-100. 2015.
5. Hoffman SD, Maynard RA, editors. Kids having kids: Economic costs and social consequences of teen pregnancy. 2nd ed. Washington, DC: Urban Institute Press. 2008.
6. Basch CE. Teen pregnancy and the achievement gap among urban minority youth. J Sch Health 81(10):614-8. 2011. DOI: https://dx.doi.org/10.1111/j.17461561.2011.00635.x.
7. Schulkind L, Sandler DH. The timing of teenage births: Estimating the effect on high school graduation and later-life outcomes. Demography 56(1):345-65. 2019. DOI: https://dx.doi.org/10.1007/ s13524-018-0748-6.
8. Mosher WD, Jones J, Abma JC. Intended and unintended births in the United States: 1982-2010. National Health Statistics Reports; no 55. Hyattsville, MD: National Center for Health Statistics. 2012.
9. Finer LB, Zolna MR. Declines in unintended pregnancy in the United States, 2008-2011. N Engl J Med 374(9):843-52. 2016. DOI: https://dx.doi.org/10.1056/ NEJMsa1506575.
10. Adashi EY, Gutman R. Delayed childbearing as a growing, previously unrecognized contributor to the national plural birth excess. Obstet Gynecol 132(4):999-1006. 2018. DOI: https://dx.doi.org/10.1097/ aog. 0000000000002853.
11. Baldwin WH, Nord CW. Delayed childbearing in the U.S.: Facts and fictions. Popul Bull 39(4):1-42. 1984.
12. Mathews TJ, Hamilton BE. First births to older women continue to rise. NCHS Data Brief, no 152. Hyattsville, MD: National Center for Health Statistics. 2014.
13. Martin LM. Delaying, debating and declining motherhood. Cult Health Sex 23(8):1034-49. 2021. DOI: https://dx.doi.org/10.1080/13691058. 2020.1755452.
14. Spain D, Bianchi SM. American women in transition. New York, NY: Russell Sage Foundation. 1986.
15. Mills M, Rindfuss RR, McDonald P, te Velde E. Why do people postpone parenthood? Reasons and social policy incentives. Hum Reprod Update 17(6):848-60. 2011. DOI: https://dx.doi.org/10.1093/humupd/ dmr026.
16. Luke B, Brown MB. Elevated risks of pregnancy complications and adverse outcomes with increasing maternal age. Hum Reprod 22(5):1264-72. 2007. DOI: https:// dx.doi.org/10.1093/humrep/del522.
17. Thoma ME, Copen CE, Kirmeyer SE. Short interpregnancy intervals in 2014: Differences by maternal demographic characteristics. NCHS Data Brief, no 240. Hyattsville, MD: National Center for Health Statistics. 2016. Available from: https://www.cdc.gov/nchs/data/ databriefs/db240.pdf.
18. Sridhar A, Salcedo J. Optimizing maternal and neonatal outcomes with postpartum contraception: Impact on breastfeeding and birth spacing. Matern Health Neonatol Perinatol 3:1. 2017. DOI: https://dx.doi.org/ 10.1186/s40748-016-0040-y.
19. Population Reference Bureau. Birth spacing and childhood undernutrition. 2009. Available from: https://www.prb.org/resources/ birth-spacing-and-childhoodundernutrition/.
20. Gough M. Birth spacing, human capital, and the motherhood penalty at midlife in the United States. Dem Res 37(13):363-416. 2017. DOI: https://dx.doi.org/10.4054/ demres.2017.37.13.
21. Conde-Agudelo A, Rosas-Bermúdez A, Castaño F, Norton MH. Effects of birth spacing on maternal, perinatal, infant, and child health: A systematic review of causal mechanisms. Stud Fam Plan 43(2):93-114. 2012.
22. Martinez GM, Daniels K, FeboVazquez I. Fertility of men and women aged 15-44 in the United States: National Survey of Family Growth, 2011-2015. National Health Statistics Reports; no 113. Hyattsville, MD: National Center for Health Statistics. 2018.
23. Bongaarts J. A framework for analyzing the proximate determinants of fertility. Popul Dev Rev 4(1):105-32. 1978.
24. National Center for Health Statistics. 2017-2019 National Survey of Family Growth (NSFG): Summary of design and data collection methods. Available from: https:// www.cdc.gov/nchs/data/nsfg/NSFG-2017-2019-Summary-Design-Data-Collection-508.pdf.
25. Federal Interagency Forum on Child and Family Statistics. Counting couples: Improving marriage, divorce, remarriage, and cohabitation data in the federal statistical system. In: 2001 National Workshop, The National Institutes of Health.
26. Office of Management and Budget. Revisions to the standards for the classification of federal data on race and ethnicity. Fed Regist 62(210):58782-90. 1997.
Available from:
https://obamawhitehouse.archives. gov/omb/fedreg_1997standards.
27. SAS Institute, Inc. SAS (Version 9.4) [computer software]. 2016.
28. National Center for Health Statistics. Combining data across NSFG file releases from 2011-2019. Available from: https://www.cdc. gov/nchs/nsfg/nsfg_combining_ data.htm.
29. Allison P. Survival analysis using SAS: A practical guide. Cary, NC: SAS Institute, Inc. 1995.
30. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457-81. 1958.
31. Parker JD, Talih M, Malec DJ, Beresovsky V, Carroll M, Gonzalez JF Jr, et al. National Center for Health Statistics data presentation standards for proportions. National Center for Health Statistics. Vital Health Stat 2(175). 2017. Available from: https://www.cdc.gov/nchs/ data/series/sr_02/sr02_175.pdf.
32. Kim Y, Raley RK. Race-ethnic differences in the non-marital fertility rates in 2006-2010. Popul Res Policy Rev 34(1):141-59. 2014.

