A Public Health Perspective on Onsite Wastewater Systems

Issues related to onsite wastewater systems are frequently among the top concerns of environmental health practitioners. Demographic, infrastructure, and land use trends show a likely continuation of this concern in the near future. Although the proportion of housing units with onsite systems has remained relatively constant in the United States over the last 30 years, at approximately 25 percent, about one-third of new homes are connected to onsite systems.

Rapid growth of rural and suburban fringe areas in some regions has led to more construction using onsite systems in higher-density areas. Although sewers may be feasible in some of these areas, onsite systems are often installed for new homes because infrastructure cannot always keep up with housing demand. Although the issue has not been specifically studied, concerns have been raised that a shift in the built environment from centralized sewer systems to onsite systems could potentially increase population exposure to wastewater contaminants.

In fact, although many of the practitioners who deal with onsite wastewater issues on a daily basis are in the field of public health, the body of literature on the public health effects of onsite systems is relatively small. Much of the literature about onsite systems is based in environmental engineering and soil science because these fields are closely involved in the design and construction of these systems. Health issues may arise, however, if onsite systems are improperly sited, designed, installed, or operated. A recent literature review by CDC found a limited number of outbreak investigations and epidemiological studies implicating problematic onsite systems as causes of disease. Although the relatively small number of studies limits analysis, some emerging trends indicate that the following factors have been associated with outbreaks related to onsite systems:

- intermittent use of drinking-water and wastewater systems, as in recreational settings or large temporary gatherings (e.g., fairs);
- installation of onsite systems in soil and geologic environments that are unsuitable (e.g., installation associated with a recent gastroenteritis outbreak in Ohio—see www.cdc.gov/nceh/ehs/Docs/NCEH_South_Bass_Island_Final_Report.pdf); and
- extreme precipitation events such as those linked to hurricanes or other large storms.

These results suggest that design criteria for onsite systems should include factors such as intermittent use and extreme storm events. The existing published literature is insufficient to allow this conclusion to be stated with certainty, but further investigation appears worthwhile.

In addition, the public health effects from onsite systems may not be limited to actual illness but probably also include exposure to wastewater pathogens. An epidemiologic study in Canada found that people whose septic systems were sited closer to their wells ex-
experienced less gastrointestinal illness (Raina et al., 1999). The authors suggest that these residents might have acquired greater immunity to wastewater pathogens. Strauss and co-authors (2001) found that elderly individuals in rural areas who had relied on private wells for long periods of time showed lower rates of gastrointestinal illness than did newer residents, possibly as a result of increased tolerance or resistance to enteric pathogens. Thus, exposure to wastewater pathogens may be more widespread than is commonly assumed, because such exposures do not always result in illness.

These results raise interesting questions that cut to the very core of how we conceive of public health. If people are being exposed to wastewater pathogens but do not get sick because of acquired immunity, are we protecting public health? What about newly emerging or re-emerging waterborne pathogens to which few or no individuals have built up immunity, or visitors to an area who have not acquired the immunity that long-term residents have? With more than 60 million people living in homes served by onsite wastewater systems in the United States, these questions surely deserve attention.

As a start, the Environmental Health Services Branch (EHSB) of CDC’s National Center for Environmental Health (NCEH) has funded an external research study to further investigate potential links among onsite systems, exposure to wastewater pathogens, and health outcomes. Serologic responses to selected wastewater pathogens are being measured in study participants in an attempt to differentiate between exposures and actual health effects such as gastrointestinal illness. Results from this pilot project are expected within the next year. Additional work will be necessary, however, to further explore the possible public health effects of onsite systems, including potential effects from properly functioning systems. Such work is needed especially because some epidemiologic studies that have investigated health effects of onsite systems have not found any association between such systems and increased incidence or prevalence of wastewater-related illnesses.

To promote better awareness of issues related to onsite wastewater systems among local policy makers, CDC’s Environmental Health Services Branch (EHSB) has also worked with the National Association of Local Boards of Health (NALBOH) to develop a guidance document titled Local Board of Health Guide to Onsite Wastewater Treatment Systems (available at www.cdc.gov/nceh/ehs/Docs/Onsite_Wastewater_NALBOH.pdf). However, more work is needed to characterize the public health effects from onsite wastewater systems and to continue disseminating this information to the public and to policy makers.

Corresponding Author: CDR Richard J. Gelt- ing, U.S. Public Health Service Environmental Engineer, Environmental Health Services Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, MS F28, Atlanta, GA 30341. E-mail: rug7@cdc.gov.

