Characterizing Air Quality for Environmental Public Health Tracking

"Many Voices - One Vision" Environmental Public Health Tracking Conference March 24-26, 2004

Timothy Watkins National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency

Presentation Overview

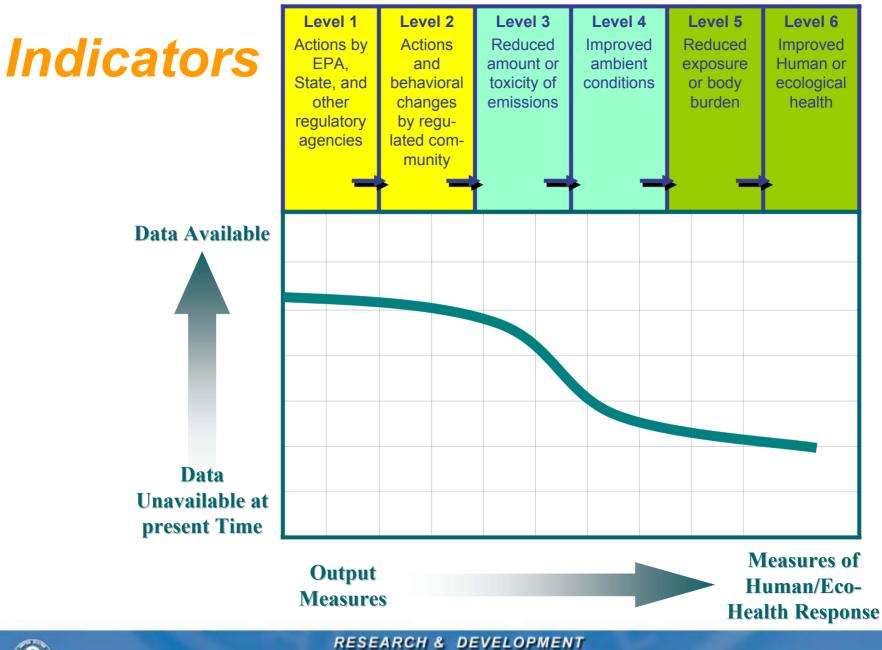
• EPA Perspective

• What air quality data is available?

CDC-EPA Pilot Project

RESEARCH & DEVELOPMENT

EPA's Mission


 "To protect human health and to safeguard the natural environment — air, water, and land — upon which life depends."

• How do we measure our effectiveness?

RESEARCH & DEVELOPMENT

EPA's Draft Report on the Environment 2003

- How can we measure the success of policies and programs to protect health and the environment?
 - Describes what EPA knows and doesn't know
 - Identifies measures/indicators to report on the status and trends and, where possible, their impacts on human health and the environment; and,
 - Discusses the challenges that the nation faces in improving these measures.

RESEARCH & DEVELOPMENT

What does the Report on the Environment say about Air?

• "In general, there are some very good measures of outdoor air quality."

 However . . . "There is a need for measures to compare actual and predicted human health and ecological effects related to exposure to air pollutants."

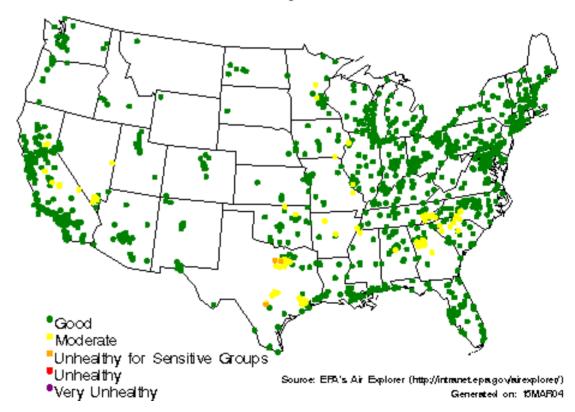
RESEARCH & DEVELOPMENT

Sources of Air Quality Characterization Data

Ambient Air Monitoring

Satellite Data

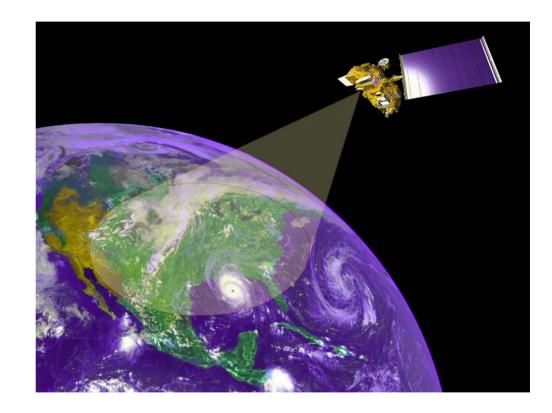
Air Quality Modeling


RESEARCH & DEVELOPMENT

Ambient Air Monitoring

- True measure of air quality
- Spatial and Temporal Gaps
- Routinely available information

