B-28A. Did the doctor say you had a condition that made it difficult to conceive?

1 = YES
2 = NO → SKIP TO B BOX.

B-29A. What did the doctor say the main condition was--did the doctor give it a medical name?

ENTER CONDITION OR PROBLEM NAME (LIMIT OF 40 CHARACTERS)

<table>
<thead>
<tr>
<th>B BOX</th>
<th>IF FERTILITY PROBLEM OCCURRED WITH MORE THAN ONE PARTNER (B-21=YES), CONTINUE. OTHERWISE, SKIP TO SECTION C.</th>
</tr>
</thead>
</table>

Earlier you told me there was another wife or partner with whom you tried for a year or more to conceive a child but were unable to do so.

B-24B. In what year did you first have this difficulty with your other wife or partner?

ENTER LAST 2 DIGITS OF YEAR. (EDIT :.)

B-25B. Did your [wife/partner] see a doctor to discuss difficulties in conceiving children?

1 = YES
2 = NO → SKIP TO B-27B.

B-26B. Did the doctor say your [wife/partner] had a condition that made it difficult to conceive?

1 = YES
2 = NO

B-27B. Did you see a doctor about this difficulty with your [wife/partner]?

1 = YES
2 = NO → SKIP TO SECTION C.

B-28B. Did the doctor say you had a condition that made it difficult to conceive?

1 = YES
2 = NO → SKIP TO SECTION C.
B-29B. What did the doctor say the main condition was--did the doctor give it a medical name?

ENTER CONDITION NAME (LIMIT OF 40 CHARACTERS).
APPENDIX B

Birth Defects Coding Guidelines
GENERAL CODING GUIDELINES

1. In coding these responses, we used the International Classification of Diseases, Ninth Revision (ICD-9) tabular and alphabetical indices.

2. Many of the verbatim responses clearly indicated congenital conditions and they were given congenital anomaly codes. Many responses, however, indicated a condition that could be acquired. Some of these conditions are:
 - Anemia
 - Hydrocephalus
 - Seizures
 - Pneumonia

We have assumed that these conditions, if given in response to the birth defect question, are congenital or perinatal conditions and have given them the appropriate codes.

3. Other responses were not always as easy to code. We tried to distinguish true structural anomalies from illnesses or disorders. Certain words, for example, helped us distinguish an anomaly:

<table>
<thead>
<tr>
<th>Code as Anomaly</th>
<th>Code as Illness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformity</td>
<td>Disorder</td>
</tr>
<tr>
<td>Malformation</td>
<td>Problem</td>
</tr>
<tr>
<td>Undeveloped</td>
<td>Disease</td>
</tr>
<tr>
<td>Anomaly</td>
<td>Malfunction/dysfunction</td>
</tr>
<tr>
<td>Defect</td>
<td></td>
</tr>
</tbody>
</table>

 hole not in right spot
 - hole comes out under penis

These synonyms were used to decide what code was applicable if the conception was not well described.

4. Following these general coding guidelines is an alphabetical index of disease categories or organ systems containing various conditions and their proper codes. Many of these conditions represent actual responses given by the veterans as recorded by the interviewers. We have grouped identical or similar verbatims under the same code (i.e., all respiratory problems are coded as 770.8). Also within this index, the medical words, along with their common terminology, are documented; for example—hypospadias or

5. In some instances, an asterisk (*) may precede a condition in the index. In this case, the code that was given is a contradiction to the ICD-9 index e.g., “cyst of eye.”

The ICD-9 index directs the coder to 743.0 for “cyst of eye.” This code is a congenital absence of the eye. The condition is very serious and rare. We have, therefore, assumed that this response probably reflects a cyst of the eyelid and not of the eyeball itself, and we assigned the code 373.3.
6. At times, we had to code two distinct conditions given in a single response. In such cases, we coded the first condition, unless the second was clearly more serious. For example—
a. Heart murmur/asthma
 Eye problems/prematurity
 In these examples, both conditions are of equal severity; therefore, we coded the first condition.
b. Breathing problems/cerebral palsy
 In this instance, we coded the second condition, "cerebral palsy," since it is considered more serious than the first condition.