Web site: www.cdc.gov/nceh/ehs.

References

ACCRREDITED EH SCIENCE AND PROTECTION PROGRAMS

The following colleges and universities offer accredited environmental health programs for undergraduate and graduate degrees (where indicated). For more information, please contact the schools directly, visit the National Environmental Health Science and Protection Accreditation Council (EHAC) Web site at www.ehacoffice.org, or contact EHAC at ehacinfo@ehap.org or at (503) 233-6047.

Benedict College
Columbia, South Carolina
May Samuel, Ph.D. (803) 733-7442
samuelm@benedict.edu

Boise State University
Boise, Idaho
Dale Stephenson, Ph.D. (208) 426-3795
dalestephenson@boisestate.edu

Bowling Green State University
Bowling Green, Ohio
Gary Silverman, D.Env. (419) 372-6062
silverma@bgsu.edu

California State University at San Bernardino
San Bernardino, California
Lal Mian, Ph.D. (909) 880-7409
lman@csusb.edu

California State University at Northridge
Northridge, California
Tom Hatfield, Ph.D. (818) 677-4708
tom.hatfield@csun.edu

Colorado State University
Fort Collins, Colorado
John Zimbrick, Ph.D. (970) 491-7038
zimbrick@colostate.edu

Eastern Kentucky University
Richmond, Kentucky
D.B. Barnett, Ph.D. (606) 622-2391
Dh.barnett@eku.edu

Indiana State University
Terre Haute, Indiana
Elizer Bermudez, Ph.D., C.F.S.P. (812) 237-3077
elbermudez@usiue.indstate.edu

Indiana University–Purdue University Indianapolis
Indianapolis, Indiana
Ingrid Ritchie, Ph.D. (317) 274-3752
writcho@iupui.edu

Indiana University of Pennsylvania
Indiana, Pennsylvania
Thomas Simmons, Ph.D. (724) 357-4088
simmonsop@iup.edu

Mississippi Valley State University
Itta Bena, Mississippi
Moses Omishak, Ph.D. (662) 254-3399
omishakm@mvmsu.edu

New Mexico State University
Las Cruces, New Mexico
Stephen Arnold, Ph.D. (505) 646-8194
sarnold@nmsu.edu

Old Dominion University
Norfolk, Virginia
James English, M.S. (757) 683-3589
jenglish@odu.edu

Ohio University
Athens, Ohio
Michele Morrone, Ph.D. (740) 594-9549
morrone@ohio.edu

Richard Stockton College
Pomona, New Jersey
Ron Caplan, Ph.D. (609) 652-4395
ren.caplan@stockton.edu

Salisbury University
Salisbury, Maryland
Eliezer Bermudez, Ph.D., C.F.S.P. (410) 543-6499
avenos@salisbury.edu

Spelman College
Atlanta, Georgia
Victor Ibeanusi, Ph.D. (404) 270-5866
vbeanus@spelman.edu

University of California at Santa Barbara
Santa Barbara, California
Kevin Hesse, Ph.D. (805) 893-1042
khesse@csusb.edu

University of Colorado
Boulder, Colorado
Joff Gelt, Ph.D. (303) 492-1111
joffgelt@colorado.edu

University of Georgia, Athens
Athens, Georgia
Marsha Black, Ph.D. (706) 542-0097
mblack@uga.edu

University of Illinois at Springfield
Springfield, Illinois
Richard LaFollette, Ph.D. (217) 206-7894
lafollettel@uis.edu

University of Maryland
College Park, Maryland
Cheryl Sirkin, Ph.D. (301) 405-9554
cheryl.sirkin@umd.edu

University of North Carolina at Greensboro
Greensboro, North Carolina
Gregory Pires, Ph.D. (336) 334-3075
greg_pires@uncg.edu

University of Tennessee at Chattanooga
Chattanooga, Tennessee
Jessica Cullum, Ph.D. (423) 465-5025
jessica_cullum@utc.edu

University of Wisconsin–Eau Claire
Eau Claire, Wisconsin
Crispin Pierce, Ph.D. (715) 836-5589
piercech@uwec.edu

Western Carolina University
Cullowhee, North Carolina
Burton Ogle, Ph.D. (828) 227-3517
bogle@email.wcu.edu

Wright State University
Dayton, Ohio
G. Allen Burton, Ph.D. (937) 773-2201
Al len.burton@wright.edu

Reprinted with permission from NEHA

March 2007 • Journal of Environmental Health 65