Statistical modelling of healthenvironment relationships: handling ecological bias

Nicky Best

Department of Epidemiology and Public Health

In collaboration with Sylvia Richardson, Sara Morris and Chris Jackson

Introduction

Recent trends in environmental epidemiology:

- 1 use of Bayesian hierarchical models to smooth risk estimates
- 1 availability of high-resolution geo-referenced health and exposure data
- 1 use of ecological regression models at smallarea scale

Standard ecological regression model: $Y_i \sim Poisson(E_i \theta_i)$ $\log \theta_i = \alpha + \beta X_i$

• $exp(\beta) = RR$ associated with exposure X

Interpretation of β

- β measures the ecological or group-level association between exposure and disease risk
- Not necessarily equal to the individual-level association → ecological bias
- Can arise for various reasons, including:
 - non-linear exposure-response relationship, combined with within-area variability of exposure
 - within- and between-area confounding
 - area-level effect modification
 - spatial dependence in the residuals

Spatially dependent residuals

- Observed risk factor(s) X are unlikely to explain all of the between-area variation in risk
- Residual variation (in excess of Poisson) can be captured using hierarchical model

 $Y_i \sim Poisson(E_i \theta_i)$ $\log \theta_i = s_i + \beta X_i$ $s_i \sim spatial prior$

s_i acts as proxy for unidentified area risk factors

- captures residual variation in risk not explained by X

- necessary for correct estimation of precision of exposure effects, β (see Wakefield 2003)

Area-level effect modification

- Effect modification occurs when dose-response relationship depends on level of a third variable
- Common examples of (individual) effect modifiers:

- age, time, genetic predisposition

- In ecological regression, may suspect geographical heterogeneity in effects of various risk factors:
 - subgroups of people particularly susceptible
 - interaction with location due to contextual effects, effectiveness of health system, socio-economic / cultural / ethnic factors,

Spatially varying coefficient models

- Instead of letting spatial structure only influence residual effects in ecological regression model
 - \rightarrow introduce spatial structure on covariate effects, β
 - \rightarrow spatially varying coefficient models
- Widely used in econometrics and geography (Assunçao, 2003)
- Links with generalised additive models (gam) where regression coefficients vary as smooth function of other variables (effect modifiers)

Statistical model:

 $Y_i \sim Poisson(E_i \theta_i)$ log $\theta_i = s_i + \beta_i X_i$ $s_i \sim spatial prior$ $\beta_i \sim spatial prior$

• $exp(\beta_i) = RR$ associated with exposure X in area i

assumed to vary across areas

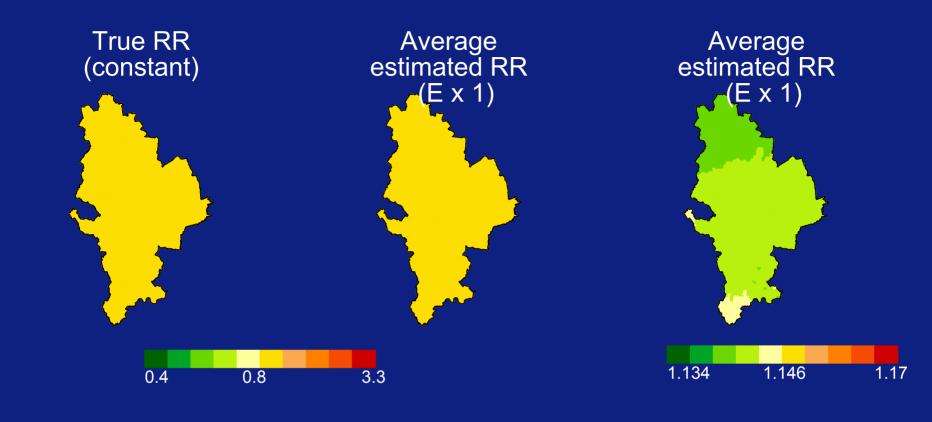
- location is acting as proxy for effect modifier

- How well do models capture different patterns of covariate effects when they are present?
- Can the spatial structure of the coefficients be distinguished from that of the spatial residuals?
- Do these models "invent" spatial structure in the coefficients, even when it is not there?
- How much is lost by over-fitting: constant vs varying coefficient model?