7. Judging from some verbatims, the veteran was not sure what type of condition his child had. Responses such as "badly deformed" and "would have been a vegetable" clearly indicate severe congenital anomalies. Although we did not know what condition the child had, we could assign a code of 759.9 for "congenital anomaly, unspecified."
ALLERGIES
1. Allergy to milk/formula – code as intestinal malabsorption | 579.8
2. Allergies, multiple allergies | 995.3
3. Allergies to drugs, pollen, etc. – code as directed in index

BLOOD DISEASES
1. Infection with blood cells | 771.8
2. Broken blood vessels | 772.6
 - Blood blisters
3. Rh disease | 773.0
 - Needed blood transfusion (Rh factor)
4. Problem with bilirubin count in blood – see "jaundice" | 774.6
5. Anemia | 776.5
 - Low red blood count
 - Low hemoglobin
6. Low white blood count | 776.8
7. Blood disease/disorder/problem | 776.9
 - Thick blood

DIGESTIVE SYSTEM
1. Digestive reflux | 530.1
2. Stomach disorder/problems | 537.9
3. Liver problems/ailment | 573.9
4. Tongue tied | 750.0
 - Skin attached to tongue
5. Esophageal atresia/tracheoesophageal fistula | 750.3
 - Food tube went to lungs
 - Esophagus does not join stomach
 - Did not have an esophagus
6. Pyloric stenosis | 750.5
 - Stomach muscle closed stomach
 - Restriction of stomach valve
 - Blockage of stomach opening
 - Valve of stomach bottom closed
 - Outlet from stomach too small
 - Muscle obstruction of stomach
 - Opening/stomach/intestinal enlarged muscle
 - Pyloric valve malformed
7. Other anomalies of stomach
 Stomach valve wouldn't close
 Blockage in stomach
 Hole in stomach
 Born without stomach
 Malformation
 Bubble in stomach

8. Malformed throat pipe

9. Intestinal blockage/obstruction, NOS
 Undeveloped/not formed bowels
 Abdominal obstruction

10. Imperforate anus
 Rectal opening too small
 Undersized rectum
 Rectal tract too small
 Anal obstruction

11. Other anomalies of intestines
 Redundant colon
 Intestines "stuck together"
 Enlarged intestines
 Anal web

12. Umbilical cord attached to intestines

13. Intestinal, digestive (tract) problem/disorder
 Trouble passing bowels

EAR AND NECK

1. Hearing Problems

2. Otitis media
 Ear infection
 Fluid in ears
 Tubes in ears
 Tube from ear to throat

3. Hearing deficiency

4. Underdeveloped ear canal
 Atresia

5. Tab or tag on ear

6. Other specified anomalies of ear
 Cauliflower ear
 Pointed ear
 Misshapen ear
 Sunken eardrum
7. Unspecified anomaly of ear
 - Deformed ear (canal)
 - Malformation of ear (canal)

8. Branchial cleft, cyst, or fistula
 - Hole in neck/next to sideburns
 - Opening in neck/hole

ENDOCRINE SYSTEM

1. Diabetes
 - Diabetes-like condition
2. Hormone imbalance
3. Calcium deficiency
4. Immune deficiency
5. Undeveloped immune system

EYE AND LACRIMAL SYSTEM

1. Vision problems
2. Eye problems (includes eye nerve problems) with
 - no mention of muscle problems (see eye muscle problems)
3. Astigmatism
4. Eye deficiency — code as blindness
5. Cyst of eye (under, over, etc.)
 - Includes dermoid cyst
6. Eyelid/eye does not open
7. Blocked tear ducts
 - Plugged up tear ducts
 - Closed up tear ducts
 - Lump in tear ducts
8. Esotropia (cross-eyed)
9. Exotropia (wall-eyed)
10. Lazy eye
 - Turned eye (in) (out)
 - Wandering eye
 - Floating eye
11. Weak eye muscles
 - (Eye) muscle problems
 - Strabismus
12. Spasm of eye
 Nystagmus
 Twitching eye
 Can’t keep straight

