1. Abrams B, Anderson H, Blackmore C, Bove FJ, Condon SK, Eheman CR, et al. Investigating suspected cancer clusters and responding to community concerns: Guidelines from CDC and the council of State and Territorial Epidemiologists. MMWR Recomm Reports. 2013;62(1).
  2. Federal Register. Updating federal guidelines used by public health agencies to assess and respond to potential cancer clusters in communities [Internet]. 2019. Available from:
  3. Murphy S, Kochanek K, Xu J, Arias E. Mortality in the United States, 2020. NCHS Data Brief [Internet]. 2021;427. Available from:
  4. Centers for Disease Control and Prevention. An Update on Cancer Deaths in the United States. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, Division of Cancer Prevention and Control; [Internet]. 2022. Available from:
  5. American Cancer Society. Lifetime Risk of Developing Cancer [Internet]. 2022. Available from:
  6. National Institutes of Health – National Cancer Institute: SEER. Cancer Stat Facts: Cancer of Any Site [Internet]. 2021 [cited 2022 Apr 7]. Available from:
  7. Goodman M, Lakind JS, Fagliano JA, Lash TL, Wiemels JL, Winn DM, et al. Cancer cluster investigations: Review of the past and proposals for the future. Int J Environ Res Public Health. 2014;11(2):1479–99.
  8. CDC. World Trade Center Health Program [Internet]. Available from:
  9. Centers for Disease Control and Prevention. Risk Factors and Cancer [Internet]. 2022. Available from:
  10. Thun MJ, Sinks T. Understanding cancer clusters. CA Cancer J Clin. 2004 Sep 1;54(5):273–80.
  11. Aldrich T, Sinks T. Things to know and do about cancer clusters. Cancer Invest. 2002;20:810–6.
  12. Schottenfeld D, Fraumeni J, Samet J, Colditz G, Whittemore A. Cancer epidemiology and prevention. New York, NY: Oxford University Press; 2006.
  13. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profiles [Internet]. Available from:
  14. Ma F, Lehnherr M, Fornoff J, Shen T. Childhood cancer incidence in proximity to nuclear power plants in Illinois. Arch Environ Occup Health [Internet]. 2011 Apr 29 [cited 2022 Jan 7];66(2):87–94. Available from:
  15. Yaffee AQ, Scott B, Kaelin C, Cambron J, Sanderson W, Christian WJ, et al. Collaborative response to arsenic-contaminated soil in an Appalachian Kentucky neighborhood. J Toxicol Environ Health A [Internet]. 2019 [cited 2022 Jan 7];82(12):697–701. Available from:
  16. Jacqueline F Moreau, Jeanine M Buchanich, Jacob Z Geskin, Oleg E Akilov, Larisa J Geskin. Non-random geographic distribution of patients with cutaneous T-cell lymphoma in the Greater Pittsburgh Area – PubMed. Dermatol Online J [Internet]. 2014 Jul 15 [cited 2022 Jan 7];20(7). Available from:
  17. Messier KP, Serre ML. Lung and stomach cancer associations with groundwater radon in North Carolina, USA. Int J Epidemiol [Internet]. 2017 [cited 2022 Jan 7];46(2):676–85. Available from:
  18. Gallagher LG, Webster TF, Aschengrau A, Vieira VM. Using residential history and groundwater modeling to examine drinking water exposure and breast cancer. Environ Health Perspect [Internet]. 2010 Jun [cited 2022 Jan 7];118(6):749–55. Available from:
  19. Wheeler DC, Ward MH, Waller LA. Spatial-temporal Analysis of Cancer Risk in Epidemiologic Studies with Residential Histories. Ann Assoc Am Geogr [Internet]. 2012 Sep [cited 2022 Jan 7];102(5):1049–57. Available from:
  20. Fortunato L, Abellan JJ, Beale L, LeFevre S, Richardson S. Spatio-temporal patterns of bladder cancer incidence in Utah (1973-2004) and their association with the presence of toxic release inventory sites. Int J Health Geogr [Internet]. 2011 Feb 28 [cited 2022 Jan 7];10. Available from:
  21. Liu-Mares W, MacKinnon JA, Sherman R, Fleming LE, Rocha-Lima C, Hu JJ, et al. Pancreatic cancer clusters and arsenic-contaminated drinking water wells in Florida. BMC Cancer [Internet]. 2013 Mar 12 [cited 2022 Jan 7];13. Available from:
  22. Parikh PV, Wei Y. PAHs and PM2.5 emissions and female breast cancer incidence in metro Atlanta and rural Georgia. Int J Environ Health Res [Internet]. 2016 Jul 3 [cited 2022 Jan 7];26(4):458–66. Available from:
  23. Levin RJ, De Simone NF, Slotkin JF, Henson BL. Incidence of thyroid cancer surrounding Three Mile Island nuclear facility: the 30-year follow-up. Laryngoscope [Internet]. 2013 Aug [cited 2022 Jan 7];123(8):2064–71. Available from:
  24. PHNCI. The 10 Essential Public Health Services [Internet]. 2020. Available from:
  25. Centers for Disease Control and Prevention. 10 Essential Public Health Services [Internet]. Available from:
  26. New York State Cancer Registry. Cancer Data for New York State Counties [Internet]. 2021. Available from:
  27. Massachusetts Environmental Public Health Tracking. Standardized Incidence Ratios for Cancer [Internet]. 2021. Available from:
  28. Massachusetts Department of Public Health, Bureau of Environmental Health Assessment. Explanation of a Standardized Incidence Ratio (SIR) and 95% Confidence Interval [Internet]. 1998. Available from:
  29. Gordis L. Epidemiology. Philadelphia, PA: Elsevier Saunders; 2014.
  30. Merrill R. Environmental Epidemiology, Principles and Methods. Sudbury, MA: Jones and Bartlett Publishers, Inc.; 2008.
  31. Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network Data Explorer [Internet]. [cited 2022 Apr 22]. Available from:
  32. U.S. Environmental Protection Agency. Superfund: National Priorities List (NPL) [Internet]. 2022 [cited 2022 Apr 21]. Available from:
  33. CDC. National Vital Statistics System: Mortality Data [Internet]. 2021. Available from:
  34. American Cancer Society. Cancer Clusters [Internet]. 2021. Available from:
  35. Goodman M, Naiman JS, Goodman D, LaKind JS. Cancer clusters in the USA: What do the last twenty years of state and federal investigations tell us? Crit Rev Toxicol. 2012;42(6):474–90.
  36. Lanphear B, Buncher C. Latent period for malignant mesothelioma of occupational origin – PubMed. J Occup Med [Internet]. 1992 [cited 2022 Jan 7];34(7):718–21. Available from:
  37. Urayama KY, Von Behren J, Reynolds P, Hertz A, Does M, Buffler PA. Factors associated with residential mobility in children with leukemia: implications for assigning exposures. Ann Epidemiol [Internet]. 2009 Nov [cited 2022 Jan 7];19(11):834–40. Available from:
  38. Dicker R, Coronado F, Koo D, Parrish R. Principles of Epidemiology in Public Health Practice: An Introduction to Applied Epidemiology and Biostatics. CDC Office of Workforce and Career Development; 2006.
  39. Frost G. The latency period of mesothelioma among a cohort of British asbestos workers (1978–2005). Br J Cancer. 2013 Oct 29;109(7):1965–73.
  40. Costas K, Knorr RS, Condon SK. A case-control study of childhood leukemia in Woburn, Massachusetts: The relationship between leukemia incidence and exposure to public drinking water. Sci Total Environ. 2002;300(1–3):23–35.
  41. Massachusetts Department of Public Health. The Wilmington Childhood Cancer Study: An Epidemiologic Investigation of Childhood Cancer from 1990–2000. 2021.
  42. Vieira VM, Hoffman K, Shin HM, Weinberg JM, Webster TF, Fletcher T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: A geographic analysis. Environ Health Perspect. 2013;121(3):318–23.
  43. Waller LA, Gotway CA. Applied spatial statistics for public health data. New York: John Wiley and Sons; 2004.
  44. National Cancer Institute. Cancer Incidence Statistics [Internet]. 2021 [cited 2022 Jan 7]. Available from:
  45. Kelsey JL, Whittemore AS, Evans AS, Thompson WD. Methods in observational epidemiology. 2nd ed. New York, NY: Oxford University Press; 1996.
  46. Sahai H, Khurshid A. Statistics in epidemiology: methods, techniques, and applications. Boca Raton: CRC; 1996.
  47. Selvin S. Statistical analysis of epidemiologic data. New York, NY: Oxford University Press; 1996.
  48. Breslow NE, Day NE. Statistical methods in cancer research. Volume I – The analysis of case-control studies. IARC Sci Publ. 1980;(32):5–338.
