Appendix Contents

Appendix I. Data Sources .. 1

Government Sources .. 2
- American Community Survey (ACS) 2
- Current Population Survey (CPS) 2
- National Health and Nutrition Examination Survey (NHANES) 3
- National Health Expenditure Accounts (NHEA) 5
- National Health Interview Survey (NHIS) 5
- National HIV Surveillance System 7
- National Immunization Surveys (NIS) 7
- National Income and Product Accounts (NIPA) 8
- National Notifiable Diseases Surveillance System (NNDSS) 9
- National Survey on Drug Use and Health (NSDUH) 10
- National Vital Statistics System (NVSS) 11
- National Youth Tobacco Survey (NYTS) 11
- Population Census and Population Estimates 17
- Sexually Transmitted Disease (STD) Surveillance ... 19

Private and Global Sources 19
- American Dental Association (ADA) 19
- American Hospital Association (AHA) Annual Survey of Hospitals 19
- American Medical Association (AMA) Physician Masterfile 20
- American Osteopathic Association (AOA) 20

Appendix II. Definitions and Methods 21
- Acquired immunodeficiency syndrome (AIDS) 21
- Age .. 21
- Age adjustment 21
- AIDS .. 23
- Alcohol consumption 23
- Average annual rate of change (percent change) .. 23
- Bed, health facility 23
- Binge alcohol use 23
- Birth cohort 23
- Birth rate 23
- Birthweight 23
- Blood pressure, high 23
- Body mass index (BMI) 23
- Cause of death 24
- Cause-of-death ranking 24
- Children’s Health Insurance Program 26
- Cholesterol 26
- Cigarette smoking 27
- Civilian noninstitutionalized population; Civilian population 27
- Colorectal tests or procedures 27
- Comparability ratio 28
- Consumer Price Index (CPI) 29
- Crude birth rate; Crude death rate 29
- Data presentation standards for proportions 29
- Death rate 29
- Dental caries 29
- Dental visit 30
- Diabetes 30
- Diagnosis 31
- Drug .. 31
- Drug abuse 31
- Education 31
- Emergency department or emergency room visit .. 32
- Ethnicity 32
- Exercise 32
- Expenditures 32
- Family income 32
- Fee-for-service health insurance 34
- Fertility rate 34
- Functional limitation 34
- General hospital 35
- Geographic region 35
- Gestation 35
- Gross domestic product (GDP) 35
- Health care visit 36
- Health expenditures, national 36
- Health insurance coverage 36
- Health maintenance organization (HMO) 38
- Health status, respondent-assessed 39
- Heavy alcohol use 39
- Hispanic origin 39
- HIV ... 41
- Home visit 41
- Hospital .. 41
- Hospital utilization 41
- Human immunodeficiency virus (HIV) disease .. 41
- Hypercholesterolemia 42
- Hypertension 42
- ICD; ICD codes 43
- Illicit drug use 43
- Immunization 43
- Incidence 43
- Income ... 43
- Individual practice association (IPA) 43
- Infant death 43
- Insurance 43
- International Classification of Diseases (ICD) 43
- International Classification of Diseases, 9th Revision, Clinical Modification (ICD—9–CM) 43
- Late fetal death rate 44
- Leading causes of death 44
- Life expectancy 44
- Low birthweight 46
- Mammography 46
- Managed care 46
Appendix I. Data Sources

Health, United States consolidates the most current data on the health of the population of the United States, the availability and use of health care resources, and health care expenditures. Information was obtained from the data files and published reports of many federal government, private, and global agencies and organizations. In each case, the sponsoring agency or organization collected data using its own methods and procedures. Therefore, data in this report may vary considerably with respect to source, method of collection, definitions, and reference period.

Although a detailed description and comprehensive evaluation of each data source are beyond the scope of this appendix, readers should be aware of the general strengths and weaknesses of the different data collection systems shown in *Health, United States*. For example, population-based surveys are able to collect socioeconomic data and information on the impact of an illness, such as limitation of activity. These data are limited by the amount of information a respondent remembers or is willing to report. For example, a respondent may not know detailed medical information, such as a precise diagnosis or the type of medical procedure performed, and, therefore, cannot report that information. In contrast, records-based surveys, which collect data from physician and hospital records, usually contain good diagnostic information but little or no information about the person’s socioeconomic characteristics or the impact of illnesses on individuals.

Different data collection systems may cover different populations, and understanding these differences is critical to interpreting the resulting data. Data on vital statistics and national expenditures cover the entire population. However, most data on morbidity cover only the civilian noninstitutionalized population and may not include data for (a) military personnel, who are usually young; (b) institutionalized people, including the prison population, who may be of any age; or (c) nursing home residents, who are usually older.

All data collection systems are subject to error, and records may be incomplete or contain inaccurate information. Respondents may not remember essential information, a question may not mean the same thing to different respondents, and some institutions or individuals may not respond at all. Measuring the magnitude of these errors or their effect on the data is not always feasible. Where possible, table notes describe the universe and method of data collection to help users evaluate data quality.

Some information is collected in more than one survey, and estimates of the same statistic may vary among surveys because of different survey methodologies, sampling frames, questionnaires, definitions, and tabulation categories. For example, cigarette use is measured by the National Health Interview Survey, National Survey on Drug Use and Health, and National Youth Tobacco Survey. These surveys use slightly different questions, cover persons of differing ages, and conduct interviews in various settings (e.g., at school compared with at home), so estimates may differ.

Overall estimates generally have relatively small sampling errors, but estimates for certain population subgroups may be based on a small sample size and have relatively large sampling errors. Numbers of births and deaths from the National Vital Statistics System represent complete counts (except for births in those states where data are based on a 50% sample for certain years). Therefore, these data are not subject to sampling error. However, when the data are used for analytical purposes, such as the comparison of rates over a period, the number of events that actually occurred may be considered as one of a large series of possible results that could have arisen under the same circumstances. When the number of events is small and the probability of such an event is rare, estimates may be unstable, and considerable caution must be used in interpreting the statistics. Estimates that are unreliable because of large sampling errors or small numbers of events are noted with asterisks in tables, and the criteria used to determine unreliable estimates are indicated in an accompanying footnote.

In this appendix, government data sources are listed alphabetically by data set name, and private and global sources are listed separately. Where possible, government data systems are described using a standard format. Each “Overview” section is a brief, general statement about the data system’s purpose or objectives. “Coverage” describes the population or events that the data system covers, as in residents of the United States, the noninstitutionalized population, persons in specific population groups, or other entities that are included in the survey or data system. “Methodology” presents a short description of the methods used to collect the data. “Sample Size and Response Rate” provides these statistics for surveys. “Issues Affecting Interpretation” describes major changes in the data collection methodology or other factors that must be considered when analyzing trends shown in *Health, United States*, for example, when a major survey redesign may introduce a discontinuity in a trend. For additional information about the methodology, data files, and history of a data source, consult the “References” and “For more information” sections that follow each summary.
Government Sources

American Community Survey (ACS)

U.S. Census Bureau

Overview. ACS provides annual estimates of income, education, employment, health insurance coverage, and housing costs and conditions for U.S. residents. Estimates from ACS complement population data collected by the U.S. Census Bureau during the decennial census. Topics currently included annually in ACS were previously collected once a decade through the decennial census long form.

Coverage. Since full implementation began in 2005, ACS covers U.S. residents residing in all 3,143 counties in the 50 states and District of Columbia, and all 78 municipalities in Puerto Rico. ACS began data collection for U.S. residents residing in housing units in January 2005 and for residents residing in group quarters facilities in January 2006. Annual ACS estimates are available every year for states and for specific geographic areas with populations of 65,000 or more.

Methodology. Starting with 2013 data, the ACS data collection operation uses up to four modes to collect information: Internet, mail, telephone, and personal visit interviews. The first mode includes a mailed request to respond to the ACS questionnaire online, followed by an option to complete a paper questionnaire and return it by mail. If neither an Internet nor mail questionnaire is received, a follow-up interview by phone or personal visit is attempted for a sample of nonrespondents. Before 2013, Internet collection was not used and only three modes of collection were active. Each month, a sample of housing unit addresses and residents of group quarters facilities receive questionnaires. Group quarters are places where people live or stay that are normally owned or managed by an entity or organization providing housing and services for residents. The group quarters population comprises both the institutional and noninstitutional group quarters populations.

ACS creates two sets of weights: a weight for each sample person record (both household and group-quarters persons) and a weight for each sample housing unit record. For information on the weighting procedure, see the ACS methodology website at: https://www.census.gov/programs-surveys/acs/methodology.html.

Sample Size and Response Rate. Each year from 2005 through 2010, about 2.9 million housing unit addresses in the United States were selected to participate in ACS. Starting in 2011, the housing unit sample was increased to 3.5 million addresses per year. For 2005–2012, the housing unit response rate was 97%–98%; in 2013, the housing unit response rate was 90%; in 2014–2018, it was 92%–97%. In 2019, the response rate was 86%. The group quarters response rate ranged between 91% and 98% for 2006–2019. For year-specific response rates, see: https://www.census.gov/acs/www/methodology/sample-size-and-data-quality/response-rates/index.php.

Issues Affecting Interpretation. Several changes were made to the ACS questionnaire at the beginning of 2008, including the introduction of new questions on health insurance coverage. In addition, the methodology for weighting the group quarters survey changed starting in 2011.

Reference

For more information, see the ACS website at: https://www.census.gov/programs-surveys/acs/.

Current Population Survey (CPS)

Bureau of Labor Statistics and U.S. Census Bureau

Overview. CPS provides current estimates and trends in employment, unemployment, and other characteristics of the general labor force.

Coverage. The CPS sample, referred to as the basic CPS, is based on the results of the decennial census, with coverage in all 50 states and the District of Columbia. When files from the most recent decennial census become available, the Census Bureau gradually introduces a new sample design for CPS. The CPS sample based on U.S. Census 2010 was introduced in April 2014 and implemented by July 2015.

For the basic CPS, persons aged 15 and over in the civilian noninstitutionalized population are eligible to participate; persons living in institutions such as prisons, long-term care hospitals, and nursing homes are not eligible for the survey.

Methodology. The basic CPS sample is selected from multiple frames using multiple stages of selection. Each unit is selected with a known probability to represent similar units in the universe. The sample design is state-based, with the sample in each state being independent of the others. One person generally responds for all eligible members of a household.

Sample Size and Response Rate. Beginning with 2001, the basic CPS sample increased to about 60,000 households per month. This expansion improves the reliability of state estimates on the number of children who live in low-income families and lack health insurance coverage. The basic CPS household-level nonresponse rate is 13.5%.

Issues Affecting Interpretation. Over the years, the number of income questions has expanded, questions on work experience and other characteristics have been added, and the month of interview was moved to March.

Starting with Health, United States, 2012, U.S. Census 2010-based population controls were implemented for poverty estimates for 2010 and beyond. For a discussion of
the impact of implementation of U.S. Census 2010-based controls on poverty estimate trends, see DeNavas-Walt et al.

References

For more information, see the CPS website at: https://www.census.gov/programs-surveys/cps.html.

National Health and Nutrition Examination Survey (NHANES)

National Center for Health Statistics

Overview. NHANES is designed to assess the health and nutritional status of adults and children in the United States. The survey is unique in that it combines interviews and physical examinations. NHANES collects data on the prevalence of chronic diseases and conditions (including undiagnosed conditions) and on risk factors such as obesity, elevated serum cholesterol levels, hypertension, diet and nutritional status, and numerous other measures.

Methodology. NHANES includes clinical examinations, selected medical and laboratory tests, and self-reported data. NHANES interviews persons in their homes and conducts medical examinations in a mobile examination center (MEC), including laboratory analysis of blood, urine, and other tissue samples. Medical examinations and laboratory tests follow very specific protocols and are standardized as much as possible to ensure comparability across sites and providers. During 1988–1994, as a substitute for the MEC examinations, a small number of survey participants received an abbreviated health examination in their homes if they were unable to come to the MEC.

The survey for NHANES III was conducted from 1988 to 1994 using a stratified, multistage probability design to sample the civilian noninstitutionalized U.S. population. About 40,000 persons aged 2 months and over were selected and asked to complete an extensive interview and a physical examination. Participants were selected from households in 81 survey units across the United States. Children aged 2 months through 5 years, adults aged 60 and over, black persons, and persons of Mexican origin were oversampled to provide precise descriptive information on the health status of selected population groups in the United States.

Beginning in 1999, NHANES became a continuous annual survey, collecting data every year from a representative sample of the civilian noninstitutionalized U.S. population, newborns and older, through in-home personal interviews and physical examinations in the MEC. The sample design is a complex, multistage, clustered design using unequal probabilities of selection. The first-stage sample frame for continuous NHANES during 1999–2001 was the list of primary sampling units (PSUs) selected for the design of the National Health Interview Survey. Typically, an NHANES PSU is a county. For 1999, because of a delay in the start of data collection, 12 distinct PSUs were in the annual sample. For each year during 2000–2018, 15 PSUs were selected. The within-PSU design involves: (a) forming secondary sampling units that are nested within census tracts, (b) selecting dwelling units within secondary units, and then (c) selecting sample persons within dwelling units. Selection of the final sample person involves differential probabilities of selection according to the demographic variables of sex (male or female), race and ethnicity, and age. Because of the differential probabilities of selection, dwelling units are screened for potential sample persons.

Beginning in 1999, NHANES oversampled low-income persons, adolescents aged 12–19, adults aged 60 and over, black or African American persons, and persons of Mexican origin. The sample for data years 1999–2006 was not designed to give a nationally representative sample for the total Hispanic population residing in the United States. Starting with 2007–2010 data collection, all Hispanic persons were oversampled, not just persons of Mexican origin, and adolescents were no longer oversampled. For 2011–2014, the sampling design was changed and the following groups were oversampled: Hispanic persons; non-Hispanic black persons; non-Hispanic Asian persons; non-Hispanic white and other persons at or below 130% of poverty level; and non-Hispanic white and other persons aged 80 and over. For 2015–2016, the sampling design was revised again, changing the cut point for low-income oversampling from 130% of poverty level or below to 185% of poverty level or below and oversampling non-Hispanic white persons and persons of other races and ethnicities aged 0–11 years. For more information on the sample design for 1999–2006, see: https://www.cdc.gov/nchs/data/series/sr_02/sr02_155.pdf; for 2007–2010, see: https://www.cdc.gov/nchs/data/sr/sr02_160.pdf; for 2011–2014, see: https://www.cdc.gov/nchs/data/sr/sr02_162.pdf; and for 2015–2018, see: https://www.cdc.gov/nchs/data/sr/sr02_184-508.pdf.

The estimation procedure used to produce national statistics for all NHANES involves inflation by the reciprocal of the probability of selection, adjustment for nonresponse, and poststratified ratio adjustment to population totals.
Sampling errors also are estimated, to measure the reliability of the statistics.

Sample Size and Response Rate.

- Over the 6-year survey period of NHANES III, 39,695 persons were selected, the household interview response rate was 86% (33,994), and the medical examination response rate was 78% (30,818).
- For NHANES 1999–2000 through NHANES 2013–2014, the number of persons selected ranged from 12,160 to 14,332. The percentage who were interviewed ranged from 71% to 84%, while the percentage who were examined ranged from 68% to 80%.
- For NHANES 2015–2016, a total of 15,327 persons were eligible, of which 9,971 were interviewed and 9,544 completed the health examination component. The unweighted response rates were 61% for the interviewed sample and 59% for the examined sample.
- For NHANES 2017–2018, a total of 16,211 persons were eligible, of which 9,254 were interviewed and 8,704 completed the health examination component. The unweighted response rates were 52% for the interviewed sample and 49% for the examined sample.

In addition to accounting for sample person nonresponse, weights are also poststratified to match the population control totals for each sampling subdomain. This makes the weighted counts the same as an independent estimate of the noninstitutionalized civilian population of the United States. For NHANES 2011–2018, the sample weights were poststratified (2011–2016) or calibrated (2017–2018) to population totals obtained from the American Community Survey (ACS). The weights for earlier NHANES cycles were poststratified to population totals from the Current Population Survey (CPS). This change from CPS to ACS was made, in part, because the larger sample size of ACS provides more reliable population estimates for Asian persons within age and sex categories, which is required due to the addition of the Asian oversample starting in the 2011 survey. For more detailed information on unweighted NHANES response rates and response weights using sample size weighted to CPS population totals, see: https://wwwn.cdc.gov/nchs/nhanes/ResponseRates.aspx.

For the 2017–2018 NHANES cycle, enhanced weights were required to minimize errors of representation resulting from sample location characteristics and nonresponse. To further reduce any error, combining the 2017–2018 data with data from previous comparable cycles is recommended. For more information on nonresponse bias in 2017–2018 NHANES, see: https://wwwn.cdc.gov/nchs/data/nhanes/analyticguidelines/17-18-sampling-variability-nonresponse-508.pdf.

Issues Affecting Interpretation. Data elements, laboratory tests performed, and the technological sophistication of medical examination and laboratory equipment have changed over time. Therefore, trend analyses should carefully examine how specific data elements were collected across the various survey years. Data files are revised periodically. If the file changes are minor and the impact on estimates is small, then the data are not revised in *Health, United States*. Major data changes are incorporated.

Periodically, NHANES changes its sampling design to oversample different groups. Because the total sample size in any year is fixed due to operational constraints, sample sizes for the other oversampled groups (including Hispanic persons and non-low-income white and other persons) are decreased. Therefore, trend analyses on demographic subpopulations should be carefully evaluated to determine if the sample sizes meet the NHANES Analytic Guidelines. In general, any 2-year data cycle in NHANES can be combined with adjacent 2-year data cycles to create analytic data files based on 4 years of data or more, which improves precision. If provided, NHANES 4-year weights should be used. Otherwise, the user should apply adjusted sampling weights. However, because of the sample design change in 2011–2012, the data user should be aware of the implications if combining these data with data from earlier survey cycles. Users are advised to examine their estimates carefully to see if the 4-year estimates (and sampling errors) are consistent with each set of 2-year estimates.

References

For more information, see the NHANES website at: https://www.cdc.gov/nchs/nhanes/index.htm.
National Health Expenditure Accounts (NHEA)

Centers for Medicare & Medicaid Services (CMS)

Overview. NHEA provides estimates of aggregate health care expenditures in the United States from 1960 onward. NHEA contains all of the main components of the health care system within a unified, mutually exclusive, and exhaustive structure. The accounts measure spending for health care in the United States by type of good or service delivered (e.g., hospital care, physician and clinical services, or retail prescription drugs) and by the source of funds that pay for that care (e.g., private health insurance, Medicare, Medicaid, or out of pocket). A consistent set of definitions is used for health care goods and services and for sources of funds that finance health care expenditures, allowing for comparisons over time.

Methodology. NHEA estimates health care spending using an expenditures approach to national economic accounting. Expenditures are estimated for the payers, as well as the categories of medical goods and services. A common set of definitions allows comparison among categories and over time. In addition, estimates are benchmarked to revenue estimates from the U.S. Census Bureau’s 5-year Economic Census.

An assortment of government and private sources are used to create NHEA. In addition to the Economic Census, government sources include data from the Census Bureau’s Services Annual Survey, the Bureau of Economic Analysis’ National Income and Product Accounts, and Medicare claims data. Private data sources include the American Hospital Association’s Annual Survey and the Kaiser Family Foundation/Health Research & Educational Trust’s Employer Health Benefits Survey.

For example, private health insurance spending for health care goods and services is derived using data from the Census Bureau, American Medical Association, American Hospital Association, IQVIA (formerly IMS Health), and Medical Expenditure Panel Surveys (MEPS) of the Agency for Healthcare Research and Quality. For a matrix of data sources used for NHEA, see Exhibit 4 of “National Health Expenditure Accounts: Methodology Paper, 2018.”

Issues Affecting Interpretation. Every 5 years, NHEA undergoes a comprehensive revision that includes the incorporation of newly available source data, methodological and definitional changes, and benchmark estimates from the Economic Census. During these comprehensive revisions, the entire NHEA time series is opened for revision.

References

National Health Interview Survey (NHIS)

National Center for Health Statistics

Overview. Data from NHIS are used to monitor the health of the U.S. population on a broad range of health topics by many demographic and socioeconomic characteristics. During household interviews, NHIS collects information on the demographic and socioeconomic characteristics of respondents, in addition to information on activity limitation, illnesses, chronic conditions, health insurance coverage (or lack thereof), utilization of health care, and other health topics.

Coverage. The survey covers the civilian noninstitutionalized population of the United States. Among those excluded are patients in long-term care facilities, persons on active duty with the armed forces (although their civilian family members are included), persons who are incarcerated, and U.S. nationals living in foreign countries.

Methodology. NHIS is a cross-sectional household interview survey. Sampling and interviewing are continuous throughout each year. The sample design is a probability design that permits the representative sampling of households and noninstitutional group quarters. The sample design is redesigned after every decennial census to better measure the changing U.S. population and to meet new survey objectives. A new sample design was implemented in 2016, with additional changes in 2018.

The 2016 sample design has many similarities to the design that was in place from 2006 to 2015, but there are some key differences. Sample areas were reselected to take into account changes in the distribution of the U.S. population since 2006, when the previous sample design was first implemented. Commercial address lists were used as the main source of addresses instead of field listing, and the oversampling procedures for black, Hispanic, and Asian persons that were a feature of the previous sample design...
Survey Methodology and Measurement. To improve the measurement of covered health conditions, and health behaviors, the redesign is intended to improve the measurement of covered health topics, reduce respondent burden by shortening the questionnaire's length, harmonize overlapping content with other federal health surveys, establish a long-term structure for ongoing and periodic topics, and incorporate advances in survey methodology and measurement. The NHIS questionnaire content and structure began fielding in January 2019. The redesign is intended to improve the measurement of covered health conditions, and health behaviors. The NHIS questionnaire, implemented in 1997, has two basic parts: a Core, and one or more supplements that vary by year. The Core remains largely unchanged from year to year and allows for trend analysis and for data from more than 1 year to be pooled to increase the sample size for analytic purposes.

The NHIS questionnaire, implemented in 1997, has two basic parts: a Core, and one or more supplements that vary by year. The Core remains largely unchanged from year to year and allows for trend analysis and for data from more than 1 year to be pooled to increase the sample size for analytic purposes.

The NHIS sample is subdivided into four separate panels such that each panel (and any combination of the panels) is representative of the U.S. civilian noninstitutionalized population. This design feature has several advantages, including flexibility for the total sample size.

The NHIS sample and structure began fielding in January 2019. The redesign is intended to improve the measurement of covered health topics, reduce respondent burden by shortening the questionnaire's length, harmonize overlapping content with other federal health surveys, establish a long-term structure for ongoing and periodic topics, and incorporate advances in survey methodology and measurement.

Sample Size and Response Rate. The NHIS sample size varies from year to year. It may be reduced for budgetary reasons or augmented if supplementary funding is available. The normal annual sample size (i.e., the number of households or persons for whom data are collected and publicly released) for both the previous 2006–2015 sample design and for the new 2016 sample design is about 35,000 households containing about 87,500 persons.

In 2011–2016, the NHIS sample size was enlarged in 32 states and the District of Columbia to increase the number of states for which reliable state-level estimates can be produced. Each year during 2011–2016, the sample size was augmented 13%–27%. In contrast with previous years, no sample size augmentation has occurred since 2017. In 2018, the NHIS sample was 29,839 households containing 72,831 persons in 30,309 families, with 25,417 Sample Adults and 8,269 Sample Children. In 2018, the total household response rate was 64.2%. The response rate in 2018 for the Sample Adult component was 53.1% and for the Sample Child component, 59.2%. For more detailed information on topics including sample design and unweighted NHIS response rates, see: https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHIS/2018/srvydesc.pdf. Issues Affecting Interpretation. As part of the 1997 questionnaire redesign, some basic concepts were changed, and other concepts were measured in different ways. For some questions, a change was made in the reference period. Also in 1997, the collection methodology changed from paper-and-pencil questionnaires to computer-assisted personal interviewing. Some indicators presented in Health, United States begin with 1997 data because the redesign caused a break in the trend. Moreover, starting with Health, United States, 2005, estimates for 2000–2002 were revised to use 2000-based weights, and they differ from previous editions of Health, United States that used 1990-based weights for those data years. The weights available in the public-use NHIS files for 2000–2002 are 1990-based. Data for 2003–2011 use weights derived from U.S. Census 2000. Data for 2012 and beyond use weights derived from U.S. Census 2010. In 2006–2010, the sample size was reduced, which is associated with slightly larger variance estimates than in other years when a larger sample was fielded. Starting in 2010, a geographic nonresponse adjustment was made to both the sample adult weight and the sample child weight; see Moriarity.

Reference

National HIV Surveillance System

Centers for Disease Control and Prevention (CDC), National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP)

Overview. Human immunodeficiency virus (HIV) surveillance data are used to detect and monitor cases of HIV infection in the United States, evaluate epidemiologic trends, identify unusual cases requiring follow-up, and inform public health efforts to prevent and control the disease. Data collected on persons with diagnosed HIV infection include age, sex, race, ethnicity, transmission category, and geographic region.

Coverage. All 50 states, the District of Columbia (D.C.), and 6 U.S. territories (American Samoa, Guam, Northern Mariana Islands, Puerto Rico, Republic of Palau, and U.S. Virgin Islands) report confirmed diagnoses of HIV infection to CDC using a uniform surveillance case definition and case report form. As of April 2008, all reporting areas had implemented confidential, name-based HIV infection reporting and agreed to participate in CDC’s National HIV Surveillance System. Health, United States presents data only for the 50 states and D.C.

Methodology. The surveillance programs of local, territorial, and state health departments collect information on demographic, transmission risk, and clinical information that also includes routine reporting of laboratory tests for HIV infection, using a standard confidential case report form. This information is then transmitted electronically, without personal identifiers, to the CDC National HIV Surveillance System. HIV surveillance includes case report data from the 50 states, D.C., and 6 dependent areas.

Issues Affecting Interpretation. Although the completeness of reporting of cases of HIV infection to state and local health departments differs by geographic region and patient population, annual standard evaluation results indicate that the reporting of cases of HIV infection in most areas of the United States is at least 85% complete.

In 2014, the HIV surveillance case definition was updated. Cases diagnosed through 2013 were classified according to the 2008 HIV case definition. Cases diagnosed after 2013 were classified according to the newly updated definition. The 2014 case definition is similar to the 2008 definition except for: (a) inclusion of criteria for stage 0; (b) inclusion of CD4 lymphocyte testing for stage 3 in children; and (c) changes in the cutoffs for CD4 percentage of total lymphocytes used for classification of stages 1 and 2 in persons aged 6 years and over. See Appendix II, Human immunodeficiency virus (HIV) disease and Acquired immunodeficiency syndrome (AIDS) for discussion of HIV diagnoses reporting definitions and other issues affecting interpretation of trends.

Reference

For more information, see the NCHHSTP website at: https://www.cdc.gov/nchhstp.

National Immunization Surveys (NIS)

Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases

Overview. NIS is a group of nationwide telephone surveys that provide vaccination coverage rates among children aged 19–35 months (NIS–Child) and adolescents aged 13–17 years (NIS–Teen). Data collection for children aged 19–35 months started in 1994, and data collection for adolescents aged 13–17 years started in 2006.

Coverage. Children aged 19–35 months and adolescents aged 13–17 years in the civilian noninstitutionalized U.S. population are represented in these surveys. Estimates of vaccine-specific coverage are available for the nation, each state, the District of Columbia, Guam, Puerto Rico, U.S. Virgin Islands, and selected urban areas.

Methodology. Each survey within NIS is a nationwide telephone sample survey of households with age-eligible children that uses a two-phase sample design. First, a random-digit-dialing sample of telephone numbers is drawn. When a household with at least one age-eligible child (or adolescent) is contacted, the interviewer collects demographic and access-related information on all age-eligible children, the mother, and the household, and obtains permission to contact the children’s vaccination providers. Second, identified providers are sent vaccination history questionnaires by mail. Final weighted estimates are adjusted for households without telephones and for nonresponse. All vaccination coverage estimates are based on provider-reported vaccination histories.

Starting in 2011, the NIS sampling frames were expanded from a single-landline frame to dual-landline and cellular telephone sampling frames. This change increased the representativeness of the sample characteristics but had little effect on the final 2011 NIS–Child and NIS–Teen national estimates of vaccination coverage overall and when stratified by poverty status. Complex statistical methods were used to adjust vaccination estimates to account for refusals, households without telephones, and children or adolescents whose vaccination histories could not be verified through their providers. In 2018, NIS shifted from a dual-landline and cell-phone frame to a single cell-phone frame sampling design to increase efficiency. As NIS transitioned from dual-to single-frame design in 2018, data users should take note that small changes in vaccination coverage may occur with the change in sampling design, and direct comparisons with coverage estimates from previous years should be

Sample Size and Response Rate. NIS–Child is currently reporting data by birth year rather than survey year. Data for birth year are based on the three subsequent survey years. For example, 2015 birth year data are based on 2016, 2017, and 2018 survey data. Vaccination coverage by age 24 months was estimated using Kaplan-Meier (time-to-event) analysis to account for children who were aged under 24 months on the date vaccination status was assessed.

The overall Council of American Survey Research Organizations (CASRO) survey year response rates were 33.9% in 2016, 26.1% in 2017, and 24.6% in 2018. Also in 2018, 15,657 of the 28,971 eligible children with completed household interviews had adequate provider data (54.0%). The completion rates in survey years 2016 and 2017 were similar.

The overall CASRO response rate for the 2018 NIS–Teen was 23.3%. From the cell-phone sample, 18,700 of the 38,706 eligible adolescents with completed household interviews (48.3%) had adequate provider data.

Issues Affecting Interpretation. The estimates are subject to several limitations. Data year 2011 was the first year that a dual-frame sampling scheme included landline and cell-phone households. Estimates from 2011 and subsequent years may not be comparable with those before 2011, when surveys were conducted via landline telephone only. NIS is a telephone survey, and statistical adjustments may not fully compensate for nonresponse and for households without landline telephones before 2011. Underestimates of vaccination coverage may have resulted in exclusive use of provider-reported vaccination histories because completeness of records is unknown.

Before January 2009, NIS did not distinguish between Hib vaccine production types; therefore, children who received three doses of a vaccine product that requires four doses were misclassified as fully vaccinated. For more information, see: Santibanez TA, Singleton JA, Shefer A, Cohn A. Changes in measurement of Haemophilus influenzae serotype b (Hib) vaccination coverage—National Immunization Survey, United States, 2009. MMWR Morb Mortal Wkly Rep 59(33):1069–72. 2010. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5933a3.htm.