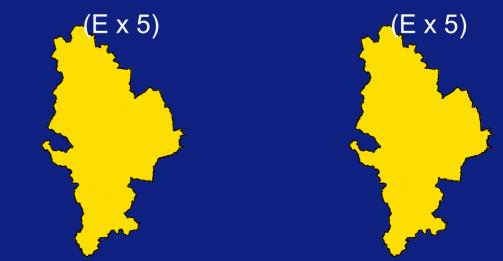
Simulation study

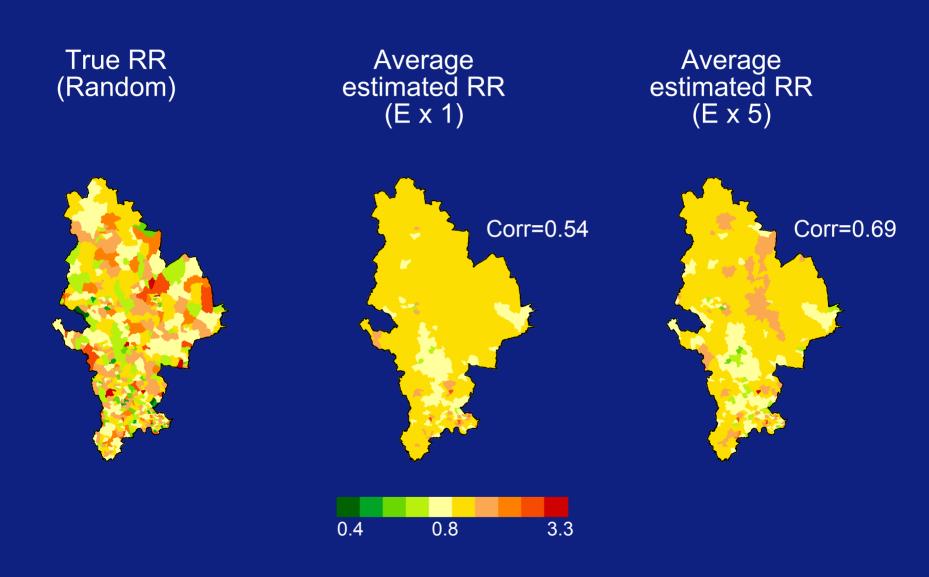
Model	Regression coefficient	Residual
1	Constant	Spatial
2	Random	Spatial
3	Spatial (Patchy)	Spatial
4	Spatial (Smooth)	Spatial

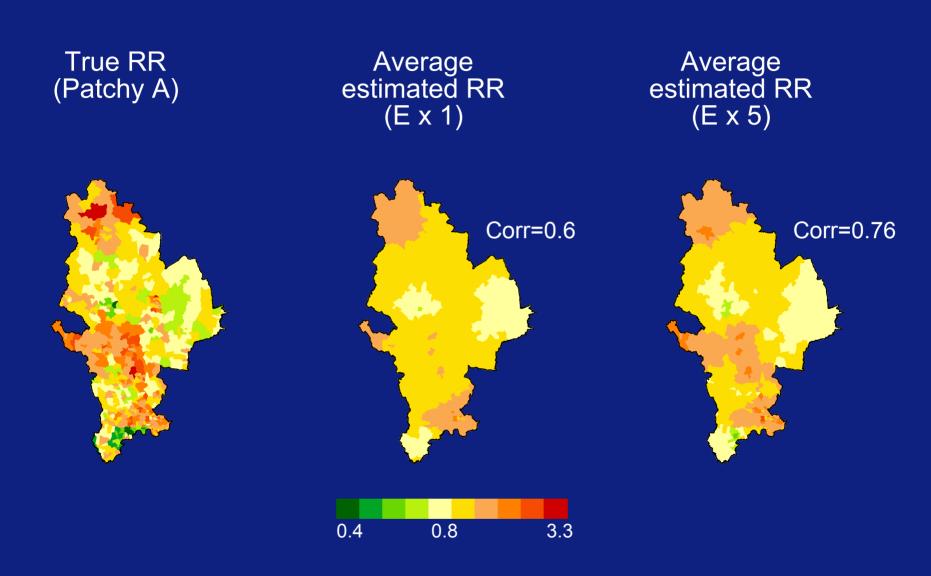
- Geographical scenario: 525 wards in NW London
- Expected counts: based on real population and incidence of rare cancer (median E_i = 2.8)
- 50 datasets simulated for each model using E_i x1 and E_i x5
- Analysed using (i) spatially varying coefficient model and (ii) constant coefficient model