13. Droopy eyelids
 Sleepy eyelids
 Granulated
 Ptosis

*Contradicts ICD-9 index

GENITOURINARY SYSTEM – KIDNEY AND URETER

1. Kidney infection 590.9
2. Reflux of kidney 593.7
 Reflux of ureter
 Reflux of bladder
 Surgery relocation tube — bladder/kidney
3. Other nonstructural diseases of kidney 593.9
 Ailment (of) kidney
 Problem (with) kidney
 Disease (of) kidney
 Malfunction/nonfunctioning kidney
 Disorder (of) kidney
4. Obstructive defects of renal pelvis and ureter 753.2
 Hydronephrosis
 Ureteral atresia
 Tubes leading to bladder too short
5. Other anomalies of kidney 753.3
 Hole in kidney
 Two valves in kidney instead of one
 Born with three kidneys
 Accessory kidney
6. Defective kidney 753.9

GENITOURINARY SYSTEM – BLADDER AND URINARY TRACT

1. Bladder disorder 596.5
 Dysfunction
 Problem
2. Spasmodic bladder 596.8
3. Blocked urinary tract 599.6
 Obstructed
 Could not pass urine

146
4. Urinary problems/difficulties 599.9

GENITOURINARY SYSTEM — MALE GENITALIA

1. Undeveloped foreskin on penis 605.0
 Penile adhesion
 Excessive foreskin over penis
 Not enough skin for circumcision

2. Other disease of genital organs 608.8
 Swollen testicles
 Enlarged testicles
 Liquid draining from testicles

3. Unspecified 608.9
 Genital problems
 Knot in testicles

4. Undescended testicles 752.5
 Testicles not in proper place
 Testicles out of place

5. Hypospadias 752.6
 (Penis) hole not in right place
 (Penis) hole dislocated
 (Penis) (urethra) hole comes out (below) (under) (middle of) penis

HEART AND CIRCULATORY SYSTEM

1. Mitral valve prolapse 424.0

2. Abnormal heart beat 427.9
 Irregular heart beat
 Arrhythmia
 Malfunction

3. Enlarged heart 429.3

4. Hole in heart 745.9

5. Hypoplastic right ventricle 746.0

6. Other anomalies of heart 746.8
 Shunt in the heart
 Blockage (of tube) of heart
 Defective heart valve
 Artery (tube) to heart bent
 Not fully developed
 Restricted blood flow in heart
7. Anomaly of aorta
 "Blue baby"
 Congenital heart disease
 Heart defect/problem

8. Heart murmur (functional)
 Echo in heart

CIRCULATORY SYSTEM

1. Peripheral vascular anomalies
 Non born blood vessels
 Small arteries
 Arterio-venous malformation, NOS
 Raised blood vessels

2. Circulatory anomalies of head or brain
 Weak capillary in brain
 Big blood vessel on head
 Arterio-venous malformation of brain
 Other specified anomalies of cerebral vessels

3. Unspecified anomalies of circulatory system
 Persistent fetal circulation

HERNIA AND HYDROCELE

1. Inguinal and groin (includes double hernia)

2. Umbilical hernia
 Ruptured belly button
 Navel rupture
 Oversized navel (had to be cut)
 Navel correction outward

3. Stomach hernia
 Penis hernia
 *Testis

4. Hernia, NOS

5. *Omphalocele
 Prune belly
 Abdominal muscle not developed
 Umbilical cord attached to intestines

6. Congenital hydrocele

*Contradicts ICD-9 index.
ABDOMINAL WALL

1. Omphalitis 771.4
 Navel would not heal
 Muscle in navel slow in closing

MUSCULOSKELETAL SYSTEM — HEAD AND SKULL

1. Specified deformities of head 754.0
 Asymmetric head
 Indentation
 Enlarged head
 Molded head

2. Specified deformities of skull 756.0
 Premature closure of sutures
 Absence of skull bones
 Craniosynostosis
 Deformity of forehead
 Cranial facial anomalies includes: anomalies of soft spot

3. Hematoma 767.0
 Hematoma of brain (includes subdural hematoma)

4. Hematoma of skull or head 767.1

5. All cutaneous hemorrhages (hematoma) — includes
 "broken blood vessels" of neck or head; blood blisters
 of head; blood lump