Starting in 2014, NIS–Teen defined an adolescent’s vaccination record as having adequate provider data if that adolescent had vaccination history data from one or more of the named vaccination providers, or if the parent reported that the adolescent was completely unvaccinated. Before 2014, the adequate provider data definition had more criteria, and it was based on a comparison of provider report of vaccination history with parental report of vaccination history, either by shot card report or recall.

To assess the effect of the change in the adequate provider definition criteria on vaccination coverage estimates, NIS recomputed estimates from the 2006–2013 surveys. In general, 2013 NIS–Teen vaccination coverage estimates using the revised adequate provider data definition were different, and generally lower, than original 2013 NIS–Teen estimates. Differences between revised and original 2013 national vaccination estimates ranged from –0.1 percentage point to –2.2 percentage points. For more information on the revised adequate provider data criteria, see: https://www.cdc.gov/vaccines/imz-managers/coverage/nis/teen/apd-report.html, and for revised 2013 estimates based on the 2014 criteria, see: Reagan-Steiner et al. Because of the revision in the adequate provider definition, NIS–Teen vaccination coverage estimates for 2013 and beyond cannot be directly compared with previously published 2006–2013 NIS–Teen survey vaccination coverage estimates based on the previous adequate provider definition.

References

For more information, see the NIS website at: https://www.cdc.gov/vaccines/imz-managers/nis/about.html.

National Income and Product Accounts (NIPA)

Bureau of Economic Analysis (BEA)

Overview. NIPA is a set of economic accounts that provide detailed measures of the value and composition of national output and the incomes generated in the production of that output. Essentially, NIPA provides a detailed snapshot of the myriad transactions that make up the economy, such as buying and selling goods and
services, hiring labor, investing, renting property, and paying taxes. NIPA estimates show U.S. production, distribution, consumption, investment, and saving.

The best-known NIPA measure is the gross domestic product (GDP), which is defined as the market value of the goods, services, and structures produced by the economy in a given period. NIPA calculates GDP as the sum of the final expenditure components: personal consumption expenditures, private fixed investment, change in private inventories, net exports of goods and services, government spending, and government investment. However, GDP is just one of many economic measures presented in NIPA. Another key NIPA indicator presented in Health, United States is the implicit price deflator for GDP.

The conceptual framework of NIPA is illustrated by seven summary accounts: domestic income and product account, private enterprise income account, personal income and outlay account, government receipts and expenditures account, foreign transactions current account, domestic capital account, and foreign transactions capital account. These summary accounts record a use (or expenditure) in one account for one sector and a corresponding source (or receipt) in an account of another sector or of the same sector. This integrated system provides a comprehensive measure of economic activity in a consistently defined framework without double-counting.

Coverage. Source data for NIPA domestic estimates cover all 50 states and the District of Columbia. The U.S. national income and product statistics were first presented as part of a complete and consistent double-entry accounting system in the summer of 1947.

Methodology. NIPA estimates are revised quarterly, annually, and quinquennially. For GDP and most other NIPA series, a set of three current quarterly estimates is released each year. Quarterly estimates provide the first look at the path of U.S. economic activity. Annual revisions of NIPA are usually carried out each summer. These revisions incorporate source data that are based on more extensive annual surveys, annual data from other sources, and later revisions to the monthly and quarterly source data, and they generally cover the 3 previous calendar years. Comprehensive revisions are carried out at about 5-year intervals and may result in revisions that extend over many years. These estimates incorporate all of the best available source data, such as data from the quinquennial U.S. Economic Census.

NIPA measures are built up from a wide range of source data using a variety of estimating methods. To ensure consistency and accuracy, NIPA uses various adjustment and estimation techniques to estimate data. Three general types of adjustments are made to the source data incorporated in NIPA estimates: (1) adjustments needed for the data to conform to appropriate NIPA concepts and definitions, (2) adjustments to fill gaps in coverage, and (3) adjustments involving time of recording and valuation. Source data must be adjusted occasionally to account for special circumstances that affect accuracy of the data. For example, quarterly and monthly NIPA estimates are adjusted seasonally at the detailed series level when the series demonstrate statistically significant seasonal patterns. Source data may also be used as indicators to extrapolate annual estimates. For more information, see “An Introduction to the National Income and Product Accounts. Methodology Papers: U.S. National Income and Product Accounts,” available from: https://www.bea.gov/sites/default/files/methodologies/mpi1_0907.pdf; and “Concepts and Methods of the U.S. National Income and Product Accounts,” available from: https://www.bea.gov/resources/methodologies/nipa-hanbook.

Issues Affecting Interpretation. NIPA source data and estimates are revised frequently. Data are released at different times, estimates are updated as they become available, new concepts and definitions are incorporated, and source data may change due to improvements in collection and new methodologies. As a result, major estimates, such as GDP and its major components, undergo frequent revision, and historical data are changed. For more information, see the BEA (NIPA) website at: https://apps.bea.gov/iTable/index_nipa.cfm.

Reference

For more information, see the BEA website at: https://www.bea.gov/.

National Notifiable Diseases Surveillance System (NNDSS)

Centers for Disease Control and Prevention (CDC)

Overview. NNDSS is a nationwide collaboration that enables all levels of public health (local, state, territorial, federal, and international) to share health information to monitor, control, and prevent the occurrence and spread of state-reportable and nationally notifiable infectious and some noninfectious diseases and conditions. NNDSS is a multifaceted program that includes the surveillance system for collection, analysis, and sharing of health data, resources, and information about policies and standards, at the local, state, and national levels. NNDSS provides weekly provisional and annual finalized information on the occurrence of diseases defined as notifiable by the Council of State and Territorial Epidemiologists (CSTE). Data include the incidence of nationally notifiable reportable diseases, which are reported using uniform surveillance case definitions.

Coverage. Notifiable disease reports are received from health departments in the 50 states, New York City, the District of Columbia, and 5 U.S. territories (Guam, Marshall Islands, Northern Mariana Islands, Puerto Rico, and U.S. Virgin Islands). Policies for reporting notifiable disease cases can vary by disease or reporting jurisdiction and may also vary based on case status classifications reported to CDC (i.e., confirmed, probable, or suspect).

Health, United States, 2019
cause changes in disease reporting that are independent of new diagnostic tests, or discovery of new disease entities can definitions for public health surveillance, introduction of health surveillance. Finally, factors such as changes in case local officials responsible for disease control and public and the interests, resources, and priorities of state and influenced by the diagnostic facilities available, the control reporting of coccidioidomycosis to CDC is not done by some that are considered reportable varies by state. For example, reporting of coccidioidomycosis to CDC is not done by some states where this disease is not reportable to local or state authorities.

State health departments report cases of nationally notifiable diseases to CDC, which tabulates and publishes these data in Morbidity and Mortality Weekly Report (MMWR) and in Summary of Notifiable Diseases, United States (titled Annual Summary before 1985). Beginning in 2016, national notifiable disease data are released via the NNDSS website, available from: https://wwwn.cdc.gov/nndss/.

Issues Affecting Interpretation. NNDSS data must be interpreted in light of reporting practices. Some diseases that cause severe clinical illness (e.g., meningococcal disease, plague, and rabies) are likely reported accurately if diagnosed by a clinician. However, persons who have diseases that are clinically mild and infrequently associated with serious consequences (e.g., salmonellosis) may not seek medical care from a health care provider. Even if these less severe diseases are diagnosed, they are less likely to be reported.

The degree of completeness of data reporting is also influenced by the diagnostic facilities available, the control measures in effect, public awareness of a specific disease, and the interests, resources, and priorities of state and local officials responsible for disease control and public health surveillance. Finally, factors such as changes in case definitions for public health surveillance, introduction of new diagnostic tests, or discovery of new disease entities can cause changes in disease reporting that are independent of the true incidence of disease.

References

For more information, see the NNDSS website at: https://wwwn.cdc.gov/nndss/.

National Survey on Drug Use and Health (NSDUH)

Substance Abuse and Mental Health Services Administration

Overview. NSDUH reports on the prevalence, incidence, and patterns of illicit drug use and alcohol use among the civilian noninstitutionalized U.S. population aged 12 years and over. NSDUH also reports on substance use disorders, substance use treatment, mental health problems, and mental health care.

Coverage. NSDUH is representative of persons aged 12 and over in the civilian noninstitutionalized population of the United States, and in each state and the District of Columbia (D.C.).

The survey covers residents of households (including those living in houses, townhouses, apartments, and condominiums), persons in noninstitutional group quarters (including those in shelters, boardinghouses, college dormitories, migratory work camps, and halfway houses), and civilians living on military bases. Persons excluded from the survey include people experiencing homelessness who do not use shelters, active military personnel, and residents of institutional group quarters such as jails, nursing homes, mental institutions, and long-term care hospitals.

Methodology. Data are collected via in-person interviews conducted with a sample of individuals at their place of residence. Computer-assisted interviewing methods, including audio computer-assisted self-interviewing, are used to provide a private and confidential setting to complete the interview.

The NSDUH sample design is revised periodically. In 2014, NSDUH introduced an independent multistage area probability sample within each state and D.C. States are the first level of stratification, and each state is then stratified into approximately equally populated state sampling regions (SSRs). Census tracts within each SSR are then selected, followed by census block groups within census tracts, and then area segments (i.e., a collection of census blocks) within census block groups. Finally, dwelling units (DUs) are selected within segments, and within each selected DU, up to two residents who are at least 12 years old are selected for the interview.

Also starting in 2014, changes were made in the sample sizes allocated to each state and to different age groups, in order to increase the precision of national estimates, many state estimates, and estimates for older adults. States with sample increases have more precise estimates than in previous years, whereas states with smaller sample sizes have some reductions in precision. However, all states still
have reasonable levels of precision. This allocation of sample to states is also thought to be more cost-efficient. Starting in 2014, the sample size was redistributed by age group so that 25% of the sample is allocated to those aged 12–17, 25% to those aged 18–25, and 50% to those aged 26 and over. Although the sample sizes for age groups 12–17 and 18–25 were reduced, these two groups are still considered to be oversampled because they represent about 10% and 13% of the total population, respectively.

Sample Size and Response Rate. In 2018, screening was completed at 141,879 addresses, and 67,791 interviews were completed, including 16,852 interviews from adolescents aged 12–17 and 50,939 interviews from adults aged 18 and over. Weighted response rates for household screening and for interviewing were 73.3% and 66.6%, respectively, for an overall response rate of 48.8% for people aged 12 and over.

Issues Affecting Interpretation. Several improvements have been made to NSDUH over time. The data collected in 2002 represent a new baseline for tracking trends in substance use and other measures. Special questions on methamphetamine were added in 2005 and 2006. Data for years before 2007 were adjusted for comparability. Starting with 2011 data, U.S. Census 2010-based control totals were used in the weighting process. Analysis weights in the 2002–2010 NSDUHs were derived from U.S. Census 2000 data. This reweighting to the 2010 census data could affect comparisons between estimates for 2011 with those from both prior and subsequent years. However, an analysis of the impact of reweighting showed that the percentages of substance users were largely unaffected. For more information, see: https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHNationalFindingsReport2018/NSDUHNationalFindingsReport2018.pdf.

For more information, see the NSDUH website at: https://www.samhsa.gov/data/report/2018-nsduh-detailed-tables.

National Vital Statistics System (NVSS)

National Center for Health Statistics (NCHS)

Overview. NVSS collects and publishes official national statistics on births, deaths, fetal deaths, and, before 1996, marriages and divorces occurring in the United States, based on U.S. standard certificates. Fetal deaths are classified and tabulated separately from other deaths. The vital statistics files—Birth, Fetal Death, Mortality Multiple Cause-of-Death, Linked Birth/Infant Death, and Compressed Mortality—are detailed as follows.

Coverage. NVSS collects and presents U.S. resident data for the aggregate of 50 states, New York City, and the District of Columbia (D.C.), as well as for each individual state, D.C., and the U.S. territories of American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and U.S. Virgin Islands. Vital events occurring in the United States to non-U.S. residents and vital events occurring abroad to U.S. residents are excluded.

Methodology. NCHS’ Division of Vital Statistics obtains information on births and deaths from the registration offices of each of the 50 states, New York City, D.C., American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and U.S. Virgin Islands. Until 1972, microfilm copies of all death certificates and a 50% sample of birth certificates were received from all registration areas and processed by NCHS. In 1972, some states began sending their data to NCHS through the Cooperative Health Statistics System (CHSS). States that participated in the CHSS program processed 100% of their death and birth records and sent the entire data file to NCHS on computer tapes. Currently, data are sent to NCHS following procedures similar to those under CHSS. The number of participating states grew from 6 in 1972 to 46 in 1984. Starting in 1985, all 50 states and D.C. participate in the Vital Statistics Cooperative Program.

U.S. Standard Certificates of Live Birth and Death and Fetal Death Reports are revised periodically, allowing
evaluation and the addition, modification, and deletion of items. Beginning with 1989, revised standard certificates replaced the 1978 versions. The 1989 revision of the death certificate included items on educational attainment and Hispanic origin of decedents, as well as changes to improve the medical certification of cause of death. Standard certificates recommended by NCHS are modified in each registration area to serve the area's needs. However, most certificates conform closely in content and arrangement to the standard certificate, and all certificates contain a minimum data set specified by NCHS. The 2003 revision of vital records was implemented by some states and territories beginning in 2003 and by increasingly more areas so that full implementation in all states and D.C. was achieved in 2016 for birth data, 2017 for linked birth/infant death data, and 2018 for death data. The 2003 revision of the birth and death certificates included changes in the determination of multiple races and education level, among other changes.

Birth File

Overview. Vital statistics natality data are a fundamental source of demographic, geographic, and medical and health information on all births occurring in the United States. This is one of the few sources of comparable health-related data for small geographic areas over an extended time period. The data are used to present the characteristics of babies and their mothers, track trends such as birth rates for teenagers, and compare natality trends with those in other countries.

The birth file includes characteristics of the baby, such as sex, birthweight, and weeks of gestation; demographic information about the parents, such as age, race, Hispanic origin, parity, educational attainment, marital status, and state of residence; medical and health information, such as prenatal care based on hospital records; and behavioral risk factors for the birth, such as mother's tobacco use during pregnancy.

Coverage. Birth data presented in *Health, United States* are based on reporting from all 50 states and D.C. Data for Alaska have been included starting in 1959, and data for Hawaii starting in 1960, after each gained statehood. Beginning with 1970, births to nonresidents of the United States are excluded.

Methology. In the United States, state laws require birth certificates to be completed for all births. The registration of births is the responsibility of the professional attendant at birth, generally a physician or midwife. The birth certificate must be filed with the local registrar of the district in which the birth occurs. Each birth must be reported promptly; the reporting requirements vary from state to state, ranging from 24 hours to 10 days after the birth.

Federal law mandates national collection and publication of birth and other vital statistics data (Pub. L. 93-353). NVSS is the result of cooperation between NCHS and the states to provide access to statistical information from birth certificates. Standard forms for the collection of the data, and model procedures for uniform registration of the events, are developed and recommended for state use through cooperative activities of the states and NCHS. NCHS shares the costs incurred by the states in providing vital statistics data for national use.

Issues Affecting Interpretation. The 2003 revision of the U.S Standard Certificate of Live Birth uses revised race and ethnicity sections conforming to the 1997 "Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity." Starting with 2003 data, some states began using the 2003 revision of the U.S. Standard Certificate of Live Birth, which incorporated the 1997 federal Office of Management and Budget (OMB) standards allowing the reporting of more than one race (multiple races). Until all states adopted the 2003 revision and the 1997 OMB standards, it was necessary to bridge data to the 1977 standards. As of 2016, all states, territories (except American Samoa), and reporting areas had adopted the 2003 revision of the birth certificate, making it possible to report data using the 1997 categories. While the 1997 standard allows for the reporting of more than one race, estimates are presented for single-race groups (those only reporting one race). Therefore, data for race groups for 2016 and subsequent years are not completely comparable with earlier data. Interpretation of trend data should take into consideration changes to reporting areas and standards. For methodological and reporting area changes on specific birth certificate items, see *Appendix II*, Age; Hispanic origin; Marital status; Race.

Reference

For more information, see the NVSS Birth Data website at: https://www.cdc.gov/nchs/nvss/births.htm, and Vital Statistics Online Data Portal at: https://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm.

Fetal Death Data Set

Overview. Fetal mortality refers to the intrauterine death of a fetus at any gestational age. In *Health, United States*, data are presented for fetal deaths at 20 weeks or more. The fetal death data set includes characteristics of the fetus, such as sex, birthweight, and weeks of gestation; demographic information about the mother, such as age, race, Hispanic origin, and live-birth order; and medical and health information, such as maternal diabetes and hypertension.

Coverage. Data presented in *Health, United States* are based on reporting from all 50 states and D.C. Data for American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and U.S. Virgin Islands are not included in U.S. totals but are included in the fetal death data-user guides, available from the Vital Statistics Online Data Portal at: https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm, and in periodic reports.
Methodology. Fetal death means the death of a fetus before delivery from the mother, regardless of the duration of pregnancy. Fetal deaths do not include induced terminations of pregnancy. This definition of fetal death, adopted by NCHS as the nationally recommended standard, is based on the definition published by the World Health Organization (WHO) in 1950 and revised in 1988. The term fetal death encompasses other commonly used terms, including stillbirth, spontaneous abortion, and miscarriage. All U.S. states and registration areas have definitions similar to the standard definition, except for Puerto Rico and Wisconsin, which have no formal definition.

State laws require the reporting of fetal deaths, and federal law mandates national collection and publication of fetal death data (Pub. L. 93-353). States and reporting areas submit fetal mortality data to NCHS as part of a cooperative agreement. Standard forms and procedures for the collection of the data are developed and recommended for state use through cooperative activities of the states and NCHS. NCHS shares the costs incurred by the states in providing vital statistics data for national use.

In addition to fetal mortality rates, perinatal mortality rates are also presented in Health, United States. Perinatal mortality includes both late fetal deaths (at least 28 weeks of gestation) and early infant (neonatal) deaths (within 7 days of birth). Data on early infant deaths come from the linked birth/infant death data set.

Issues Affecting Interpretation. Reporting requirements for fetal deaths vary by state, and these differences have important implications for comparisons of fetal mortality rates by state. The majority of states require reporting of fetal deaths at 20 weeks of gestation or more, or a minimum of 350 grams birthweight (roughly equivalent to 20 weeks), or some combination of the two. In 2017, six states required reporting of fetal deaths at all periods of gestation, two states required reporting beginning at 12 weeks of gestation, and one required reporting beginning at 16 weeks of gestation. Further, one state required the reporting of fetal deaths with birthweights of 500 grams or more (roughly equivalent to 22 weeks of gestation).

Starting with 2014 data, the obstetric estimate of gestation at delivery (OE) is used to determine gestational age, instead of the last normal menses (LMP), which was used for earlier years. The adoption of OE for gestational age has had no or negligible impact on total fetal mortality rates. However, late fetal mortality rates based on OE have been lower than those based on LMP. For more information, see “User Guide to the 2017 Fetal Death Public Use File,” available from: https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Documentations/DVS/fetaldeath/2017FetalUserGuide.pdf.

Evidence is substantial that not all fetal deaths for which reporting is required are, in fact, reported. Underreporting of fetal deaths is most likely to occur in the earlier part of the required reporting period for each state. For example, in 2018, for those states requiring reporting of fetal deaths at all periods of gestation, 56.3% of fetal deaths at 20 weeks of gestation or more were at 20–27 weeks, whereas for states requiring reporting of fetal deaths of 500 grams or more, 40.8% were at 20–27 weeks, indicating substantial underreporting of early fetal deaths in some states.

References

For more information, see the NCHS Fetal Deaths data website at: http://www.cdc.gov/nchs/fetal_death.htm.

Mortality Multiple Cause-of-death File

Overview. Vital statistics mortality data are a fundamental source of demographic, geographic, and underlying and multiple cause-of-death information. Multiple cause-of-death data reflect all medical information reported on death certificates and complement traditional underlying cause-of-death data. Multiple-cause data give information on diseases that are a factor in death, whether or not they are the underlying cause of death; on associations among diseases; and on injuries leading to death.

The mortality multiple cause-of-death file includes demographic information on age, sex, race, Hispanic origin, state of residence, and educational attainment, as well as medical information on causes of death. This data set is one of the few sources of comparable health-related data for small geographic areas over an extended time period. The data are used to present the characteristics of those who die in the United States, to determine life expectancy, and to compare mortality trends with those in other countries.

Coverage. Mortality data presented in Health, United States are based on reporting from all 50 states and D.C. Data for Alaska have been included starting in 1959, and data for Hawaii starting in 1960, after each gained statehood. Beginning with 1970, mortality statistics for the United States exclude deaths of U.S. nonresidents.

Methodology. The registration of deaths is the responsibility of the funeral director. The funeral director obtains demographic data for the death certificate from an informant. The physician in attendance at the death is required to certify the cause of death. Where cause of death is from other than natural causes, a coroner or medical examiner may be required to examine the body and certify the cause of death. For more information on the funeral director’s role in death registration and fetal death reporting, see Curtin et al. For more information on the role of the medical examiner and coroner systems for data quality, see Miniño et al.
NCHS is responsible for compiling and publishing annual national statistics on causes of death. In carrying out this responsibility, NCHS adheres to WHO Nomenclature Regulations. These regulations require (a) that cause of death be coded in accordance with the applicable revision of the International Classification of Diseases (ICD) (see Appendix II, International Classification of Diseases [ICD]; Table III); and (b) that underlying cause of death be selected in accordance with international rules. Traditionally, national mortality statistics have been based on a count of deaths, with one underlying cause assigned for each death.

Before 1968, mortality medical data were based on manual coding of an underlying cause of death for each certificate in accordance with WHO rules. Starting with 1968, NCHS converted to computerized coding of the underlying cause and manual coding of all causes (multiple causes) on the death certificate. In this system, called Automated Classification of Medical Entities (ACME), multiple-cause codes serve as inputs to the computer software, which uses WHO rules to select the underlying cause. ACME is used to select the underlying cause of death for all death certificates in the United States, and cause-of-death data in Health, United States are coded using ACME.

In addition, NCHS has developed two computer systems as inputs to ACME. Beginning with 1990 data, the Mortality Medical Indexing, Classification, and Retrieval system (MICAR) was introduced to automate coding of multiple causes of death. MICAR provides more detailed information on the conditions reported on death certificates than is available through the ICD code structure. Then, beginning with data year 1993, SuperMICAR, an enhancement of MICAR, was introduced. SuperMICAR allows for literal entry of the multiple cause-of-death text as reported by the certifier. This information is then processed automatically by the MICAR and ACME computer systems. Records that cannot be processed automatically by MICAR or SuperMICAR are multiple-cause-coded manually and then further processed through ACME. Starting in 2003, SuperMICAR was used to process all of the country's death records.

Data for the entire United States refer to events occurring within the 50 states and D.C.; data for geographic areas are by place of residence. For methodological and reporting area changes for specific death certificate items, see Appendix II, Hispanic origin; Race.

Issues Affecting Interpretation. ICD, by which cause of death is coded and classified, is revised about every 10 to 20 years. Because ICD revisions may cause discontinuities in trend data by cause of death, comparison of death rates by cause of death across ICD revisions should be done with caution and with reference to the comparability ratio (see Appendix II, Comparability ratio). Before 1999, modifications to ICD were made only when a new ICD revision was implemented. A process for updating ICD was introduced with the 10th revision (ICD–10) that allows for midrevision changes. These changes, however, may affect comparability of data between years for select causes of death. Minor changes may be implemented every year, whereas major changes may be implemented every 3 years (e.g., 2003 data year). In data year 2006, major changes were implemented, including the addition and deletion of several ICD codes. For more information, see Heron et al.

Multiple-cause data were obtained from all certificates for 1968–1971, 1973–1980, and 1983–present. Data were obtained from a 50% sample of certificates for 1972. Multiple-cause data for 1981 and 1982 were obtained from a 50% sample of certificates from 19 registration areas. For the other states, data were obtained from all certificates.

The death certificate has been revised periodically. A revised U.S. Standard Certificate of Death was recommended for state use as of January 1, 1989. Among the changes were the addition of new items on educational attainment and the Hispanic origin of the decedent, and changes to improve the medical certification of cause of death. The U.S. Standard Certificate of Death was revised again in 2003; states adopted this new certificate on a rolling basis.

The 2003 revision of the U.S Standard Certificate of Live Birth uses revised race and ethnicity sections conforming to the 1997 "Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity." Starting with 2003 data, some states began using the 2003 revision of the U.S. Standard Certificate of Death, which incorporated the 1997 OMB standards allowing the reporting of more than one race (multiple races). Until all states adopted the 2003 revision and the 1997 OMB standards, it was necessary to bridge data to the 1977 standards. As of 2018, all states reported deaths using the 2003 revision of the death certificate, making it possible to report data using the 1997 categories. While the 1997 standard allows for the reporting of more than one race, estimates are presented for single-race groups (those only reporting one race). Therefore, data for race groups for 2018 and subsequent years are not completely comparable with earlier data. Interpretation of trend data should take into consideration changes to standards. For more information on the impact of the 2003 certificate revisions on mortality data presented in Health, United States, see Appendix II, Race.

References

Infant deaths are defined as death before the infant’s first birthday. In 2018, more than 99% of infant death records were linked to their corresponding birth certificates. The linkage makes available extensive information from the birth certificate about the pregnancy, maternal risk factors, infant characteristics, and health items at birth that can be used for more detailed analyses of infant mortality. The linked file is used for calculating infant mortality rates by race and ethnicity, which are more accurately measured from the birth certificate.

Starting with 1995 data, linked birth/infant death data files are available in two different formats: period data and birth cohort data. The numerator for the period linked file consists of all infant deaths occurring in a given data year linked to their corresponding birth certificates, whether the birth occurred in that year or the previous year. The numerator for the birth cohort linked file consists of deaths of infants born in a given year. In both formats, the denominator is all births occurring in the year. For example, the 2013 period linked file contains a numerator file that consists of all infant deaths occurring in 2013 that have been linked to their corresponding birth certificates, whether the birth occurred in 2012 or 2013. In contrast, the 2013 birth cohort linked file contains a numerator file that consists of all infant deaths of babies born in 2013, whether the death occurred in 2013 or 2014. Although the birth cohort format has methodological advantages, it creates substantial delays in data availability because it is necessary to wait until the close of the following data year to include all infant deaths in the birth cohort. Starting with 1995 data, period linked files are used for infant mortality rate tables in Health, United States.

Other changes to the data set starting with 1995 include the addition of record weights to compensate for the 1%–2% of infant death records that could not be linked to their corresponding birth records. In addition, not-stated birthweight was imputed if the period of gestation was known. This imputation improves the accuracy of birthweight-specific infant mortality rates because the percentage of records with not-stated birthweight is generally higher for infant deaths (4.17% in 2018) than for live births (0.07% in 2018). In 2018, the addition of this imputation reduced the percentage of not-stated birthweight to 0.06% of births.

Issues Affecting Interpretation. Period linked file data starting with 1995 are not strictly comparable with birth cohort data for 1983–1991. Denominators for infant mortality rates are based on the number of live births rather than population estimates. The 2003 revision of the U.S. Standard Certificate of Live Birth uses revised race and ethnicity sections conforming to the 1997 “Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity.” All birth records moved to the 1997 OMB standards with 2016 data. However, because an infant death may be linked to a birth that occurred in the prior year, linked data are not based on the 1997 OMB standards until 2017. Until all states adopted the 2003 revision and the 1997 OMB standards, it was necessary to bridge data to the 1977 standards. While the 1997 standard allows for the reporting of more than one race, estimates are reported for single-race groups (those only reporting one race). Linked data for race groups for 2017 and subsequent years are not completely comparable with earlier data. Interpretation of trend data should take into consideration changes to reporting areas and standards. For methodological and reporting area changes for specific birth certificate items, see Appendix II, Age; Hispanic origin; Race.

References

For more information, see the NCHS Linked Birth and Infant Death Data website at: http://www.cdc.gov/nchs/linked.htm.
National Youth Tobacco Survey (NYTS)

Centers for Disease Control and Prevention, Office on Smoking and Health, and U.S. Food and Drug Administration, Center for Tobacco Products

Overview. NYTS is an annual school-based survey of U.S. middle and high school students that collects data on tobacco use and tobacco-related attitudes, beliefs, and influences. Data collected include use of cigarettes, cigars, smokeless tobacco, e-cigarettes, hookahs, pipe tobacco, and bidis within the past 30 days.

Coverage. Data are nationally representative of 6th through 12th graders in public and private middle and high schools in the 50 states and District of Columbia.

Methodology. Before 2011, NYTS was administered on an approximately biennial basis, and from 2011 to 2018, the survey has been conducted annually. The survey uses a three-stage cluster sampling design to generate a nationally representative sample of U.S. students enrolled in regular public and private schools in grades 6 through 12. The primary sampling units (PSUs) are defined as a county, a group of small counties, or part of a very large county within each stratum; the secondary sampling units are defined as schools or linked schools within each selected PSU; and students are selected via whole classes within each selected school. Alternative schools, special education schools, Department of Defense-operated schools, Bureau of Indian Affairs schools, and vocational schools that serve only pull-out populations were excluded. Participation in NYTS is voluntary on both the school and student levels.

For 2011–2018, data are collected via self-administered, pencil-and-paper questionnaire. Make-up surveys are pursued for eligible students who were absent on the scheduled date of data collection. Ineligible students, including those who had moved and were no longer attending the school; dropouts; those with extended absences; and students who could not complete the survey independently are excluded from survey participation. Data are weighted to account for the complex survey design and adjusted for nonresponse.

Sample Size and Response Rate. In 2018, a total of 20,189 students from 238 public and private schools in the United States participated, with an overall response rate of 68%. The 20,189 participants were broken down by grade: 2,568 12th graders, 2,824 11th graders, 2,664 10th graders, 2,935 9th graders, 3,012 8th graders, 3,140 7th graders, and 2,903 6th graders. During 2011–2018, sample sizes ranged from a low of 17,711 (in 2015) to a high of 24,658 (in 2012), and response rates ranged from a low of 63% (2015) to a high of 74% (2012).

Issues Affecting Interpretation. Estimates of substance use among youth based on NYTS are not directly comparable with estimates based on the National Survey on Drug Use and Health (NSDUH), the Monitoring the Future (MTF) Study, or the Youth Risk Behavior Surveillance System (YRBSS). This is because of differences in populations covered, sample design, questionnaires, interview settings, and data cleaning procedures. NSDUH collects data in residences, whereas NYTS, MTF, and YRBSS collect data in school classrooms. In addition, NSDUH estimates are tabulated by age, whereas NYTS, MTF, and YRBSS estimates are tabulated by school level or grade, representing different ages as well as different populations.