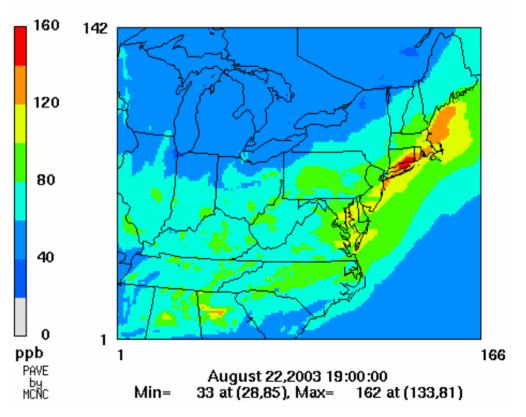
Ozone AQI Values by site on 06/20/2003



RESEARCH & DEVELOPMENT

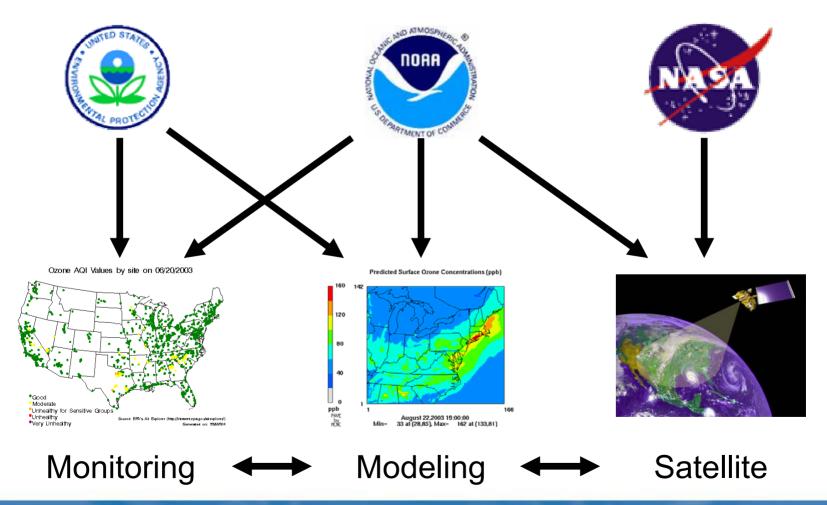
Satellite Data

- Emerging source of data
- Spatial and Temporal Gaps
- Routinely available data


RESEARCH & DEVELOPMENT

Air Quality Modeling

- Estimate of air quality
- Good spatial and temporal coverage
- Air Quality Forecasting
 - Emerging source of routine data

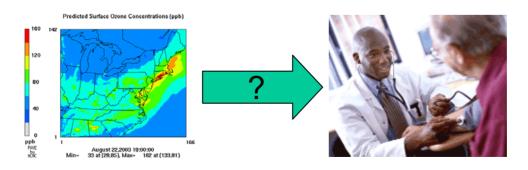

Predicted Surface Ozone Concentrations (ppb)

RESEARCH & DEVELOPMENT

Partnerships in Characterizing Air Quality

RESEARCH & DEVELOPMENT

The Role of Statistics


- Statistical techniques can be used to fill in the spatial and temporal monitoring gaps
- Most statistical spatial analyses have been applied to ambient monitoring data
 - Proximity
 - Interpolation (e.g., kriging, IDW)
- New statistical techniques "combine" ambient monitoring and emerging sources of data (e.g., satellite, modeling)
 - Capitalize on the strengths of each data source while minimizing the weaknesses
 - Improved measures of spatial and temporal uncertainty

RESEARCH & DEVELOPMENT

Linking Air Quality and Public Health?

 Do different air quality characterization methods improve capabilities for environmental public health tracking?