  49. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.
  50. United Kingdom and Ireland Association of Cancer Registries. Standard Operating Procedure: Investigating and Analysing Small-Area Cancer Clusters [Internet]. 2015. Available from:
  51. Greenland S, Senn S, Rothman KJ, Carlin J, Poole C, Goodman S, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016;31(4):337–50.
  52. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567:305–7.
  53. Pagano M, Gauvreau K. Principles of Biostatistics. 2nd ed. Pacific Grove, CA: Duxbury Thomson Learning; 2000.
  54. Rothman KJ. No Adjustments Are Needed for Multiple Comparisons. Vol. 1. 1990.
  55. Goldberg DW, Swift JN, Wilson JP. Geocoding Best Practices: Reference Data, Input Data and Feature Matching.
  56. CDC. Geography and Locational Referencing Subgroup of the Standards and Network Development Workgroup of the National Environmental Public Health Tracking Program. Environmental Public Health Tracking Version 1.0 (A resource for EPHT managers and a tool for their technical staff). 2005.
  57. Sahar L, Foster SL, Sherman RL, Henry KA, Goldberg DW, Stinchcomb DG, et al. GIScience and cancer: State of the art and trends for cancer surveillance and epidemiology. Vol. 125, Cancer. John Wiley and Sons Inc.; 2019. p. 2544–60.
  58. Gehlke CE, Biehl K. Certain Effects of Grouping upon the Size of the Correlation Coefficient in Census Tract Material. J Am Stat Assoc. 1934 Mar;29(185A):169–70.
  59. Openshaw S, Taylor PJ. A million or so correlation coefficients: Three experiments on the modifiable areal unit problem. Stat Appl Spat Sci. 1979;127–44.
  60. Cheng T, Adepeju M. Modifiable Temporal Unit Problem (MTUP) and Its Effect on Space-Time Cluster Detection. PLoS One [Internet]. 2014;9(6):1–10. Available from:
  61. Wong DW. Modifiable Areal Unit Problem. Int Encycl Hum Geogr. 2009;
  62. Su MD, Lin M, Wen T. Spatial Mapping and Environmental Risk Identification. 2011.
  63. Yoo E-H. GIS Methods and Techniques. Compr Geogr Inf Syst. 2018;
  64. Waller LA, Gotway CA. Applied Spatial Statistics for Public Health Data. Hoboken, NJ: John Wiley & Sons, Inc.; 2004.
  65. Cromley EK, McLafferty SL. GIS and Public Health. 2nd ed. New York, NY: The Guilford Press; 2012.
  66. Huang L, Pickle LW, Das B. Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases. Stat Med. 2008 Nov 1;27(25):5111–42.
  67. Geary RC. The contiguity ratio and statistical mapping. Inc Stat [Internet]. 1954;5(3):115–46. Available from:
  68. Moran PAP. Notes on continuous stochastic phenomena. Biometrika [Internet]. 1950;37(1/2):17–23. Available from:
  69. Oden N. Adjusting Moran’s I for population density. Stat Med. 1995;14(1):17–26.
  70. Ripley BD. Spatial Statistics. New York, NY: John Wiley and Sons; 1981.
  71. Anselin L. Local indicators of spatial association—LISA. Geogr Anal. 1995;27(2):93–115.
  72. Costa MA, Assunção RM. A fair comparison between the spatial scan and the Besag-Newell Disease clustering tests. Environ Ecol Stat. 2005;12(3):301–19.
  73. Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. Where is positional uncertainty a problem for species distribution modelling? Ecography (Cop). 2014;37(2):191–203.
  74. Bivand RS, Wong DWS. Comparing implementations of global and local indicators of spatial association. Test [Internet]. 2018;27(3):716–48. Available from:
  75. Kulldorff M, Nagarwalla N. Spatial Disease Clusters: Detection and Inference. Vol. 14, STATISTICS IN MEDICINE. 1995.
  76. Kulldorff M. A spatial scan statistic. Commun Stat methods. 1997;26(6):1481–96.
  77. Kulldorff M, Heffernan R, Jacobs J, Martins A, Mostashari F. A Space–Time Permutation Scan Statistic for Disease Outbreak Detection. PLoS Med. 2005;2:e59.