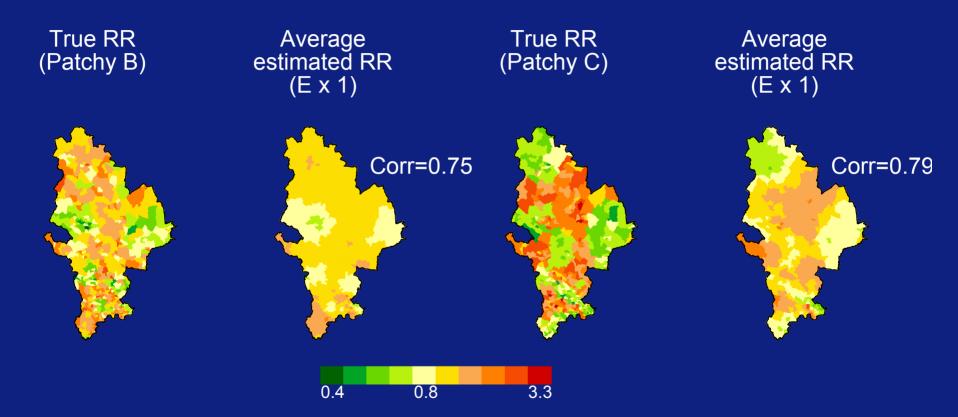


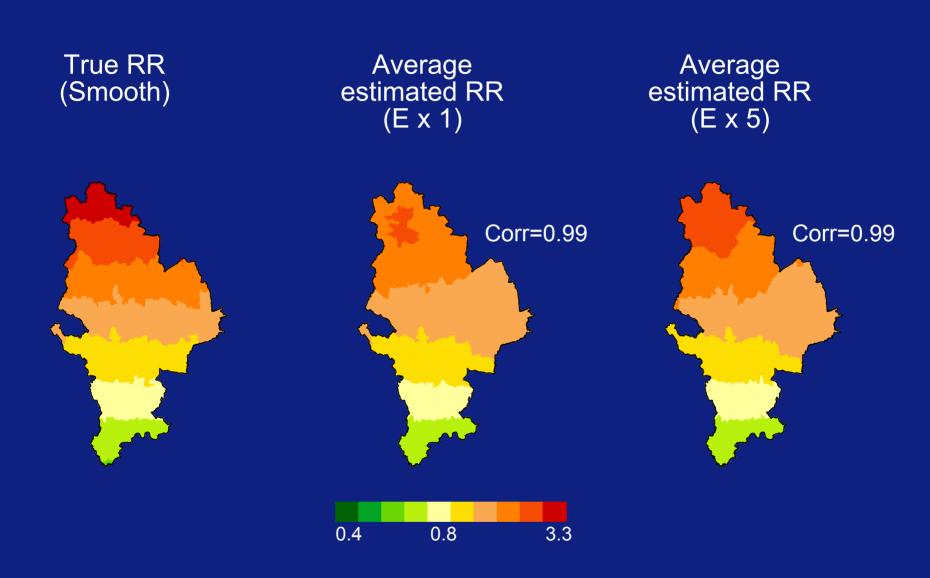
Regression coefficients



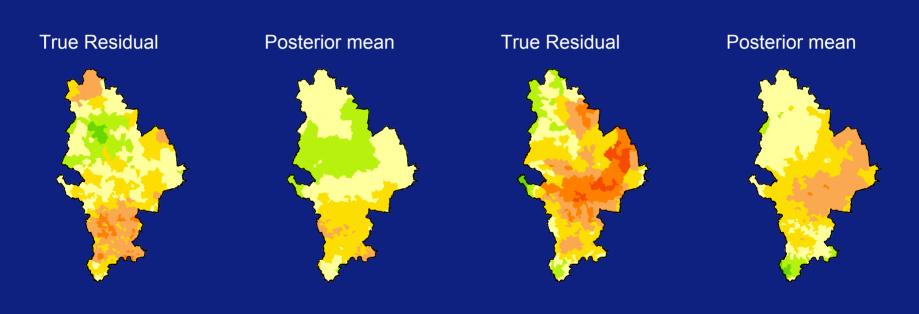








Spatial residuals



Model comparison

- Compare constant and varying coefficient models using Deviance Information Criterion (DIC)
 - similar to AIC but for hierarchical models
 - model with smaller DIC is preferred

Model	True coefficient	DIC _{var} – DIC _{const} (10 datasets)
1	Constant	-0.9 to 1.3 across datasets
2	Random	-23 to -55 across datasets
3	Spatial (Patchy)	-19 to -42 across datasets
4	Spatial (Smooth)	-32 to -90 across datasets

Non-linear exposure-response

- Most epidemiological models assume multiplicative relationship between exposure and risk
 - → Individual and group (area)-level relationships have different functional form, e.g.