Data for the 2019 NYTS are available but not shown in Health, United States. Due to several changes made to the 2019 NYTS, estimates from the 2019 survey are not directly comparable to estimates from prior years. In addition to the shift from pencil-and-paper to electronic administration of the questionnaires, tobacco product images and descriptions were added to the preamble before each tobacco product-specific section. These changes could result in higher estimates of tobacco use.

References

For more information, see the NYTS website at: https://www.cdc.gov/tobacco/data_statistics/surveys/nyts/index.htm.
Population Census and Population Estimates

U.S. Census Bureau

Decennial Census

The census of population (decennial census) has been held in the United States every 10 years since 1790. Since 1930, it has enumerated the resident population as of April 1 of the census year. Data on sex, race, Hispanic origin, age, and marital status are collected from 100% of the enumerated population.

Race Data on the 1990 Census

The question on race on the 1990 census was based on the Office of Management and Budget’s (OMB) 1977 “Race and Ethnic Standards for Federal Statistics and Administrative Reporting” (Statistical Policy Directive 15). This document specified rules for the collection, tabulation, and reporting of racial and ethnic data within the federal statistical system. The 1977 standards required federal agencies to report race-specific tabulations using four single-race categories: American Indian or Alaskan Native, Asian or Pacific Islander, black, and white. Under the 1977 standards, race and ethnicity were considered to be two separate and distinct concepts. Thus, persons of Hispanic origin may be of any race.

Race Data on the 2000 Census

The question on race on the 2000 census was based on OMB’s 1997 “Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity” (see: Federal Register 62(210):58782–90. 1997). (Also see Appendix II, Race.) The 1997 standards required a minimum set of five categories to be used by federal agencies for identification of race: American Indian or Alaska Native, Asian, black or African American, Native Hawaiian or Other Pacific Islander, and white. The 1997 standards incorporated two major changes in the collection, tabulation, and presentation of race data. First, the 1997 standards increased the minimum set of categories to be used by federal agencies for identification of race from four to five: American Indian or Alaska Native, Asian, black or African American, Native Hawaiian or Other Pacific Islander, and white. Second, the 1997 standards included the requirement that federal data collection programs allow respondents to select one or more race categories when responding to a query on their racial identity. This provision means that there are potentially 31 race groups, depending on whether a person selects one, two, three, four, or all five of the race categories. The 1997 standards continue to call for use, when possible, of a separate question on Hispanic or Latino ethnicity and specify that the ethnicity question should appear before the question on race. Thus, under the 1997 standards, persons of Hispanic origin may be of any race.

Race Data on the 2010 Census

Similar to race data on the 2000 census, the question on race on the 2010 census was based on OMB’s 1997 “Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity” (see: Federal Register 62(210):58782–90. 1997). (Also see Appendix II, Race.) The 1997 standards require a minimum set of five categories to be used by federal agencies for identification of race: American Indian or Alaska Native, Asian, black or African American, Native Hawaiian or Other Pacific Islander, and white, and require that federal data collection programs allow respondents to select one or more race categories when responding to a query on their racial identity. Like the 1977 standards, the 1997 standards continue to call for use, when possible, of a separate question on Hispanic or Latino ethnicity and specify that the ethnicity question should appear before the question on race. Thus, under the 1997 standards, as under the 1977 standards, persons of Hispanic origin may be of any race.

Modified Decennial Census Files

For several decades, the U.S. Census Bureau has produced modified decennial census files. These modified files incorporate adjustments to the 100% April 1 count data for (a) errors in the census data discovered subsequent to publication, (b) misreported age data, and (c) nonspecified race.

For the 1990 census, the Census Bureau modified the age, race, and sex data on the census and produced the modified age-race-sex (MARS) file. The differences between the population counts in the original census file and the MARS file are primarily due to modification of the race data. Of the 248.7 million persons enumerated in 1990, 9.8 million did not specify their race (more than 95% were of Hispanic origin). For the 1990 MARS file, these persons were assigned the race reported by a nearby person with an identical Hispanic-origin question.

For the 2000 and 2010 censuses, the Census Bureau modified the race data and produced the modified race data summary files. For these files, persons who did not report a race (reporting only the category “Some other race”) as part of their race response were assigned by imputation to one of the 31 race groups, which are the single- and multiple-race combinations of the five race categories specified in the 1997 OMB race and ethnicity standards. In the 2000 census, 97% of the 15.4 million persons who did not report a race were of Hispanic origin. Because a large proportion of those identifying their race as “Some other race” are Hispanic, a new instruction was added to the 2010 census specifying that, for the census, Hispanic origins are not races. In the 2010 census, 97% of the 19.1 million persons who did not report a race (reporting only the category “Some other race”) were of Hispanic origin.
Postcensal Population Estimates

Postcensal population estimates are estimates made for the years following a census, before the next census is taken. Postcensal population estimates are derived annually by updating the resident population enumerated in the decennial census using a components-of-population-change approach. Each annual series includes estimates for the current data year and revised estimates for the earlier years in the decade. The following formula is used to derive national estimates for a given year from those for the previous year, starting with the decennial census enumerated resident population as the base:

- Resident population estimate
 - + births to U.S. resident women
 - – deaths to U.S. residents
 - + net international migration

The postcensal estimates are consistent with official decennial census figures and do not reflect estimated decennial census underenumeration.

Estimates for the earlier years in a given series are revised to reflect changes in the components-of-population-change data sets (for example, births to U.S. resident women from a preliminary natality file are replaced with counts from a final natality file). To help users keep track of which postcensal estimate is being used, each annual series is referred to as “vintage,” and the last year in the series is used to name the series. For example, both the vintage 2011 and the vintage 2012 postcensal series have revised estimates for July 1, 2011, but the estimates for July 1, 2011, from the vintage 2011 and vintage 2012 postcensal series differ.

The Census Bureau also produces postcensal estimates of the resident population of states and counties, using the components-of-population-change method. An additional component of population change—net internal migration—is involved.

Intercensal Population Estimates

Intercensal population estimates are estimates made for the years between two decennial censuses and are produced once the census at the end of the decade has been completed. They replace the postcensal estimates produced before the completion of the census at the end of the decade. Intercensal estimates are more accurate than postcensal estimates because they are based on both the census at the beginning and the census at the end of the decade. They are derived by adjusting the final postcensal estimates for the decade to correct for the error of closure (the difference between the estimated population at the end of the decade and the census count for that date). The patterns of population change observed over the decade are preserved. The intercensal estimates for the 1990s were produced using the same methodology used to generate the intercensal estimates for the 1980s. The revised intercensal population estimates for 2000–2009 were produced using a modified version of the methodology used previously.

Vital rates calculated using postcensal population estimates are routinely revised when intercensal estimates become available.

Bridged-race Population Estimates

During the transition to full implementation of the 1997 OMB standards on race and ethnicity, race data on the 2000 and 2010 censuses were not comparable with race data on other data systems that were continuing to collect data using the 1977 OMB standards on race and ethnicity. For example, states implemented the revised birth and death certificates—which have race and ethnicity items that are compliant with the 1997 OMB standards—at different times, and some states still used the 1989 death certificates that collect race and ethnicity data in accordance with the 1977 OMB standards. Thus, population estimates for 1990 and beyond with race categories comparable with the 1977 OMB categories were needed so that race-specific birth and death rates could be calculated. To meet this need, the National Center for Health Statistics (NCHS), in collaboration with the Census Bureau, developed methodology to bridge the 31 race groups in U.S. Census 2000 and 2010 to the four single-race categories specified under the 1977 OMB standards. Beginning in 2016, all states and the District of Columbia (D.C.), in addition to Guam, Northern Mariana Islands, Puerto Rico, and U.S. Virgin Islands, used the 2003 revision of the U.S. Standard Certificate of Live Birth. Beginning in 2018, all states and D.C. reported deaths using the 2003 revision of the U.S. Standard Certificate of Death. Starting with 2016 birth and 2018 death data, Health, United States has reported race according to the 1997 revised OMB standards. However, to provide longer-term trends for specific groups only found in the 1977 OMB standards, selected estimates using bridged single-race categories continue to be presented in Health, United States.

The bridging methodology was developed using information from the 1997–2000 National Health Interview Survey (NHIS). NHIS provides a unique opportunity to investigate multiple-race groups because, since 1982, it has allowed respondents to choose more than one race but has also asked respondents reporting multiple races to choose a primary race. The bridging methodology developed by NCHS involved application of regression models relating person-level and county-level covariates to the selection of a particular primary race by the multiple-race respondents. The bridging proportions derived from these models have been applied by the Census Bureau to various unbridged resident population files. These applications have resulted in bridged-race population estimates for each of the four single-race categories: American Indian or Alaska Native, Asian or Pacific Islander, black, and white.

In Health, United States, vital rates for 1991–1999 were calculated using the July 1, 1991–July 1, 1999 bridged-race intercensal estimates. Vital rates for 2000 were calculated using the bridged-race April 1, 2000, census counts, and those for 2010 were calculated using bridged-race April 1, 2010, census counts. Starting with Health, United States, 2012,
vital rates for 2001–2009 have been recalculated using the July 1, 2001–July 1, 2009, revised intercensal bridged-race population estimates. Vital rates for 2011 and beyond are calculated using bridged-race estimates of the July 1 population from the corresponding postcensal vintage.

Reference

For more information, see the U.S. Census Bureau website at: https://www.census.gov, and the NCHS website for U.S. census populations with bridged-race categories at: https://www.cdc.gov/nchs/nvss/bridged_race.htm.

Sexually Transmitted Disease (STD) Surveillance

Centers for Disease Control and Prevention (CDC), National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention

Overview. Surveillance information on the burden of STDs is used to inform public and private health efforts to control these diseases. Case reporting data are available for nationally notifiable diseases, including chancroid, chlamydia, gonorrhea, and syphilis. Enhanced surveillance of these conditions and surveillance of other STDs or STD-related sequelae, such as genital herpes simplex virus, genital warts, and trichomoniasis, use data collected from other sources, including data from sentinel surveillance and national surveys.

Coverage. Case reports of STDs are reported to CDC by STD surveillance information systems operated by state and local STD control programs and health departments in the 50 states, the District of Columbia (D.C.), selected cities, all U.S. counties, and outlying areas consisting of U.S. dependencies, possessions, and independent countries in free association with the United States. Data on the 50 states and D.C. are presented in Health, United States. Data from outlying areas are not included.

Methodology. Information is obtained from the case reporting of nationally notifiable STDs from state and local STD programs through the National Notifiable Disease Surveillance System.

Issues Affecting Interpretation. Most STDs are asymptomatic. Because of incomplete diagnosis and reporting, the number of STD cases reported to CDC undercounts the actual number of infections occurring among the U.S. population.

Reference

For more information, see the CDC website on STD data and statistics at: https://www.cdc.gov/std/stats, and the CDC website on STD diseases and related conditions at: https://www.cdc.gov/std/general/default.htm.

Private and Global Sources

American Dental Association (ADA)

The ADA Masterfile contains the most up-to-date information on dentists in the United States. The masterfile is a database of all dentists, both practicing and nonpracticing, in the United States. It is updated through a variety of methods, including reconciliation with state licensure databases, death records, and various surveys and censuses of dentists carried out by ADA.

ADA’s Health Policy Institute conducts annual surveys of predoctoral dental educational institutions. A questionnaire, mailed to all dental schools, collects information on academic programs, admissions, enrollment, attrition, graduates, educational expenses and financial assistance, patient care, advanced dental education, and faculty positions.

Reference

For more information, see the ADA website at: https://www.ada.org.

American Hospital Association (AHA) Annual Survey of Hospitals

Data from AHA’s annual hospital survey are based on questionnaires sent to all AHA-registered and nonregistered hospitals in the United States and its associated areas of American Samoa, Guam, Marshall Islands, Puerto Rico, and U.S. Virgin Islands. U.S. government hospitals located outside the United States are excluded. Overall, the average response rate over the past 5 years has been about 83%. For nonreporting hospitals and for the survey questionnaires of reporting hospitals on which some information is missing, estimates are made for all data except those on beds, bassinets, facilities, and services. Data for beds and bassinets of nonreporting hospitals are based on the most recent information available from those hospitals. Data for facilities and services are based only on reporting hospitals. Estimates
of other types of missing data are based on data reported the previous year, if available. When unavailable, estimates are based on data furnished by reporting hospitals similar in size, control, major service provided, length of stay, and geographic and demographic characteristics.

Reference

For more information, see the AHA website at: https://www.aha.org.

American Medical Association (AMA) Physician Masterfile

The AMA Physician Masterfile includes current and historical data for more than 1.4 million physicians, residents, and medical students in the United States. The AMA masterfile includes significant education, training, and professional certification information on virtually all doctors of medicine (M.D.) and doctors of osteopathic medicine (D.O.) in the United States, Puerto Rico, U.S. Virgin Islands, and certain Pacific islands.

References

For more information, see the AMA website at: https://www.ama-assn.org.

American Osteopathic Association (AOA)

AOA was established to promote public health, encourage scientific research, and maintain and improve standards of medical education in osteopathic colleges. Among its activities, AOA compiles the number of osteopathic physicians (doctors of osteopathic medicine or D.O.s); the number of active D.O.s by sex, age, specialty, and geography (50 states and the District of Columbia); and the number of osteopathic medical students, by selected characteristics.

Reference

For more information, see the AOA website at: http://www.osteopathic.org.
Appendix II. Definitions and Methods

This appendix contains an alphabetical listing of terms used in Health, United States, and these definitions are specific to the data presented in this report. The methods used for calculating age-adjusted rates, average annual rates of change, relative standard errors, birth rates, death rates, and years of potential life lost are described. Included are standard populations used for age adjustment (Tables I and II), the years when the revisions for International Classification of Diseases (ICD) codes were in effect (Table III), codes for cause of death from the 6th through 10th revisions of ICD (Table IV), comparability ratios between the 9th and 10th revisions (ICD–9 and ICD–10) for selected causes (Table V), a comparison of high blood pressure based on two standards for high blood pressure (Table VI), imputed family income percentages from the National Health Interview Survey (NHIS) (Table VII), and an analysis of the effect of added probe questions for Medicare and Medicaid coverage on health insurance rates in NHIS (Table VIII). Standards for presenting federal data on race and ethnicity are described, and sample tabulations of NHIS data comparing the 1977 and 1997 Office of Management and Budget standards for the classification of federal data on race and ethnicity are presented in Tables IX and X.

Acquired immunodeficiency syndrome (AIDS)—
Human immunodeficiency virus (HIV) is the pathogen that causes AIDS. HIV disease is the term that encompasses all of the condition’s stages—from infection to the deterioration of the immune system and the onset of opportunistic diseases. However, AIDS is still a term commonly used to refer to the immune deficiency caused by HIV. If a person with HIV infection receives a diagnosis of at least one of a set of opportunistic illnesses or has laboratory values indicating advanced disease, his or her disease is classified as HIV Stage 3 (AIDS). All 50 states, the District of Columbia, and 6 territories (American Samoa, Guam, Northern Mariana Islands, Puerto Rico, Republic of Palau, and U.S. Virgin Islands) report confirmed diagnoses of all stages of HIV infection (including AIDS) to the Centers for Disease Control and Prevention using a uniform surveillance case definition and case report form. The case reporting definitions have changed over time to incorporate a broader range of AIDS-indicator diseases and conditions and use HIV diagnostic tests to improve the sensitivity and specificity of the definition. Because of these case definition changes, AIDS estimates over time may not be comparable. (Also see Appendix II, Human immunodeficiency virus [HIV] disease.)

Age—Reported as age at last birthday (i.e., age in completed years), often calculated by subtracting a person’s date of birth from the reference date, with the reference date being the date of examination, interview, or other contact.

Mother’s (maternal) age is reported on the birth certificate by all states. Birth statistics are presented for mothers aged 10–49 through 1996 and aged 10–54 starting in 1997, based on mother’s date of birth or age as reported on the birth certificate. The age of the mother is edited for upper and lower limits. When the age of the mother is computed to be under 10 or 55 and over (50 and over in 1964–1996), it is considered not stated and is imputed according to the age of the mother from the previous birth record of the same race and total birth order (total of fetal deaths and live births). Before 1963, not-stated ages were distributed in proportion to the known ages for each racial group.

Beginning in 1997, the birth rate for maternal age group 45–49 included data for mothers aged 45 and over in the numerator and has been based on the population of women aged 45–49 in the denominator. Beginning with 2003 data, age of mother was imputed for stated ages 8 and under and 65 and over for births reported using the 2003 revision of the birth certificate. Starting with 2007 data, age of mother is imputed for all births for stated ages 8 and under and 65 and over, regardless of the birth certificate version used. As with data for earlier years, age is imputed according to the age of mother from the previous record with the same race and total birth order.

Age adjustment—Used to compare risks for two or more populations at one point in time or for one population at two or more points in time. Age-adjusted rates are computed using the direct method by applying age-specific rates in a population of interest to a standardized age distribution, to eliminate differences in observed rates that result from age differences in population composition. Age-adjusted rates should be viewed as relative indexes rather than actual measures of risk.

Age-adjusted rates are calculated by the direct method, as in:

$$\sum_{i=1}^{n} r_i \times \left(\frac{p_i}{P} \right)$$

where

- \(r_i \) = Rate in age group \(i \) in the population of interest
- \(p_i \) = Standard population in age group \(i \)
- \(P = \sum_{i=1}^{n} p_i \)
- \(n = \) Total number of age groups over the age range of the age-adjusted rate.

Age adjustment by the direct method requires the use of a standard age distribution. The standard for age adjusting death rates and estimates from surveys in Health, United States is the projected year 2000 U.S. resident population. In Health, United States, 2000, the projected year 2000 U.S. standard population replaced the 1970 civilian noninstitutionalized population for age adjusting estimates from most National Center for Health Statistics (NCHS) surveys. Starting with Health, United States, 2001, it
was used uniformly and replaced the 1940 U.S. population for age adjusting mortality statistics and the 1980 U.S. resident population that previously had been used for age adjusting estimates from the National Health and Nutrition Examination Survey.

Changing the standard population has implications for racial and ethnic differentials in mortality. For example, the mortality ratio for the black to white populations is reduced from 1.6 using the 1940 standard to 1.4 using the 2000 standard, reflecting the greater weight that the 2000 standard gives to the older population, in which race differentials in mortality are smaller.

Age-adjusted estimates from any data source presented in Health, United States that use the projected year 2000 U.S. resident population may differ from age-adjusted estimates based on the same data presented in other reports if different age groups are used in the adjustment procedure.

Mortality data—Death rates are age adjusted to the projected year 2000 U.S. standard population (Table I). Before 2001 data, age-adjusted rates were calculated using standard million proportions based on rounded population numbers (Table II). Starting with 2001 data, unrounded population numbers are used to adjust age. Adjustment is based on 11 age groups, with one exception. Age-adjusted death rates for black males and black females in 1950 are based on nine age groups, with under 1 and 1–4 combined as one group, and 75–84 and 85 and over combined as one group.

National Health and Nutrition Examination Survey (NHANES)—Estimates based on the National Health Examination Survey and NHANES are generally age adjusted to the projected year 2000 U.S. standard population using five age groups: 20–34, 35–44, 45–54, 55–64, and 65–74 or 65 and over (Table I). Before Health, United States, 2001, these estimates were age adjusted to the 1980 U.S. resident population.

National Health Interview Survey (NHIS)—Estimates based on NHIS are age adjusted to the projected year 2000 U.S. standard population (Table I). Before Health, United States, 2000, NHIS estimates were age adjusted

Table I. United States projected year 2000 standard population and age groups used to age adjust data

<table>
<thead>
<tr>
<th>Data system and age group (years)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVS mortality data</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>274,633,642</td>
</tr>
<tr>
<td>Under 75</td>
<td>258,059,676</td>
</tr>
<tr>
<td>Under 1</td>
<td>3,794,901</td>
</tr>
<tr>
<td>1–4</td>
<td>15,191,619</td>
</tr>
<tr>
<td>5–14</td>
<td>39,976,619</td>
</tr>
<tr>
<td>15–24</td>
<td>38,076,743</td>
</tr>
<tr>
<td>25–34</td>
<td>37,233,437</td>
</tr>
<tr>
<td>35–44</td>
<td>44,659,185</td>
</tr>
<tr>
<td>45–54</td>
<td>37,030,152</td>
</tr>
<tr>
<td>55–64</td>
<td>23,961,506</td>
</tr>
<tr>
<td>65–74</td>
<td>18,135,514</td>
</tr>
<tr>
<td>75–84</td>
<td>12,314,793</td>
</tr>
<tr>
<td>85 and over</td>
<td>4,259,173</td>
</tr>
<tr>
<td>NHIS</td>
<td></td>
</tr>
<tr>
<td>All ages</td>
<td>274,633,642</td>
</tr>
<tr>
<td>18 and over</td>
<td>203,852,188</td>
</tr>
<tr>
<td>25 and over</td>
<td>177,593,760</td>
</tr>
<tr>
<td>40 and over</td>
<td>118,180,367</td>
</tr>
<tr>
<td>65 and over</td>
<td>34,709,480</td>
</tr>
<tr>
<td>Under 18</td>
<td>70,781,454</td>
</tr>
<tr>
<td>2–17</td>
<td>63,227,991</td>
</tr>
<tr>
<td>18–44</td>
<td>108,151,050</td>
</tr>
<tr>
<td>18–24</td>
<td>26,258,428</td>
</tr>
<tr>
<td>25–34</td>
<td>37,233,437</td>
</tr>
<tr>
<td>35–44</td>
<td>44,659,185</td>
</tr>
<tr>
<td>45–64</td>
<td>60,991,658</td>
</tr>
<tr>
<td>45–54</td>
<td>37,030,152</td>
</tr>
<tr>
<td>55–64</td>
<td>23,961,506</td>
</tr>
<tr>
<td>65–74</td>
<td>18,135,514</td>
</tr>
<tr>
<td>75 and over</td>
<td>16,573,966</td>
</tr>
<tr>
<td>18–49</td>
<td>127,956,843</td>
</tr>
<tr>
<td>40–64</td>
<td>42,285,022</td>
</tr>
<tr>
<td>50–64</td>
<td>41,185,865</td>
</tr>
<tr>
<td>NHANES</td>
<td></td>
</tr>
<tr>
<td>20 and over</td>
<td>195,850,985</td>
</tr>
<tr>
<td>20–34</td>
<td>55,490,662</td>
</tr>
<tr>
<td>35–44</td>
<td>44,659,185</td>
</tr>
<tr>
<td>45–54</td>
<td>37,030,152</td>
</tr>
<tr>
<td>55–64</td>
<td>23,961,506</td>
</tr>
<tr>
<td>65 and over</td>
<td>34,709,480</td>
</tr>
<tr>
<td>20–44</td>
<td>100,149,847</td>
</tr>
<tr>
<td>45–64</td>
<td>60,991,658</td>
</tr>
<tr>
<td>65 and over</td>
<td>34,709,480</td>
</tr>
<tr>
<td>65–74</td>
<td>18,135,514</td>
</tr>
<tr>
<td>75 and over</td>
<td>16,573,966</td>
</tr>
<tr>
<td>Under 18</td>
<td>70,781,454</td>
</tr>
<tr>
<td>18–44</td>
<td>108,151,050</td>
</tr>
<tr>
<td>45–64</td>
<td>60,991,658</td>
</tr>
<tr>
<td>65 and over</td>
<td>34,709,480</td>
</tr>
</tbody>
</table>

NOTES: DVS is Division of Vital Statistics. NHIS is National Health Interview Survey. NHANES is National Health and Nutrition Examination Survey.

Table II. United States projected year 2000 standard population and proportion distribution by age, for age adjusting death rates before 2001

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Population</th>
<th>Proportion distribution (weight)</th>
<th>Standard million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>274,634,000</td>
<td>1.000000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Under 1</td>
<td>3,795,000</td>
<td>0.013818</td>
<td>13,818</td>
</tr>
<tr>
<td>1–4</td>
<td>15,192,000</td>
<td>0.055317</td>
<td>55,317</td>
</tr>
<tr>
<td>5–14</td>
<td>39,977,000</td>
<td>0.145565</td>
<td>145,565</td>
</tr>
<tr>
<td>15–24</td>
<td>38,077,000</td>
<td>0.136846</td>
<td>138,646</td>
</tr>
<tr>
<td>25–34</td>
<td>37,233,000</td>
<td>0.135573</td>
<td>135,573</td>
</tr>
<tr>
<td>35–44</td>
<td>44,659,000</td>
<td>0.162613</td>
<td>162,613</td>
</tr>
<tr>
<td>45–54</td>
<td>37,030,000</td>
<td>0.138646</td>
<td>138,646</td>
</tr>
<tr>
<td>55–64</td>
<td>23,961,000</td>
<td>0.087247</td>
<td>87,247</td>
</tr>
<tr>
<td>65–74</td>
<td>18,136,000</td>
<td>0.066037</td>
<td>66,037</td>
</tr>
<tr>
<td>75–84</td>
<td>12,315,000</td>
<td>0.044842</td>
<td>44,842</td>
</tr>
<tr>
<td>85 and over</td>
<td>4,259,000</td>
<td>0.015508</td>
<td>15,508</td>
</tr>
</tbody>
</table>

† Figure is rounded up instead of down to force total to 1.0.

This geometric rate of change assumes that a variable increases or decreases at the same rate during each year between the two time periods.

Bed, health facility—The American Hospital Association defines bed count as the number of beds, cribs, and pediatric bassinets that are set up and staffed for use by inpatients on the last day of the reporting period. (Also see Appendix II, Hospital.)

Binge alcohol use—The National Survey on Drug Use and Health (NSDUH) measures binge alcohol use by asking respondents aged 12 years and over about their alcohol use in the 30 days before the interview. Starting in 2015, binge alcohol use was defined for males as drinking five or more drinks on the same occasion (i.e., at the same time or within a couple of hours of each other), and for females as drinking four or more drinks on the same occasion on at least 1 day in the past month. Heavy alcohol users also were defined as binge users of alcohol. Before the 2015 NSDUH, binge alcohol use was defined for both males and females as drinking five or more drinks on at least 1 day in the past month. For males, data for binge alcohol use since 2015 are comparable with data before 2015. For females and the total population of males and females combined, data for binge alcohol use since 2015 are not comparable with data before 2015. Also see Appendix II, Alcohol consumption; Heavy alcohol use.

Birth cohort—Consists of all persons born within a given period of time, such as a calendar year.

National Immunization Surveys—Child (NIS—Child)—Collects data to estimate vaccination coverage among U.S. children aged 19–35 months each year since 1994. In 2019, NIS replaced these estimates with vaccination coverage by age 24 months (among 2-year birth cohorts) for the preceding 3 survey years.

Birth rate—See Appendix II, Rate: Birth and related rates.

Birthweight—The first weight of the newborn obtained after birth. Low birthweight is defined as weighing less than 2,500 grams (5 lb 8 oz). Very low birthweight is defined as weighing less than 1,500 grams (3 lb 4 oz). Before 1979, low birthweight was defined as weighing 2,500 grams or less, and very low birthweight as weighing 1,500 grams or less.

Blood pressure, high—See Appendix II, Hypertension.

Body mass index (BMI)—A measure of body fat based on height and weight. BMI is calculated as a person’s weight in kilograms divided by the square of height in meters. BMI can be used to define weight categories, which may be associated with disease risk. Normal weight for adults is defined as BMI of 18.5–24.9; overweight but not obese is defined as BMI of 25.0–29.9; and obesity is BMI greater than or equal to 30.0. Within the obesity category, Grade 1 obesity is defined as BMI of 30.0–34.9; Grade 2 is BMI of 35.0–39.9; and Grade 3 is BMI greater than or equal to 40.0.

Before assigning a person to a BMI category, BMI is rounded to one decimal place. In Health, United States, the...
national Health and Nutrition Examination Survey (NHANES) variable named Body Mass Index is used to assign persons to BMI categories. Pregnant females are excluded from both adult and child analyses. Mobile examination center (MEC) weights are used to obtain estimates of BMI for both adults and children. However, in NHANES III, almost 500 adults had an abbreviated examination in their home instead of going to the MEC. MEC + home weight was used to include these persons in the estimates.

Starting with Health, United States, 2010, the terminology describing excess weight among children changed from previous editions. The term "obesity" now refers to children who were formerly labeled as overweight. This is a change in terminology only and not a change in measurement. For more information, see: Ogden CL, Flegal KM. Changes in terminology for childhood overweight and obesity. National Health Statistics Reports; no 25. Hyattsville, MD: National Center for Health Statistics. 2010. Available from: https://www.cdc.gov/nchs/data/nhsr/nhsr025.pdf.

Cause of death—For national mortality statistics, every death is attributed to one underlying condition, based on information reported on the death certificate and using international rules for selecting the underlying cause of death from the conditions stated on the certificate. The underlying cause is defined by the World Health Organization as “the disease or injury that initiated the train of morbid events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury.” Generally, more medical information is reported on death certificates than is directly reflected in the underlying cause of death. Conditions that are not selected as the underlying cause of death constitute the nonunderlying causes of death, also known as multiple cause of death.

Cause of death is coded according to the appropriate revision of the International Classification of Diseases (ICD) (Table III). Effective with deaths occurring in 1999, the United States began using the 10th revision of ICD (ICD–10); during 1979–1998, causes of death were coded and classified according to the 9th revision (ICD–9). Table IV lists ICD codes for the 6th through 10th revisions for causes of death shown in Health, United States. In Health, United States, common terms are sometimes used in the text in place of medical terminology. Examples include cancer for “malignant neoplasm” and kidney disease for “nephritis, nephrotic syndrome and nephrosis.”

Each ICD revision has produced discontinuities in cause-of-death trends. These discontinuities are measured by using comparability ratios that are essential to the interpretation of mortality trends (Table V). For further discussion, see: https://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. (Also see Appendix II, Comparability ratio; International Classification of Diseases [ICD]; and Appendix I, National Vital Statistics System [NVSS]; Multiple Cause-Of-Death File.)