MUSCULOSKELETAL SYSTEM — MUSCLES

1. Rectum — no rectal muscles 569.4

2. Weak muscles in kidney 599.9

3. Muscle weakness 728.9
 Low/poor muscle tone
 Hypotonia

4. Other specified anomalies of muscles 756.8
 Spastic torticollis (congenital)
 Absence/shortened muscle or tendon
 Protruded muscle (in stomach)
 Locked muscles (in stomach)
 Tight muscles (in throat)
MUSCULOSKELETAL SYSTEM – ORTHOPEDIC DEFORMITIES

1. Dislocation of hip/out of socket/out of place hip joint
 C54.3

2. Bowlegs; includes curvature of legs
 C54.4

3. Varus deformity
 Feet (ankles) or legs turned in; foot turned in; pigeon-toed
 C54.5

4. Valgus deformity
 Feet (ankles) or legs turned out; foot turned out; flat foot
 C54.6

5. Clubfoot
 Congenital deformity of foot
 Other specified deformity of foot
 C54.7

6. Absence (congenital amputation) of any part of (upper)
 (lower) limb — includes fingers and toes — code as
 reduction deformity
 C755.2–755.4

7. Other deformities of lower limbs (includes hip and toes)
 Tibial torsion
 Twisted/crooked leg
 Feet turned, NOS
 Hip deformity (includes undeveloped hip, no hip balls)
 C755.6

8. Fracture of clavicle/collarbone
 C67.2

9. Dislocation of shoulder at birth
 Separated shoulder
 Dislocated collarbone
 C67.3

MUSCULOSKELETAL SYSTEM – SPINE

1. Pilonidal cyst
 Cleft/dimple of spine
 C685.1

2. Scoliosis
 Curvature of spine
 C54.2

3. Other deformities of spine
 Hole at (base) tailbone/rump/spine
 Opening on tailbone
 Absent vertebra
 Hemivertebra
 C56.1
MUSCULOSKELETAL SYSTEM — THORACIC

1. Anomalies of chest wall
 - Breast plate slightly concave
 - Sunken chest
 - Chest bone caved in
 - Concave chest
 - Chicken breast
 - Undeveloped chest
 - Hole in bone of chest

2. Anomalies of ribs and sternum
 - Malformation (of) sternum
 - Deformity of (ribs) (sternum)
 (Fusion) (Ribs grew together)

NEONATAL CONDITIONS

1. Immaturity
 - Specified as <7 months’ gestation

2. Prematurity, unspecified
 - Specified as >7 months’ gestation

3. Prematurity with jaundice

4. Jaundice
 - Yellow jaundice
 - Problem/elevation of bilirubin count
 - Yellow spots on body
 - Liver problems (had to be kept under lights)

NEOPLASMS

1. Cyst and polyp — code under heading in index.
 If not in index, code as “benign neoplasm”

2. Tumor — code as neoplasm, unspecified nature

3. Growth — code as neoplasm, unspecified nature
 unless it is stated as a benign growth; then
 code as benign neoplasm

NERVOUS SYSTEM AND BRAIN

1. Emotionally handicapped

2. Impairment of motor skills

3. Mentally handicapped — code as mental retardation

4. Paralysis

5. Brain dysfunction
6. Neurologic deficit
 Neurologic problem
 Impaired neurologic development

7. Pinched nerve — arm

8. Pinched nerve — neck

9. Hydrocephalus (congenital)
 Fluid on head
 Water on brain

10. Tethered spine
 Tethered cord (spine)

11. Incompletely formed optic nerve
 Undeveloped nervous system

12. Unspecified anomalies of brain, spinal cord, and nervous system
 Malformation

13. Hematoma of brain (includes subdural, cerebral)

14. Hematoma of head/skull

15. *Brain damage

16. Convulsions/seizures

17. Nervous condition
 Includes other ill-defined perinatal conditions

18. Abnormal brain waves
 *Contradicts ICD-9 index.

 RESPIRATORY SYSTEM

1. Misformed/malformed/disease of adenoids

2. Bronchial infection (not stated as due to birth)
 Code as bronchitis

3. Pulmonary edema/fluid in lungs

4. Choanal atresia
 No opening in nose for breathing
 Nasal passages too small

5. Other anomalies of nose
 Abnormal bone in nose

 *Contradicts ICD-9 index.
6. Perforation of lung
 Disorder
 Hole
 Malformation
 Spot on lung/removed upper lobe
 (Note: because of removal of upper lobe, this was given a more severe lung anomaly code)

