National Ambient Air Quality Data

An Overview and Future Directions

Many Voices - One Vision. Environmental Public Health Tracking Conference

March 24-26, 2004

Agenda

- ۲
- **Describe Existing Air Quality Networks**
 - State/Local and Federal Roles
 - What is measured ?
 - Where do the data go ?
 - Changes in Monitoring Program
- Outline Remote Sensing (Satellite)
 - What's measured ?
 - What's happening with the data ?

Ambient Air Monitoring

- 20+ years of available information with recent emphasis on "real time" data
- Most ambient air monitoring networks operated by States via EPA grants

Uses

- NAAQS attainment
- Public Information
- Air Quality Trends and Program Accountability
- Air Quality Forecasting
- Risk/Exposure Characterization
- Research/Science Support

Methodology Support/Research

•National Data Storage/Management

Grant Funds

•Raw Data Management

Quality Assurance

Data Analysis

Ambient Air Monitoring Networks

Criteria Pollutant monitoring

- Emphasis on PM and Ozone
- Less emphasis for CO, NO₂, SO₂, Lead

Detailed Monitoring for Ozone and Particulate Matter

- Photochemical Assessment Monitoring Stations (PAMS)
 - Precursor Organic Compounds and NOx (background/urban sites)
- Speciated Fine Particle Network
 - Operated by States (urban/metropolitan sites)
- IMPROVE
 - Operated by National Park Service (background/rural sites)

Air Toxics monitoring

- Small number of trends sites (State/local and EPA networks)
- Community-based efforts

PM2.5 Continuous Monitoring Sites Reporting to AIRNow and AQS - February 2004

Urban & Rural PM2.5 Speciation Networks

Species Measured in EPA's Fine Particle Monitors

Arsenic	Gold		
Aluminum	Lanthanum		
Barium	Niobium		
Bromine	Phosporus	Ammonium	
Cadmium	Selenium	Sodium, by X-Ray Flourescence	
Calcium	Tin	Potassium by X-Ray Flourescence	
Chromium	Titanium	Measured Organic Carbon	
Cobalt	Samarium	OC adjusted by sampler-specific blank	
Copper	Scandium	OC_adj multiplied by 1.4 factor (to convert carbon t	
Chlorine	Vanadium	Nitrate	
Cerium	Silicon	Measured Elemental Carbon	
Cesium	Silver	Carbonate Carbon	
Europium	Zinc	Volatile Nitrate	
Gallium	Strontium	Non-Volatile Nitrate	
Iron	Sulfur	Adjustement Factor for making EC_NIOSH and OC_	
Hafnium	Tantalum	Sulfate	
Lead	Terbium	Total Carbon Mass (sum of OCM_adj and EC)	
Indium	Rubidium	Total Carbon (sum of OC_adj and EC)	
Manganese	Potassium, by IC	Calculated Sulfate	
Iridium	Yttrium	Using IMPROVE Definition: 2.2[Al]+2.49[Si]+1.63[Ca	
Molybdenum	Sodium, by IC		
Nickel	Zirconium		
Magmesium	Wolfram (same as Tu	ungsten)	
Mercury	`		

Operating PAMS Sites, 1998

Ozone Precursors – PAMS Measures

		Ozone	e, nitrogen oxi	ides, V	OC		Surface Meteor	rological		
		sums						-		
	•	Ozone		44201			Temperature		62101	
							Wind Speed		61101/3	
		Nitric /	Acid	42	2601		Wind Direction		61102/4	
		Nitroge	en Dioxide	42	2602		Relative Humidit	V	62201	
		Oxides	s of Nitrogen	42	2603		Solar Radiation	5	63301	
	-		5				uv Radiation		63302/4	
	-	Total N	NMOC	43	3102		Barometric Pres	sure	64101	
	;	Sum c	of Targeted	43	3000		Precipitation		65102	
Hvdrocarbons (HC	s) - liste	d in elut	ion seauence				Hvdrocarbons (HCs) -	listed in elu	ition sequence	
Ethylene	43	3203	2,3-dimethylpentane	;	43291		c-2-pentene	43227	Isopropylbenzene	45210
Acetylene	43	3206	3-methylhexane		432	249	2,2-Dimethylbutane	43244	n-Propylbenzene	45209
Ethane	43	3202	2,2,4-trimethylpentar	ne	43250		Cyclopentane	43242	m-Ethyltoluene	45212
Propylene	43	3205	n-Heptane		432	232	2,3-dimethylbutane	43284	p-Ethyltoluene	45213
Propane	43	3204	Methylcyclohexane		432	261	2-methylpentane	43285	1,3,5-Trimethylbenzene	45207
Isobutane	43	3214	2,3,4-trimethylpentar	ne	432	252	3-Methylpentane	43230	o-Ethyltoluene	45211
1-Butene	43	3280	Toluene		452	202	2-Methyl-1-Pentene	43246	1,2,4-trimethylbenzene	45208
n-Butane	43	3212	2-methylheptane		439	960	n-hexane	43231	n-Decane	43238
t-2-Butene	43	3216	3-methylheptane		432	253	Methylcyclopentane	43262	1,2,3-trimethylbenzene	45225
c-2-Butene	43	3217	n-Octane		432	233	2,4-dimethylpentane	43247	m-Diethylbenzene	45218
Isopentane	43	3221	Ethylbenzene		452	203	Benzene	45201	p-Diethylbenzene	45219
1-Pentene	43	3224	m&p-Xylenes		45 ⁻	109	Cyclohexane	43248	n-Undecane	43954
n-Pentane	43	3220	Styrene		452	220	2-methylhexane	43263		
Isoprene	43	3243	o-Xylene		452	204				
t-2-pentene	43	3226	n-Nonane		432	235	Carbonyls			
							Formaldehyde	43502		_
							Acetone	43551		
							Acetaldehyde	43503		