Cause-of-death ranking—Selected causes of death of public health and medical importance are compiled into tabulation lists and ranked according to the number of deaths assigned to these causes. The top-ranking causes determine the leading causes of death. Certain causes on the tabulation lists are not ranked if, for example, the category title represents a group title (such as “Major cardiovascular diseases” and “Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified”) or the category title begins with the words “Other” or “All other.” In addition, when one of the titles that represents a subtotal (such as “Malignant neoplasms”) is ranked, its component parts are not ranked. The tabulation lists used for ranking in the 10th revision of the International Classification of Diseases

Table III. Revision of International Classification of Diseases (ICD), by year of conference in which adopted and years in use in United States

<table>
<thead>
<tr>
<th>ICD revision</th>
<th>Year of conference in which revision adopted</th>
<th>Years in use in United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st………………..</td>
<td>1900</td>
<td>1900–1909</td>
</tr>
<tr>
<td>2nd………………..</td>
<td>1909</td>
<td>1910–1920</td>
</tr>
<tr>
<td>3rd………………..</td>
<td>1920</td>
<td>1921–1929</td>
</tr>
<tr>
<td>4th………………..</td>
<td>1929</td>
<td>1930–1938</td>
</tr>
<tr>
<td>5th………………..</td>
<td>1938</td>
<td>1939–1948</td>
</tr>
<tr>
<td>6th………………..</td>
<td>1948</td>
<td>1949–1957</td>
</tr>
<tr>
<td>7th………………..</td>
<td>1955</td>
<td>1958–1967</td>
</tr>
<tr>
<td>8th………………..</td>
<td>1965</td>
<td>1968–1978</td>
</tr>
<tr>
<td>10th……………….</td>
<td>1990</td>
<td>1999–present</td>
</tr>
</tbody>
</table>

Table IV. Cause-of-death codes, by applicable revision of International Classification of Diseases (ICD)

<table>
<thead>
<tr>
<th>Cause of death (ICD 10th revision titles)</th>
<th>6th and 7th revisions</th>
<th>8th revision</th>
<th>9th revision</th>
<th>10th revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicable diseases</td>
<td>...</td>
<td>001–139, 460–466, 480–487, 771.3</td>
<td>A00–B99, J00–J22</td>
<td></td>
</tr>
<tr>
<td>Chronic and noncommunicable diseases</td>
<td>...</td>
<td>140–459, 470–478, 490–799</td>
<td>C00–I99, J30–R99</td>
<td></td>
</tr>
<tr>
<td>Septicemia</td>
<td>...</td>
<td>038</td>
<td>A40–A41</td>
<td></td>
</tr>
<tr>
<td>Human immunodeficiency virus (HIV) disease</td>
<td>...</td>
<td>*042–*044</td>
<td>B20–B24</td>
<td></td>
</tr>
<tr>
<td>Malignant neoplasms</td>
<td>140–205</td>
<td>140–208</td>
<td>C00–C97</td>
<td></td>
</tr>
<tr>
<td>Colon, rectum, and anus</td>
<td>153–154</td>
<td>153, 154</td>
<td>C18–C21</td>
<td></td>
</tr>
<tr>
<td>Trachea, bronchus and lung</td>
<td>162–163</td>
<td>162</td>
<td>C33–C34</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>260</td>
<td>250</td>
<td>E10–E14</td>
<td></td>
</tr>
<tr>
<td>Anemias</td>
<td>...</td>
<td>280–285</td>
<td>D50–D64</td>
<td></td>
</tr>
<tr>
<td>Meningitis</td>
<td>...</td>
<td>320–322</td>
<td>G00, G03</td>
<td></td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td>350</td>
<td>332</td>
<td>G20–G21</td>
<td></td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>...</td>
<td>331.0</td>
<td>G30</td>
<td></td>
</tr>
<tr>
<td>Diseases of the circulatory system</td>
<td>...</td>
<td>390–459</td>
<td>I00–I99</td>
<td></td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>...</td>
<td>410–414, 419.2</td>
<td>I20–I25</td>
<td></td>
</tr>
<tr>
<td>Essential hypertension and hypertensive</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>renal disease</td>
<td>...</td>
<td>110, 112, I15</td>
<td>I60–I69</td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular diseases</td>
<td>330–334</td>
<td>430–438</td>
<td>I60–I69</td>
<td></td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>...</td>
<td>440</td>
<td>I70</td>
<td></td>
</tr>
<tr>
<td>Chronic lower respiratory diseases</td>
<td>241, 501, 502, 527.1</td>
<td>490–494, 496</td>
<td>J40–J47</td>
<td></td>
</tr>
<tr>
<td>Chronic liver disease and cirrhosis</td>
<td>581</td>
<td>571</td>
<td>K70, K73–K74</td>
<td></td>
</tr>
<tr>
<td>Nephritis, nephrotic syndrome and nephrosis</td>
<td>...</td>
<td>580–589</td>
<td>N00–N07, N17–N19, N25–N27</td>
<td></td>
</tr>
<tr>
<td>Pregnancy, childbirth and the puerperium</td>
<td>640–689</td>
<td>630–678</td>
<td>O00–O99</td>
<td></td>
</tr>
<tr>
<td>Congenital malformations, deformations and</td>
<td>...</td>
<td>740–759</td>
<td>Q00–Q99</td>
<td></td>
</tr>
<tr>
<td>chromosomal abnormalities</td>
<td>...</td>
<td>760–779</td>
<td>P00–P96</td>
<td></td>
</tr>
<tr>
<td>Certain conditions originating in the perinatal period</td>
<td>...</td>
<td>761</td>
<td>P01</td>
<td></td>
</tr>
<tr>
<td>Newborn affected by maternal complications of pregnancy</td>
<td>...</td>
<td>762</td>
<td>P02</td>
<td></td>
</tr>
<tr>
<td>Newborn affected by complications of placenta, cord and membranes</td>
<td>...</td>
<td>762</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Disorders related to short gestation and low birth weight, not elsewhere classified</td>
<td>...</td>
<td>765</td>
<td>P07</td>
<td></td>
</tr>
<tr>
<td>Birth trauma</td>
<td>...</td>
<td>767</td>
<td>P10–P15</td>
<td></td>
</tr>
<tr>
<td>Intrauterine hypoxia and birth asphyxia</td>
<td>...</td>
<td>768</td>
<td>P20–P21</td>
<td></td>
</tr>
<tr>
<td>Respiratory distress of newborn</td>
<td>...</td>
<td>769</td>
<td>P22</td>
<td></td>
</tr>
<tr>
<td>Bacterial sepsis of newborn</td>
<td>...</td>
<td>772</td>
<td>P36</td>
<td></td>
</tr>
<tr>
<td>Neonatal hemorrhage</td>
<td>...</td>
<td>798.0</td>
<td>P50–P52, P54</td>
<td></td>
</tr>
<tr>
<td>Sudden infant death syndrome</td>
<td>...</td>
<td>798.0</td>
<td>P50–P52, P54</td>
<td></td>
</tr>
<tr>
<td>Motor vehicle-related injuries b</td>
<td>E810–E835</td>
<td>E810–E823</td>
<td>E810–E825</td>
<td></td>
</tr>
<tr>
<td>Suicide c</td>
<td>E963, E970–E979</td>
<td>E950–E959</td>
<td>E950–E959</td>
<td></td>
</tr>
<tr>
<td>Homicide d</td>
<td>E964, E980–E983</td>
<td>E960–E969</td>
<td>E960–E969</td>
<td></td>
</tr>
<tr>
<td>Firearm-related injury</td>
<td>E922, E955, E965, E970, E985</td>
<td>E922, E955.0–E955.4, E965.0–E965.4, E970, E985.0–E985.4</td>
<td>E922, E955.0–E955.4, E965.0–E965.4, E970, E985.0–E985.4</td>
<td></td>
</tr>
</tbody>
</table>

See footnotes at end of table.

Health, United States, 2019

25
Table IV. Cause-of-death codes, by applicable revision of International Classification of Diseases (ICD)—Con.

<table>
<thead>
<tr>
<th>Cause of death (ICD 10th revision titles)</th>
<th>6th and 7th revisions</th>
<th>8th revision</th>
<th>9th revision</th>
<th>10th revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury by drug overdose.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>X40–X44, X60–X64, X85, Y10–Y14</td>
</tr>
<tr>
<td>Any opioid</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>X40–X44, X60–X64, X85, Y10–Y14 (underlying cause) and T40.0–T40.4, T40.6 (multiple cause)</td>
</tr>
<tr>
<td>Heroin</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>X40–X44, X60–X64, X85, Y10–Y14 (underlying cause) and T40.1 (multiple cause)</td>
</tr>
<tr>
<td>Natural and semisynthetic opioids</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>X40–X44, X60–X64, X85, Y10–Y14 (underlying cause) and T40.2 (multiple cause)</td>
</tr>
<tr>
<td>Methadone</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>X40–X44, X60–X64, X85, Y10–Y14 (underlying cause) and T40.3 (multiple cause)</td>
</tr>
<tr>
<td>Other synthetic opioids (other than methadone)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>X40–X44, X60–X64, X85, Y10–Y14 (underlying cause) and T40.4 (multiple cause)</td>
</tr>
</tbody>
</table>

... Category not applicable; cause-of-death codes are not provided for causes not shown in Health, United States.

1Categories for coding human immunodeficiency virus (HIV) infection were introduced in 1987. The asterisk (*) indicates codes that were not part of ICD–9.
2Starting with 2007 data, the National Center for Health Statistics (NCHS) introduced the category J09 for coding avian influenza virus. In 2009, the title for ICD–10 code J09 was changed from "Influenza due to identified avian influenza virus" to "Influenza due to certain identified influenza virus" to accommodate deaths from influenza A (H1N1) virus in ICD–10 code J09 for data years 2009 and beyond.
3Under ICD–9, this category is called Fetal and neonatal hemorrhage.
4Starting with 2001 data, NCHS introduced categories *U01–*U03 for classifying and coding deaths due to acts of terrorism. The asterisk (*) indicates codes that are not part of ICD–10.
5In the public health community, the term "unintentional injuries" is preferred to accidents, and the term "motor vehicle-related injuries" is preferred to motor vehicle accidents.

The Children’s Health Insurance Program—Title XXI of the Social Security Act, often referred to as the Children’s Health Insurance Program (CHIP), is a program originally enacted by the Balanced Budget Act of 1997. The Children’s Health Insurance Program Reauthorization Act of 2009 (CHIPRA, P.L. 111–3) reauthorized CHIP and appropriated funding for CHIP through fiscal year (FY) 2013. The Affordable Care Act of 2010 (ACA, P.L. 111–148) extended CHIP funding through FY 2015, and the Medicare Access and CHIP Reauthorization Act of 2015 (P.L. 114–10) extended funding with no programmatic changes for CHIP through FY 2017. A 6-year reauthorization of CHIP was signed into law on January 22, 2018, extending the program through the end of FY 2023. On February 9, 2018, the Bipartisan Budget Act (P.L. 115–123) was signed into law, extending CHIP an additional 4 years. Therefore, CHIP is currently authorized through FY 2027.

CHIP provides federal funds for states to provide health care coverage to eligible low-income, uninsured children and pregnant women whose income is too high to qualify for Medicaid. Generally, CHIP is available only through age 18. CHIP gives states broad flexibility in program design within a federal framework that includes important beneficiary protections. Funds from CHIP may be used for a separate child health program or to expand Medicaid. Although CHIP is not part of Medicaid, in some instances in Health, United States, data on CHIP and Medicaid are presented together, and those instances are discussed in the footnotes of the respective tables. For more information, see: https://www.medicaid.gov/chip/index.html. (Also see Appendix II, Health insurance coverage; Medicaid.)

Cholesterol—Serum total cholesterol is a combination of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and very low-density lipoprotein (VLDL) cholesterol. High serum total cholesterol is a risk factor for cardiovascular disease (see: Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel

While the current cholesterol guidelines focus on clinical assessments to manage blood cholesterol for individuals, Health, United States focuses on presenting population-level estimates using the broad indicators identified in earlier guidance based on measured serum total cholesterol level and the reported use of cholesterol-lowering medications. Cholesterol levels are determined using the National Health and Nutrition Examination Surveys (NHANES) T_CHOL file. Three measures of total cholesterol are presented: hypercholesterolemia, high serum total cholesterol, and mean serum total cholesterol. Hypercholesterolemia is based on both laboratory testing and self-reported use of cholesterol-lowering medication and defined as measured serum total cholesterol greater than or equal to 240 mg/dL (6.20 mmol/L) or reporting taking cholesterol-lowering medications. Respondents who were told by a doctor or health professional that their cholesterol was high, were told by a doctor to take cholesterol-lowering medication, and who answered “yes” to the question, “Are you now following this advice to take prescribed medicine?” are classified as taking cholesterol-lowering medication. High serum total cholesterol is defined as measured serum total cholesterol greater than or equal to 240 mg/dL (6.20 mmol/L). Both high serum total cholesterol and mean serum total cholesterol are based on serum samples collected during the NHANES examination.

As part of the NHANES examination, venous blood serum samples collected from NHANES participants at mobile examination centers were frozen and shipped on dry ice to the laboratory conducting the lipid analyses. Serum total cholesterol was measured on all examined adults regardless of whether they had fasted, and data were analyzed regardless of fasting status. Cholesterol measurements are standardized according to criteria of the Centers for Disease Control and Prevention (CDC)—and later the CDC–National Heart, Lung, and Blood Institute Lipids Standardization Program—to ensure comparable and accurate measurements. For more information, see: Myers GL, Cooper GR, Winn CL, Smith SJ. The Centers for Disease Control–National Heart, Lung and Blood Institute Lipid Standardization Program: An approach to accurate and precise lipid measurements. Clin Lab Med 9(1):105–35. 1989. A detailed summary of the procedures used to measure total cholesterol in earlier NHANES years is published in: Carroll MD, Kit BK, Lacher DA, Shero ST, Mussolino ME. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA 308(15):1545–54. 2012. A description of the laboratory procedures for total cholesterol measurement for different NHANES years is published by the National Center for Health Statistics and available from: https://www.cdc.gov/nchs/nhanes/index.htm.

Cigarette smoking—Estimates of cigarette smoking among adults and youths from several sources are presented in Health, United States. In addition, cigarette smoking may be considered in estimates of the use of tobacco products. (For information on how cigarette smoking is defined for estimates in Health, United States, see Appendix II, Tobacco use.)

Civilian noninstitutionalized population; Civilian population—See Appendix II, Population.

Colorectal tests or procedures—Used to detect polyps, abnormal cell growth, lesions, and other gastrointestinal conditions, including colon cancer. These tests may include fecal occult blood test (FOBT), fecal immunochemical test (FIT), FIT-DNA test (e.g., Cologuard), sigmoidoscopy, colonoscopy, or computed tomography (CT) colonography. The frequency of screening varies by test and procedure, and age at initiation of routine screening can be affected by individual risk factors. In the National Health Interview Survey (NHIS), questions about colorectal tests or procedures were asked of respondents aged 40 and over on an intermittent schedule, and the questions varied over time. Colorectal tests and procedures may be used for diagnostic or screening purposes, but the purpose cannot be determined from NHIS.

In 2000, 2003, 2005, and 2008, respondents were asked, “Have you ever had a sigmoidoscopy, colonoscopy, or proctoscopy?” In 2010, 2013, 2015, and 2018, respondents were asked two separate questions: “Have you ever had a colonoscopy?” and “Have you ever had a sigmoidoscopy?” An additional question about colorectal testing, “Have you ever had a blood stool test using a home testing kit?” was asked in all of these survey years.

Respondents who replied that they had a colorectal test or procedure were asked subsequent questions about the month, year, and time since their most recent test or
procedure. In 2000 and 2003, if respondents did not provide the year of, or the time since, their most recent colorectal examination, they were asked about the time frame of their most recent exam (i.e., whether they had the exam a year ago or less, more than 1 year but not more than 2 years ago, more than 2 years but not more than 3 years ago, more than 3 years but not more than 5 years ago, more than 5 years but not more than 10 years ago, or more than 10 years ago). For adults who provided the year, but not the month, of their most recent exam, the exam date was coded as July 15 of the provided year.

In 2005, 2008, 2010, 2013, 2015, and 2018, the questionnaire skip pattern was modified so that respondents giving an incomplete or partial date (missing month or year) of their most recent colorectal exam were asked a follow-up question about the time since their most recent exam (i.e., whether they had the exam a year ago or less, more than 1 year but not more than 2 years ago, more than 2 years but not more than 3 years ago, more than 3 years but not more than 5 years ago, more than 5 years but not more than 10 years ago, or more than 10 years ago).

In 2015, the home FOBT questions were modified to include FIT, a type of FOBT (“Have you ever had a blood stool or FIT test, using a home test kit?”). In 2010, 2015, and 2018, additional questions on the use of virtual or CT colonoscopy were included in the questionnaire. In 2018, questions were added on the use of the FIT-DNA test, which combines the FIT with a test that detects altered DNA in the stool.

Health, United States evaluates the proportion of adults who receive a colorectal cancer screening based on the most recent recommendations made by the U.S. Preventive Services Task Force (USPSTF). For 2008–2013 estimates, adults aged 50–75 were considered to have had any colorectal test or procedure if they met the screening recommendations made by USPSTF in 2008. These adults reported a home FOBT in the past year, sigmoidoscopy in the past 5 years with home FOBT in the past 3 years, or colonoscopy in the past 10 years. For 2015 estimates, FIT was included in the definition of a colorectal cancer test or procedure.

In 2016, USPSTF updated its recommendations for colorectal cancer screening in adults aged 50–75. For 2018 estimates, use of a colorectal cancer test or procedure was defined as reporting a fecal occult blood test or fecal immunochemical test in the past year, FIT-DNA test in the past 3 years, sigmoidoscopy in the past 5 years, CT colonography in the past 5 years, or colonoscopy in the past 10 years. The inclusion of additional colorectal cancer tests in 2018 increased the estimates by 1–2 percentage points across all race and Hispanic-origin groups. For more information, see: https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/colorectal-cancer-screening#tab.

Comparability ratio—About every 10–20 years, the International Classification of Diseases (ICD) is revised to stay abreast of advances in medical science and changes in medical terminology. Each of these revisions produces breaks in the continuity of cause-of-death statistics because of changes in classification and in the rules for selecting an underlying cause of death. Classification and rule changes affect cause-of-death trend data by shifting deaths away from some cause-of-death categories and into others. Comparability ratios measure the effect of changes in classification and coding rules. For the causes shown in Table V, comparability ratios range between 0.6974 and 1.5812. Influenza and pneumonia had the lowest comparability ratio (0.6974), indicating that this cause is about 30% less likely to be selected as the underlying cause of death under the 10th revision of ICD (ICD–10) than under the 9th revision (ICD–9). Alzheimer’s disease had the highest comparability ratio (1.5812), indicating that Alzheimer’s disease is 58% more likely to be selected as the underlying cause when ICD–10 coding is used.

For selected causes of death, the ICD–9 codes used to calculate death rates for 1980–1998 differ from the ICD–9 codes most nearly comparable with the corresponding ICD–10 cause-of-death category, which also affects the ability to compare death rates across ICD revisions. Examples of these causes are Ischemic heart disease; Cerebrovascular diseases; Trachea, bronchus, and lung

Table V. Comparability of selected causes of death between 9th and 10th revisions of International Classification of Diseases (ICD)

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>Final comparability ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human immunodeficiency virus (HIV) disease</td>
<td>1.0821</td>
</tr>
<tr>
<td>Malignant neoplasms</td>
<td>1.0093</td>
</tr>
<tr>
<td>Colon, rectum, and anus</td>
<td>0.9988</td>
</tr>
<tr>
<td>Trachea, bronchus and lung</td>
<td>0.9844</td>
</tr>
<tr>
<td>Breast</td>
<td>1.0073</td>
</tr>
<tr>
<td>Prostate</td>
<td>1.0144</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.0193</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>1.5812</td>
</tr>
<tr>
<td>Diseases of heart</td>
<td>0.9852</td>
</tr>
<tr>
<td>Ischemic heart diseases</td>
<td>1.0006</td>
</tr>
<tr>
<td>Essential (primary) hypertension and hypertensive renal disease</td>
<td>1.1162</td>
</tr>
<tr>
<td>Cerebrovascular diseases</td>
<td>1.0502</td>
</tr>
<tr>
<td>Influenza and pneumonia</td>
<td>0.6974</td>
</tr>
<tr>
<td>Chronic lower respiratory diseases</td>
<td>1.0411</td>
</tr>
<tr>
<td>Chronic liver disease and cirrhosis</td>
<td>1.0321</td>
</tr>
<tr>
<td>Nephritis, nephrotic syndrome and nephrosis</td>
<td>1.2555</td>
</tr>
<tr>
<td>Pregnancy, childbirth and the puerperium</td>
<td>1.1404</td>
</tr>
<tr>
<td>Unintentional injuries</td>
<td>1.0251</td>
</tr>
<tr>
<td>Motor vehicle-related injuries</td>
<td>0.9527</td>
</tr>
<tr>
<td>Poisoning</td>
<td>1.0365</td>
</tr>
<tr>
<td>Suicide</td>
<td>1.0022</td>
</tr>
<tr>
<td>Homicide</td>
<td>1.0020</td>
</tr>
<tr>
<td>Firearm-related injury</td>
<td>1.0012</td>
</tr>
<tr>
<td>Chronic and noncommunicable diseases</td>
<td>1.0100</td>
</tr>
<tr>
<td>Injuries</td>
<td>1.0159</td>
</tr>
</tbody>
</table>

1See Table IV in this report for ICD–9 and ICD–10 cause-of-death codes.
2Ratio of number of deaths classified by ICD–10 to number of deaths classified by ICD–9.

cancer; Unintentional injuries; and Homicide. To address this source of discontinuity, mortality trends for 1980–1998 were recalculated using ICD–9 codes that are more comparable with codes for corresponding ICD–10 categories. Table IV shows the ICD–9 codes used for these causes. This modification may lessen the discontinuity between the 9th and 10th revisions, but the effect on the discontinuity between the 8th and 9th revisions is not measured.

Comparability ratios shown in Table V are based on a comparability study in which the same deaths were coded using both the 9th and 10th revisions. The comparability ratio was calculated by dividing the number of deaths classified using ICD–10 by the number of deaths classified using ICD–9. The resulting ratios represent the net effect of the 10th revision on cause-of-death statistics and can be used to adjust mortality statistics for causes of death classified by the 9th revision to be comparable with cause-specific mortality statistics classified by the 10th revision.

The application of comparability ratios to mortality statistics helps make the analysis of change between 1998 and 1999 more accurate and complete. The 1998 comparability-modified death rate is calculated by multiplying the comparability ratio by the 1998 death rate. Comparability-modified rates should be used to estimate mortality change between 1998 and 1999.

Applying the comparability ratios presented in Table V to age-, race-, and sex-specific mortality data may not be appropriate. Demographic subgroups may differ in their cause-of-death distribution, and this would result in demographic variation in cause-specific comparability ratios.

Consumer Price Index (CPI)—A measure of the average change in prices of goods and services purchased by urban households. CPI is prepared by the U.S. Bureau of Labor Statistics. The medical care component of CPI shows trends in medical care prices based on specific indicators of hospital, medical, and drug prices. A revised definition of CPI has been in use since January 1988. (Also see Appendix II, Gross domestic product [GDP]; and Health expenditures, national.)

Crude birth rate; Crude death rate—See Appendix II, Rate: Birth and related rates; Rate: Death and related rates.

Data presentation standards for proportions—Starting with Health, United States, 2017, data presentation standards for proportions (usually multiplied by 100 and expressed as percentages) are used for selected National Center for Health Statistics (NCHS) data sources and years. The multistep standards are described in the report, “National Center for Health Statistics Data Presentation Standards for Proportions.” This multistep approach is based on minimum denominator sample sizes; the absolute and relative widths of a 95% confidence interval calculated using the Clopper–Pearson method and adapted for complex surveys by Korn and Graubard; and degrees of freedom. Using these standards, estimates identified as statistically unreliable (or whose complementary proportions are unreliable) are suppressed or flagged. This approach performs well for proportions near 0 or 1, incorporates information from the complex survey design including effective sample sizes, and is generally conservative (i.e., a 95% Clopper–Pearson confidence interval includes the true proportion more than 95% of the time).

This multistep approach was identified after a review of current standards, the purpose and scope of data collection, and advances in statistical methodology. The use of the Korn–Graubard modification of the Clopper–Pearson confidence interval for proportions is considered an improvement over the commonly used Wald confidence interval, which is known for its undercoverage (i.e., a 95% Wald confidence interval includes the true proportion less than 95% of the time).

The multistep approach has been applied to estimates starting with the 2015–2016 and 2013–2016 National Health and Nutrition Examination Surveys and the 2016 National Health Interview Survey. The reliability of estimates for prior data years was evaluated based on relative standard errors. In the Chartbook’s figures and data tables, all estimates are presented in accordance with these standards.

Death rate—See Appendix II, Rate: Death and related rates.

Dental caries—Evidence of decay on the crown or enamel surface of a tooth (i.e., coronal caries), including treated and untreated caries. Untreated dental caries is coronal caries that has not been treated or filled. Decay in the root (i.e., root caries) is not included.

In Health, United States, estimates of the presence of caries are based on evaluation of primary and permanent teeth for persons aged 5 years and over. The third molars are not included. Persons without at least one natural tooth (primary or permanent) are classified as edentulous (without any teeth) and excluded. Most edentulous persons are aged...

Dental caries is identified by an oral examination as part of the National Health and Nutrition Examination Survey (NHANES). Changes have occurred over time in the NHANES oral health examination process, ages examined, and methodology. During 1988–1994, data were based on a full-mouth complete oral health examination conducted by a trained dentist on those aged 1 year and over. During 1999–2004, a full-mouth complete oral health examination was conducted by a trained dentist on those aged 2 and over. During 2005–2008, data were collected for those aged 5 and over by a trained health technologist using the Basic Screening Examination (BSE), a simplified screening process to collect information on untreated caries, dental restorations, and dental sealants. During 2009–2010, BSE was conducted by a trained dental hygienist on those aged 3–19; no data on adults were collected. During 2005–2008 and 2009–2010, the use of BSE did not allow analysts to determine if untreated decay was found in permanent teeth or primary teeth. For 2011–2018 data, a full-mouth complete oral health examination is conducted by a trained dentist on those aged 1 and over.

Dental visit—Starting in 1997, National Health Interview Survey respondents were asked, “About how long has it been since you last saw or talked to a dentist? Include all types of dentists, such as orthodontists, oral surgeons, and all other dental specialists as well as hygienists.” Starting in 2001, the question was modified slightly to ask respondents how long it had been since they last saw a dentist. Questions about dental visits were not asked for children under age 2 for 1997–1999 and under age 1 for 2000 and beyond. Starting with 1997 data, estimates are presented for people with a dental visit in the past year.

Diabetes—A group of conditions in which insulin is not adequately secreted or utilized. Diabetes is a leading cause of disease and death in the United States. Using data from the National Health and Nutrition Examination Survey (NHANES), three measures of diabetes are presented in Health, United States: physician-diagnosed diabetes, undiagnosed diabetes, and total diabetes. All three of these measures presented in Health, United States include type 1 and type 2 diabetes.

- **Physician-diagnosed diabetes**—Physician-diagnosed diabetes data are obtained by self-report.
recommend any adjustments to the hemoglobin A1c data.

- Total diabetes—Total diabetes includes those who were classified as having either physician-diagnosed or undiagnosed diabetes.

Poor glycemic control is also a measure that appears in Health, United States. Poor glycemic control is defined as a hemoglobin A1c of greater than 9% among persons with physician-diagnosed diabetes.

Diagnosis—The act or process of identifying or determining the nature and cause of a disease or injury through evaluation of patient history, examination of a patient, and review of laboratory data.

For a given medical care encounter, the first-listed diagnosis can be used to categorize the visit, or if more than one diagnosis is recorded on the medical record, the visit can be categorized based on all diagnoses recorded. Analyzing first-listed diagnoses avoids double-counting events such as visits or hospitalizations; the first-listed diagnosis is often, but not always, considered the most important or dominant condition among all comorbid conditions. However, the choice of the first-listed diagnosis by the medical facility may be influenced by reimbursement or other factors.

Drug—Refers to pharmaceutical agents, prescribed by a physician or other authorized medical professional, for the prevention or treatment of conditions or disease.

National Health and Nutrition Examination Survey (NHANES)—Drug information from NHANES III, NHANES 1999–2000, and later was collected during in-person interviews conducted in participants’ homes. Starting with 2001–2002 data, participants were asked whether they had taken medication in the past 30 days for which they needed a prescription. For NHANES III and NHANES 1999–2000, the question wording differed slightly—participants were asked whether they had taken a prescription medication in the past month. For all survey years, those who answered “yes” were asked to provide the prescription medication containers for the interviewer. For each medication reported, the interviewer entered the product’s complete name from the container. If no container was available, the interviewer asked the participant to verbally report the name of the medication. In addition, participants were asked how long they had been taking the medication and the main reason for use.

Drug data from NHANES provide a snapshot of all prescribed drugs reported by a sample of the U.S. civilian noninstitutionalized population for a 30-day period (or past month, for earlier survey years). Drugs taken on an irregular basis, such as every other day, once per week, or for a 10-day period, were captured in the 30-day recall period. Data shown in Health, United States for the percentage of the population reporting the use of multiple prescription drugs during the past 30 days include a range of drug utilization patterns; for example, persons who took three or more drugs daily during the past 30 days or persons who took a different drug three separate times would be classified as taking three or more drugs in the past 30 days, as long as at least three drugs were taken at some time during the past 30 days.

For more information on NHANES III prescription drug data collection and coding, see: https://wwwn.cdc.gov/nchs/data/nhanes3/2a/pupremed.pdf. The small number of respondents who responded “unknown” to whether they were taking prescription medication (fewer than 10) was coded as not taking prescription drugs in the past month. (Also see Appendix I, National Health and Nutrition Examination Survey [NHANES].)

Drug abuse—See Appendix II, Illicit drug use.

Education—Several approaches to defining educational categories are used in Health, United States. Estimates are typically presented for adults aged 25 and over to allow for completion of education.

National Health and Nutrition Examination Survey (NHANES)—In 1988–1994 (NHANES III), the questionnaire asked, “What is the highest grade or year of regular school [person] has completed?” Responses were used to categorize adults according to educational credentials (i.e., no high school diploma or high school equivalency diploma [GED]; high school diploma or GED; some college, no bachelor’s degree; or bachelor’s degree or higher). Starting with 1999–2000 data, the questionnaire was changed to ask, “What is the highest grade or level of school [you have/(person) has received]?” For data on children, education is based on the level of education completed by the head of the household.

National Health Interview Survey (NHIS)—Starting in 1997, the NHIS questionnaire was changed to ask, “What is the highest level of school [person] has completed or the highest degree received?” Responses are used to categorize adults according to educational credentials (i.e., no high school diploma or GED; high school diploma or GED; some college, no degree; associate’s degree; or bachelor’s degree or higher).