7. Asphyxia/stopped breathing at birth

8. Pneumonia
 Respiratory infection at birth

9. Aspiration pneumonia/pneumonitis

10. Undeveloped lungs
 Immature lungs
 Premature lung problems
 Respiratory tract not fully developed

11.Collapsed lungs/atelectasis

12. Breathing problems/respiratory problem
 Bronchial problems
 Respiratory difficulty
 Respiratory distress
 Could not get oxygen to blood
 Cyanosis at birth

SKIN

1. Dyschromia
 Discoloration
 Spots
 Splotches

2. Other disease of skin
 Bumps
 Blisters
 Pimples

3. Unspecified diseases
 Dry skin
 Cradle cap
 Shedding of skin
 Skin problem
 Skin disease
4. Congenital anomalies
 Birthmarks
 Epidermolysis bullosa
 Urticaria pigmentosa
 Strawberry (marks) on skin

5. Edema of skin
 Fluid between skin layers

6. Rashes
 Skin eruption
 Sensitive skin

7. Changes in skin texture
 Thick skin
 Thin skin

SYNDROMES

1. Kawasaki's disease
2. Cornea delorde syndrome — should be called Cornelia de Lange's syndrome
 Prader-Willi syndrome
 Puppet Syndrome — retardation — should be called "Happy Puppet syndrome"
 Russell-Silver syndrome
3. Near miss SIDS (sudden infant death syndrome)
 Near crib death
 Near miss syndrome
APPENDIX C

Nonindependence of Child Outcomes
In this study, the data were collected in a nested data structure, with veterans at the first level and their children as the second level. In the first level, veterans were selected at random; therefore, veterans constituted independent observations. In the second (children) level, several children may come from one family; therefore, there may be a correlation among children within a family. In other words, the children may not be independent observations. Because the unit of observation may not be independent within a family, application of standard logistic regression, which assumes independent observations, may not be appropriate. In this situation (the presence of nonindependence for the children, but not for the veteran), the estimators of the standard logistic model, as used in BMD:LR or in the SAS LOGISTIC package, are still consistent, but the variance of the estimators is affected (Liang and Zeger, 1986). In other words, ignoring nonindependent observations leads to incorrect variance estimates for the regression coefficients.

We evaluated the degree of nonindependence in the children by comparing the results of the standard logistic method with the results of a modified logistic method that accounts for nonindependence.

Generally, two approaches are used to analyze data that are nonindependent. One approach is referred to as the "conditional logistic" model. The two types of conditional models are the transitional or state dependence model and the random-effects model. The transitional model uses, in its logistic form, a probability function for one outcome (response) in a family, given other outcomes in that family. Because the logistic form is defined as a conditional probability function within a family, this approach is most appropriate if the objective of the study is to evaluate the association of outcome within a family. This approach is advocated by Rosner (1984), Bonney (1986), and Connolly and Liang (in press). The random-effects model uses the conditional distribution of a response given a random effect (Anderson and Aitkin, 1985; Stiratelli et al., 1984; Zeger et al., 1987). In this model, subject-to-subject heterogeneity is explicitly modelled. Zeger et al. (1987) refer to this model as the subject-specific (SS) model. Thus, as in the transitional model, the regression coefficients have subject-specific interpretation.

The second approach is referred to as the "marginal logistic" model. In the logistic form of this model, a marginal probability function is used for each observation (Liang and Zeger, 1986; Stram et al., (in press); Zeger et al., 1987; Zeger and Liang, 1986). In contrast to the subject-specific model, Zeger et al. (1987) call this model a population-averaged (PA) model. This model is most useful for evaluating the association between the outcomes and the covariates as a population average. This model focuses on regression coefficients, while treating the nonindependence as a nuisance, and uses a "working" correlation matrix to approximate the nonindependence (Liang and Zeger, 1986). The PA model uses a generalized estimating equation (GEE) to estimate regression coefficients and intraclass correlation as a measure of nonindependence. The GEE approach extends the generalized linear model estimating equation to multivariate responses. Zeger et al. (1987) summarized the advantage of the PA model as follows:

Not to be confused with the conditional logistic analysis advocated by Breslow and Day (1980).
the population-averaged response for a given covariate, \(X_{it} \), is directly estimable from observations without assumptions about the heterogeneity across individuals in the parameters. PA parameters are in this sense one step closer to the data than SS parameters.