Table 1. Percentage of women and men aged 15-49 who ever had a biological child: United States, 2015-2019

Characteristic	Women		Men	
	Number (thousands)	Percent (standard error)	Number (thousands)	Percent (standard error)
Total				
2015-2019, ages 15-49 ${ }^{1}$	72,420	56.7 (0.91)	71,930	44.8 (1.16)
2015-2019, ages 15-44	61,935	52.1 (0.98)	61,882	39.7 (1.21)
2011-2015, ages 15-44	61,263	54.9 (0.90)	60,875	43.8 (0.92)
Age group				
15-24	19,468	13.2 (0.82)	20,105	6.2 (0.85)
25-29	11,348	45.3 (2.14)	11,412	29.7 (2.09)
30-34	10,792	71.8 (1.72)	10,686	51.7 (2.20)
35-39	10,530	81.2 (1.60)	10,269	70.0 (1.82)
40-49	20,282	84.3 (1.01)	19,459	76.5 (1.24)
Marital or cohabiting status				
Currently married	28,780	81.2 (0.75)	28,205	77.5 (1.12)
Currently cohabiting	9,704	59.9 (2.93)	8,583	53.2 (2.35)
Never married, not cohabiting.	6,919	22.1 (1.00)	3,915	9.3 (0.65)
Formerly married, not cohabiting	27,017	86.1 (1.39)	31,227	73.7 (1.98)
Education ${ }^{2}$				
No high school diploma or GED .	5,197	91.0 (1.31)	5,401	73.8 (2.19)
High school diploma or GED	13,999	79.2 (1.38)	16,171	62.3 (1.59)
Some college, no bachelor's degree	18,187	67.6 (1.54)	16,200	50.9 (1.79)
Bachelor's degree or higher	21,746	56.3 (1.60)	19,627	49.2 (2.02)
Percent of federal poverty level ${ }^{3}$				
0-149	20,902	73.2 (1.38)	14,567	52.9 (2.04)
150-299	16,933	66.1 (1.52)	15,700	54.9 (2.15)
300 or higher	25,145	57.0 (1.41)	31,761	49.9 (1.60)
Hispanic origin and race and nativity				
Hispanic or Latino ${ }^{4}$	14,875	62.4 (1.37)	15,473	50.1 (1.57)
U.S.-born.	8,844	50.3 (1.89)	9,143	38.7 (1.86)
Non-U.S.-born.	6,013	80.0 (1.79)	6,322	66.7 (2.22)
Not Hispanic or Latino:				
White, single race	40,617	54.6 (1.21)	40,635	43.9 (1.42)
Black or African American, single race	9,782	61.0 (1.72)	8,703	46.0 (2.14)
Asian, single race . . .	3,363	47.9 (3.27)	3,623	35.0 (4.30)

[^0][^1]${ }^{2}$ Limited to women aged 22-49 at the time of the interview.
${ }^{4}$ Includes Hispanic women with missing information on nativity status.
NOTE: Percentages may not add to 100 because of rounding.
SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019.
Number of children born