Before 1997, the education variable in NHIS was measured by asking, “What is the highest grade or year of regular school [person] has ever attended?” and “Did [person] finish the grade/year?” Responses were used to categorize adults according to years of education.
completed (i.e., less than 12, 12, 13–15, or 16 years or more).

Data from the 1996 and 1997 NHIS were used to compare distributions of educational attainment for adults aged 25 and over, using categories based on educational credentials (1997) and categories based on years of education completed (1996). A larger percentage of persons reported some college than reported 13–15 years of education, and a correspondingly smaller percentage reported a high school diploma or GED than reported 12 years of education. In 1996, 18% of adults reported less than 12 years of education, 37% reported 12 years, 20% reported 13–15 years, and 25% reported 16 or more years of education. In 1997, 19% of adults reported no high school diploma, 31% reported a high school diploma or GED, 26% reported some college, and 24% reported a bachelor’s degree or higher.

Emergency department or emergency room visit—Starting with the 1997 National Health Interview Survey, respondents to the Sample Adult questionnaire and the Sample Child questionnaire (a knowledgeable adult, usually a parent) are asked about the number of visits to hospital emergency rooms during the past 12 months, including visits that resulted in hospitalization. Respondents are asked, “During the past 12 months, how many times [have you]/[has person] gone to a hospital emergency room about [your own]/[his or her] health? (This includes emergency room visits that resulted in a hospital admission.)”

Ethnicity—See Appendix II, Hispanic origin.

Exercise—See Appendix II, Physical activity, leisure-time.

Expenditures—See Appendix II, Health expenditures, national. (Also see Appendix I, National Health Expenditure Accounts [NHEA].)

Family income—For the National Health Interview Survey and the National Health and Nutrition Examination Survey, all people within a household who are related by blood, marriage or cohabitation, or adoption constitute a family. Each member of a family is classified according to the total income of the family. Unrelated individuals are classified according to their own income.

Table VI. Hypertension among adults aged 20 and over, based on two definitions: United States, 2017–2018

<table>
<thead>
<tr>
<th>Age (years), sex, and race and Hispanic origin</th>
<th>Hypertension based on 2007 standards (systolic pressure at least 140 mm Hg or diastolic pressure at least 90 mm Hg or taking high blood pressure medication)</th>
<th>Hypertension based on 2017 standards (systolic pressure at least 130 mm Hg or diastolic pressure at least 80 mm Hg or taking high blood pressure medication)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 and over, age adjusted³</td>
<td>Percent (weighted)</td>
<td></td>
</tr>
<tr>
<td>Both sexes.</td>
<td>31.0</td>
<td>46.6</td>
</tr>
<tr>
<td>Male</td>
<td>33.3</td>
<td>52.6</td>
</tr>
<tr>
<td>Female</td>
<td>28.6</td>
<td>40.3</td>
</tr>
<tr>
<td>Not Hispanic or Latino:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White only</td>
<td>28.7</td>
<td>44.4</td>
</tr>
<tr>
<td>Black or African American only</td>
<td>44.0</td>
<td>59.0</td>
</tr>
<tr>
<td>Asian only</td>
<td>33.1</td>
<td>49.3</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>30.3</td>
<td>45.4</td>
</tr>
<tr>
<td>20 and over, crude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both sexes.</td>
<td>34.9</td>
<td>49.6</td>
</tr>
<tr>
<td>Male</td>
<td>35.8</td>
<td>54.1</td>
</tr>
<tr>
<td>Female</td>
<td>33.9</td>
<td>45.2</td>
</tr>
<tr>
<td>Not Hispanic or Latino:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White only</td>
<td>35.6</td>
<td>49.9</td>
</tr>
<tr>
<td>Black or African American only</td>
<td>44.1</td>
<td>58.9</td>
</tr>
<tr>
<td>Asian only</td>
<td>33.0</td>
<td>49.1</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>26.1</td>
<td>41.6</td>
</tr>
<tr>
<td>20–44.</td>
<td>10.5</td>
<td>27.5</td>
</tr>
<tr>
<td>45–64.</td>
<td>45.0</td>
<td>60.3</td>
</tr>
<tr>
<td>65 and over.</td>
<td>68.4</td>
<td>77.3</td>
</tr>
</tbody>
</table>

³Estimates are age adjusted to the year 2000 standard population using five age groups: 20–34, 35–44, 45–54, 55–64, and 65 and over.

NOTES: Percentages are based on the average of three blood pressure measurements taken. Data exclude pregnant women and measurements of zero.

SOURCE: NCHS, National Health and Nutrition Examination Survey (NHANES).
not imputed for individuals or families with no reported income information in any of the NHANES survey years. (Also see Appendix II, Poverty.)

National Health Interview Survey (NHIS)—Before 1997, family income was the total income received by members of a family (or by an unrelated individual) in the 12 months before the interview. Family income included wages, salaries, rents from property, interest, dividends, profits and fees from family members’ own businesses, pensions, and help from relatives. Starting in 1997, NHIS collects family income data for the calendar year before the interview (e.g., 2015 family income data were based on calendar year 2014 information). The 1997–2006 instrument allowed the respondent to provide a specific dollar amount (up to $999,995). Any family income responses greater than $999,995 were entered as $999,996. Respondents who did not know or refused to give a dollar amount in response to this question were asked if their total combined family income for the previous year was $20,000 or more, or less than $20,000. If respondents answered this question, they were given one of two flash cards and asked to indicate which income group listed on the card best represented their family’s combined income during the previous calendar year. One flash card listed incomes that were $20,000 or more, and the other listed incomes that were less than $20,000. For the 2007–2010 NHIS, the income amount follow-up questions that had been in place since 1997 were replaced with a series of unfolding bracket questions. The unfolding bracket method asked a series of closed-ended income range questions (e.g., “Is it less than $50,000?”) if the respondent did not provide an answer to the exact-income amount question. The closed-ended income range questions were constructed so that each successive question established a smaller range for the family’s income. Since the 2011 NHIS, the unfolding-bracket income questions have been further refined to improve the assignment of poverty status.

For NHIS respondents, family income data are used in computing a poverty measure. Starting with Health, United States, 2004, multiple imputation of family income data was performed for NHIS survey years 1997 and beyond, with five sets of imputed values created to allow for the assessment of variability caused by imputation.

A detailed description of the multiple imputation procedure and data files for 1997 and beyond are available from: https://www.cdc.gov/nchs/nhis/quest_data_related_1997_forward.htm, through the “Data Release” or the “Imputed Income Files” link under that year.

For data years 1990–1996, about 16%–18% of persons had missing data for family income. In those years, missing values were imputed for family income using a sequential hot-deck, within-matrix, cells-imitation approach. A detailed description of the imputation procedure and data files, with imputed annual family income for 1990 through 1996, is available from: https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHIS/1990-96_Family_Income/. (Also see Appendix II, Poverty; Table VII.)

National Immunization Surveys (NIS)—Before 1998, family income was the total income received by all family members in the past 12 months at the time of interview. Starting in 1998, the NIS questions on family income collect data on income received by all family members for the calendar year before the interview year for households with age-eligible children, similar to NHIS. Family income is the combined total income received by all members of a family before taxes. For the family income questions, the household respondent is asked to include income received from jobs; Social Security; retirement income; unemployment payments; public assistance; interest; dividends; net income from business, farm, or rent; or any other sources. Respondents who answer “don’t know” or refuse to give a dollar amount for the total family income are asked a cascading sequence of income questions—for a total of 15 such questions—that attempt to place the family income into one of 15 income intervals ranging from $7,500 or less to $75,000 or more. The initial question asks if the family income for the prior year was more or less than $20,000. Subsequent sets of income range questions are asked so that each successive question establishes a narrower income range.

A family income variable is constructed from the total family income question and the cascading income questions. If an exact income is given, family income is set to this amount; otherwise, it is set to the midpoint of the tightest bounds established by the cascading income questions. The values of total family income are used to calculate an income-to-poverty ratio. For NIS, this ratio is calculated only for households with age-eligible children, using either the actual family income value or the midpoint of the interval from the series of cascading questions in the numerator and the poverty threshold provided by the U.S. Census Bureau for family size and number of related children in the household in the denominator. Details of the income questions and computation of the income-to-poverty ratio for each data collection year can be found in the NIS data
Table VII. Imputed family income percentages in National Health Interview Survey, by age (years) and sex: United States, 1990–2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Percent</th>
<th>Both sexes</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All ages</td>
<td>Under 18</td>
<td>18 and over</td>
</tr>
<tr>
<td>1990.</td>
<td>16</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>1991.</td>
<td>18</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>1992.</td>
<td>18</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>1993.</td>
<td>16</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>1994.</td>
<td>17</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>1995.</td>
<td>16</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>1996.</td>
<td>17</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>1997.</td>
<td>24</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>1998.</td>
<td>29</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>1999.</td>
<td>31</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>2000.</td>
<td>32</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>2001.</td>
<td>32</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>2002.</td>
<td>32</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>2003.</td>
<td>33</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>2004.</td>
<td>33</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>2005.</td>
<td>33</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>2006.</td>
<td>34</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>2007.</td>
<td>33</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>2008.</td>
<td>30</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>2009.</td>
<td>25</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>2010.</td>
<td>25</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>2011.</td>
<td>22</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>2012.</td>
<td>23</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>2013.</td>
<td>23</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>2014.</td>
<td>23</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>2015.</td>
<td>23</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>2016.</td>
<td>22</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>2017.</td>
<td>21</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>2018.</td>
<td>20</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

NOTES: Percentages are weighted. See Appendix II, Family income.

SOURCE: NCHS, National Health Interview Survey. See Appendix I, National Health Interview Survey (NHIS).

Fee-for-service health insurance—Private (commercial) health insurance that reimburses health care providers on the basis of a fee for each health service provided to the insured person. In addition, fee-for-service is a term often applied to original or traditional Medicare, to distinguish it from Medicare managed-care plans and other new payment systems. (Also see Appendix II, Health insurance coverage; Managed care; Medicare.)

Fertility rate—See Appendix II, Rate: Birth and related rates.

Functional limitation—Functional limitation is based on six questions asked of persons aged 18 and over in the National Health Interview Survey (NHIS):

- Do you have difficulty seeing, even when wearing glasses?
- Do you have difficulty hearing, even when using your hearing aid(s)?
- Do you have difficulty walking or climbing steps?
- Using your usual language, do you have difficulty communicating, for example, understanding or being understood?
- Do you have difficulty remembering or concentrating?
- Do you have difficulty with self-care, such as washing all over or dressing?

The response categories are: no difficulty, some difficulty, a lot of difficulty, and cannot do at all/unable to do. These questions have been asked annually in NHIS starting in 2010 and are found in the 2010 Quality of Life NHIS files, the 2011–2017 Functioning and Disability NHIS files, and the 2018 Sample Adult file. Respondents with answers to one or more of the six questions are classified into one of three mutually
exclusive categories. Those responding “a lot of difficulty” or “cannot do at all/unable to do” to at least one question are classified in the “a lot of difficulty/cannot do at all” category. Of the remaining respondents, those responding “some difficulty” to at least one question are classified in the “some difficulty” category, and those responding “no difficulty” to all questions are classified in the “no difficulty” category. During 2010–2018, 1%–8% of respondents were excluded from analysis because they were missing data across all six functioning questions. Data are for the U.S. civilian noninstitutionalized population. For more information on functional limitation, see the Washington Group on Disability Statistics at: http://www.washingtongroup-disability.com/ and the “Statement of rationale for the Washington Group general measure on disability” at: https://www.cdc.gov/nchs/data/washington_group/rationale.pdf.

Beginning with Health, United States, 2017, this measure of functional limitation replaces the disability measure used in prior editions of Health, United States. While both measures assess difficulty in several areas of functioning, they are not comparable.

For more information about NHIS, including the annual questionnaire and documentation for these files, see: https://www.cdc.gov/nchs/nhis/data-questionnaires-documentation.htm.

General hospital—See Appendix II, Hospital.

Geographic region—The U.S. Census Bureau groups the 50 states and the District of Columbia, for statistical purposes, into four geographic regions (Northeast, Midwest, South, and West) and nine divisions based on geographic proximity (see Appendix II, Figure).

Gestation—In 2014, the National Vital Statistics System introduced a new definition of the period of gestation based on the obstetric estimate of gestation at delivery. This method replaces the previous measure of gestation, which was based on the date of the last normal menses (LMP). Data on LMP gestational age are subject to error for several reasons, including imperfect maternal recall or misidentification of the last menstrual period because of postconception bleeding, delayed ovulation, or intervening early miscarriage.

Gross domestic product (GDP)—The market value of the goods and services produced by labor and property located in the United States. If the labor and property are located in the United States, the suppliers (i.e., the workers and, for property, the owners) may be U.S. residents or residents of other countries. (Also see Appendix II, Consumer Price Index [CPI]; Health expenditures, national.)
Health care visit—Starting with the 1997 National Health Interview Survey, respondents to the Sample Adult and Sample Child questionnaires (a knowledgeable adult, usually a parent) are asked about visits with doctors and other health care professionals using the following series of questions:

- “During the past 12 months, how many times [have you]/[has person] gone to a hospital emergency room about [your]/[his or her] own health? (This includes emergency room visits that resulted in a hospital admission.)”
- “During the past 12 months, did [you]/[person] receive care at home from a nurse or other health care professional?” and “What was the total number of home visits received?”
- “During the past 12 months, how many times [have you]/[has person] seen a doctor or other health care professional about [your]/[his or her] own health at a doctor’s office, a clinic, or some other place? Do not include times [you were]/[person was] hospitalized overnight, visits to hospital emergency rooms, home visits, or telephone calls.” Starting with the 2000 survey year, this question was changed to specifically exclude dental visits.

For 1997–1999, for each question, respondents were shown a flash card with response categories of 0, 1, 2–3, 4–9, 10–12, or 13 or more visits. For tabulation of the 1997–1999 data, responses of 2–3 visits were recoded to 2, 4–9 were recoded to 6, 10–12 were recoded to 11, and 13 or more visits were recoded to 13. The recoded values for the three types of visits were then added to yield an estimate of total health care visits. Starting with the 2000 survey year, response categories were expanded to 0, 1, 2–3, 4–5, 6–7, 8–9, 10–12, 13–15, or 16 or more. For 2000 and more recent data, these response categories are recoded to the midpoint of the range. The category of 16 or more is recoded to 16. The recoded values for the three types of visits described in the questions were then added to yield an estimate of the summary measure of health care visits (including doctor’s visits, hospital emergency room visits, and home visits). After summing the three component visit variables, respondents with values on the edge of the categories presented in Health, United States were rounded down to provide a more conservative estimate of the number of visits. For example, a respondent with 3.5 health care visits was included in the 1–3 visits category, and a respondent with 9.5 health care visits was included in the 4–9 visits category. Respondents were included in this analysis only if they responded on all three visit variables. (Also see Appendix II, Emergency department or emergency room visit; Home visit.)

Health expenditures, national—Estimates from the Centers for Medicare & Medicaid Services (CMS) that measure calendar year spending for health care in the United States by type of service delivered (e.g., hospital care, physician services, or nursing home care) and source of funding for those services (e.g., private health insurance, Medicare, Medicaid, or out-of-pocket spending). CMS produces both historical and projected estimates of health expenditures by category. (Also see Appendix I, National Health Expenditure Accounts [NHEA]; Appendix II, Gross domestic product [GDP].) Types of national health expenditures are described as:

- **Business, household, and other private expenditures**—Outlays for services paid for by nongovernmental sources, such as consumers, private industry, and philanthropic and other nonpatient-care sources.
- **Government expenditures**—Outlays for services paid for by federal, state, and local government agencies, or expenditures required by governmental mandate (such as workers’ compensation insurance payments).
- **Health consumption expenditures**—Outlays for goods and services relating directly to patient care. These expenditures are total national health expenditures minus expenditures for investment, health insurance program administration and the net cost of insurance, and public health activities.
- **Personal health care expenditures**—Outlays for goods and services relating directly to patient care. These expenditures are total national health expenditures minus expenditures for investment, health insurance program administration and the net cost of insurance, and public health activities.
- **Health insurance coverage**—Broadly defined to include both public and private payers that cover medical expenditures incurred by a defined population in a variety of settings. Estimates of health insurance are available from several different government surveys. Because of differences in methodology, question wording, and recall period, estimates from different sources may vary and are not directly comparable. For more information, see: “Health Insurance Measurement and Estimates,” available from: https://www.census.gov/content/dam/Census/library/working-papers/2015/demo/2015-Vornovitsy-Day-01.pdf.

NP

National Health Interview Survey (NHIS)—For point-in-time health insurance estimates, NHIS respondents are asked about their coverage at the time of interview. For 1993–1996, respondents were asked about their coverage in the previous month. Questions on health insurance coverage were expanded starting in 1993 compared with previous years. In 1997, the entire questionnaire was redesigned and data were collected using a computer-assisted personal interview. In 2007, questions on health insurance coverage were expanded again to include three new questions on high-deductible health plans, health savings accounts, and flexible spending accounts.

Respondents are considered to be covered by private health insurance if they indicate private health insurance, or before 1997, if they were covered by a single-service...
hospital plan. Private health insurance includes managed care such as health maintenance organizations.

Private insurance obtained through the workplace was defined as any private insurance that was originally obtained through a present or former employer or union, or starting in 1997, through the workplace, self-employment, or a professional association. Starting in 2011, respondents were also asked whether health insurance coverage was obtained through parents or another relative. Starting in 2014, an additional question on the Health Insurance Marketplace was added to the questionnaire for those respondents who did not indicate that their health plan was obtained through a present or former employer, union, self-employment, or professional association, to evaluate whether their plan was obtained through the Health Insurance Marketplace or a state-based exchange. Starting in 2015, an additional category, “Through Healthcare.gov,” was added to the list describing an additional option for the direct purchase of health insurance. Individuals who select this new category do not receive the additional question about the Health Insurance Marketplace.

Until 1996, persons were defined as having Medicaid or other public assistance coverage if they indicated that they had either Medicaid or other public assistance, or if they reported receiving Aid to Families with Dependent Children (AFDC) or Supplemental Security Income (SSI). After welfare reform in late 1996, Medicaid was delinked from AFDC and SSI. Starting in 1997, persons are considered to be covered by Medicaid if they report having Medicaid or a state-sponsored health program. Starting in 1999, data for persons covered by the Children’s Health Insurance Program are presented with data for those with Medicaid coverage, due to the similar populations covered and ascertainment issues. Medicare or military health care coverage is also determined in the interview, and starting in 1997, other government-sponsored program coverage is determined as well. In 2018, a new question about Veterans Affairs health care enrollment and usage by veterans was added, improving ascertainment of military health care coverage.

The remaining respondents who reported no coverage under any of the types of plans listed are considered uninsured. The uninsured are persons who do not have coverage under private health insurance, Medicare, Medicaid, public assistance, a state-sponsored health plan, other government-sponsored programs, or a military health plan. Persons with only Indian Health Service (IHS) coverage are considered uninsured. Although NHIS respondents who report IHS coverage as their only source of coverage are currently recoded to being uninsured, IHS provides a comprehensive health service delivery system for about 2.2 million American Indian or Alaska Native persons; see: https://www.ihs.gov/newsroom/factsheets/ihspage/ and https://www.ihs.gov/forpatients/ for more information. Estimates of the percentage of persons who are uninsured based on NHIS may differ slightly from those based on other sources because of differences in survey questions, recall period, and other aspects of survey methodology.

About 1% of NHIS respondents did not know or refused to provide information about their health insurance coverage. These individuals are considered to have unknown coverage and excluded from the analyses. Therefore, the term “uninsured,” as used in Health, United States, refers only to the population under age 65.

Two questions were added to the health insurance section of NHIS beginning with the third quarter of 2004 (Table VIII). One question is asked of persons aged 65 and over who had not indicated that they had Medicare: “People covered by Medicare have a card which looks like this. [Are/Is] [person] covered by Medicare?” The other question is asked of persons under age 65 who had not indicated any type of coverage: “There is a program called Medicaid that pays for health care for persons in need. In this state it is also called [state name]. [Are/Is] [person] covered by Medicaid?” Respondents who originally classified themselves as uninsured, but whose classification was changed to Medicare or Medicaid based on a “yes” response to either question, subsequently receive appropriate follow-up questions concerning periods of noncoverage for insured respondents. Of the 892 people (unweighted) who were eligible to receive the Medicare probe question in the third and fourth quarters of 2004, 55% indicated that they were covered by Medicare. Of the 9,146 people (unweighted) who were eligible to receive the Medicaid probe question in the third and fourth quarters of 2004, 3% indicated that they were covered by Medicaid. From 2004 onward, estimates in Health, United States are calculated using the responses to the two additional probe questions. For a complete discussion of the effect of the addition of these two probe questions on insurance coverage estimates, see: Cohen RA, Martinez ME. Impact of Medicare and Medicaid probe questions on health insurance estimates from the National Health Interview Survey, 2004. NCHS Health E-Stats. 2005. Available from: https://www.cdc.gov/nchs/data/hestat/impact04/impact04.htm.

Survey respondents may be covered by health insurance at the time of interview but may have experienced one or more lapses in coverage during the 12 months before the interview. Starting with Health, United States, 2006, NHIS estimates have been presented for the following three exhaustive categories: (a) people with health insurance continuously for the full 12 months before interview, (b) those who had a period of up to 12 months before interview without coverage, and (c) those who were uninsured for more than 12 months before interview. This stub variable has been added to selected tables. Two additional NHIS questions are used to determine the appropriate category for the
Table VIII. Percentage of persons under age 65 with Medicaid or who are uninsured, by selected demographic characteristics, using Method 1 and Method 2 estimation procedures: United States, 2004

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Medicaid 1</th>
<th>Medicaid 2</th>
<th>Uninsured 1</th>
<th>Uninsured 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method 1</td>
<td>Method 2</td>
<td>Method 1</td>
<td>Method 2</td>
</tr>
<tr>
<td></td>
<td>Percent (standard error)</td>
<td>Percent (standard error)</td>
<td>Percent (standard error)</td>
<td>Percent (standard error)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 65</td>
<td>12.0 (0.24)</td>
<td>11.8 (0.24)</td>
<td>16.4 (0.23)</td>
<td>16.6 (0.23)</td>
</tr>
<tr>
<td>Under 18</td>
<td>25.4 (0.49)</td>
<td>24.9 (0.49)</td>
<td>9.2 (0.30)</td>
<td>9.7 (0.29)</td>
</tr>
<tr>
<td>18–64</td>
<td>6.6 (0.17)</td>
<td>6.5 (0.17)</td>
<td>19.3 (0.26)</td>
<td>19.4 (0.26)</td>
</tr>
<tr>
<td>Percent of poverty level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 100%</td>
<td>47.5 (1.03)</td>
<td>46.6 (1.03)</td>
<td>29.6 (0.89)</td>
<td>30.5 (0.92)</td>
</tr>
<tr>
<td>100% to less than 200%</td>
<td>22.0 (0.59)</td>
<td>21.5 (0.60)</td>
<td>28.9 (0.66)</td>
<td>29.4 (0.66)</td>
</tr>
<tr>
<td>200% or more</td>
<td>2.9 (0.13)</td>
<td>2.8 (0.13)</td>
<td>9.4 (0.23)</td>
<td>9.5 (0.23)</td>
</tr>
<tr>
<td>Age (years) and percent of poverty level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 18</td>
<td>71.9 (1.35)</td>
<td>70.2 (1.35)</td>
<td>14.5 (1.15)</td>
<td>16.2 (1.22)</td>
</tr>
<tr>
<td>100% to less than 200%</td>
<td>39.2 (1.13)</td>
<td>38.4 (1.14)</td>
<td>15.0 (0.81)</td>
<td>15.8 (0.82)</td>
</tr>
<tr>
<td>200% or more</td>
<td>6.2 (0.33)</td>
<td>6.1 (0.33)</td>
<td>4.9 (0.30)</td>
<td>4.9 (0.30)</td>
</tr>
<tr>
<td>18–64</td>
<td>31.2 (1.02)</td>
<td>30.8 (1.02)</td>
<td>39.7 (1.09)</td>
<td>40.1 (1.09)</td>
</tr>
<tr>
<td>100% to less than 200%</td>
<td>12.0 (0.48)</td>
<td>11.8 (0.48)</td>
<td>37.0 (0.72)</td>
<td>37.2 (0.72)</td>
</tr>
<tr>
<td>200% or more</td>
<td>1.7 (0.11)</td>
<td>1.7 (0.10)</td>
<td>11.0 (0.26)</td>
<td>11.1 (0.26)</td>
</tr>
<tr>
<td>Hispanic origin and race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>22.2 (0.55)</td>
<td>21.5 (0.55)</td>
<td>34.4 (0.64)</td>
<td>35.1 (0.65)</td>
</tr>
<tr>
<td>Mexican</td>
<td>22.0 (0.63)</td>
<td>21.5 (0.63)</td>
<td>37.6 (0.82)</td>
<td>38.1 (0.83)</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>10.2 (0.25)</td>
<td>10.1 (0.25)</td>
<td>13.2 (0.23)</td>
<td>13.3 (0.23)</td>
</tr>
<tr>
<td>White only</td>
<td>7.4 (0.26)</td>
<td>7.4 (0.26)</td>
<td>12.0 (0.25)</td>
<td>12.1 (0.25)</td>
</tr>
<tr>
<td>Black or African American only</td>
<td>23.9 (0.80)</td>
<td>23.5 (0.79)</td>
<td>17.3 (0.58)</td>
<td>17.8 (0.58)</td>
</tr>
</tbody>
</table>

1Includes persons who do not have private coverage but who have Medicaid or other state-sponsored health plans, including Children’s Health Insurance Program (CHIP). See Appendix I, Children’s Health Insurance Program.

2Includes persons who have not indicated that they are covered at time of interview under private health insurance, Medicare, Medicaid, CHIP, a state-sponsored health plan, other government programs, or military health plan (including VA, TRICARE, and CHAMP–VA). This category includes persons who are only covered by Indian Health Service (IHS) or only have a plan that pays for one type of service, such as accidents or dental care. See Appendix II, Health insurance coverage.

3Starting with third quarter of 2004, two questions were added to the National Health Interview Survey (NHIS) insurance section to reduce potential errors in reporting of Medicare and Medicaid status. Persons aged 65 and over not reporting Medicare coverage were asked explicitly about Medicare coverage, and persons under age 65 with no reported coverage were asked explicitly about Medicaid coverage. Estimates calculated without using additional information from these questions are noted as Method 1. Estimates calculated using additional information from these questions are noted as Method 2. See Appendix II, Medicaid; Medicare.

5Persons of Hispanic origin may be of any race or combination of races. Similarly, the category Not Hispanic or Latino refers to all persons who are not of Hispanic or Latino origin, regardless of race.

SOURCE: NCHS, National Health Interview Survey, 2004, Family Core Component. Data are based on household interviews of a sample of the U.S. civilian noninstitutionalized population. For more information, see: Cohen RA, Martinez ME. Impact of Medicare and Medicaid probe questions on health insurance estimates from the National Health Interview Survey (NHIS) public use data release: Survey description. 2019. Available from: https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHIS/2018/srvydesc.pdf. (Also see Appendix II, Children’s Health Insurance Program; Fee-for-service health insurance; Health maintenance organization [HMO]; Managed care; Medicaid; Medicare; Uninsured.)

Health maintenance organization (HMO)—A health care system that assumes or shares both the financial risks and the delivery risks associated with providing comprehensive medical services to a voluntarily enrolled population in a particular geographic area, usually in return for a fixed, prepaid fee. Pure HMO enrollees use only the prepaid, capititated health services of the HMO panel of medical care providers. Open-ended HMO enrollees use the prepaid HMO health services but may also receive medical care from providers who are not part of the HMO panel. A substantial deductible, copayment, or coinsurance is usually associated with use of nonpanel providers.
HMO model types are described as:

- **Group model HMO**—An HMO that contracts with a single multispecialty medical group to provide care to the HMO’s membership. The group practice may work exclusively with the HMO, or it may provide services to non-HMO patients as well. The HMO pays the medical group a negotiated per capita rate, which the group distributes among its physicians, usually on a salaried basis.

- **Network model HMO**—An HMO that contracts with multiple physician groups to provide services to HMO members. It may include single or multispecialty groups.

- **Staff model HMO**—A closed-panel HMO (where patients can receive services only through a limited number of providers) in which physicians are HMO employees. The providers see members in the HMO’s own facilities.

- **Individual practice association (IPA)**—A health care provider organization comprising a group of independent practicing physicians who maintain their own offices and band together for contracting their services to HMOs, preferred provider organizations, and insurance companies. An IPA may contract with and provide services to both HMO and non-HMO plan participants.

- **Mixed model HMO**—An HMO that combines features of more than one HMO model.

- **Network model HMO**—An HMO that contracts with multiple physician groups to provide services to HMO members. It may include single or multispecialty groups.

Health status, respondent-assessed—Health status measured in the National Health Interview Survey by asking the family respondent about his or her health or the health of a family member: “Would you say [person’s] health in general is excellent, very good, good, fair, or poor?”

Heavy alcohol use—The National Survey on Drug Use and Health (NSDUH) measures heavy alcohol use by asking respondents aged 12 and over about their alcohol use in the 30 days before the interview. Starting in 2015, heavy use of alcohol is defined for males as drinking five or more drinks on the same occasion (i.e., at the same time or within a couple of hours of each other) and for females as drinking four or more drinks on the same occasion on each of 5 or more days in the past 30 days. Heavy alcohol users also are defined as binge users of alcohol. Respondents are asked about the number of days they had five or more drinks (for males) or four or more drinks (for females) on the same occasion if they reported last using any alcohol in the past 30 days. Before the 2015 NSDUH, heavy alcohol use was defined for both males and females as drinking five or more drinks on the same occasion on each of 5 or more days in the past 30 days. For males, data for heavy alcohol use since 2015 are comparable with data before 2015. For females and the total population of males and females combined, data for heavy alcohol use since 2015 are not comparable with data before 2015. (Also see Appendix II, Alcohol consumption; Binge alcohol use.)

Hispanic origin—Hispanic or Latino origin includes persons of Mexican, Puerto Rican, Cuban, Central and South American, Dominican, and other or unknown Latin American or Spanish origin. Persons of Hispanic origin may be of any race.

Birth file—Information about the Hispanic origin of the mother and father is provided by the mother at the time of birth and is recorded on the birth certificate. The reporting area for a Hispanic-origin item on the birth certificate was expanded between 1980 and 1993 (when the Hispanic item was included on the birth certificate in all states and the District of Columbia [D.C.]). Trend data on births for Hispanic and non-Hispanic mothers in Health, United States are affected by expansion of the reporting areas, which affects numbers of events, composition of the Hispanic population, and maternal and infant health characteristics.