RESEARCH & DEVELOPMENT

Considerations

- Ambient vs Personal Exposure
 - Methods estimate ambient concentrations, but . . .
 - People experience health impacts from the air they breathe (i.e., their personal exposure)
 - How do the outputs from the various air quality characterization methods relate to personal exposure?
- Health Outcome
 - Temporal Resolution? => Chronic vs Acute
 - Pollutant Measured? => Effect/Endpoint

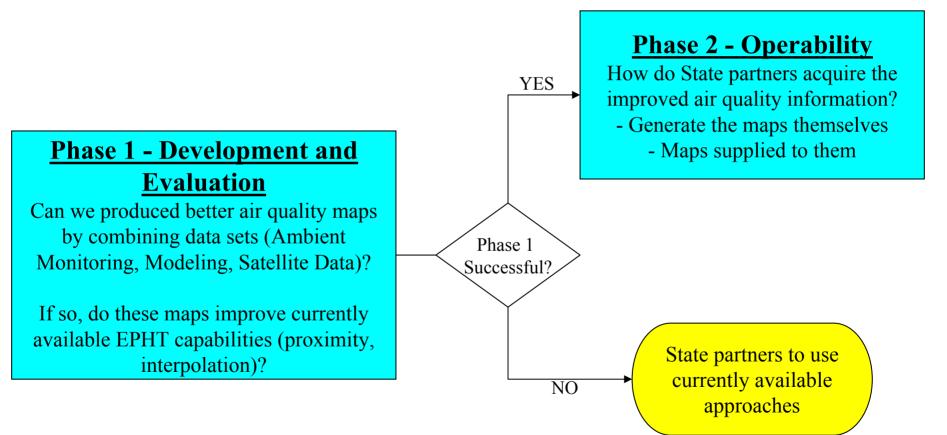
Personal Monitor

RESEARCH & DEVELOPMENT

Pilot Project for Evaluation of Air Quality Characterization Methods

- Develop and evaluate alternative air quality characterization methods for environmental public health tracking
 - Air Pollutants
 - Ozone and Particulate Matter
 - Health Endpoints
 - TBD Based on State Priorities and Data Availability
- Working with 3 CDC State EPHT Partners
 - Maine
 - New York
 - Wisconsin

RESEARCH & DEVELOPMENT


Pilot Project Objective

- Provide enhanced air quality information for use in Environmental Public Health Tracking
 - Supplement the ambient air monitoring network data with emerging data sources
 - Satellites
 - Air Quality Modeling (Forecasts)
 - Improved spatial and temporal coverage
 - Use statistical techniques to "combine" data from the various sources
 - Reduce uncertainty in monitoring gaps
 - Produce information that can be ROUTINELY used to track potential relationships between public health and air quality

RESEARCH & DEVELOPMENT

Pilot Project Conceptual Framework

RESEARCH & DEVELOPMENT

Pilot Project Process

- Provide State partners with alternative measures to characterize air quality
 - Ambient monitoring
 - Air quality modeling
 - Satellite data
 - Combinations of the above
- State partners "link" the alternative measures to available health surveillance data
- Evaluate and compare the use various air quality characterization methods

RESEARCH & DEVELOPMENT

Envisioned Output of the Pilot Project

TABLE 1: Particulate Matter (PM 2.5 and Birth Defects)										
Air Quality Characterization Method	Costs Hardware & Software, Operating., FTE - time, training	Ease of Use Data Access , Exposure Assignment, and Analyses	Validity, Uncertainty Measures	Temporal, Geographic Coverage & Resolution of Data	Correlation of Exposure Estimates/ Measure of Misclassification	Impact on PH Analyses & Associated PH Action				
Monitoring alone (Proximity)										
Monitoring w/Interpolation (IDW/Kriging)										
Air Quality Modeling										
Satellite Data										
Combining Data (Monitoring with AQ Model and/or Satellite Data)										

RESEARCH & DEVELOPMENT

-		-			
		22	3		
	200	-			
	22	-		1	

- EPA is seeking better ways to measure the success of its programs.
- Environmental Public Health Tracking is seeking compatible air quality data to inform public health actions.
- There are new possibilities for improving the way we characterize air quality.
- These new approaches may improve our ability to understand relationships between air quality and public health.
- The Air Quality Characterization Pilot Project will be evaluating these new approaches.

RESEARCH & DEVELOPMENT