Characteristic	Number (thousands)	Mean (standard error)	Number of children born					
			Total	None	One	Two	Three	Four or more
Total			Percent (standard error)					
2015-2019, ages 15-49 ${ }^{1}$	72,420	1.3 (0.03)	100.0	43.3 (0.39)	16.2 (0.62)	21.7 (0.54)	12.6 (0.21)	6.2 (0.91)
2015-2019, ages 15-44	61,935	1.1 (0.04)	100.0	47.9 (0.39)	16.1 (0.71)	19.6 (0.47)	10.8 (0.35)	5.6 (0.88)
2011-2015, ages 15-44	61,263	1.2 (0.02)	100.0	45.1 (0.90)	17.1 (0.47)	19.7 (0.60)	11.9 (0.51)	6.2 (0.38)
Age group								
15-24	19,468	0.2 (0.00)	100.0	86.8 (0.63)	8.9 (0.96)	3.2 (0.16)	0.7 (0.10)	0.5 (0.11)
25-29	11,348	0.9 (0.02)	100.0	54.7 (1.29)	17.9 (0.56)	17.1 (1.27)	7.0 (0.48)	3.3 (0.58)
30-34	10,792	1.5 (0.04)	100.0	28.2 (1.83)	24.4 (1.47)	26.5 (1.88)	13.9 (1.01)	7.0 (0.29)
35-39	10,530	1.9 (0.11)	100.0	18.8 (2.39)	17.2 (1.93)	33.3 (1.69)	20.5 (0.77)	10.3 (2.01)
40-49	20,282	2.0 (0.06)	100.0	15.7 (0.66)	17.5 (0.86)	33.6 (0.97)	2.4 (0.82)	10.7 (1.96)
Marital or cohabiting status								
Currently married	28,780	1.8 (0.05)	100.0	18.8 (0.33)	19.7 (0.99)	34.2 (0.91)	19.1 (0.60)	8.2 (1.43)
Currently cohabiting	9,704	1.3 (0.04)	100.0	40.1 (1.66)	19.6 (1.22)	20.0 (1.08)	12.9 (0.52)	7.3 (0.78)
Never married, not cohabiting.	6,919	0.4 (0.01)	100.0	77.9 (0.39)	9.9 (0.56)	6.7 (0.38)	3.2 (0.34)	2.2 (0.34)
Formerly married, not cohabiting	27,017	2.0 (0.08)	100.0	13.9 (1.19)	21.4 (2.32)	31.2 (0.92)	21.9 (1.63)	11.6 (2.67)
Education ${ }^{2}$								
No high school diploma or GED .	5,197	2.6 (0.11)	100.0	9.0 (1.50)	11.8 (1.34)	25.9 (1.74)	27.6 (3.48)	25.7 (2.71)
High school diploma or GED	13,999	1.8 (0.05)	100.0	20.8 (1.14)	20.2 (0.82)	30.5 (0.53)	19.2 (0.51)	9.3 (1.12)
Some college, no bachelor's degree	18,187	1.5 (0.06)	100.0	32.4 (1.36)	20.8 (1.31)	25.1 (1.29)	15.3 (0.82)	6.3 (1.07)
Bachelor's degree or higher.	21,746	1.1 (0.06)	100.0	43.7 (2.01)	18.0 (0.60)	25.0 (0.81)	10.2 (0.99)	3.1 (0.79)
Percent of federal poverty level ${ }^{3}$								
0-149	20,902	1.8 (0.06)	100.0	26.8 (1.02)	18.2 (1.40)	24.1 (0.50)	17.8 (0.88)	13.1 (1.50)
150-299	16,933	1.5 (0.02)	100.0	33.9 (0.81)	16.8 (1.52)	25.3 (0.82)	17.4 (1.43)	6.6 (1.29)
300 or higher	25,145	1.1 (0.03)	100.0	43.0 (1.43)	19.4 (0.54)	25.4 (1.16)	9.8 (0.72)	2.4 (0.40)
Hispanic origin and race and nativity								
Hispanic or Latina ${ }^{4}$	14,875	1.5 (0.07)	100.0	37.6 (1.23)	14.0 (1.04)	21.5 (0.77)	16.8 (1.18)	10.1 (1.38)
U.S.-born.	8,844	1.2 (0.06)	100.0	49.7 (1.90)	14.7 (1.43)	16.0 (0.83)	12.1 (0.64)	7.6 (1.47)
Non-U.S.-born	6,013	2.0 (0.11)	100.0	20.0 (2.10)	13.2 (1.50)	29.4 (2.50)	23.6 (2.65)	13.8 (1.59)
White, single race	40,617	1.1 (0.04)	100.0	45.4 (0.79)	16.8 (1.08)	22.6 (0.33)	11.2 (0.79)	4.1 (0.89)
Black or African American, single race	9,782	1.4 (0.06)	100.0	39.0 (1.04)	17.1 (0.51)	21.4 (0.81)	12.9 (1.10)	9.5 (0.54)
Asian, single race	3,363	1.0 (0.06)	100.0	52.1 (2.26)	15.2 (3.10)	19.1 (1.08)	10.8 (1.76)	2.8 (0.60)

Characteristic	Number (thousands)	Mean (standard error)	Number of biological children					
			Total	None	One	Two	Three	Four or more
Total			Percent (standard error)					
2015-2019, ages 15-491	71,930	0.9 (0.02)	100.0	55.2 (0.72)	14.8 (0.33)	17.4 (0.39)	8.2 (0.71)	4.4 (0.46)
2015-2019, ages 15-44.	61,882	0.8 (0.02)	100.0	60.3 (0.72)	14.5 (0.22)	14.7 (0.24)	7.0 (0.81)	3.4 (0.38)
2011-2015, ages 15-44	60,875	0.9 (0.02)	100.0	56.2 (0.92)	15.6 (0.58)	16.2 (0.66)	8.1 (0.49)	3.9 (0.33)
Age group								
15-24	20,105	0.1 (0.02)	100.0	93.8 (1.32)	4.3 (0.80)	1.4 (0.56)	0.3 (0.12)	0.2 (0.09)
25-29	11,412	0.5 (0.05)	100.0	70.3 (2.39)	15.9 (0.51)	10.0 (1.54)	3.1 (0.49)	0.7 (0.08)
30-34	10,686	1.0 (0.08)	100.0	48.3 (2.90)	21.3 (0.40)	17.6 (0.52)	8.4 (1.78)	4.3 (0.50)
35-39	10,269	1.5 (0.05)	100.0	30.0 (1.69)	21.4 (0.86)	27.7 (2.30)	14.4 (1.70)	6.5 (1.20)
40-49	19,459	1.8 (0.01)	100.0	23.5 (1.34)	18.0 (0.87)	32.6 (1.67)	16.0 (1.15)	9.9 (1.22)
Marital or cohabiting status								
Currently married	28,205	1.7 (0.03)	100.0	22.5 (1.34)	22.2 (0.61)	32.8 (1.17)	15.2 (1.51)	7.3 (0.73)
Currently cohabiting	8,583	1.1 (0.08)	100.0	46.8 (3.19)	20.5 (1.10)	16.5 (0.97)	9.4 (1.07)	6.8 (1.40)
Never married, not cohabiting.	31,227	0.2 (0.02)	100.0	90.7 (0.88)	5.3 (0.40)	2.4 (0.39)	1.0 (0.24)	0.6 (0.03)
Formerly married, not cohabiting	3,915	1.5 (0.06)	100.0	26.3 (0.77)	25.6 (1.27)	27.4 (2.52)	12.7 (2.36)	8.0 (1.37)
Education ${ }^{2}$								
No high school diploma or GED .	5,401	1.7 (0.06)	100.0	26.2 (2.54)	23.2 (2.97)	23.8 (2.68)	15.3 (1.91)	11.4 (2.12)
High school diploma or GED	16,171	1.3 (0.06)	100.0	37.7 (2.13)	20.8 (0.92)	22.6 (0.63)	11.8 (0.71)	7.2 (1.02)
Some college, no bachelor's degree	16,200	1.0 (0.03)	100.0	49.1 (1.17)	17.3 (1.45)	20.2 (1.30)	8.9 (0.69)	4.8 (0.98)
Bachelor's degree or higher	19,627	1.0 (0.04)	100.0	50.8 (0.97)	15.4 (0.62)	21.6 (0.81)	8.9 (1.32)	3.3 (0.77)
Percent of federal poverty level ${ }^{3}$								
0-149	14,567	1.3 (0.01)	100.0	47.1 (0.95)	14.3 (0.36)	18.2 (0.91)	12.4 (0.87)	8.0 (0.62)
150-299	15,700	1.2 (0.06)	100.0	45.1 (2.71)	18.1(2.00)	19.7 (0.49)	11.1 (1.23)	6.0 (0.81)
300 or higher	31,761	1.0 (0.04)	100.0	50.1 (0.86)	17.9 (0.65)	21.3 (1.23)	7.4 (0.88)	3.3 (0.81)
Hispanic origin and race and nativity								
Hispanic or Latino ${ }^{4}$.	15,473	1.1 (0.02)	100.0	49.9 (1.41)	15.3 (1.45)	18.1 (1.45)	10.3 (1.08)	6.4 (0.64)
U.S.-born.	9,143	0.8 (0.06)	100.0	61.3 (2.74)	14.2 (1.22)	13.6 (2.56)	5.9 (0.64)	4.9 (0.84)
Non-U.S.-born.	6,322	1.5 (0.11)	100.0	33.3 (4.00)	16.9 (2.22)	24.7 (1.92)	16.7 (1.86)	8.5 (0.91)
White, single race. .	40,635	0.9 (0.03)	100.0	56.1 (1.10)	14.4 (0.89)	18.1 (0.65)	7.9 (0.79)	3.5 (0.70)
Black or African American, single race	8,703	1.0 (0.06)	100.0	54.0 (1.71)	16.5 (1.75)	15.2 (1.67)	7.2 (1.10)	7.1 (1.74)
Asian, single race . .	3,623	0.6 (0.04)	100.0	65.0 (1.76)	12.5 (2.11)	17.8 (2.56)	* ${ }^{*}$)	1.2 (0.87)