In 1980 and 1981, information on births for Hispanic mothers was reported on the birth certificate by the following 22 states: Arizona, Arkansas, California, Colorado, Florida, Georgia, Hawaii, Illinois, Indiana, Kansas, Maine, Mississippi, Nebraska, Nevada, New Jersey, New Mexico, New York, North Dakota, Ohio, Texas, Utah, and Wyoming. In 1982, Tennessee, and in 1983, D.C. began reporting this information. Between 1983 and 1987, information on births for Hispanic mothers was available for 23 states and D.C. In 1988, this information became available for Alabama, Connecticut, Kentucky, Massachusetts, Montana, North Carolina, and Washington, increasing the number of states reporting information on births for Hispanic mothers to 30 states and D.C. In 1989, this information became available from an additional 17 states, increasing the number of Hispanic-reporting states to 47 and D.C. In 1989, only Louisiana, New Hampshire, and Oklahoma did not report Hispanic origin of mother on the birth certificate. With the inclusion of Louisiana and Oklahoma in 1990 as Hispanic-reporting states, 99% of birth records included information on mother’s origin. Hispanic origin of the mother was reported on the birth certificates of 49 states and D.C. in 1991 and 1992; only New Hampshire did not provide this information. Starting in 1993, Hispanic origin of mother is reported by all 50 states and D.C.

Hispanic origin and race are collected separately on the birth certificate. The Hispanic-origin question on the 2003 revision of the birth certificate asks respondents to select only one response. Occasionally, more than one Hispanic-origin response is given, that is, a specified Hispanic-origin group (Mexican, Puerto Rican, Cuban, or Central and South American) in combination with one or more other specified Hispanic-origin groups. Before
persons of Dominican origin were included in the other Hispanic-origin group. Starting with 2018 data, Dominican is also a specified Hispanic-origin group, and 32,072 women identified themselves as Dominican. From 2003 through 2012, respondents who selected more than one Hispanic origin on the birth certificate were classified as other Hispanic. In 2012, 0.4% of births in the revised state-reporting area, plus Massachusetts (an unrevised state that also reported more than one Hispanic-origin response), were to women reporting more than one Hispanic origin. Beginning with 2013 data, respondents who select more than one Hispanic origin are randomly assigned to a single Hispanic origin. The number of births to “other and unknown Hispanic” women increased steadily from 48,972 in 2003 to 146,849 in 2017 and 115,792 in 2018. The numbers for this group declined from 2017 to 2018 because of the addition of the Dominican group. Factors that may have influenced the recent increase are not clear but may include less specificity in respondent reporting of Hispanic origin and increases in the populations of groups included in the “other Hispanic” category. The Hispanic-origin question on the 1989 revision of the birth certificate also offered the opportunity to report more than one origin; however, National Center for Health Statistics (NCHS) processing guidelines for unrevised data allowed for coding only the first Hispanic origin listed.

Linked birth/infant death file—Particularly useful for computing accurate infant mortality rates by race and Hispanic origin because the race and Hispanic origin of the mother from the birth certificate are used in both the numerator and denominator of the linked birth/infant death infant mortality rate. In contrast, infant mortality rates based on the vital statistics mortality file use race and Hispanic origin as reported on the death certificate for the numerator and race and Hispanic origin of the mother as reported on the birth certificate for the denominator. Race and Hispanic-origin information from the birth certificate, which is reported by the mother, is considered more reliable than race and Hispanic-origin information from the death certificate, which is reported by the funeral director based on information provided by an informant or by observation. See “Birth file” and “Mortality file” in this section.

Mortality file—The reporting area for a Hispanic-origin item on the death certificate was expanded between 1985 and 1997. In 1985, mortality data by Hispanic origin of decedent were based on deaths of residents in the following 17 states and D.C. whose data on the death certificate were in a comparable format and at least 90% complete for place of occurrence: Arizona, Arkansas, California, Colorado, Georgia, Hawaii, Illinois, Indiana, Kansas, Mississippi, Nebraska, New York, North Dakota, Ohio, Texas, Utah, and Wyoming. In 1986, New Jersey began reporting Hispanic origin of decedent, increasing the number of reporting states to 18 and D.C. in 1986 and 1987. In 1988, Alabama, Kentucky, Maine, Montana, North Carolina, Oregon, Rhode Island, and Washington were added to the reporting area, increasing the number of states to 26 and D.C. In 1989, 18 more states were added, increasing the Hispanic-reporting area to 44 states and D.C.; only Connecticut, Louisiana, Maryland, New Hampshire, Oklahoma, and Virginia were not included in the reporting area. Starting with 1990 data in Health, United States, the criterion has been changed to include states whose data are at least 80% complete. As a result, the reporting area for Hispanic origin of decedent increased to 47 states and D.C. in 1990 (adding Maryland, Virginia, and Connecticut); 48 states and D.C. in 1991 (adding Louisiana); and 49 states and D.C. in 1993–1996 (adding New Hampshire). Only Oklahoma did not provide this information in 1993–1996. Starting in 1997, Hispanic origin of decedent is reported by all 50 states and D.C. Based on data from the U.S. Census Bureau, the 1990 reporting area encompassed 99.6% of the U.S. Hispanic population. In 1990, more than 96% of death records included information on Hispanic origin of the decedent.

Starting with 2003 data, some states began using the 2003 revision of the U.S. Standard Certificate of Death, which allows the reporting of more than one race (multiple races) and includes some revisions in the item reporting Hispanic origin. The effect of the 2003 revision of the Hispanic-origin item on the reporting of Hispanic origin on death certificates is presumed to be minor. For more information, see Appendix II, Race. Also see the Technical Notes sections of the annual series of “Deaths: Final Data” reports, available from: https://www.cdc.gov/nchs/products/nvrsr.htm; and “NCHS Procedures for Multiple-Race and Hispanic Origin Data: Collection, Coding, Editing, and Transmitting,” available from: https://www.cdc.gov/nchs/data/dvs/Multiple_race_documentation_5-10-04.pdf.

National Health and Nutrition Examination Survey (NHANES)—Questions on Hispanic origin have been self-reported in NHANES III and subsequent years of NHANES. Questions on Hispanic origin precede questions on race. For 1999–2006 NHANES data, the NHANES sample was designed to provide estimates specifically for persons of Mexican origin and not for all Hispanic-origin persons in the United States. Persons of Hispanic origin other than Mexican were entered into the sample with different selection probabilities that are not nationally representative of the total U.S. Hispanic population. Starting with 2007–2008 data collection, all Hispanic persons are oversampled, not just persons of Mexican origin. In addition to allowing estimates for the total group of Hispanic persons, the sample size for Hispanic persons of Mexican origin is sufficient to continue producing reliable estimates for this group. However, the methodology for the oversampling of Hispanic persons did not provide sufficient sample sizes for calculating estimates for other Hispanic subgroups.

National Health Interview Survey (NHIS)—Data on Hispanic origin have been self-reported in NHIS since 1976, and in 1978, race and Hispanic origin were asked for the first time in a two-question format. Over time, the placement and way that both the Hispanic-origin and race questions have been asked have varied considerably. For information on race and Hispanic origin in NHIS, see the survey’s “Race and Hispanic Origin Information” page, available from: https://www.cdc.gov/nchs/nhis/rhoi.htm.

HIV—See Appendix II, Human immunodeficiency virus (HIV) disease.

Home visit—Starting with the 1997 National Health Interview Survey, respondents to the Sample Adult and Sample Child questionnaires (a knowledgeable adult, usually a parent) were asked about home visits conducted during the 12 months before interview. Respondents were asked, “During the past 12 months, did you/person receive care at home from a nurse or other health care professional?” as well as “What was the total number of home visits received?” These data are combined with data on visits to doctors’ offices, clinics, and emergency departments to provide a summary measure of adult health care visits. (Also see Appendix II, Emergency department or emergency room visit; Health care visits.)

Hospital—According to the American Hospital Association (AHA), hospitals are licensed institutions with at least six beds whose primary function is to provide diagnostic and therapeutic patient services for medical conditions; they have an organized physician staff; and they provide continuous nursing services under the supervision of registered nurses. The World Health Organization (WHO) considers an establishment to be a hospital if it is permanently staffed by at least one physician, can offer inpatient accommodation, and can provide active medical and nursing care. Hospitals may be classified by type of service, ownership, size by number of beds, and length of stay. (Also see Appendix II, Bed, health facility.)

Community hospital—Based on the AHA definition, includes all nonfederal, short-term general and special hospitals whose facilities and services are available to the public. Special hospitals include obstetrics and gynecology; eye, ear, nose, and throat; rehabilitation; orthopedic; and other specialty services. Short-term general and special children’s hospitals are also considered to be community hospitals. A hospital may include a nursing home-type unit and still be classified as short-term, provided that the majority of its patients are admitted to units where the average length of stay is less than 30 days. Hospital units of institutions such as prisons and college infirmaries that are not open to the public and are contained within a nonhospital facility are not included in the category of community hospitals. Traditionally, the definition has included all nonfederal short-stay hospitals except facilities for persons with intellectual disabilities.

General hospital—Those providing patient services, diagnostic and therapeutic, for a variety of medical conditions. According to WHO, these hospitals provide medical and nursing care for more than one category of medical discipline (e.g., general medicine, specialized medicine, general surgery, specialized surgery, and obstetrics). Excluded are hospitals, usually in rural areas, that provide a more limited range of care.

Registered hospital—Those registered with AHA. An institution may be registered by AHA as a hospital if it is accredited by the Joint Commission on Accreditation of Healthcare Organizations or is certified as a provider of acute services under Title 18 of the Social Security Act and has provided AHA with documents verifying the accreditation or certification.

Short-stay hospital—In the National Health Interview Survey, short-stay hospitals are defined as any hospital or hospital department in which the type of service provided is general; maternity; eye, ear, nose, and throat; children’s; or osteopathic.

Special hospital—Those providing diagnostic and treatment services for patients who have specified medical conditions, both surgical and nonsurgical.

Hospital utilization—Estimates of hospital utilization (such as percentage of the population with a hospitalization) presented in *Health, United States* are based on data from the National Health Interview Survey (NHIS). NHIS hospital utilization data are based on household interviews with a sample of the U.S. civilian noninstitutionalized population. NHIS respondents are asked whether they had any overnight hospital stays in the past year, excluding overnight stays in the emergency room. (Also see Appendix I, National Health Interview Survey [NHIS].)

Human immunodeficiency virus (HIV) disease—Caused by infection with a cytopathic retrovirus, which in turn leads to destruction of parts of the immune system. A surveillance case for HIV requires laboratory-confirmed evidence of infection, including a positive result on a screening test for HIV antibody, followed by a positive result on a confirmatory test, or a positive result or detectable quantity on an HIV virologic test (see: Centers for Disease Control and Prevention. HIV surveillance report, 2018 (updated); vol 31. 2020. Available from: https://www.cdc.gov/hiv/library/reports/hiv-surveillance/vol-31/index.html).
As of April 2008, all reporting areas (50 states, District of Columbia, and the 6 U.S. territories of American Samoa, Guam, Northern Mariana Islands, Puerto Rico, Republic of Palau, and U.S. Virgin Islands) had implemented HIV case surveillance using a confidential system for name-based case reporting for both HIV infection and AIDS.

In 2008, a new case definition that combined the two previous case definitions for HIV and AIDS was introduced. The term “HIV/AIDS” was replaced with the term “diagnosis of HIV infection,” which is defined as diagnosis of HIV infection regardless of the stage of disease and refers to all persons with a diagnosis of HIV infection (see: Schneider E, Whitmore S, Glynn MK, Dominguez K, Mitsch A, McKenna MT. Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged < 18 months and for HIV infection and AIDS among children aged 18 months to < 13 years—United States, 2008. MMWR Recomm Rep 57(RR-10):1–8. 2008. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5710a1.htm).

The 2008 case definition was used to classify cases diagnosed from the beginning of the epidemic through 2013. In 2014, the HIV surveillance case definition was updated to adapt to changes in diagnostic criteria used by laboratories and clinicians (see: Selik RM, Mokotoff ED, Branson B, Owen SM, Whitmore S, Hall HI. Revised surveillance case definition for HIV infection—United States, 2014. MMWR Recomm Rep 63(RR–03):1–10. 2014. Available from: https://www.cdc.gov/mmwr/pdf/rr/rr6303.pdf).

The 2014 case definition is used to classify cases diagnosed beginning in 2014 and is similar to the 2008 case definition except for the following: (a) inclusion of criteria for stage 0, (b) inclusion of CD4 testing criteria for stage 3 in children, and (c) changes in cutoffs for CD4 percentages of total lymphocytes used for classifications of stages 1 and 2 in persons aged 6 years and over.

Mortality coding—Starting with 1999 data and the introduction of the 10th revision of the *International Classification of Diseases* (ICD–10), the title for this cause of death has been changed from HIV infection to HIV disease, and the ICD codes are changed to B20–B24. Starting with 1987 data, the National Center for Health Statistics had introduced category numbers *042–*044 for classifying and coding HIV infection as a cause of death in ICD–9. The asterisks before the category numbers indicate that these codes were not part of the original ICD–9. HIV infection was formerly referred to as human T-cell lymphotropic virus–III/lymphadenopathy-associated virus (HTLV–III/LAV) infection. Before 1987, deaths involving HIV infection were classified to “Deficiency of cell-mediated immunity” (ICD–9 code 279.1) contained in the category “All other diseases;” to “Pneumocystis” (ICD–9 code 136.3) contained in the category “All other infectious and parasitic diseases;” to “Malignant neoplasms, including neoplasms of lymphatic and hematopoietic tissues;” and to a number of other causes. Because of these coding changes, death statistics for HIV infection before 1987 are not strictly comparable with data for 1987 and subsequent years, and therefore are not shown in *Health, United States*. (Also see Appendix II, Acquired immunodeficiency syndrome [AIDS]; Cause of death; *International Classification of Diseases* [ICD]; *International Classification of Diseases, 9th Revision, Clinical Modification* [ICD–9–CM]; Table IV.)

Hypercholesterolemia—See Appendix II, Cholesterol.

Hypertension—In *Health, United States*, hypertension is identified from the questionnaire and examination portions of the National Health and Nutrition Examination Survey (NHANES). A participant is considered to have hypertension if they have measured high blood pressure or if they report currently taking a prescription medicine for high blood pressure. Measured high blood pressure is defined as systolic blood pressure of at least 130 mm Hg or diastolic blood pressure of at least 80 mm Hg. The averages of the systolic and diastolic blood pressure readings taken are used for systolic and diastolic blood pressure values. For high blood pressure medication use, respondents were asked, “Are you now taking prescribed medicine for your high blood pressure?”

In 2017, the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines recommended adopting lower thresholds of high blood pressure. For systolic blood pressure, the threshold was lowered from 140 mm Hg to 130 mm Hg and for diastolic blood pressure, from 90 mm Hg to 80 mm Hg. The impact of the lower blood pressure cutoffs on the percentage of the population that is classified as having hypertension is shown in Table VI. Among adults aged 20 and over, the age-adjusted prevalence of hypertension in 2017–2018 was 31.0% under the 2007 standards and 46.6% under the 2017 standards. Substantial changes in the percentage with hypertension were observed among males and females, across racial and ethnic groups, and by age group (Table VI).

In NHANES, blood pressure is measured by averaging blood pressure readings taken for an NHANES participant. Blood pressure readings of 0 mm Hg are not included in the estimates. The methods used to measure the blood pressure of participants have changed over the different NHANES survey years. Changes have included:

- Number of blood pressure measurements taken (increased from one to four)
- Equipment maintenance procedures
• Training of persons taking readings (physician, nurse, or interviewer)
• Proportion of zero end-digits for systolic and diastolic readings
• Published diastolic definition

In 1999 and subsequent years, blood pressure is measured for participants aged 8 years and over in the NHANES mobile examination center by one of its physicians. Three consecutive blood pressure readings are obtained using the same arm. If a blood pressure measurement is interrupted or incomplete, a fourth attempt may have been made. Both systolic and diastolic measurements are recorded to the nearest even number. Participants with any of the following on both arms are excluded from the examination: rashes, gauze dressings, casts, edema, paralysis, tubes, open sores or wounds, withered arms, AV shunts, or radical mastectomy. Patients are also excluded if the blood pressure cuff does not fit on the arm.

ICD; ICD codes—See Appendix II, Cause of death; International Classification of Diseases (ICD).

Illicit drug use—Refers to the use and misuse of illegal and controlled drugs.

National Survey on Drug Use and Health (NSDUH)—Information on illicit drug use is collected for survey participants aged 12 and over. Information on any illicit drug use includes any use of marijuana or hashish, cocaine, crack, heroin, hallucinogens, inhalants, or methamphetamine, as well as misuse of prescription psychotherapeutic drugs. Prescription psychotherapeutics include pain relievers, tranquilizers, stimulants, and sedatives; over-the-counter drugs are excluded. Misuse of prescription psychotherapeutics is defined as use in any way other than directed by a health care provider. Such misuse may include obtaining the drug without a valid prescription or using the prescribed drug in greater amounts, more often, longer than told, or in any other way not directed by a doctor. Current use (within the past 30 days) is based on the question: “How long has it been since you last used [drug name]?” This answer is cross-checked with the following question: “Think specifically about the past 30 days, from [DATE] up to and including today. During the past 30 days, on how many days did you use [drug name]?” Starting in 2013, information about marijuana use that was recommended by a doctor or other health care professional has been collected; however, reported marijuana use is classified as illicit drug use. Starting in 2015, the NSDUH questionnaire underwent a partial redesign, and changes in measurement for 7 of the 10 illicit drug categories—hallucinogens, inhalants, methamphetamine, and the misuse of prescription pain relievers, tranquilizers, stimulants, and sedatives—may have affected comparability of the measurement of these illicit drugs and any illicit drug with earlier years (Also see Appendix II, Substance use).

Immunization—See Appendix II, Vaccination.

Incidence—The number of cases of disease having their onset during a prescribed period of time. It is often expressed as a rate (e.g., the incidence of measles per 1,000 children aged 5–15 years during a specified year). Measuring incidence may be complicated because the population at risk for the disease may change during the period of interest due to births, deaths, or migration, for example. In addition, determining whether a case is new—that is, whether its onset occurred during the prescribed period of time—may be difficult. Because of these difficulties in measuring incidence, many health statistics are instead measured in terms of prevalence. (Also see Appendix II, Prevalence.)

Income—See Appendix II, Family income.

Individual practice association (IPA)—See Appendix II, Health maintenance organization (HMO).

Infant death—The death of a live-born child before his or her first birthday. Age at death may be further classified as neonatal or postneonatal. Neonatal deaths are those that occur before the 28th day of life; postneonatal deaths are those that occur between 28 days and 364 days of life. (Also see Appendix II, Rate: Death and related rates.)

Insurance—See Appendix II, Health insurance coverage.

International Classification of Diseases (ICD)—Used to code and classify cause-of-death data. ICD is developed collaboratively by the World Health Organization and 10 international centers, 1 of which is housed at the National Center for Health Statistics (NCHS). ICD promotes international comparability in the collection, classification, processing, and presentation of health statistics. Since 1900, ICD has been modified about once every 10 years, except for the 20-year interval between the 9th and 10th revisions (ICD–9 and ICD–10) (Table III). The purpose of the revisions is to stay up to date with advances in medical science. New revisions usually introduce major disruptions in the time series of mortality statistics (Tables IV and V). For more information, see the NCHS ICD–10 website at: https://www.cdc.gov/nchs/icd/icd10.htm. (Also see Appendix II, Cause of death; Comarability ratio; International Classification of Diseases, 9th Revision, Clinical Modification [ICD–9–CM].)

International Classification of Diseases, 9th Revision, Clinical Modification (ICD–9–CM)—Based on, and compatible with, the World Health Organization’s ICD–9. The United States used ICD–9–CM to code morbidity diagnoses and inpatient procedures until October 1, 2015, when the International Classification of Diseases, 10th Revision, Clinical Modification/Procedure Coding System (ICD–10–CM/PCS) went into effect. ICD–9–CM consists of three volumes. Volumes 1 and 2 contain the diagnosis tabular list and index, and Volume 3 contains the procedure classification (tabular list and index combined).

ICD–9–CM is divided into 17 chapters and 2 supplemental classifications. The chapters are arranged primarily by body system, with additional chapters for...
Table IX. Current cigarette smoking among adults aged 18 and over, by race and Hispanic origin under 1997 and 1977 standards for classifying federal data on race and ethnicity: United States, average annual, 1993–1995

<table>
<thead>
<tr>
<th>Race group</th>
<th>1997 standard</th>
<th>Sample size</th>
<th>Percent (standard error)</th>
<th>1977 standard</th>
<th>Sample size</th>
<th>Percent (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White only</td>
<td>46,228</td>
<td>25.2 (0.26)</td>
<td></td>
<td>46,664</td>
<td>25.3 (0.26)</td>
<td></td>
</tr>
<tr>
<td>Black or African American only</td>
<td>7,208</td>
<td>26.6 (0.64)</td>
<td></td>
<td>7,334</td>
<td>26.5 (0.63)</td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native only</td>
<td>416</td>
<td>32.9 (2.53)</td>
<td></td>
<td>480</td>
<td>33.9 (2.38)</td>
<td></td>
</tr>
<tr>
<td>Asian only</td>
<td>1,370</td>
<td>15.0 (1.19)</td>
<td></td>
<td>1,411</td>
<td>15.3 (1.22)</td>
<td></td>
</tr>
<tr>
<td>2 or more races total</td>
<td>786</td>
<td>34.5 (2.00)</td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Black or African American; white</td>
<td>83</td>
<td>*21.7 (6.05)</td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native; white</td>
<td>461</td>
<td>40.0 (2.58)</td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Race, any mention</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, any mention</td>
<td>46,882</td>
<td>25.3 (0.26)</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American, any mention</td>
<td>7,382</td>
<td>26.6 (0.63)</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native, any mention</td>
<td>965</td>
<td>36.3 (1.71)</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian, any mention</td>
<td>1,458</td>
<td>15.7 (1.20)</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Hawaiian or Other Pacific Islander, any mention</td>
<td>53</td>
<td>*17.5 (5.10)</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic origin and race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Hispanic or Latino:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White only</td>
<td>42,421</td>
<td>25.8 (0.27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American only</td>
<td>7,053</td>
<td>26.7 (0.65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native only</td>
<td>358</td>
<td>33.5 (2.69)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian only</td>
<td>1,320</td>
<td>14.8 (1.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 or more races total</td>
<td>687</td>
<td>35.6 (2.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>5,175</td>
<td>17.8 (0.65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Category not applicable.
- * Estimate does not meet NCHS standards of reliability; data preceded by an asterisk have a relative standard error of 20%–30%.

NOTES: The Office of Management and Budget’s (OMB) 1997 “Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity” specify five race groups (white, black or African American, American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander) and allow respondents to report one or more race groups. Estimates for single- and multiple-race groups not shown do not meet standards for statistical reliability or confidentiality (relative standard error is greater than 30%). Race groups under the 1997 standards are based on responses to the question, “What is the group or groups which represents [person’s] race?” For persons who selected multiple groups, race groups under OMB’s 1977 “Race and Ethnic Standards for Federal Statistics and Administrative Reporting” were based on responses to the additional question, “Which of those groups would you say best represents [person’s] race?” Race-specific estimates are calculated after excluding respondents of other and unknown race. Other published race-specific estimates are based on files in which such responses have been edited. Estimates are age adjusted to the year 2000 standard population using five age groups: 18–24, 25–34, 35–44, 45–64, and 65 and over. See Appendix II, Age adjustment.

SOURCE: NCHS, National Health Interview Survey. See Appendix I, National Health Interview Survey (NHIS).

Infectious and parasitic diseases; Neoplasms; Endocrine, nutritional, and metabolic diseases; Mental disorders; Complications of pregnancy, childbirth, and puerperium; Certain conditions originating in the perinatal period; Congenital anomalies; and Symptoms, signs, and ill-defined conditions. The two supplemental classifications are for factors influencing health status and contact with health services (V codes), and for external causes of injury and poisoning (E codes).

Late fetal death rate—See Appendix II, Rate: Death and related rates.

Leading causes of death—See Appendix II, Cause-of-death ranking.

Life expectancy—The average number of years of life remaining to a person at a particular age and based on a given set of age-specific death rates—generally, the mortality conditions existing in the period mentioned. Life expectancy may be determined by sex, race and Hispanic origin, or other characteristics, by using age-specific death rates for the population with that characteristic. (Also see Appendix II, Rate: Death and related rates.)

U.S. life tables by Hispanic origin are available starting with 2006 data. Life expectancy data for the Hispanic population were not available before 2006 for three major reasons: (a) coverage of the Hispanic population in the U.S. mortality statistics system was incomplete, (b) misclassification of Hispanic persons on death certificate data underestimated deaths in the Hispanic population, and (c) misstatement of age at the oldest ages in the Hispanic population led to an underestimation of mortality at the oldest ages.
Table X. Private health care coverage among persons under age 65, by race and Hispanic origin under 1997 and 1977 standards for classifying federal data on race and ethnicity: United States, average annual, 1993–1995

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample size</td>
<td>Percent (standard error)</td>
<td>Sample size</td>
<td>Percent (standard error)</td>
</tr>
<tr>
<td>White only</td>
<td>168,256</td>
<td>76.1 (0.28)</td>
<td>203,696</td>
<td>75.9 (0.28)</td>
</tr>
<tr>
<td>Black or African American only</td>
<td>30,048</td>
<td>53.5 (0.63)</td>
<td>30,690</td>
<td>53.6 (0.63)</td>
</tr>
<tr>
<td>American Indian or Alaska Native only</td>
<td>2,003</td>
<td>44.2 (1.97)</td>
<td>2,316</td>
<td>43.5 (1.85)</td>
</tr>
<tr>
<td>Asian only</td>
<td>6,896</td>
<td>68.0 (1.39)</td>
<td>7,146</td>
<td>68.2 (1.34)</td>
</tr>
<tr>
<td>Native Hawaiian or Other Pacific Islander</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Islander only</td>
<td>173</td>
<td>75.0 (7.43)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2 or more races total</td>
<td>4,203</td>
<td>60.9 (1.17)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Black or African American; white</td>
<td>686</td>
<td>59.5 (3.21)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native; white</td>
<td>2,022</td>
<td>60.0 (1.71)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Asian; white</td>
<td>590</td>
<td>71.9 (3.39)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Native Hawaiian or Other Pacific Islander; white</td>
<td>56</td>
<td>59.2 (10.65)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Race, any mention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, any mention</td>
<td>171,817</td>
<td>75.8 (0.28)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Black or African American, any mention</td>
<td>31,147</td>
<td>53.6 (0.62)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native, any mention</td>
<td>4,365</td>
<td>52.4 (1.40)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Asian, any mention</td>
<td>7,639</td>
<td>68.4 (1.27)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Native Hawaiian or Other Pacific Islander, any mention</td>
<td>283</td>
<td>68.7 (6.23)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic origin and race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Hispanic or Latino:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White only</td>
<td>146,109</td>
<td>78.9 (0.27)</td>
<td>149,057</td>
<td>78.6 (0.27)</td>
</tr>
<tr>
<td>Black or African American only</td>
<td>29,250</td>
<td>53.9 (0.64)</td>
<td>29,877</td>
<td>54.0 (0.63)</td>
</tr>
<tr>
<td>American Indian or Alaska Native only</td>
<td>1,620</td>
<td>45.2 (2.15)</td>
<td>1,859</td>
<td>44.6 (2.05)</td>
</tr>
<tr>
<td>Asian only</td>
<td>6,623</td>
<td>68.2 (1.43)</td>
<td>6,999</td>
<td>68.4 (1.40)</td>
</tr>
<tr>
<td>Native Hawaiian or Other Pacific Islander only</td>
<td>145</td>
<td>76.4 (7.79)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2 or more races total</td>
<td>3,365</td>
<td>62.6 (1.18)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>31,040</td>
<td>48.8 (0.74)</td>
<td>31,040</td>
<td>48.8 (0.74)</td>
</tr>
</tbody>
</table>

... Category not applicable.

NOTES: The Office of Management and Budget's (OMB) 1997 “Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity” specify five race groups (white, black or African American, American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander) and allow respondents to report one or more race groups. Estimates for single- and multiple-race groups not shown do not meet standards for statistical reliability or confidentiality (relative standard error is greater than 30%). Race groups under the 1997 standards are based on responses to the question, “What is the group or groups which represents [person’s] race?” For persons who selected multiple groups, race groups under OMB’s 1977 “Race and Ethnic Standards for Federal Statistics and Administrative Reporting” were based on responses to the additional question, “Which of those groups would you say best represents [person’s] race?” Race-specific estimates are calculated after excluding respondents of other and unknown race. Other published race-specific estimates are based on files in which such responses have been edited. Estimates are age adjusted to the year 2000 standard population using three age groups: under 18, 18–44, and 45–64. See Appendix II, Age adjustment.

SOURCE: NCHS, National Health Interview Survey. See Appendix I, National Health Interview Survey (NHIS).

Hispanic origin was added to the U.S. Standard Certificate of Death in 1989, but it was not adopted by every state until 1997. By 1997, all states had reporting rates over 99%. Research on race and Hispanic-origin reporting on U.S. death certificates found that misclassification of race and Hispanic origin accounts for a net underestimate of 5% for total Hispanic deaths, 1% for total non-Hispanic black deaths, and 0.5% for non-Hispanic white deaths. To address the effects of age misstatement at the oldest ages, the probability of death for Hispanic persons over age 80 is estimated as a function of non-Hispanic white mortality with the use of the Brass relational logit model. For more information, see: Arias E. United States life tables by Hispanic origin. National Center for Health Statistics. Vital Health Stat 2(152). 2010. Available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_152.pdf.

Life tables are used in the calculation of life expectancy and have been available since 1945. From 1945 through 1996, the annual life tables were abridged life tables, closed at age 85 and over, and constructed by reference to a standard table. Beginning with 1997 mortality data, a new methodology similar to that of the 1989–1991 decennial life tables was employed to estimate annual complete life tables to age 100, with combined life table values presented for ages 100 and over. The methodology was again revised for 2000–2007 using a methodology similar to that of the 1999–2001 decennial life tables. Beginning with 2008 data, the life table methodology was refined by...

Low birthweight—See Appendix II, Birthweight.