Because both the marginal and standard logistic models use the logistic form of the marginal probability function, the estimators of both models have the same interpretation. Proponents of the marginal logistic model contend that the logistic form of the marginal probability function has a simpler interpretation than the logistic form of the conditional logistic function. The choice of model actually depends on the objective of the study. Because the main objective of our study is to assess the association of the outcomes with Vietnam service among veterans as a group (population-averaged response), the marginal logistic model is the more appropriate method. Thus, to evaluate the degree of nonindependence, we compared the results of the marginal logistic model (Liang’s model) with the results of the standard logistic model. These comparisons quantify the lack of independence and determine whether the application of the standard logistic model is justifiable.

For these comparisons, we conducted three analyses. First, we compared the standard errors and betas of the two models, using several birth defect outcomes. The outcomes were arbitrarily selected to provide a range in the number of cases and the magnitude of the crude odds ratio (OR). For example, we selected all birth defect outcomes (1,416 cases, crude OR = 1.32), all nervous system birth defects (46 cases, crude OR = 2.37), and all circulatory system birth defects (158 cases, OR = 1.10). Results of these comparisons indicate the magnitude of the nonindependence problem. Second, we compared the ORs and the 95% confidence intervals (CIs) of the two models for all birth defect outcomes that were of weak or borderline statistical significance when we used the standard logistic model. In these comparisons, we evaluated the effect of ignoring nonindependence on the statistical significance of the OR for each outcome. Third, we compared the ORs and the 95% CIs of the two models for all pregnancy outcomes. We compared all pregnancy outcomes because we expect, within a family, a higher correlation of pregnancy outcomes than of birth defect outcomes and because pregnancy outcomes are much more common events than birth defects. For all comparisons in the three analyses, we used a model adjusted for the seven primary covariates.

For the first analysis of selected birth defects, the two models show similar standard errors and betas. The differences for the standard error range from -0.0089 to 0.0063 and for the betas, from -0.0002 to 0.0067 (Table C-1). Intraclass correlations for Liang’s model are 0.124

Table C-1. Comparison of Standard Errors (SE) and Betas of Vietnam Service for Liang’s and Standard Logistic Models Adjusted for All Primary Covariates

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>SE</th>
<th>Beta</th>
<th>Difference</th>
<th>SE</th>
<th>Beta</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Birth Defects (1416 cases)</td>
<td>Liuang</td>
<td>Standard</td>
<td>Difference</td>
<td>Liuang</td>
<td>Standard</td>
<td>Difference</td>
</tr>
<tr>
<td></td>
<td>0.0638</td>
<td>0.0575</td>
<td>0.0063</td>
<td>0.2599</td>
<td>0.2532</td>
<td>0.0167</td>
</tr>
<tr>
<td>Birth Defects of Circulatory System (159 cases)</td>
<td>0.1680</td>
<td>0.1654</td>
<td>0.0026</td>
<td>0.1422</td>
<td>0.1360</td>
<td>0.0162</td>
</tr>
<tr>
<td>Birth Defects of Nervous System (46 cases)</td>
<td>0.3335</td>
<td>0.3424</td>
<td>-0.0089</td>
<td>0.8403</td>
<td>0.8405</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>

158
for all birth defect outcomes, 0.050 for circulatory system outcomes, and -0.001 for nervous system outcomes. For the second and third analyses of birth defect outcomes and pregnancy outcomes, the comparisons of the two models show that both models give similar ORs and arrive at the same conclusion on the basis of the confidence interval of the OR (Tables C-2 and C-3). These results are partly explained by the relatively small number of children in most families (2.1 children per veteran for those veterans with children). In summary, the results of these comparisons indicate that lack of independence for birth defects and pregnancy outcomes in our study is minimal; therefore, application of the standard logistic model is justified.