[^2]| Characteristic | Men | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Number (thousands) | Mean (standard error) | Age at first child's birth | | | | |
| | | | Total | Under 20 | 20-24 | 25-29 | 30-49 |
| Total | | | Percent (standard error) | | | | |
| 2015-2019, ages 15-49 ${ }^{1}$ | 27,560 | 27.0 (0.16) | 100.0 | 7.3 (0.59) | 28.8 (1.35) | 29.2 (1.29) | 34.6 (1.41) |
| 2015-2019, ages 15-44 | 20,986 | 26.4 (0.17) | 100.0 | 8.5 (0.73) | 29.8 (1.43) | 31.2 (1.44) | ${ }^{2} 30.4$ (1.48) |
| 2011-2015, ages 15-44 | 26,661 | 25.5 (0.16) | 100.0 | 13.8 (0.87) | 32.4 (1.30) | 30.7 (1.20) | ${ }^{2} 23.1$ (1.30) |
| Age group | | | | | | | |
| 15-24 | 1,093 | 20.3 (0.18) | 100.0 | 33.2 (3.88) | 66.8 (3.88) | | \ldots |
| 25-29 | 2,843 | 23.2 (0.24) | 100.0 | 11.1 (2.28) | 52.9 (3.70) | 36.1 (3.73) | ... |
| 30-34 | 4,540 | 25.8 (0.25) | 100.0 | 7.8 (1.32) | 28.7 (2.85) | 40.2 (2.82) | 23.3 (2.80) |
| 35-39 | 6,268 | 27.5 (0.28) | 100.0 | 5.9 (1.00) | 22.7 (2.24) | 31.9 (2.71) | 39.6 (2.60) |
| 40-49 | 12,724 | 28.5 (0.23) | 100.0 | 4.9 (0.71) | 23.3 (1.70) | 24.9 (1.68) | 46.9 (2.11) |
| Marital or cohabiting status | | | | | | | |
| Currently married | 18,867 | 28.1 (0.20) | 100.0 | 4.3 (0.56) | 23.1 (1.61) | 29.4 (1.50) | 43.2 (1.88) |
| Currently cohabiting | 3,773 | 24.3 (0.25) | 100.0 | 14.3 (2.10) | 41.5 (2.83) | 29.9 (3.18) | 14.3 (1.89) |
| Never married, not cohabiting. | 2,518 | 23.6 (0.32) | 100.0 | 19.3 (2.47) | 48.0 (3.85) | 19.8 (2.52) | 13.0 (2.17) |
| Formerly married, not cohabiting | 2,402 | 25.9 (0.29) | 100.0 | 7.8 (2.24) | 33.8 (3.50) | 36.8 (3.64) | 21.7 (2.70) |
| Education ${ }^{3}$ | | | | | | | |
| No high school diploma or GED . | 3,314 | 24.0 (0.37) | 100.0 | 18.6 (2.61) | 43.6 (3.54) | 19.6 (2.92) | 18.2 (2.66) |
| High school diploma or GED | 8,370 | 25.2 (0.21) | 100.0 | 10.3 (1.09) | 40.4 (2.40) | 29.3 (1.92) | 20.0 (2.02) |
| Some college, no bachelor's degree | 7,106 | 26.8 (0.26) | 100.0 | 4.9 (0.85) | 29.1 (2.47) | 37.1 (2.72) | 28.9 (2.21) |
| Bachelor's degree or higher. | 8,538 | 30.3 (0.23) | 100.0 | 0.9 (0.46) | 10.9 (1.55) | 27.1 (2.09) | 61.1 (2.40) |
| Percent of federal poverty level ${ }^{4}$ | | | | | | | |
| 0-149 | 6,440 | 24.7 (0.24) | 100.0 | 13.9 (1.54) | 40.8 (2.44) | 25.4 (2.07) | 19.9 (1.72) |
| 150-299 | 7,318 | 25.6 (0.23) | 100.0 | 8.3 (1.17) | 37.7 (2.40) | 30.3 (2.56) | 23.6 (2.07) |
| 300 or higher | 13,803 | 28.8 (0.23) | 100.0 | 3.7 (0.51) | 18.5 (1.48) | 30.4 (1.83) | 47.3 (2.11) |
| Hispanic origin and race and nativity | | | | | | | |
| Hispanic or Latino ${ }^{5}$ | 6,540 | 25.6 (0.31) | 100.0 | 10.3 (1.35) | 38.0 (2.87) | 26.5 (2.53) | 25.3 (2.88) |
| U.S.-born. | 3,050 | 25.7 (0.46) | 100.0 | 11.2 (2.10) | 37.8 (3.97) | 25.6 (3.43) | 25.4 (3.46) |
| Non-U.S.-born | 3,486 | 25.5 (0.42) | 100.0 | 9.4 (1.99) | 38.2 (3.93) | 27.4 (3.14) | 25.0 (4.35) |
| | | | | | | | |
| White, single race. | 15,368 | 27.8 (0.21) | 100.0 | 5.0 (0.65) | 23.9 (1.81) | 32.0 (1.74) | 39.1 (1.95) |
| Black or African American, single race | 3,322 | 25.0 (0.36) | 100.0 | 14.1 (1.86) | 38.0 (3.28) | 22.5 (2.85) | 25.4 (2.50) |
| Asian, single race . | 1,115 | 30.5 (0.55) | 100.0 | *- | 9.4 (3.60) | 24.5 (5.27) | 66.0 (5.46) |