 - x_{ik} is a binary exposure for person k in area i
 - p_{ik} = risk of person k developing (rare) disease

log $p_{ik} = \alpha + \beta x_{ik} \Rightarrow p_{ik} = e^{\alpha}$ if unexposed; $p_{ik} = e^{\alpha+\beta}$ if exposed

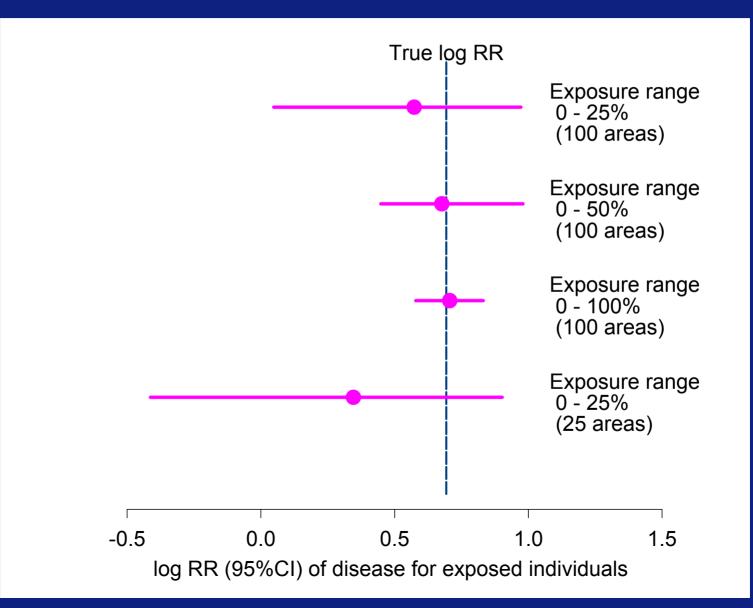
- X_i = proportion of people exposed to x in area i (mean of x_{ik})
- θ_i = average risk of disease in area i
 - $= e^{\alpha} (1 X_i) + e^{\alpha + \beta} X_i = e^{\alpha} (1 + (e^{\beta} 1) X_i)$
- $\Rightarrow \log \theta_i \neq \alpha + \beta X_i$ (unless $X_i = 0 \text{ or } 1$)

- Similar result holds for continuous exposures
 - For example, if the x_{ik} are approximately Normally distributed with mean X_i and variance V_i in area i, and log $p_{ik} = \alpha + \beta x_{ik}$ as before, then