Table C-2. Comparison of Odds Ratios and 95% Confidence Intervals of Birth Defect Outcomes for Standard and Liang Logistic Models Adjusted for All Primary Covariates

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Standard</th>
<th></th>
<th>Liang</th>
<th></th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
<td>OR</td>
<td>95% CI</td>
<td></td>
</tr>
<tr>
<td>All Birth Defects (1400 cases)</td>
<td>1.29</td>
<td>1.15-1.44</td>
<td>1.30</td>
<td>1.14-1.47</td>
<td>0.124</td>
</tr>
<tr>
<td>Nervous System (46 cases)</td>
<td>2.32</td>
<td>1.18-4.53</td>
<td>2.32</td>
<td>1.21-4.46</td>
<td>0.001</td>
</tr>
<tr>
<td>Ear, Face, Neck (59 cases)</td>
<td>1.60</td>
<td>0.93-2.76</td>
<td>1.62</td>
<td>0.26-10.02</td>
<td>0.136</td>
</tr>
<tr>
<td>Circulatory (159 cases)</td>
<td>1.15</td>
<td>0.83-1.58</td>
<td>1.15</td>
<td>0.83-1.60</td>
<td>0.050</td>
</tr>
<tr>
<td>Digestive System (189 cases)</td>
<td>1.21</td>
<td>0.90-1.63</td>
<td>1.23</td>
<td>0.84-1.81</td>
<td>0.067</td>
</tr>
<tr>
<td>Urinary System (74 cases)</td>
<td>1.40</td>
<td>0.86-2.26</td>
<td>1.42</td>
<td>0.63-3.20</td>
<td>0.103</td>
</tr>
<tr>
<td>Musculoskeletal (735 cases)</td>
<td>1.25</td>
<td>1.07-1.46</td>
<td>1.24</td>
<td>1.05-1.48</td>
<td>0.140</td>
</tr>
<tr>
<td>Integument (58 cases)</td>
<td>2.22</td>
<td>1.24-4.00</td>
<td>2.27</td>
<td>1.20-4.27</td>
<td>0.087</td>
</tr>
</tbody>
</table>

Table C-3. Comparison of Odds Ratios and 95% Confidence Intervals of Pregnancy Outcomes for Standard and Liang Logistic Models Adjusted for All Primary Covariates

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Standard</th>
<th></th>
<th>Liang</th>
<th></th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
<td>OR</td>
<td>95% CI</td>
<td></td>
</tr>
<tr>
<td>Miscarriage</td>
<td>1.27</td>
<td>1.17-1.37</td>
<td>1.26</td>
<td>1.15-1.39</td>
<td>0.132</td>
</tr>
<tr>
<td>First trimester</td>
<td>1.31</td>
<td>1.19-1.44</td>
<td>1.30</td>
<td>1.16-1.46</td>
<td>0.139</td>
</tr>
<tr>
<td>Second trimester</td>
<td>1.08</td>
<td>0.91-1.28</td>
<td>1.10</td>
<td>0.90-1.33</td>
<td>0.069</td>
</tr>
<tr>
<td>Third trimester</td>
<td>1.29</td>
<td>0.87-2.50</td>
<td>1.30</td>
<td>0.66-2.59</td>
<td>0.012</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.32</td>
<td>0.93-1.87</td>
<td>1.27</td>
<td>0.84-1.91</td>
<td>0.080</td>
</tr>
<tr>
<td>Induced Abortion</td>
<td>1.04</td>
<td>0.91-1.19</td>
<td>1.00</td>
<td>0.84-1.18</td>
<td>0.261</td>
</tr>
<tr>
<td>Tubal Pregnancy</td>
<td>0.95</td>
<td>0.73-1.24</td>
<td>0.96</td>
<td>0.72-1.28</td>
<td>0.099</td>
</tr>
<tr>
<td>All Short-Term Pregnancies</td>
<td>1.19</td>
<td>1.11-1.28</td>
<td>1.18</td>
<td>1.09-1.28</td>
<td>0.173</td>
</tr>
<tr>
<td>Stillbirth</td>
<td>0.88</td>
<td>0.68-1.13</td>
<td>0.87</td>
<td>0.66-1.15</td>
<td>0.047</td>
</tr>
</tbody>
</table>
APPENDIX D

Forms Used in the General Birth Defects Study and the Cerebrospinal Malformations Study