[^3]*- Estimate does not meet National Center for Health Statistics standards of reliability and quantity zero.
${ }^{1}$ Includes people of other or multiple race and origin groups, not shown separately.
${ }^{2}$ Age at first birth was $30-44$
${ }^{3}$ Limited to people aged 22-49 at the time of the interview.
5Includes Hispanic people with missing information on nativity status.
NOTE: Percentages may not add to 100 because of rounding.
SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019

Table 5. Probability of a first birth, by selected ages for women and men aged 15-49: United States, 2015-2019

[^4]Table 6. Number of months from first birth to second birth for women aged 15-49 who had at least one birth: United States, 2015-2019

Characteristic	Number (thousands)	Total	No second birth	Interval between first and second birth (months) ${ }^{1}$			
				24 or less	25-36	37-48	49 or more
Total		Percent (standard error)					
2015-2019, ages 15-49 ${ }^{2}$	41,094	100.0	29.5 (0.91)	18.7 (0.72)	17.3 (0.77)	10.7 (0.50)	23.9 (0.85)
2015-2019, ages 15-44	32,260	100.0	31.8 (1.04)	18.5 (0.79)	16.3 (0.78)	10.3 (0.59)	23.2 (0.97)
2011-2015, ages 15-44	33,645	100.0	31.7 (0.78)	19.7 (0.82)	15.7 (0.72)	10.2 (0.55)	22.6 (0.76)
Age at first birth							
Under 20.	11,197	100.0	17.4 (1.29)	21.0 (1.36)	14.7 (1.12)	13.5 (1.06)	33.4 (1.64)
20-24	13,285	100.0	26.6 (1.42)	19.9 (1.07)	15.3 (1.19)	11.0 (1.03)	27.1 (1.58)
25-29	9,720	100.0	34.4 (2.09)	15.0 (1.34)	22.6 (1.96)	10.0 (1.32)	18.0 (1.78)
30-49	6,892	100.0	47.5 (2.35)	17.7 (2.00)	17.8 (1.69)	6.7 (1.05)	10.3 (1.44)
Marital or cohabiting status at first birth							
Married.	21,142	100.0	29.2 (1.35)	20.7 (1.20)	21.6 (1.24)	11.0 (0.84)	17.5 (1.04)
Cohabiting	9,707	100.0	30.2 (1.75)	18.5 (1.44)	14.1 (1.14)	10.6 (1.20)	26.6 (1.84)
Formerly married	553	100.0	*	*	*	*	34.0 (6.44)
Never married, not cohabiting.	9,692	100.0	28.5 (1.58)	14.8 (1.36)	11.5 (0.99)	10.7 (0.99)	34.5 (1.86)
Education ${ }^{3}$							
No high school diploma or GED .	4,731	100.0	13.0 (1.48)	24.2 (2.22)	16.7 (1.61)	17.0 (1.96)	29.1 (2.95)
High school diploma or GED	11,092	100.0	26.0 (1.59)	19.8 (1.39)	17.7 (1.53)	10.3 (0.99)	26.2 (1.72)
Some college, no bachelor's degree	12,291	100.0	31.4 (1.53)	17.2 (1.17)	14.9 (1.33)	9.9 (1.03)	26.5 (1.50)
Bachelor's degree or higher .	12,238	100.0	33.8 (1.69)	17.5 (1.48)	20.3 (1.46)	10.1 (1.04)	18.4 (1.44)
Percent of federal poverty level ${ }^{4}$							
0-149	15,298	100.0	25.2 (1.23)	22.7 (1.28)	14.2 (0.95)	11.2 (0.86)	26.7 (1.46)
150-299	11,196	100.0	26.2 (1.40)	18.1 (1.39)	19.6 (1.49)	11.7 (1.18)	24.5 (1.67)
300 or higher	14,339	100.0	35.5 (1.68)	15.0 (1.09)	19.0 (1.39)	9.7 (1.02)	20.8 (1.64)
Hispanic origin and race and nativity							
Hispanic or Latina ${ }^{5}$.	9,280	100.0	23.5 (1.76)	18.6 (1.47)	16.7 (1.35)	12.5 (1.35)	28.8 (1.84)
U.S.-born.	4,449	100.0	30.8 (2.88)	20.7 (2.17)	14.9 (2.11)	9.7 (1.53)	23.9 (2.22)
Non-U.S.-born.	4,812	100.0	16.8 (2.01)	16.4 (1.74)	18.4 (1.95)	15.1 (2.23)	33.3 (2.45)
Not Hispanic or Latina:							
White, single race.	22,174	100.0	31.8 (1.28)	18.8 (1.09)	17.9 (1.17)	10.4 (0.63)	21.1 (1.10)
Black or African American, single race	5,965	100.0	28.4 (1.60)	18.3 (1.66)	15.5 (1.87)	9.4 (1.11)	28.4 (2.10)
Asian, single race .	1,610	100.0	31.8 (4.92)	14.8 (3.80)	23.7 (4.24)	15.8 (3.67)	14.0 (2.72)