We assess spatial and temporal patterns; perform exploratory analyses

Trends summaries and special studies are available at www.epa.gov/airtrends

Air quality agencies participating in AIRNow

www.epa.gov/airnow

- Local agencies perform the data collection, QA, and forecasting
- Data generally collected hourly
- 300 cities forecasting for ozone
- 150 cities forecasting for PM_{2.5}
- Variety of forecasting techniques

AQI Values	AQI Category (Descriptor)	AQI Color
0 - 50	Good	Green
51 - 100	Moderate	Yellow
101 - 150	Unhealthy for Sensitive Groups	Orange
151 - 200	Unhealthy	Red
201 - 300	Very Unhealthy	Purple
301 - 500	Hazardous	Maroon

- Peak daily concentration reported as AQI value
- Forecasted data reported as AQI value or AQI category
- Both hourly and daily peak
 data are archived
- Forecasted information archived as well

AIR Data provides data for general public

Reports and Maps

About AirData How To Select...

Contacts

Monitor Data Queries

 U.S. Environmental Protection Agency

 AirData

 Recent Additions | Contact Us | Print Version

 Search:

 GO

 EPA Home > Air & Radiation > AirData > Reports and Maps > Select Geography

Select Geographic Area

About geographic selection

The first step in generating an AirData report or map is selecting a geographic area. You may select a geographic area by clicking on a <u>map</u> or by choosing from a <u>list</u>. (Select CMSA/MSA and ZIP code from <u>list</u> only.) <u>How to use this map</u>

Large data sets at: http://www.epa.gov/ttn/airs/airsaqs/archived%20data/downloadaqsdata.htm

16

We're Developing Web-based Tools for Air Quality Analysis

Powerful Web-driven analytical tools

Generates output dynamically

Currently available on EPA's Intranet...

intranet.epa.gov/airexplorer

Plan to provide broader access later in 2004

EPA effort to "redesign" national monitoring networks

- Reduce redundant, "low-value" monitors and realign resources to address current or emerging monitoring priorities
- Multi-pollutant measurements
- Real-time measurements
- Improvements in information transfer
- Support multiple monitoring objectives
- Integration and leveraging among monitoring programs

Most measurements (except O3, PM2.5) are well below NAAQS

Progress in science/technology to address this complex work.

Air Pollution === Complex Problem

New Monitors --Linked to Wireless Networks, Data Systems & Models

Satellite Monitoring for Air Quality

Target Observables for Air Quality

Pollutant	Current Sensors	Measurement
Sulfur dioxide (SO2)	GOME	Column
Formaldehyde (H2CO)	GOME	Column
Carbon monoxide (CO)	MOPPIT, AIRS	Column
Nitrogen dioxide (NO2)	GOME	Column
Ozone (O3)	TOMS/SBUV, AIRS	Column, Profile
Particulate Matter (PM2.5) (as aerosol optical depth)	TOMS, AVHRR, MODIS, SeaWIFS, GOME, SCIAMACHY, GOES	Column

The MODIS Sensor Sees Aerosols

MODerate-Resolution Imaging Spectroradiometer Designed for mapping land, ocean and atmospheric characteristics

TERRA

- Launched 18 Dec 1999
- ~10:30 AM Equatorial Crossing (Descending)
- First image acquisition April 2000

AQUA

- Launched 4 May 2002
- ~1:30 PM Equatorial Crossing (Ascending)
- First image acquisition July 2002

What Does MODIS Do?

MODIS measures a portion of the electromagnetic spectrum from 0.4 to 14.5 μ m that is reflected and radiated back to space. This includes the visible and the thermal infrared spectrums.

MODIS data collection results in 44 data products describing many of Earth's vital signs, from ocean/land surface temperatures to the properties of clouds.

Some Details of MODIS "Aerosol Optical Depth"

- Spatial resolution of pixels 10 km x 10 km
- AOD is a total column product, limitations exist due to lack of vertical distributions of aerosols.
- Can not "see" through clouds.
- Competing processes of surface reflection and aerosol backscatter prevent consistent data retrievals over areas with high surface albedo.

Composite PM2.5/MODIS Aerosol Optical Depth Data Fusion

MODIS AOD captures spatial extent of large scale aerosol events during cloud free conditions (US EPA, 2003, Kittaka, C. 2004, and Engel-Cox, J. et. al. 2004).

28

A closer look ...

< 829

Evaluation of MODIS AOD/PM2.5

Chicago, IL September 2003 Time series

MODIS AOD shows strong correlations with PM2.5 mass concentrations during large scale aerosol events (US EPA, 2003 and Engel-Cox, J. et. al. 2004).

MODIS AOD predicts correct AQI level >90% (regional AL study) (Wang, J. et al., 2003).

Where do we go from here ?

- Evaluate Existing Air Quality Networks for Use in Public Health Tracking
- Develop "Pilot" Projects to Understand Usefulness of Air Quality Data and Learn About Public Health Tracking Needs
- Consider Network Assessment and Updates as Way to Improve Usefulness
- Expand Use of New Technology
 - Remote sensing (satellite)
 - Analytical Tools