  78. Kulldorff M. Information management services, Inc. SaTScanTM v9. 2009;4.
  79. Huang L, Tiwari RC, Zou Z, Kulldorff M, Feuer EJ. Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data. J Am Stat Assoc [Internet]. 2009;104(487):886–98. Available from:
  80. Huang L, Kulldorff M, Gregorio D. A spatial scan statistic for survival data. Biometrics. 2007;63(1):109–18.
  81. Tango T, Takahashi K. A flexibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr. 2005;4(1):1–15.
  82. Besag J, Newell J. The detection of clusters in rare diseases. J R Stat Soc Ser A (Statistics Soc. 1991;154(1):143–55.
  83. Puett RC, Lawson AB, Clark AB, Aldrich TE, Porter DE, Feigley CE, et al. Scale and shape issues in focused cluster power for count data. Int J Health Geogr. 2005;4(1):1–16.
  84. Lawson AB. Statistical methods in spatial epidemiology. Wiley; 2006.
  85. Waller LA, Turnbull BW, Clark LC, Nasca P. Chronic disease surveillance and testing of clustering of disease and exposure: Application to leukemia incidence and TCE‐contaminated dumpsites in upstate New York. Environmetrics. 1992;3(3):281–300.
  86. Bithell JF. The choice of test for detecting raised disease risk near a point source. Stat Med. 1995;14(21–22):2309–22.
  87. Cuzick J, Edwards R. Methods for investigating localized clustering of disease. Clustering methods based on k nearest neighbour distributions. IARC Sci Publ. 1996;(135):53–67.
  88. Stone RA. Investigations of excess environmental risks around putative sources: statistical problems and a proposed test. Stat Med. 1988;7(6):649–60.
  89. Tango T. A class of tests for detecting ‘general’and ‘focused’clustering of rare diseases. Stat Med. 1995;14(21‐22):2323–34.
  90. Kleinbaum DG, Kupper LL, Nizam A, Rosenberg ES. Applied regression analysis and other multivariable methods. 5th ed. Boston, MA, USA: Cengage Learning; 2013. 1074 p.
  91. Cardoso D, Painho M, Roquette R. A geographically weighted regression approach to investigate air pollution effect on lung cancer: A case study in Portugal. Geospat Heal. 2019/05/18. 2019;14(1).
  92. Elliott P, Wartenberg D. Spatial epidemiology: current approaches and future challenges. Env Heal Perspect [Internet]. 2004/06/17. 2004;112(9):998–1006. Available from:
  93. Fotheringham AS. “The Problem of Spatial Autocorrelation” and Local Spatial Statistics. Geogr Anal [Internet]. 2009;41(4):398–403. Available from:
  94. Legendre P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology [Internet]. 1993;74(6):1659–73. Available from:
  95. Fotheringham AS, Rogerson PA. The SAGE handbook of spatial analysis [Internet]. Thousand Oaks, CA, USA: Sage; 2009. p. 528. Available from:
  96. Goujon S, Kyrimi E, Faure L, Guissou S, Hémon D, Lacour B, et al. Spatial and temporal variations of childhood cancers: Literature review and contribution of the French national registry. Cancer Med. 2018;7(10):5299–314.
  97. Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Stat Med. 2006;25(22):3929–43.
  98. Lin H, Ning B, Li J, Ho SC, Huss A, Vermeulen R, et al. Lung cancer mortality among women in Xuan Wei, China: a comparison of spatial clustering detection methods. Asia Pacific J Public Heal. 2015;27(2):NP392–401.
  99. Hanson CE, Wieczorek WF. Alcohol mortality: a comparison of spatial clustering methods. Soc Sci Med. 2002;55(5):791–802.
  100. Kim J, Lee M, Jung I. A comparison of spatial pattern detection methods for major cancer mortality in Korea. Asia Pacific J Public Heal. 2016;28(6):539–53.
  101. Chen J, Roth RE, Naito AT, Lengerich EJ, MacEachren AM. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of US cervical cancer mortality. Int J Health Geogr. 2008;7(1):1–18.
  102. Kulldorff M, Song C, Gregorio D, Samociuk H, DeChello L. Cancer map patterns: are they random or not? Am J Prev Med. 2006;30(2):S37–49.
  103. Jackson MC, Huang L, Luo J, Hachey M, Feuer E. Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers. Int J Health Geogr. 2009;8(1):1–14.
  104. Tango T. Spatial scan statistics can be dangerous. Stat Methods Med Res. 2021;30(1):75–86.