[^5]${ }^{\prime}$ Refers to intervals between deliveries, not intervals between first and second babies born as a multiple birth. Pregnancies resulting in multiple births (for example, twins) are considered one delivery
${ }^{4}$ Limited to women aged 20-49 at the time of the interview.
${ }^{5}$ Includes Hispanic women with missing information on nativity status.
 years.
SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019.

Characteristic	Number (thousands)	Total	Currently or formerly married	Premarital first birth		
				Subtotal	Within cohabiting union	Never married, not cohabiting
Total		Percent (standard error)				
2015-2019, ages 15-491	41,094	100.0	52.8 (1.24)	47.2 (1.24)	23.6 (0.84)	23.6 (0.96)
2015-2019, ages 15-44	32,260	100.0	48.9 (1.38)	51.1 (1.38)	26.0 (1.01)	25.1 (1.04)
2011-2015, ages 15-44	33,645	100.0	50.1 (1.29)	49.9 (1.29)	25.8 (0.96)	24.1 (0.88)
Age at first birth						
Under 20.	11,252	100.0	19.1 (1.72)	80.9 (1.72)	32.0 (2.01)	48.9 (1.91)
Under 18	4,977	100.0	14.3 (2.28)	85.7 (2.28)	24.2 (2.47)	61.4 (2.81)
18-19	6,275	100.0	23.0 (2.14)	77.0 (2.14)	38.1 (2.63)	39.0 (2.54)
20-24..	13,267	100.0	46.0 (2.05)	54.0 (2.05)	30.8 (1.65)	23.2 (1.52)
25-49 . .	16,575	100.0	81.0 (1.24)	19.0 (1.24)	12.2 (1.00)	6.8 (0.73)
25-29	9,688	100.0	77.6 (1.67)	22.4 (1.67)	14.7 (1.41)	7.7 (1.10)
30-49	6,887	100.0	85.8 (1.66)	14.2 (1.66)	8.7 (1.27)	5.5 (0.94)
Parental living arrangements at age 14						
Both biological or adoptive parents.	26,054	100.0	63.5 (1.46)	36.5 (1.46)	19.2 (1.04)	17.3 (1.05)
Other. .	15,040	100.0	34.3 (1.36)	65.7 (1.36)	31.3 (1.26)	34.5 (1.40)
Respondent's mother's education						
No high school diploma or GED .	11,230	100.0	43.1 (1.90)	56.9 (1.90)	30.1 (1.81)	26.8 (1.58)
High school diploma or GED	13,281	100.0	51.3 (1.69)	48.7 (1.69)	23.1 (1.81)	25.6 (1.58)
Some college, no bachelor's degree	8,454	100.0	55.7 (2.17)	44.3 (2.17)	21.8 (1.72)	22.5 (1.92)
Bachelor's degree or higher	7,615	100.0	68.1 (2.28)	31.9 (2.28)	15.6 (1.59)	16.4 (1.55)
Percent of federal poverty level ${ }^{2}$						
0-149	15,298	100.0	34.4 (1.68)	65.6 (1.68)	32.0 (1.51)	33.7 (1.54)
150-299	11,196	100.0	49.0 (1.98)	51.0 (1.98)	25.5 (1.66)	25.5 (1.89)
300 or higher	14,339	100.0	76.3 (1.59)	23.7 (1.59)	13.4 (1.15)	10.2 (0.97)
Hispanic origin and race and nativity						
Hispanic or Latina ${ }^{3}$.	9,280	100.0	46.8 (2.04)	53.2 (2.04)	30.3 (1.93)	22.9 (1.39)
U.S.-born. .	4,449	100.0	41.7 (2.70)	58.3 (2.70)	30.6 (2.29)	27.8 (2.08)
Non-U.S.-born	4,812	100.0	51.4 (2.82)	48.6 (2.82)	30.2 (2.55)	18.4 (2.03)
White, single race . .	22,174	100.0	62.9 (1.43)	37.1 (1.43)	22.2 (1.13)	14.9 (1.06)
Black or African American, single race	5,965	100.0	18.7 (1.96)	81.3 (1.96)	22.4 (1.61)	58.9 (1.76)
Asian, single race	1,610	100.0	87.8 (2.48)	12.2 (2.48)	*	(