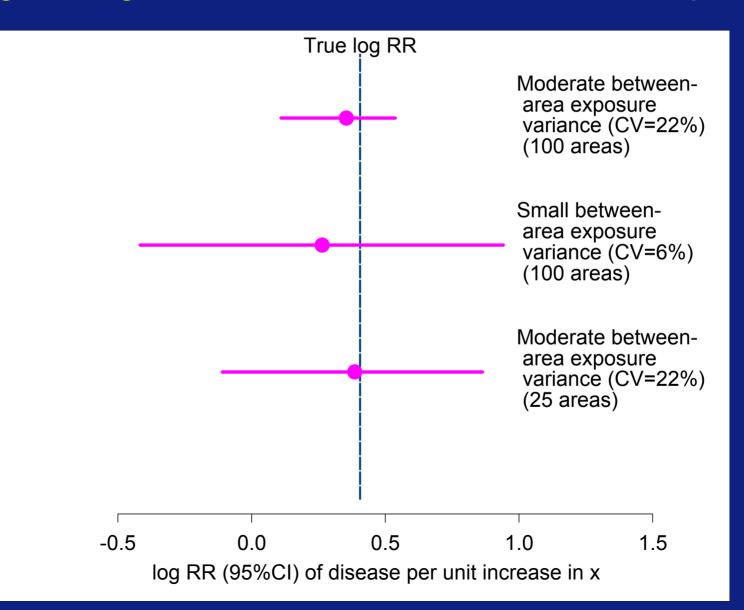
 $\log \theta_i = \alpha + \beta X_i + \beta^2 V_i / 2 \neq \alpha + \beta X_i \quad \text{(unless } V_i = 0\text{)}$

- If exposure varies within areas, and multiplicative risk model holds at individual level
 - appropriate integrated (aggregated) functional form should be used for the ecological regression model
- Even if correct model used, ecological data often contain little information about some of the risks

Simulation study to investigate bias of β coefficient in ecological regression model with <u>binary</u> exposure

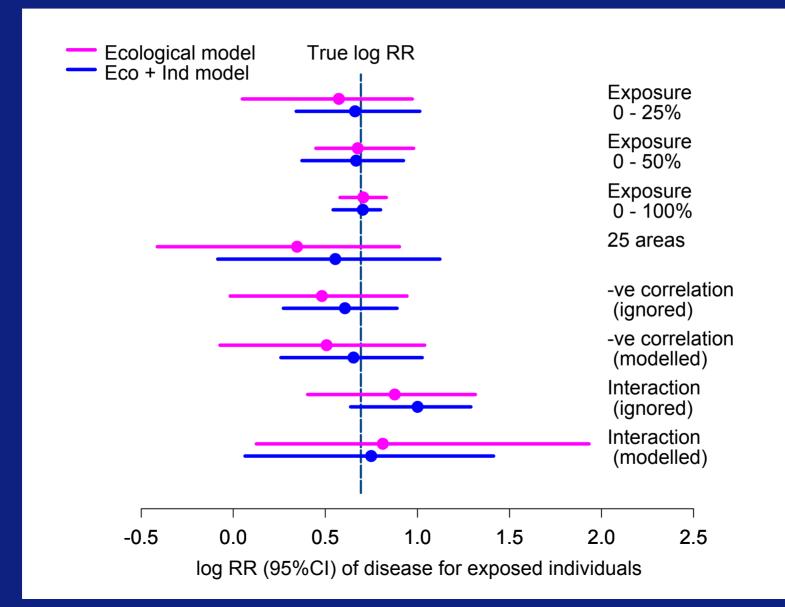


Simulation study to investigate bias of β coefficient in ecological regression model with <u>continuous</u> exposure



- Substantial improvements can be achieved by including individual-level data on a small subsample of people in each area
- Simultaneously estimate individual-level and ecological regressions (easily implemented in Bayesian paradigm)

Effect of including sample of 10 individuals per area on estimates of binary exposure effect



Conclusions

- Bayesian hierarchical models allow "borrowing of information" about disease risk across areas
- This property allows estimation of varying coefficient models
 - Models have reasonable power to detect true spatial variation in covariate effects, even with sparse data
 - Over-fitting does not appear to be a problem when no effect modification is present
 - able to separate spatial pattern of effect modification from that of the residuals

Conclusions continued

- When exposures vary within areas, care needed to fit appropriate aggregated risk model
 - Need large exposure contrasts between areas
 - Inclusion of even small sub-samples of individual level data can reduce bias and improve precision
 - More work needed on optimal study design
- Combining varying coefficient models and individual sub-samples should further improve our ability to handle ecological bias

Thank you

Page no./ref