Mammography—An X-ray image of the breast used to detect irregularities in breast tissue. In the National Health Interview Survey (NHIS), questions concerning use of mammography are asked on an intermittent schedule. Mammograms may be used for diagnostic or screening purposes, but the purpose cannot be determined from NHIS.

In Health, United States, use of mammography is defined as the percentage of women aged 40 and over having a mammogram within the past 2 years. Survey questions have changed over time.

NHIS asks women aged 30 and over if they ever had a mammogram. Those who answer “yes” are asked when they had their most recent mammogram. In 1987 and 1990, women were asked to report the number of days, weeks, months, or years that had passed since their most recent mammogram. In 1991, women were asked whether they had a mammogram in the past 2 years. In 1993 and 1994, women were asked whether they had a mammogram within the past year, between 1 to 2 years ago, or more than 2 years ago. In 1998, women were asked whether they had a mammogram 1 year ago or less, more than 1 year but not more than 2 years ago, more than 2 years but not more than 3 years ago, more than 3 years but not more than 5 years ago, or more than 5 years ago.

In 1999, women were asked to report the number of days, weeks, months, or years that had passed since their most recent mammogram. Estimates for 1999 may be slightly overestimated in comparison with previous years: women who responded “2 years ago” (10% of women) may include those who received a mammogram more than 2 years but less than 3 years ago.

In 2000 and 2003, women were asked when they had their most recent mammogram (month and year). Women who did not respond were given a follow-up question that used the 1999 wording, and women who did not respond to the 1999 wording were asked a second follow-up question that used the 1998 wording. Estimates for 2000 and 2003 may be slightly overestimated in comparison with estimates before 1999: women who responded “2 years ago” (2% of women) may include those who received a mammogram more than 2 years but less than 3 years ago.

In 2005, women were asked the same series of mammography questions as in the 2000 and 2003 surveys, but the questionnaire skip pattern was modified so that more women were asked the follow-up question using the 1998 wording. Thus, estimates for 2005 and subsequent years are more precise than estimates for 1999, 2000, and 2003. SAS code to categorize mammography data for 2000 and beyond is available from: https://www.cdc.gov/nchs/nhis/nhis_2005_data_release.htm. In 2008, 2010, 2013, and 2015, the mammography questions were identical to those asked in 2005.

The recommended age to begin mammography screening and the interval between screenings has changed over time. The current recommendation, made by the U.S. Preventive Services Task Force (USPSTF) in 2016, is the use of mammography for breast cancer screening every 2 years for women aged 50–74. For women aged 40–49, USPSTF notes that the decision to start screening should be an individual one, taking into account a woman’s health history, preferences, and how she values the different potential benefits and harms. USPSTF concludes that the current evidence is insufficient to evaluate the balance of benefits and harms of screening mammography in women aged 75 and over. For additional information, see the USPSTF website on Breast cancer: Screening at: https://www.uspreventiveservicestaskforce.org/uspstf/document/RecommendationStatementFinal/breast-cancer-screening.

Managed care—A term originally used to refer to prepaid health plans (generally, health maintenance organizations [HMOs]) that furnish care through a network of providers under a fixed budget and manage costs. Increasingly, the term is also used to include preferred provider organizations (PPOs) and even forms of indemnity insurance coverage (i.e., fee-for-service insurance).

Medicare managed care includes a combination of risk- and cost-based plans. Risk-based plans receive a fixed prepayment per beneficiary per month to help pay for the cost of all covered services that a beneficiary may use. Each year, the Centers for Medicare & Medicaid Services (CMS) announces a benchmark amount for each county for coverage of Medicare Part A and Part B services. A managed care plan contracting with Medicare then submits a bid, which represents the revenue it needs to cover these services. If the bid is above the benchmark, the difference must be charged in a premium to the enrollees of the plan. If the bid is below the benchmark, then a portion of the difference must be used to provide additional benefits to enrollees, with the Medicare trust funds receiving the remaining share. The term Medicare Advantage is used to refer to managed care plans, including HMOs, PPOs, private fee-for-service plans, special needs plans, Medicare medical savings account plans, and certain other types of plans.
Cost-based plans are offered by an HMO or a competitive medical plan and are paid for their “reasonable costs” in providing Medicare services to enrollees, based on annual cost reports filed with CMS. For current definitions of the various Medicare managed care plans, see Chapter 1, section 30, Other MA plans, in the CMS “Medicare Managed Care Manual,” available from: https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/mc86c01.pdf.

Medicare enrollees can choose to enroll in a managed care program (if available) or to receive services on a fee-for-service basis.

The two major Medicaid managed care categories are risk-based plans (such as managed care organizations or MCOs, prepaid inpatient health plans, and prepaid ambulatory health plans) and primary case management (PCCM) arrangements. Risk-based plans are paid a fixed fee per enrollee, which is generally paid on a monthly basis. Risk-based plans assume some or all of the financial risk for providing the services covered under the contract. PCCM providers are usually physicians, physician group practices, or entities employing or having other arrangements with such physicians, but they can also include nurse practitioners, nurse midwives, or physician assistants. These providers contract directly with the state to locate, coordinate, and monitor covered primary care (and sometimes additional services). PCCM providers are paid a per-patient case management fee and usually do not assume financial risk for the provision of services. Some states allow Medicaid enrollees to voluntarily enroll in managed care plans; most states require that at least certain categories of Medicaid beneficiaries join such plans. Both risk-based plans and PCCM arrangements include plans that provide specialized services to certain categories of Medicaid beneficiaries. For more information on state Medicaid managed care plans, see: https://www.medicaid.gov/medicaid/managed-care/index.html. (Also see Appendix II, Health maintenance organization [HMO]; Medicare; Medicaid; Preferred provider organization [PPO].)

Marital status—Classified through self-reporting in the categories of married and unmarried. The term “married” encompasses all married people, including those separated from their spouses. “Unmarried” includes those who are single (never married), divorced, or widowed.

National Health Interview Survey (NHIS)—In NHIS, marital status is asked of, or about, all persons aged 14 and over. Respondents are asked, “Are you now married, widowed, divorced, separated, never married, or living with a partner?” In tables, these responses are categorized into three groups: married; divorced, separated, or widowed; and never married.

Maternal death—The National Center for Health Statistics (NCHS) uses the World Health Organization (WHO) definition for maternal mortality: deaths of women while pregnant or within 42 days of being pregnant, from any cause related to or aggravated by the pregnancy or its management, but not from accidental or incidental causes.

The definition specifically excludes external causes, such as accidents, homicides, and suicides.

Maternal deaths can be divided into two groups: direct and indirect obstetric deaths. Direct obstetric deaths are those resulting from obstetric complications of the pregnancy state (pregnancy, labor, and the puerperium); from interventions, omissions, or incorrect treatment; or from a chain of events resulting from any of the above. Indirect obstetric deaths are those resulting from previous existing disease, or from disease that developed during pregnancy that was not due to direct obstetric causes but was aggravated by the physiologic effects of pregnancy. The National Vital Statistics System follows guidance from WHO’s International Classification of Diseases, 10th Revision (ICD–10) to identify maternal deaths based on the cause of death reported on the U.S. Standard Certificate of Death. Maternal deaths are classified using ICD–10 codes A34, O00–O95, and O98–O99.

Following adoption of the pregnancy checkbox, an evaluation of data quality indicated some errors with the reporting of maternal deaths, including overreporting of maternal deaths in older women. Therefore, NCHS adopted a new method, known as “the 2018 method,” for coding maternal deaths to reduce these probable errors. The 2018 method has two key features: (a) it restricts application of the pregnancy checkbox, from decedents aged 10–54 to those aged 10–44; and (b) for decedents aged 10–44, for whom the checkbox is the only indicator of a pregnancy in the last year, only the underlying cause of death is modified to reflect the maternal cause of death; the other detail about cause of death is retained in its original detail. The effect

Medicaid—Authorized in 1965, becoming Title XIX of the Social Security Act. Medicaid is a state–federal partnership jointly funded by the states and federal government, and administered by the states according to federal requirements to assist states in providing medical care to eligible persons. Within broad federal guidelines, each state establishes its own eligibility standards; determines the type, amount, duration, and scope of services; sets the rate of payment for services; and administers its own program.

Medicaid is the largest program providing medical and health-related services to low-income persons. Medicaid was originally available only to individuals receiving cash assistance, but over time, Congress has expanded eligibility for children and selected adult groups. The Patient Protection Affordable Care Act (PPACA) (P.L. 111–148) and the Health Care and Education Reconciliation Act of 2010 (HCERA) (P.L. 111–152) initiated significant changes to Medicaid. Subsequent references to ACA in Health, United States include changes enacted by PPACA or HCERA.

States are mandated by federal law to cover certain population groups but are granted flexibility in covering other groups (42 USC 1396 et seq). In the standard benefit package, states must cover mandatory benefits (e.g., physician services) but may choose to cover optional benefits (e.g., tuberculosis-related services). States set individual eligibility criteria within federal minimum standards. Before ACA, many states expanded Medicaid coverage above the federal minimums, and many states have chosen to continue this additional coverage.

Broadly, there are four major eligibility groups covered by most states: Children, Adults with Disabilities, Aged Adults, and Nondisabled Adults. Detailed discussion of each group follows.

Major eligibility groups

Children—Medicaid was originally available only to individuals receiving cash assistance, but Congress has since expanded eligibility for children and other populations, making individuals eligible based on income below a specified percentage of the federal poverty level (FPL). ACA raised the minimum Medicaid eligibility for nondisabled children not exceeding 138% FPL (133% by statute with an additional 5% income disregard). Other eligible child groups include: infants born to women covered by Medicaid (known as “deemed newborns”), certain children in foster care or adoption assistance programs, certain children with disabilities, and children who use long-term services and supports. Like disabled adults, most states automatically qualify disabled children in the Supplemental Security Income (SSI) program for Medicaid coverage. Regardless of how they qualify, all children enrolled in Medicaid are entitled to all 1905(a) mandatory and optional services for Medicaid categorically eligible children under age 21.

Adults with Disabilities—Adults with disabilities from physical conditions, intellectual or development disabilities, serious behavioral disorders, or serious mental illness may be eligible for Medicaid. The SSI program pays benefits to disabled adults and children who have limited income and resources. Enrollment in SSI automatically qualifies adults with disabilities for Medicaid in most states.

Aged Adults—The SSI program covers those with disabilities and people aged 65 and over without disabilities who meet the financial limits. In most states, SSI enrollment automatically qualified those aged 65 and over for Medicaid. Most Medicaid enrollees aged 65 and over are also Medicare beneficiaries. Members of this group are known as dual-eligible beneficiaries or “dual eligibles.” Dual eligibles are eligible for the same Medicare benefits as other Medicare beneficiaries but have low incomes that make it difficult to afford the premiums and cost sharing required by Medicare, as well as the cost of services not covered by the Medicare program (e.g., long-term services and supports). Dual eligibles may qualify for partial Medicaid benefits (to cover Medicare premiums and cost sharing) or full Medicaid benefits, in which case they get coverage for the full range of services offered by their state’s Medicaid program.

Nondisabled Adults—Before the enactment of ACA, most low-income nondisabled adults were not eligible for Medicaid unless they were in special groups (e.g., pregnant women, low-income parents, or other caretaker relatives with dependent children) or in states with demonstration programs that provided expanded coverage.

The major eligibility groups of nondisabled adults include:

Medicaid Expansion to Low-income Adults—As of August, 2020, 38 states and the District of Columbia (D.C.) had chosen to expand their Medicaid programs to those with incomes not exceeding 138% of FPL. These states include: Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Hawaii, Idaho, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, Utah, Vermont, Virginia, Washington, and West Virginia. Missouri and Oklahoma have not yet implemented their expansions.
Pregnant Women—Since 1989, Congress has required Medicaid to cover pregnant women with low income. As of April 2019, all but four states had extended Medicaid coverage to pregnant women above the required level. Medicaid coverage for a pregnant woman ends 2 months postpartum (after which the person may be eligible in another Medicaid eligibility group).

Parents and Caretaker Relatives—Parents and caretaker relatives in low-income families with dependent children are eligible for coverage if their income meets the minimum eligibility levels established in 1996 for financial and medical assistance. States have the option to be more, or less, restrictive than the 1996 standards.

Other eligibility groups

Breast and Cervical Cancer Prevention and Treatment Program—In 2000, Congress passed the Breast and Cervical Cancer Prevention and Treatment Act, which allowed states to offer eligible women, who were diagnosed with cancer through the Centers for Disease Control and Prevention (CDC)-funded screening program, access to treatment through Medicaid. All states and D.C. have chosen to provide this coverage.

Tuberculosis (TB)—States can choose to provide Medicaid coverage of TB-related services for low-income individuals who are infected with TB. This eligibility group serves persons who are not otherwise eligible for Medicaid based on the traditional eligibility categories.

Medicaid operates as a vendor payment program. States may pay health care providers directly on a fee-for-service basis, or states may pay for Medicaid services through various prepayment arrangements, such as through Medicaid managed care organizations or other forms of managed care. Within federally imposed upper limits and restrictions, each state generally has broad discretion in determining both the payment method and rate for services. Thus, the Medicaid program varies considerably from state to state, as well as within each state over time. For more information, see: https://www.medicaid.gov/ and https://www.macpac.gov/. (Also see Appendix II, Children’s Health Insurance Program; Health expenditures, national; Health insurance coverage; Health maintenance organization [HMO]; Managed care; Medicare.)

Medicare—A nationwide program providing health insurance coverage to selected groups, regardless of income. The covered groups are (a) most people aged 65 and over; (b) people entitled to Social Security or Railroad Retirement disability benefits for at least 24 months (with the waiting period waived or reduced in certain situations); (c) government employees or spouses with Medicare-only coverage who have been disabled for more than 29 months (with the waiting period waived or reduced in certain situations); (d) most people with end-stage renal disease; and (e) certain people in the Libby, Montana, vicinity who have been diagnosed with asbestos-related conditions.

The program was enacted on July 30, 1965, as Title XVIII of the Social Security Act, “Health Insurance for the Aged and Disabled,” and became effective on July 1, 1966.

From its inception, Medicare has included two separate but coordinated programs: Hospital Insurance (Part A) and Supplementary Medical Insurance (Part B). Part C (Medicare Advantage) was established by the Balanced Budget Act of 1997 (originally as Medicare+Choice) as an expanded set of options for the delivery of health care under Medicare. Although all Medicare beneficiaries can receive their benefits through the original fee-for-service program, most beneficiaries enrolled in both Part A and Part B have the option to participate in a Medicare Advantage plan instead.

Organizations that seek to contract as Medicare Advantage plans must meet specific organizational, financial, and other requirements. Although most Medicare Advantage enrollees are in coordinated care plans, such as health maintenance organizations and preferred provider organizations, Medicare Advantage plans also include private fee-for-service plans, provider-sponsored organizations, special needs plans, medical savings account plans (which provide benefits after a single high deductible is met), and certain other types of plans. Medicare Advantage plans are generally paid on a capitation basis—that is, plans are paid a predetermined amount per member per month, which is adjusted according to the health status of the plans’ members—and are required to provide at least those services covered by Parts A and B, except hospice services. Plans may (and in certain situations must) provide extra benefits (such as vision or hearing coverage) or reduce cost sharing or premiums.

The Medicare Prescription Drug, Improvement, and Modernization Act (also called the Medicare Modernization Act, or MMA) was passed on December 8, 2003. MMA (P.L. 108–173) established a voluntary prescription drug benefit for Medicare beneficiaries and created a new Medicare Part D. People eligible for Medicare could begin to enroll in Part D beginning in January 2006.

Many people with Medicare have supplemental insurance coverage that may cover Medicare cost sharing, such as copayments, or provide additional benefits. Beneficiaries may enroll in Medicare Advantage managed care plans, which can include other benefits such as dental and prescription drug benefits. Other Medicare beneficiaries with Medicaid, employer- or union-sponsored plans, private Medigap policies, or military coverage also receive additional benefits. For more information, see: Chapter 3, Medicare beneficiary and other payer financial liability, in “A Data Book: Health Care Spending and the Medicare Program” for 2019, available from: http://www.medpac.gov/docs/default-source/data-book/jun19_databook_entirereport_sec.pdf?sfvrsn=0.

Metropolitan statistical area (MSA)—A geographic entity based on a county or a group of counties with at least one urbanized area with a population of at least 50,000 and adjacent counties with economic ties to the central area. The economic ties are measured by commuting patterns. Similar standards are used to define micropolitan statistical areas, except that the urban clusters are smaller, with a population between 10,000 and 49,999. Counties that are not classified as metropolitan or micropolitan statistical areas are outside the federal Office of Management and Budget (OMB) classification. Non-MSA areas include urban populations not located within an MSA as well as completely rural areas. OMB defines, or “delineates,” metropolitan and micropolitan statistical areas by applying published standards to data. A new set of standards are published once every 10 years, in the year of the decennial census. Then 3 years later, OMB issues the list of metropolitan and micropolitan statistical areas and their county components after the standards have been applied using census and commuting data. For more information about the delineation files, see: https://www.census.gov/programs-surveys/metro-micro/about/delineation-files.html. Between the once-a-decade comprehensive review of statistical area standards and delineations, OMB issues periodic updates reclassifying counties to reflect current population data. For more information, see: https://www.census.gov/programs-surveys/metro-micro.html. For the most recent standards published by OMB, see: https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/fedreg_2010/06282010_metro_standards-Complete.pdf. The 2013 OMB bulletin with county classifications is available from: https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/bulletins/2013/b13-01.pdf. Data systems adopt MSA standards some time after they are published. The adoption of a new set of standards or subsequent reclassifications may create a discontinuity in trends.

National Health Interview Survey (NHIS)—The place of residence of respondents to NHIS is classified as metropolitan or nonmetropolitan. Since the 2016 data release, the metropolitan variable has been based on the 2013 county classifications.

National Immunization Surveys (NIS)—Starting with 2010 data, NIS includes an MSA variable based on the respondent’s location of residence. If county of residence is not provided during the household interview, MSA status is imputed. The method for determining MSA depends on the sampling frame (landline or cell phone). For landline telephone numbers, MSA is assigned based upon the telephone exchange. For cell phone numbers, MSA is imputed using a hot-deck process, in which each missing value is replaced with an observed response from a similar unit. MSAs are defined based on OMB’s February 2013 delineation files for 2012–2015 data; July 2015 delineation files for 2016–2017 data; and August 2017 delineation files for 2018–2019 data.

Neonatal mortality rate—See Appendix II, Rate: Death and related rates.

Nonprofit hospital—See Appendix II, Hospital.

Notifiable disease—A disease that, when diagnosed, requires health providers (usually by law) to report to state or local public health officials. Notifiable diseases are of public interest by reason of their contagiousness, severity, or frequency. For more information, see: https://wwwn.cdc.gov/nndss/.

Nursing home expenditures—See Appendix II, Health expenditures, national.

Obesity—See Appendix II, Body mass index (BMI).

Overweight—See Appendix II, Body mass index (BMI).

Pap smear—A microscopic examination of cells scraped from the cervix that is used to detect cancerous or precancerous conditions of the cervix or other medical conditions (also known as a Papanicolaou smear or Pap test).

In Health, United States, use of Pap smear is defined as the percentage of women aged 18 and over having a Pap smear within the past 3 years. National Health Interview Survey questions have changed over time.

In 1987, women were asked to report either the month and year of their Pap test or the amount of time (in days, weeks, months, or years) since their last Pap test. Women who did not respond were asked, “Was it within the past year or a year or more ago?” Those who answered “within the past year” were asked to further clarify whether the Pap test was less than 3 months ago or 3 months ago or more, and those who answered “a year or more ago” were asked to further clarify whether the Pap test was 3 years ago or less, between 3 and 5 years ago, or 5 years ago or more.

In 1990 and 1991, Pap test data in the past 3 years were not available. In 1993 and 1994, women were asked whether they had a Pap test within the past year, between 1 and 3 years ago, or more than 3 years ago. In 1998, women were asked whether they had a Pap test 1 year ago or less, more than 1 year but not more than 2 years ago, more than 2 years but not more than 3 years ago, more than 3 years but not more than 5 years ago, or more than 5 years ago.

In 1999, women were asked when they had their most recent Pap test (time elapsed in days, weeks, months, or years). Women who did not respond were asked whether they had a Pap test a year ago or less, more than 1 year but not more than 2 years ago, more than 2 years but not more than 3 years ago, more than 3 years but not more than 5 years ago, or more than 5 years ago. Estimates for 1999 may be slightly overestimated in comparison with estimates for previous years due to the inclusion of women who responded “3 years ago” (4% of women), which could have included more than 3 years but less than 4 years.

In 2000 and 2003, women were asked when they had their most recent Pap test (time elapsed in days, weeks, months, or years). Women who did not respond were given a follow-up question that used the 1999 wording, and women who did not respond to the follow-up question were asked a second follow-up question.
that used the 1998 wording. Estimates for 2000 and 2003 may be slightly overestimated in comparison with years before 1999 due to the inclusion of women who responded “3 years ago” (less than 1% of women), which could have included more than 3 years but less than 4 years.

In 2005, women were asked the same series of questions about Pap test use as in the 2000 and 2003 surveys, but the questionnaire skip pattern was modified so that more women were asked the follow-up question using the 1998 wording, and these women were not uniformly coded as having had a Pap test within the past 3 years. Thus, estimates for 2005 are more precise than estimates for 1999, 2000, and 2003. SAS code to categorize Pap test data for 2000 and beyond is available from: https://www.cdc.gov/nchs/nhis/nhis_2005_data_release.htm.

In 2008, 2010, 2013, 2015, and 2018, Pap test questions were similar to those asked in 2005.

All women aged 18 and over are asked the Pap test question(s). Women who reported having had a hysterectomy (removal of the uterus, with or without removal of the ovaries and cervix) are still asked the Pap test questions because a woman who has had a hysterectomy may still have had Pap testing.

In 2018, USPSTF further refined its recommendations for women aged 30–65. For women aged 30–65, USPSTF now recommends screening every 3 years with Pap testing for cervical cancer alone, screening every 5 years with HPV testing alone, or screening every 5 years with HPV testing in combination with Pap testing. Before 2018, time since HPV testing was not available in NHIS, so the 2018 USPSTF recommendations have not been applied to Health, United States estimates. For the latest recommendations on cervical cancer screening, see: https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/cervical-cancer-screening.

USPSTF recommends against screening for cervical cancer in women who have had a hysterectomy with removal of the cervix and do not have a history of a high-grade precancerous lesion (i.e., cervical intraepithelial neoplasia [CIN] grade 2 or 3) or cervical cancer. To account for this recommendation given data availability, two measures of Pap testing are presented in Health, United States: (a) among all women and (b) among women who did not report having a hysterectomy. NHIS does not collect sufficient data to determine whether a woman had a hysterectomy that included removal of the cervix, or whether a woman had a history of a high-grade precancerous lesion. Questions about whether the respondent had a hysterectomy were not asked in 2003. For other survey years, questions about hysterectomy in NHIS differed slightly, as follows:

In 1987, women who reported that they had not had a recent Pap test were asked the most important reason they had not had a Pap test; one reason women could select was “had a hysterectomy.” In 1993, 1994, 1998, 1999, 2013, and 2015, women were asked, “Have you had a hysterectomy?” In 2000, 2005, 2008, and 2010, two questions were used to determine whether women had a hysterectomy. Women were asked, “Have you had a hysterectomy?” In addition, women who reported that they had not had a recent Pap test were asked the most important reason they had not had a Pap test; one reason women could select was “had hysterectomy.” Women responding to either of these questions that they had a hysterectomy were excluded from the Health, United States estimates for the group “Percent of women having a Pap smear within the past 3 years, among those who have not had a hysterectomy.”

Percent change; Percentage change—See Appendix II, Average annual rate of change (percent change).

Perinatal mortality rate or ratio—See Appendix II, Rate: Death and related rates.

Personal health care expenditures—See Appendix II, Health expenditures, national.

Physical activity, leisure-time—Starting with 1997 data, leisure-time physical activity has been assessed in the National Health Interview Survey (NHIS) by asking adults a series of questions about how often they do vigorous, or light or moderate, physical activity of at least 10 minutes duration and about how long these sessions generally last. All questions related to leisure-time physical activity are phrased in terms of current behavior and lack a specific reference period. Vigorous physical activity is described as causing heavy sweating or a large increase in breathing or heart rate, and light or moderate physical activity is described as causing light sweating or a slight-to-moderate increase in breathing or heart rate. Adults were also asked about how often they did leisure-time physical activities specifically designed to strengthen their muscles, such as lifting weights or doing calisthenics.

Even though the wording for the physical activity question series has remained essentially unchanged since 1997, the term “leisure-time” was included in each question starting with the 2004 NHIS. Before the 2004 NHIS, leisure-time appeared only once, as a part of the introduction to the question series. For more information, see the NHIS Adult Physical Activity Information website at: https://www.cdc.gov/nchs/nhis/physical_activity.htm.

Adults who met the 2008 guidelines reported at least 150 minutes per week of moderate-intensity aerobic physical activity or 75 minutes per week of vigorous-intensity aerobic physical activity (or an equivalent combination of moderate- and vigorous-intensity aerobic activity) and muscle-strengthening activities of moderate or high intensity at least twice a week. The 2008 guidelines recommend any kind of aerobic activity, not just leisure-time aerobic activity, so the leisure-time aerobic activity estimates presented in this report may underestimate the percentage of adults who met the 2008 guidelines for aerobic activity. The estimates for the percentage of Americans who met the 2008 guidelines for aerobic physical activity and muscle-strengthening are not comparable with estimates in previous editions of Health, United States that showed the percentage of Americans with regular leisure-time physical activity. For more information, see: Carlson SA, Fulton JE, Schoenborn CA, Loustalot F. Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. Am J Prev Med 39(4):305–13. 2010.

Physician—Data on physician characteristics are obtained through physician self-report from the American Medical Association.

Active (or professionally active) physician—Currently engaged in patient care or other professional activity for a minimum of 20 hours per week. Other professional activity includes administration, medical teaching, research, and other activities such as employment with insurance carriers, pharmaceutical companies, corporations, voluntary organizations, and medical societies. Physicians who are retired, semiretired, working part time, or not practicing are classified as inactive and excluded. Also excluded are physicians with unknown addresses and physicians who did not provide information on type of practice or present employment (not classified).

Hospital-based physician—Employed under contract with hospitals to provide direct patient care, including physicians in residency training (including clinical fellows) and full-time members of the hospital staff.

Office-based physician—Engaged in seeing patients in solo practice, group practice, two-physician practice, or other patient care employment, or in providing inpatient services such as those offered by pathologists and radiologists.

Population—The U.S. Census Bureau collects and publishes data on populations in the United States according to several different definitions. Various statistical systems then use the appropriate population for calculating rates. (Also see Appendix I, Population Census and Population Estimates.)

Civilian noninstitutionalized population—Civilian population excluding persons residing in institutions (such as nursing homes, prisons, jails, mental hospitals, and juvenile correctional facilities). Census Bureau estimates of the civilian noninstitutionalized population are used to calculate sample weights for the National Health Interview Survey, National Health and Nutrition Examination Survey, and National Survey of Family Growth.

Civilian population—Resident population excluding members of the U.S. Armed Forces, although families of members of the armed forces are included.

Resident population—Includes persons whose usual place of residence (i.e., the place where one usually lives and sleeps) is in 1 of the 50 states or the District of Columbia. It includes members of the armed forces stationed in the United States and their families. It excludes members of the armed forces stationed outside the United States and civilian U.S. citizens whose usual place of residence is outside the United States. The resident population is the denominator used to calculate birth and death rates and incidence of disease.

Postneonatal mortality rate—See Appendix II, Rate: Death and related rates.

Poverty—Two related versions of federal poverty measures are shown in Health, United States. The first measure—a ratio of family income to federal poverty threshold—is constructed using poverty thresholds from the U.S. Census Bureau. Poverty thresholds are updated annually for inflation by the Census Bureau using the Consumer Price Index for all urban consumers (CPI–U). Poverty thresholds include a set of money income thresholds that vary by family size and composition but do not vary geographically. Families or individuals with income below the appropriate threshold are classified as below poverty. For example, the weighted average poverty threshold for a family of four was $25,701 in 2018, $25,094 in 2017, $24,563 in 2016, $24,257 in 2015, $24,230 in 2014, $22,314 in 2010, $17,603 in 2000, and $13,359 in 1990. For more information, see the Census Bureau’s poverty threshold website at: https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.

The second poverty measure used in Health, United States is a ratio of family income to the U.S. Department of Health and Human Services (HHS) poverty guidelines. Poverty guidelines are derived from the Census Bureau’s poverty thresholds and issued annually by HHS. These guidelines are often used to determine eligibility in certain federal programs. The HHS poverty guidelines...
take into account family size and state (coterminous states, Alaska, and Hawaii), but not family composition. For more information, see the HHS Poverty Guidelines, Research, and Measurement website at: https://aspe.hhs.gov/poverty-research.

Prevalence—The number of cases of a disease, number of infected persons, or number of persons with some other attribute present during a particular interval of time. It is often expressed as a rate (e.g., the prevalence of diabetes per 1,000 persons during a year). (Also see Appendix II, Consumer Price Index [CPI]; Family income; and Appendix I, Current Population Survey [CPS]; National Health Interview Survey [NHIS].)

Preferred provider organization (PPO)—A type of medical plan in which coverage is provided to participants through a network of selected health care providers, such as hospitals and physicians. Enrollees may seek care outside the network but pay a greater percentage of the cost of coverage than within the network. (Also see Appendix II, Health maintenance organization [HMO]; Managed care.)

Private expenditures—See Appendix II, Health expenditures, national.

Public expenditures—See Appendix II, Health expenditures, national.

Race—In 1977, the federal Office of Management and Budget (OMB) issued “Race and Ethnic Standards for Federal Statistics and Administrative Reporting” (Statistical Policy Directive 15) to promote comparability of data among federal data systems. The 1977 standards called for the federal government’s data systems to classify individuals into the following four racial groups: American Indian or Alaskan Native, Asian or Pacific Islander, black, and white. Depending on the data source, the classification by race was based on self-classification or on observation by an interviewer or other person filling out the questionnaire.