[^6]| Characteristic | Number (thousands) | Total | Married to child's mother | Premarital first birth | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Subtotal | Cohabiting with child's mother | Living alone or apart from the mother |
| Total | | Percent (standard error) | | | | |
| 2015-2019, ages 15-491 | 32,217 | 100.0 | 60.4 (1.36) | 39.6 (1.36) | 26.3 (1.16) | 13.3 (0.79) |
| 2015-2019, ages 15-44 | 24,584 | 100.0 | 56.8 (1.62) | 43.2 (1.62) | 29.1 (1.35) | 14.1 (0.92) |
| 2011-2015, ages 15-44 | 26,661 | 100.0 | 57.2 (1.43) | 42.8 (1.43) | 26.4 (1.09) | 16.4 (0.90) |
| Age at first birth | | | | | | |
| Under 20. | 3,376 | 100.0 | 14.7 (2.41) | 85.3 (2.41) | 33.0 (3.16) | 46.1 (3.26) |
| Under 18 | 987 | 100.0 | 2.9 (1.33) | 97.1 (1.33) | 41.7 (6.07) | 55.4 (5.98) |
| 18-19 | 2,389 | 100.0 | 19.6 (3.19) | 80.4 (3.19) | 38.3 (3.69) | 42.2 (3.77) |
| 20-24. | 9,665 | 100.0 | 41.5 (2.72) | 58.5 (2.72) | 39.6 (2.35) | 18.9 (1.63) |
| 25-49 | 19,176 | 100.0 | 78.0 (1.31) | 22.0 (1.31) | 17.4 (1.10) | 4.7 (0.60) |
| 25-29 | 9,633 | 100.0 | 70.9 (2.18) | 29.1 (2.18) | 22.0 (1.85) | 7.0 (1.06) |
| 30-49 | 9,543 | 100.0 | 85.1 (1.19) | 14.9 (1.19) | 12.6 (1.14) | 2.3 (0.39) |
| Parental living arrangements at age 14 | | | | | | |
| Both biological parents . | 22,039 | 100.0 | 64.7 (1.62) | 35.3 (1.62) | 24.2 (1.47) | 11.2 (0.92) |
| Other. | 10,179 | 100.0 | 51.2 (2.06) | 48.8 (2.06) | 31.0 (1.78) | 17.8 (1.46) |
| Respondent's mother's education | | | | | | |
| No high school diploma or GED. | 7,840 | 100.0 | 52.9 (2.57) | 47.1 (2.57) | 33.8 (2.70) | 13.3 (1.30) |
| High school diploma or GED . . . | 11,117 | 100.0 | 59.2 (2.01) | 40.8 (2.01) | 27.3 (1.84) | 13.5 (1.22) |
| Some college, no bachelor's degree | 6,614 | 100.0 | 64.3 (2.46) | 35.7 (2.55) | 22.0 (2.10) | 13.7 (1.95) |
| Bachelor's degree or higher . | 6,412 | 100.0 | 67.7 (2.05) | 32.3 (2.05) | 19.9 (1.71) | 12.4 (1.49) |
| Percent of federal poverty level ${ }^{2}$ | | | | | | |
| 0-149. | 7,712 | 100.0 | 40.2 (2.57) | 59.8 (2.57) | 37.9 (2.33) | 21.9 (2.01) |
| 150-299 | 8,622 | 100.0 | 52.3 (2.04) | 47.7 (2.04) | 33.2 (1.97) | 14.5 (1.59) |
| 300 or higher | 15,846 | 100.0 | 74.8 (1.47) | 25.2 (1.47) | 16.9 (1.31) | 8.3 (0.79) |
| Hispanic origin and race and nativity | | | | | | |
| Hispanic or Latino ${ }^{3}$. | 7,757 | 100.0 | 49.4 (2.73) | 50.6 (2.73) | 37.2 (2.69) | 13.3 (1.43) |
| U.S.-born. | 3,537 | 100.0 | 48.4 (3.41) | 51.6 (3.41) | 35.6 (3.25) | 16.1 (2.27) |
| Non-U.S.-born. | 4,215 | 100.0 | 50.2 (3.58) | 49.8 (3.58) | 38.8 (3.78) | 11.0 (1.79) |
| | | | | | | |
| White, single race. | 17,851 | 100.0 | 71.6 (1.74) | 28.4 (1.74) | 19.6 (1.44) | 8.7 (0.88) |
| Black or African American, single race . | 4,000 | 100.0 | 30.1 (3.27) | 69.9 (3.27) | 35.8 (2.58) | 34.0 (2.53) |
| Asian, single race . | 1,269 | 100.0 | 83.3 (4.48) | 16.7 (4.48) | 9.8 (3.10) | 6.9 (3.70) |

[^7]${ }^{3}$ Includes Hispanic men with missing information on nativity status.
NOTE: Percentages may not add to 100 because of rounding.
SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019

Technical Notes

Marital or cohabiting status at first birth

This variable is based on the RMAROUT6 recode for women and a combination of questions directly asked of men. Because of how the female variable is created, it can only be determined that she was married or cohabiting at the time of delivery, and not whether she was specifically married to or cohabiting with the child's father. However, based on cross-checks of the pregnancy dates against relationship dates, very few women in the married or cohabiting categories had other partners in the timeframe of the child's birth. For men, the questions are organized differently, and men are asked directly whether they were married to or living with the child's mother at time of the birth. Also, due to the relatively small sample sizes of women who were formerly married at time of delivery, and the focus on premarital compared with all nonmarital births, births to formerly married women were grouped with currently married women.

Date of first live birth

Despite efforts to sort and correct pregnancies reported out of chronological order, there were some respondents in 2017-2019 with at least one pregnancy reported out of chronological order based on DATEND01-14 recode values. For estimates in this report that use information about the date of a first live birth (and related information such as the respondent's age or marital or cohabiting status that depend on the date), edits were made for seven respondents in 2017-2019 where the nonchronological pregnancy reporting involved a first live birth. See Appendix 2 of the National Survey of Family Growth 2017-2019 user's guide.

U.S. DEPARTMENT OF
 HEALTH \& HUMAN SERVICES

Centers for Disease Control and Prevention National Center for Health Statistics PERMIT NO. G-284

3311 Toledo Road, Room 4551, MS P08
Hyattsville, MD 20782-2064

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

For more NCHS NHSRs, visit:
https://www.cdc.gov/nchs/products/nhsr.htm.

Acknowledgments

The National Survey of Family Growth (NSFG) was conducted by the National Center for Health Statistics (NCHS) at the Centers for Disease Control and Prevention (CDC) with the support and assistance of several organizations and people. Interviewing and other tasks for the 2015-2019 survey period were conducted under a contract with the Survey Research Center at the University of Michigan's Institute for Social Research. During the 2015-2019 survey period, NSFG was jointly planned and funded by the following U.S. Department of Health and Human Services programs and agencies:

- National Center for Health Statistics (CDC)
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (National Institutes of Health)
- Office of Population Affairs
- Division of HIV/AIDS Prevention (CDC)
- Division of STD Prevention (CDC)
- Division of Reproductive Health (CDC)
- National Center on Birth Defects and Developmental Disabilities (CDC)
- Division of Cancer Prevention and Control (CDC)
- Children's Bureau
- The Office of the Assistant Secretary for Planning and Evaluation

NCHS gratefully acknowledges the contributions of these programs and agencies and all others who assisted in designing and implementing NSFG.
This report was prepared in the Division of Vital Statistics (DVS) under the general direction of Steven Schwartz, DVS Director; Isabelle Horon, Chief, Reproductive Statistics Branch (RSB); and Anjani Chandra, Team Lead, RSB NSFG Team. The authors are grateful for the valuable comments provided by Andrés Berruti, DVS Associate Director for Science, and Amy Branum, NCHS Associate Director for Science.

Suggested citation

Martinez GM, Daniels K. Fertility of men and women aged 15-49 in the United States: National Survey of Family Growth, 2015-2019.
National Health Statistics Reports; no 179.
Hyattsville, MD: National Center for Health
Statistics. 2023. DOI: https://dx.doi.org/
10.15620/cdc:122080.

Copyright information

All material appearing in this report is in the public domain and may be reproduced or copied without permission; citation as to source, however, is appreciated.

National Center for Health Statistics

Brian C. Moyer, Ph.D., Director
Amy M. Branum, Ph.D., Associate Director for Science

Division of Vital Statistics

Steven Schwartz, Ph.D., Director
Andrés A. Berruti, Ph.D., M.A., Associate Director for Science

[^0]: ${ }^{1}$ Includes people of other or multiple race and origin groups, not shown separately.
 ${ }^{2}$ Limited to people aged 22-49 at the time of the interview.
 3 Limited to people aged 20-49 at the time of the interview.
 ${ }^{4}$ Includes Hispanic people with missing information on nativity status.
 SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019.

[^1]: 0.00 Quantity more than zero but less than 0.05 .
 ${ }^{1}$ Includes women of other or multiple race and origin groups, not shown separately.

[^2]: * Estimate does not meet National Center for Health Statistics standards of reliability
 ${ }^{1}$ Includes men of other or multiple race and origin groups, not shown separately.
 ${ }^{2}$ Limited to men aged 22-49 at the time of the interview.
 ${ }^{4}$ Includes Hispanic men with missing information on nativity status.
 NOTE: Percentages may not add to 100 because of rounding.
 SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019

[^3]: ... Category not applicable.

[^4]: - Quantity zero. No probability produced using Proc Kaplan-Meier procedure for this age.
 ${ }^{1}$ IIcludes people of other or multiple race and origin groups, not shown separately.
 ${ }^{2}$ Limited to people aged 22-49 at the time of the interview.
 ${ }^{4}$ Includes Hispanic people with missing information on nativity status.
 NOTES: The probabilities in this table are produced using the Proc Kaplan-Meier procedure in SUDAAN. All standard errors, not shown in this table, are less than 0.05 .
 SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019

[^5]: * Estimate does not meet National Center for Health Statistics standards of reliability.

[^6]: * Estimate does not meet National Center for Health Statistics standards of reliability.
 1'Includes both women of other or multiple race and origin groups, and women who reported having no mother figure so were not asked about mother's education level, not shown separately.

 Limited to women aged 20-49 at the time of the interview.
 ${ }^{3}$ Includes Hispanic women with missing information on nativity status.
 NOTES: Percentages may not add to 100 because of rounding
 SOURCE: National Center for Health Statistics, National Survey of Family Growth, 2015-2019

[^7]: ${ }^{1}$ Includes both men of other or multiple race and origin groups, and men who reported having no mother figure so were not asked about mother's education level, not shown separately. ${ }^{2}$ Limited to men aged 20-49 at the time of the interview