In 1997, revisions were announced for classification of individuals by race within the federal government’s data systems. Unless otherwise noted, recent data by race and ethnicity in this report have implemented the “Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity” issued in 1997 by OMB, available from: https://www.govinfo.gov/content/pkg/FR-1997-10-30/pdf/97-28653.pdf. The 1997 standards allow for observer or proxy identification of race but clearly state a preference for self-classification. The 1997 standards call for the federal government’s data systems to classify individuals into the following groups: American Indian or Alaska Native; Asian; black or African American; Native Hawaiian or Other Pacific Islander; white; and Hispanic or Latino. The Asian or Pacific Islander race group is split into two different race groups under the 1997 standards: the Asian group and the Native Hawaiian or Other Pacific Islander group. The 1997 standards also offer respondents an opportunity to select more than one race group, leading to many possible multiple-race categories. Generally, a small percentage of people report two or more races (2.8% in 2019). A race group can be defined in two basic ways when respondents have the option of reporting multiple races. A group such as black may be defined as those who reported black and no other race (the “race alone” or single-race concept), or as those who reported black regardless of whether they also reported another race (the “race alone in combination” concept). In this report, indicators present data using the first approach (single race). Use of the single-race population does not imply that it is the preferred method of presenting or analyzing data.

Estimates for race groups using the 1997 standards are not completely comparable with data based on the earlier 1977 standards.

Starting with data year 1999, most NCHS survey estimates by race are presented based on the 1997 standards. Vital statistics systems, however, transitioned to the 1997 standards over time as states adopted the 2003 revision of the U.S. standard certificates of live birth and death, which contained the 1997 standards. The 2003 revisions were not adopted by all states until 2016 for the birth file, 2017 for the linked birth/infant death file, and 2018 for the mortality file. Before that, most race data for vital statistics used the 1977 standards. During this transition, it was necessary to make vital record data comparable across states and with population data collected under the 1997 OMB standards. This was done by bridging the race information collected under the 1997 standards to be consistent with data collected under the 1977 standards. For more information, see Appendix I, Population Census and Population Estimates, Bridged-race Population Estimates.

Recent vital statistics data in this report are generally presented for the following six race and Hispanic-origin groups under the 1997 OMB standards: non-Hispanic American Indian or Alaska Native; non-Hispanic Asian;
non-Hispanic black or African American; non-Hispanic Native Hawaiian or Other Pacific Islander; non-Hispanic white; and Hispanic or Latino. Life expectancy and survey estimates by race and Hispanic origin are generally presented for fewer race and Hispanic-origin groups due to sample size and reliability issues. Data on race and Hispanic origin are collected separately. Persons of Hispanic origin may be of any race.

Birth file—Information about the race and Hispanic origin of the mother and father is provided by the mother at the time of birth and recorded on the birth certificate. Since 1980, birth rates, birth characteristics, and death rates for live-born infants and fetal deaths are presented in *Health, United States* according to race of the mother. Before 1980, data were tabulated by race of the newborn and fetus, taking into account the race of both parents. If the parents were of different races and one parent was white, the child was classified according to the race of the other parent. When neither parent was white, the child was classified according to father's race, with one exception: If either parent was Hawaiian, the child was classified as Hawaiian. As of 1964, unknown race is classified according to information on the birth record. Before 1964, if race was unknown, the birth was classified as white.

Starting with 2003 data, some states began using the 2003 revision of the U.S. Standard Certificate of Live Birth, which incorporated the 1997 OMB standards allowing the reporting of more than one race (multiple races). In 2018, 2.7% of mothers in the 50 states and District of Columbia (D.C.) reported more than one race. Until all states adopted the 2003 revision and the 1997 OMB standards, it was necessary to bridge both numerators and denominators to the 1977 standards. As of 2016, all states and D.C., in addition to Puerto Rico, U.S. Virgin Islands, Guam, and Northern Mariana Islands, use the 2003 revision of the U.S. Standard Certificate of Live Birth and report race according to the 1997 revised OMB standards. For more information on the adoption of the 2003 revision of the U.S. Standard Certificate of Live Birth, see the Technical Notes section of the annual series of "Births: Final Data" reports, available from: https://www.cdc.gov/nchs/products/nvsr.htm.

Estimates for race groups using the 1997 standards are not completely comparable with data based on the 1977 standards.

Mortality file—Information about the race and Hispanic origin of a decedent is reported by the funeral director as provided by an informant (often the surviving next of kin), or in the absence of an informant, on the basis of observation. Death rates by race and Hispanic origin are based on information from death certificates (numerators of the rates) and on population estimates from the U.S. Census Bureau (denominators). Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin are inconsistent between these two data sources, death rates will be biased. Studies have shown that persons self-reported as American Indian or Alaska Native, Asian, or Hispanic on census and survey records may sometimes be reported as white or non-Hispanic on the death certificate, resulting in an underestimation of deaths and death rates for the American Indian or Alaska Native, Asian, and Hispanic groups. Bias also results from undercounts of some population groups in the census—particularly young black males, young white males, and elderly persons—resulting in an overestimation of death rates.

Race and ethnicity reporting on the death certificate continues to be excellent for the white and black populations. It remains poor for the American Indian or Alaska Native population but is reasonably good for the Hispanic and the combined Asian or Pacific Islander populations. Decedent characteristics such as place of residence and nativity have an important effect on the quality of reporting on the death certificate. The effects of misclassification on mortality estimates have been most pronounced for the American Indian or Alaska Native population, where correcting for misclassification reverses a large American Indian or Alaska Native-over-white mortality advantage to a relatively large disadvantage. Among the Hispanic and Asian or Pacific Islander populations, adjustment for death certificate misclassification has not significantly affected minority-majority mortality. For more information, see: Arias E, Heron M, Hakes JK. The validity of race and Hispanic-origin reporting on death certificates in the United States: An update. National Center for Health Statistics. Vital Health Stat 2(172). 2016. Available from: https://www.cdc.gov/nchs/data/sr_02/sr02_172. pdf; and Arias E, Schauman WS, Eschbach K, Sorlie PD, Backlund E. The validity of race and Hispanic origin reporting on death certificates in the United States. National Center for Health Statistics. Vital Health Stat 2(148). 2008. Available from: https://www.cdc.gov/nchs/data/sr_02/sr02_148.pdf.

Issues affecting the interpretation of vital event rates for the American Indian or Alaska Native population include (a) changes in the classification or self-identification of persons of American Indian or Alaska Native heritage over time, and (b) misclassification of American Indian or Alaska Native persons on death certificates by the funeral director or informant. Vital event rates for the American Indian or Alaska Native population shown in *Health, United States* are based on the total U.S. resident American Indian or Alaska Native population, as enumerated by the U.S. Census Bureau. In contrast, the Indian Health Service calculates vital event rates for this population based on Census Bureau county data for American Indian or Alaska Native persons who reside on or near reservations. Because of misclassification of American Indian or Alaska Native persons on death certificates, American Indian or Alaska Native national
and state-specific mortality estimates published in Health, United States should be interpreted with caution.

Interpretation of trends for the Asian population in the United States should take into account that this population more than doubled between 1980 and 1990, primarily because of immigration. From 1990 to 2000, the increase in the Asian population was 48% for persons reporting that they were Asian alone and 72% for persons who reported they were either Asian alone or Asian in combination with another race.

Starting with 2003 data, some states began using the 2003 revision of the U.S. Standard Certificate of Death, which incorporated the 1997 OMB standards allowing the reporting of more than one race (multiple races). In 2018, less than 1.0% of deaths in the 50 states and D.C. recorded more than one race. Until all states adopted the 2003 revision and the 1997 OMB standards, it was necessary to bridge both numerators and denominators to the 1977 standards. Beginning with 2018 data, all states and D.C. report deaths using the 2003 revision of the death certificate and reported race according to the 1997 OMB standards. For more information, see: National Center for Health Statistics. NCHS procedures for multiple-race and Hispanic origin data: Collection, coding, editing, and transmitting. 2004. Available from: https://www.cdc.gov/nchs/data/dvs/Multiple_race_docu_5-10-04.pdf; and National Center for Health Statistics. Vital statistics of the United States, vol II, Mortality, part A, Technical appendix. Published annually, available from: https://www.cdc.gov/nchs/products/vsus/ta.htm.

Estimates for race groups using the 1997 standards are not completely comparable with data based on the 1977 standards.

Linked birth/infant death file—Birth and infant death records are linked, and race and Hispanic-origin data are taken from the birth certificate. Starting with 2003 data, some states began using the 2003 revision of the U.S. Standard Certificate of Death, which incorporated the 1997 OMB standards allowing the reporting of more than one race (multiple races). Until all states adopted the 2003 revision and the 1997 OMB standards, it was necessary to bridge both numerators and denominators to the 1977 standards. Birth records from all states moved to the 1997 OMB standards with 2016 data. However, because an infant death in 2016 may be linked to a birth that occurred in 2015, it is only in 2017 data that race categories for infant mortality rates are consistent with the 1997 OMB standards.

Estimates for race groups using the 1997 standards are not completely comparable with data based on the 1977 standards.

National Health and Nutrition Examination Survey (NHANES)—Starting with Health, United States, 2003, race-specific estimates based on NHANES were tabulated using the 1997 standards for data years 1999 and beyond. Before data year 1999, the 1977 standards were used. Because of the differences between the two standards, the race-specific estimates shown in trend tables presenting NHANES data for 1999 and beyond are not strictly comparable with estimates for earlier data years. Race in NHANES I and II was determined primarily by interviewer observation; starting with NHANES III, race is self-reported by survey participants.

The NHANES sample for data years 1999–2006 was designed to provide estimates specifically for persons of Mexican origin and not for all Hispanic-origin persons in the United States. Starting with 2007–2008 data, all Hispanic persons are oversampled, not just persons of Mexican origin. Oversampling of the black population has continued. Starting in 2011, NHANES is oversampling the non-Hispanic Asian population. In Health, United States, estimates are shown for non-Hispanic white, non-Hispanic black, and Mexican-origin persons, as well as for Hispanic-origin and non-Hispanic Asian persons where possible. Although data are collected according to the 1997 standards, numbers of observations during this period are insufficient to meet statistical reliability or confidentiality requirements for reporting estimates for additional race categories.

National Health Interview Survey (NHIS)—Starting with Health, United States, 2002, race-specific estimates based on NHIS were tabulated using the 1997 standards for data year 1999 and beyond and are not strictly comparable with estimates for earlier years. The 1997 standards specify five single- and multiple-race categories. Estimates for specific race groups are shown when they meet requirements for statistical reliability and confidentiality. The race categories American Indian or Alaska Native only, Asian only, black or African American only, Native Hawaiian or Other Pacific Islander only, and white only include persons who reported only one racial group; the category of 2 or more races includes persons who reported more than one of the five racial groups in the 1997 standards or one of the five racial groups and “some other race.” To maintain consistency with Census Bureau procedures for collecting and editing data on race and ethnicity, NHIS made major changes to its editing procedures in the 2003 data year. Beginning with the 2003 NHIS, Other race is no longer available as a separate race response. This response category was treated as missing, and the race was imputed if this was the only race response. In cases where Other race was mentioned along with one or more race groups, the Other race response was dropped, and the race group information was retained. Before data year 1999, data were tabulated according to the 1977 standards, with four racial groups, and the Asian only category included Native Hawaiian or Other Pacific Islander. Estimates for single-race categories before 1999 included persons who reported one race,
or if they reported more than one race, identified one race as best representing their race. Differences between estimates tabulated using the two standards for data year 1999 are discussed in the footnotes for each NHIS table in Health, United States, 2002, 2003, and 2004 editions, available from: https://www.cdc.gov/nchs/hus/previous.htm#editions.

Tables IX and X illustrate NHIS data tabulated by race and Hispanic origin according to the 1997 and 1977 standards for two health statistics (cigarette smoking and private health insurance coverage). In these examples, three separate tabulations using the 1997 standards are shown: (a) race—mutually exclusive race groups, including several multiple-race combinations; (b) race, any mention—race groups that are not mutually exclusive because each race category includes all persons who mention that race; and (c) Hispanic origin and race—detailed race and Hispanic origin with a multiple-race total category. Where applicable, comparison tabulations by race and Hispanic origin are shown based on the 1977 standards. Because the 1997 standards involve more race groups, the sample size of each race group under the 1997 standards is slightly smaller than the sample size under the 1977 standards. Only those few multiple-race groups with sufficient numbers of observations to meet standards of statistical reliability are shown. These tables also illustrate changes in labels and group categories resulting from the 1997 standards. The race designation “black” is changed to “black or African American,” the race designation “American Indian or Alaskan Native” is changed to “American Indian or Alaska Native,” and the ethnicity designation “Hispanic” is changed to “Hispanic or Latino.”

Survey data included in Health, United States, other than NHIS, the National Survey of Drug Use and Health (NSDUH), and the National Health and Nutrition Examination Survey (NHANES), generally do not permit tabulation of estimates for the detailed race and ethnicity categories shown in Tables IX and X, either because race data based on the 1997 standards categories are not yet available or because numbers of observations in certain subpopulation groups are insufficient to meet statistical reliability or confidentiality requirements.

To improve the quality of data on ethnicity and race in NHIS, hot-deck imputation of selected race and ethnicity variables was done for the first time in the 2000 NHIS and continues to be used for subsequent data years. Starting with 2003 data, records for persons for whom “other race” was the only race response are treated as having missing data on race and added to the pool of records for which selected race and ethnicity variables are imputed. Before the 2000 NHIS, a crude imputation method was used that assigned a race to persons with missing values for the variable MAINRACE (the respondent’s classification of the race he or she most identified with). Under these procedures, if an observed race was recorded by the interviewer, it was used to code a race value. If there was no observed race value, all persons who had a missing value for MAINRACE and were identified as Hispanic on the Hispanic-origin question were coded as white. In all other cases, non-Hispanic persons were coded as “other race.” Additional information on the NHIS methodology for imputing race and ethnicity is available from the survey description at: https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHIS/2012/srvydesc.pdf, and from the NHIS race and Hispanic-origin website at: https://www.cdc.gov/nchs/nhis/rhoi.htm.

National Survey on Drug Use and Health (NSDUH) — Race-specific estimates based on NSDUH are tabulated using the 1997 standards. Estimates for specific race groups are shown when they meet requirements for statistical reliability and confidentiality. The race categories American Indian or Alaska Native only, Asian only, black or African American only, Native Hawaiian or Other Pacific Islander only, and white only include persons who reported only one racial group; the category of 2 or more races includes persons who reported more than one of the five racial groups in the 1997 standards or one of the five racial groups and “some other race.” (Also see Appendix II, Hispanic origin; and Appendix I, Population Census and Population Estimates.)

Rate — A measure of some event, disease, or condition in relation to a unit of population, along with some specification of time. (Also see Appendix II, Age adjustment; Population.)

Birth and related rates

Birth rate — Calculated by dividing the number of live births in a population in a year by the midyear resident population. For census years, rates are based on unrounded census counts of the resident population as of April 1. For the noncensus years 1981–1989, rates are based on the midyear resident population, rounded to thousands. Rounded population estimates for 5-year age groups are calculated by summing unrounded population estimates before rounding to thousands. Starting in 1991, rates are based on unrounded national population estimates. Birth rates for 1991–1999 were revised based on the 1990 and 2000 censuses. Birth rates for 2001–2009 were revised based on the 2000 and 2010 censuses. Birth rates for 2011 and subsequent years are computed using 2010-based postcensal estimates. The population estimates have been provided by the U.S. Census Bureau and modified for consistency with the 1977 federal Office of Management and Budget’s racial and historical categories for birth data. Beginning in 1997, the birth rate for the maternal age group 45–49 includes data for mothers aged 45 and over in the numerator and is based on the population of women...
aged 45–49 in the denominator. Birth rates are expressed as the number of live births per 1,000 population. The rate may be restricted to births to women of specific age, race, marital status, or geographic location (specific rate), or it may be related to the entire population (crude rate).

Fertility rate—Total number of live births, regardless of the age of the mother, per 1,000 women of reproductive age (aged 15–44). Beginning in 1997, the birth rate for the maternal age group 45–49 includes data for mothers aged 45 and over in the numerator and is based on the population of women aged 45–49 in the denominator.

Death and related rates

Death rate—Calculated by dividing the number of deaths in a population in a year by the midyear resident population. For census years, rates are based on unrounded census counts of the resident population as of April 1. For the noncensus years 1981–1989, rates are based on the midyear resident population, rounded to thousands. Rounded population estimates for 10-year age groups are calculated by summing unrounded population estimates before rounding to thousands. Starting in 1991, rates are based on unrounded national population estimates. Rates for the Hispanic and non-Hispanic white populations in each year are based on unrounded state population estimates for states in the Hispanic reporting area. Death rates are expressed as the number of deaths per 100,000 resident population. The rate may be restricted to deaths in specific age, race, sex, or geographic groups or from specific causes of death (specific rate), or it may be related to the entire population (crude rate). (Also see Appendix I, Population Census and Population Estimates.)

Birth cohort infant mortality rates—Based on the birth cohort linked birth and infant death files and computed as the number of deaths under age 1 year to members of the birth cohort, divided by the number of live births, times 1,000. (Also see Appendix II, Birth cohort.)

Fetal mortality rate—Number of fetal deaths with stated or presumed gestation of 20 weeks or more, divided by the number of live births plus fetal deaths, times 1,000. (Also see Appendix II, Gestation.)

Infant mortality rate—Based on period files of linked birth and infant death data and calculated by dividing the number of infant deaths during a calendar year by the number of live births reported in the same year. It is expressed as the number of infant deaths per 1,000 live births. Neonatal mortality rate is the number of deaths among infants under age 28 days per 1,000 live births. Postneonatal mortality rate is the number of infant deaths that occur between 28 days and 364 days per 1,000 live births. (Also see Appendix II, Infant death.)

Late fetal mortality rate—Number of fetal deaths with stated or presumed gestation of 28 weeks or more, divided by the sum of live births plus late fetal deaths, times 1,000. (Also see Appendix II, Gestation.)

Maternal mortality rate—Number of deaths of women while pregnant or within 42 days of being pregnant, from any cause related to or aggravated by the pregnancy or its management, but not from accidental or incidental causes (i.e., neither caused nor complicated by the woman being pregnant at the time of or within 1 year of death), divided by the sum of live births, times 100,000. (Also see Appendix II, Maternal death.)

Perinatal mortality rates and ratios—Related to the period surrounding the birth event. Rates and ratios are based on events reported in a calendar year. Although several different perinatal mortality definitions exist, the perinatal definition used in Health, United States (and used most commonly for international comparisons) is the sum of late fetal deaths at 28 weeks of gestation or more plus infant deaths within 7 days of birth, divided by the sum of live births plus late fetal deaths, times 1,000. The perinatal mortality ratio is the sum of late fetal deaths plus infant deaths within 7 days of birth, divided by the number of live births, times 1,000.

Visit rate

Visit rate—A basic measure of service utilization for event-based data. Examples of events include physician office visits with drugs provided, or hospital discharges. In the visit rate calculation, the numerator is the number of estimated events, and the denominator is the corresponding U.S. population estimate for those who possibly could have had events during a given period. The interpretation is that for every person in the population, there were, on average, x events. It does not mean that x persons in the population had events, because some persons in the population had no events while others had multiple events. The only exception is when an event can occur just once for a person (e.g., if an appendectomy is performed during a hospital stay). The visit rate is best used for comparing utilization across various subgroups of interest, such as age or race groups or geographic regions.

Region—See Appendix II, Geographic region.

Registered hospital—See Appendix II, Hospital.

Registration area—The United States has separate registration areas for birth, death, marriage, and divorce statistics. In general, registration areas correspond to states and include two separate registration areas for the District of Columbia (D.C.) and New York City. The term “reporting area” may be used interchangeably with the term “registration area.” All registration areas have adopted laws that require registration of births and deaths and the reporting of fetal deaths. More than 99% of births and deaths occurring in this country are believed to be registered.

The death registration area was established in 1900 with 10 states and D.C., and the birth registration area was established in 1915, also with 10 states and D.C. Beginning in 1933, all states were included in the birth and death

Relative standard error (RSE)—A measure of an estimate’s reliability. The RSE of an estimate is obtained by dividing the standard error of the estimate, SE(r), by the estimate itself, r. This quantity is expressed as a percentage of the estimate and is calculated as:

\[RSE = 100 \times \left(\frac{SE(r)}{r} \right) \]

Estimates with large RSEs are considered unreliable. In Health, United States, most statistics with large RSEs are preceded by an asterisk or are not presented. The criteria for evaluating RSEs is discussed in the footnotes accompanying each table. Starting with Health, United States, 2017, a multistep National Center for Health Statistics data presentation standard for proportions has replaced RSE to identify unreliable estimates of proportions from the 2015–2016 and 2013–2016 estimates from National Health and Nutrition Examination Surveys and the 2016 National Health Interview Survey. In the Chartbook figures and data tables, all estimates presented are in accordance with these standards. (Also see Appendix II, Data presentation standards for proportions.)

Reporting area—In the National Vital Statistics System, the reporting area for basic items on the birth and death certificates such as age, race, and sex is based on data from residents of all 50 states, the District of Columbia, and New York City. The term “reporting area” may be used interchangeably with the term “registration area.” (Also see Appendix II, Registration area; and Appendix I, National Vital Statistics System [NVSS].)

Resident population—See Appendix II, Population.

Self-assessment of health—See Appendix II, Health status, respondent-assessed.

Short-stay hospital—See Appendix II, Hospital.

Smoker—See Appendix II, Tobacco use.

Special hospital—See Appendix II, Hospital.

Substance use—Refers to the use of selected substances, including alcohol, tobacco products, drugs, inhalants, and other substances that can be consumed, inhaled, injected, or otherwise absorbed into the body with possible dependence and other detrimental effects. (Also see Appendix II, Alcohol consumption; Illicit drug use; Tobacco use.)

National Survey on Drug Use and Health (NSDUH)—Information about substance use is obtained from in-person, computer-assisted interviews of a sample of individuals aged 12 and over at their place of residence. For illicit drug use, alcohol use, and tobacco use, information is collected about use in the lifetime, past year, and past month. However, only estimates of use in the past month are presented in Health, United States. For illicit drug use, respondents in NSDUH are asked about use of marijuana or hashish, cocaine (including crack), inhalants, hallucinogens, heroin, and misuse of prescription-type psychotherapeutic drugs (pain relievers, tranquilizers, stimulants, and sedatives). A series of questions is asked about each substance: “Have you ever, even once, used [substance]?” and “How long has it been since you last used [substance]?” Numerous probes and checks are included in the computer-assisted interview system. Starting in 2013, information about marijuana use that was recommended by a doctor or other health care professional has been collected; however, any reported marijuana use is classified as illicit drug use. Starting in 2015, changes in measurement for 7 of the 10 illicit drug categories—hallucinogens, inhalants, methamphetamine, and the misuse of prescription pain relievers, tranquilizers, stimulants, and sedatives—may affect their comparability with the estimates of these illicit drugs and any illicit drug use produced before 2015. Additionally, prescription psychotherapeutic subtypes were revised in 2016; therefore, data on codeine products before 2016 cannot be compared with those from 2016 onward. (Also see Appendix I, National Survey on Drug Use and Health [NSDUH].)

Tobacco use—Tobacco products encompass varieties of products including cigarettes, cigarette tobacco, roll-your-own tobacco, smokeless tobacco, electronic cigarettes, cigars, hookahs, pipe tobacco, nicotine gels, and dissolvables. Vapes, vaporizers, vape pens, hookah pens, e-cigarettes or e-cigs, and e-pipes are some of the many terms used to describe electronic nicotine delivery systems (ENDS). ENDS are battery-powered tobacco products that typically deliver nicotine in the form of an aerosol. Cigars include premium cigars, little filtered cigars, and cigarillos. Use of tobacco products is measured differently by the data systems used in Health, United States.

National Health Interview Survey (NHIS)—Information about cigarette smoking is obtained for adults aged 18 and over. From 1965 through 1990, the basic cigarette smoking status questions consisted of two parts: (1) “Have you smoked at least 100 cigarettes during your entire life?” and (2) if yes, “Do you smoke cigarettes now?”

In 1991, a transition to a new measure of smoking status was initiated. For the first time, NHIS distinguished smokers who smoked daily from those who smoked less often than daily. Respondents were first asked, “Have you smoked at least 100 cigarettes in your entire life?” If yes, “Do you smoke cigarettes now?” To those
who said “yes” to the question about current cigarette smoking, the question was asked, “Do you smoke cigarettes every day or some days?” For those who said “no” to the current smoking status question, the question was asked, “Do you smoke cigarettes ‘not at all’ or ‘some days’?” This additional follow-up resulted in the classification of persons as “someday smokers” who would otherwise have been considered former smokers, because they initially said that they did not smoke now.

In 1992, the transition to the current set of questions occurred. The NHIS Cancer Supplement consisted of two separate questionnaires, each asked of a representative sample of the U.S. civilian noninstitutionalized adult population aged 18 and over. The Cancer Control questionnaire contained the same set of questions asked in 1991, while the Cancer Epidemiology questionnaire asked, “Have you smoked at least 100 cigarettes in your entire life?” and if the answer was yes, “Do you now smoke cigarettes every day, some days, or not at all?” The inclusion of both sets of questions in the same year allowed for evaluation of the impact of the question change on population prevalence. The revised current smoking status question was estimated to have resulted in an increase in smoking prevalence of about 1% as a result of capturing cigarette smoking among persons who would otherwise have been classified as nonsmokers with the original question. The estimates for 1992 shown in Health, United States combined data collected using both the traditional and revised questions. Estimates for 1993 and beyond use the revised questions.

In 1993–1995, estimates of cigarette smoking prevalence were based on a half-sample. Smoking data were not collected in 1996. Starting in 1997, smoking data are collected in the Sample Adult questionnaire. Starting in 2014, questions were added to NHIS on the use of e-cigarettes; however, estimates of e-cigarette use from NHIS are not presented in Health, United States. For more information on survey methodology and sample sizes for NHIS cigarette smoking data, see the NHIS Adult Tobacco Use Information website at: https://www.cdc.gov/nchs/nhis/tobacco.htm.

National Survey on Drug Use and Health (NSDUH) — Interviewers conduct in-person, computer-assisted interviews of a sample of individuals aged 12 and over at their place of residence. Information on current cigarette smoking is obtained based on the following question: “Now think about the past 30 days—that is, from [DATE] up to and including today. During the past 30 days, have you smoked part or all of a cigarette?” To measure current use of any tobacco products, respondents are asked about the use of each tobacco product on 1 or more days in the past 30 days, including smokeless tobacco (such as snuff, dip, chewing tobacco, or snus), cigars, and pipe tobacco. Any amount of use reported in the past 30 days was classified as recent use of that tobacco product. Electronic cigarette use is not considered in the definition of current cigarette smoking or any use of tobacco products.

National Youth Tobacco Survey (NYTS) — An annual school-based survey of U.S. middle and high school students that collects data on tobacco use, exposure to secondhand tobacco smoke and e-cigarette aerosol, smoking cessation, minors’ ability to purchase or obtain tobacco products, tobacco-related knowledge and attitudes, and familiarity with tobacco-related media messages. Students in grades 6–12 are asked questions about the use of a variety of tobacco products on 1 or more days during the past 30 days. Tobacco products include: cigarettes; cigars, cigarillos, or little cigars; chewing tobacco, snuff, or dip; e-cigarettes; hookah or water pipe; roll-your-own cigarettes; pipe filled with tobacco (not water pipe); snus; dissolvable tobacco products; bidis (small brown cigarettes wrapped in a leaf); and heated tobacco products. Any amount of use reported in the past 30 days is classified as recent use of that tobacco product.

Uninsured — Broadly, persons are considered uninsured if they do not have coverage under private health insurance, Medicare, Medicaid, public assistance (through 1996), Children’s Health Insurance Program (CHIP), a state-sponsored or other government-sponsored plan or program, or a military health plan. Because of differences in methodology, question wording, and recall period, estimates from different sources may vary and are not directly comparable. For more information, see: U.S. Census Bureau. Health insurance measurement: Differences by data source. Available from: https://www2.census.gov/programs-surveys/demo/visualizations/p60/257/health_insurance_measurement.pdf.

National Health Interview Survey (NHIS) — In NHIS, uninsured includes persons who do not have coverage under private health insurance, Medicare, Medicaid, public assistance (through 1996), CHIP, a state-sponsored health plan, other government-sponsored programs, or a military health plan. Persons with only Indian Health Service coverage are considered uninsured. Estimates for uninsured are shown only for the population under age 65. Estimates of the percentage of persons who are uninsured based on NHIS may differ slightly from those based on the March Current Population Survey or the American Community Survey because of differences in survey questions, recall period, and other aspects of survey methodology.

Survey respondents may be covered by health insurance at the time of interview but may have experienced one or more lapses in coverage during the year before interview. Starting with Health, United States, 2006, NHIS estimates for people with health insurance coverage for all 12 months before interview, for those who were uninsured for any period up to 12 months, and for those...
who were uninsured for more than 12 months are added as stub variables to selected tables. (Also see Appendix II, Health insurance coverage.)

Vaccination—The process of using a vaccine to stimulate the immune system to become protected against a disease. For more information about vaccines and vaccine-preventable diseases, see: https://www.vaccines.gov and https://www.cdc.gov/vaccines/schedules/index.html.

The currently recommended childhood vaccination schedule includes vaccines that prevent infectious diseases including hepatitis A and B, rotavirus, diphtheria, tetanus toxoids, acellular pertussis (whooping cough), measles, mumps, rubella (German measles), polio, varicella (chicken pox), and some forms of meningitis (*Haemophilus influenzae* type b), influenza, and pneumococcal disease.

In 2006, a quadrivalent vaccine that protected against four types of human papillomavirus (HPV) that cause cervical cancers and genital warts was approved by the U.S. Food and Drug Administration (FDA). The vaccine was recommended for females aged 11 and 12 and females aged 13–26 who had not yet been vaccinated or completed the vaccine series. In 2011, HPV vaccination was recommended also for males aged 11 and 12. A new vaccine that protects against nine types of HPV that can cause cervical, vulvar, vaginal, and anal cancers, as well as genital warts, was approved by FDA in 2014 for both females and males. More information is available from: https://www.cdc.gov/mmwr/volumes/65/wr/mm6549a5.htm.

In addition to HPV vaccination, Tdap (tetanus, diphtheria, pertussis) and meningococcal vaccination is recommended for adolescents aged 11 and 12.

In addition to keeping current with the vaccines listed above and annual influenza vaccination, some additional vaccinations are recommended for older adults, persons with specific health conditions, and health care workers who are likely to be exposed to infectious persons. For example, herpes zoster vaccination is recommended for adults aged 50 and over, and pneumococcal vaccination is recommended for adults aged 65 and over and persons with specific health conditions. For a full discussion of recommended vaccination schedules by age and population, see the Centers for Disease Control and Prevention’s vaccination and immunization website at: https://www.cdc.gov/vaccines/schedules/index.html.