National Antimicrobial Resistance Monitoring System

NARMS

2014 Human Isolates Surveillance Report

Table of Contents

List of Tables	<u>3</u>
List of Figures	<u>6</u>
List of Abbreviations and Acronyms	<u>8</u>
NARMS Working Group	<u>9</u>
Introduction	<u>13</u>
What is New in the NARMS Report for 2014	<u>14</u>
Summary of NARMS 2014 Surveillance Data	<u>15</u>
Highlight: Whole Genome Sequencing of Resistant Nontyphoidal Salmonella	<u>17</u>
Highlight: Changes in Antimicrobial Resistance: 2014 vs. 2004–2008 and 2009–2013	<u>19</u>
Highlight: NARMS Now: Human Data – An Interactive Web Tool for Antimicrobial Resistance Data	<u>21</u>
Surveillance and Laboratory Testing Methods	<u>22</u>
Results	<u>34</u>
1. <u>Nontyphoidal <i>Salmonella</i></u>	<u>34</u>
A. Salmonella ser. Enteritidis	<u>40</u>
B. Salmonella ser. Typhimurium	<u>42</u>
C. Salmonella ser. Newport	<u>44</u>
D. <u>Salmonella ser. I 4,[5],12:i:-</u>	<u>46</u>
E. Salmonella ser. Infantis	<u>48</u>
F. <u>Salmonella ser. Heidelberg</u>	<u>50</u>
2. <u>Typhoidal Salmonella</u>	<u>52</u>
A. Salmonella ser. Typhi	<u>52</u>
B. Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C	<u>54</u>
3. <u>Shigella</u>	<u>56</u>
4. Escherichia coli O157	<u>62</u>
5. <u>Campylobacter</u>	<u>64</u>
6. Vibrio species other than V. cholerae.	<u>68</u>
Antimicrobial Resistance: 1996–2014	
References	<u>78</u>
Select NARMS Publications in 2014	<u>80</u>
Appendix A. WHO Categorization of Antimicrobial Agents	
Appendix B. Criteria for Retesting of Isolates	
Appendix C. Impact of the Streptomycin Breakpoint Change on 2014 Data	83

Suggested Citation: CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2014 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2016.

Information Available Online: Previous reports and additional information about NARMS are posted on the CDC NARMS website: http://www.cdc.gov/narms. Interactive data displays and data downloads are available on the NARMS Now: Human Data website: http://wwwn.cdc.gov/narms.now/.

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement by the Centers for Disease Control and Prevention or the U.S. Department of Health and Human Services.

List of Tables

<u>Table 1.</u>	Population size and number of isolates received and tested, 201423
Table 2.	Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia coli O157 isolates, 1996–2014
Table 3.	Antimicrobial agents used for susceptibility testing of Campylobacter isolates, 1997–201428
Table 4.	Antimicrobial agents used for susceptibility testing of <i>Vibrio</i> species other than <i>V. cholerae</i> isolates, 2009–2014
Table 5.	Number of nontyphoidal Salmonella isolates among the most common serotypes tested with the number of resistant isolates by class and agent, 201434
Table 6.	Percentage and number of nontyphoidal Salmonella isolates with selected resistance patterns, by serotype, 201435
<u>Table 7.</u>	Percentage and number of nontyphoidal Salmonella isolates with resistance, by number of CLSI classes and serotype, 201436
<u>Table 8.</u>	Minimum inhibitory concentrations (MICs) and resistance of nontyphoidal Salmonella isolates to antimicrobial agents, 2014 (N=2127)37
Table 9.	Percentage and number of nontyphoidal Salmonella isolates resistant to antimicrobial agents, 2005–2014
<u>Table 10.</u>	Resistance patterns of nontyphoidal Salmonella isolates, 2005–201438
<u>Table 11.</u>	Broad-Spectrum β-lactam resistance among all ceftriaxone or ceftiofur-resistant nontyphoidal Salmonella isolates, 2011 (N=58), 2012 (N=64), 2013 (N=55), and 2014 (N=51)39
<u>Table 12.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2014 (N=438)
<u>Table 13.</u>	Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 2005–2014
<u>Table 14.</u>	Resistance patterns of Salmonella ser. Enteritidis, 2005–2014
<u>Table 15.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2014 (N=262)
<u>Table 16.</u>	Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 2005–2014
<u>Table 17.</u>	Resistance patterns of Salmonella ser. Typhimurium isolates, 2005–201443
<u>Table 18.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2014 (N=235)
<u>Table 19.</u>	Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents, 2005–2014
<u>Table 20.</u>	Resistance patterns of Salmonella ser. Newport isolates, 2005–201445
<u>Table 21.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2014 (N=110)
<u>Table 22.</u>	Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 2005–2014
<u>Table 23.</u>	Resistance patterns of Salmonella ser. I 4,[5],12:i:- isolates, 2005–2014

<u>Table 24.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Infantis isolates to antimicrobial agents, 2014 (N=73)	48
<u>Table 25.</u>	Percentage and number of Salmonella ser. Infantis isolates resistant to antimicrobial agents, 2005–2014	
<u>Table 26.</u>	Resistance patterns of Salmonella ser. Infantis isolates, 2005–2014	
<u>Table 27.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2014 (N=71)	<u>50</u>
<u>Table 28.</u>	Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 2005–2014	<u>51</u>
<u>Table 29.</u>	Resistance patterns of Salmonella ser. Heidelberg isolates, 2005–2014	. <u>51</u>
<u>Table 30.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2014 (N=335)	<u>52</u>
<u>Table 31.</u>	Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents. 2005–2014	<u>53</u>
<u>Table 32.</u>	Resistance patterns of Salmonella ser. Typhi isolates, 2005–2014	<u>53</u>
<u>Table 33.</u>	Frequency of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C, 2014	<u>54</u>
<u>Table 34.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2014 (N=108)	<u>54</u>
<u>Table 35.</u>	Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial agents, 2005–2014	<u>55</u>
<u>Table 36.</u>	Resistance patterns of Salmonella ser. Paratyphi A isolates, 2005–2014	. <u>55</u>
<u>Table 37.</u>	Frequency of Shigella species, 2014	<u>56</u>
<u>Table 38.</u>	Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2014 (N=531)	<u>56</u>
<u>Table 39.</u>	Percentage and number of Shigella isolates resistant to antimicrobial agents, 2005–2014	. <u>57</u>
<u>Table 40.</u>	Resistance patterns of Shigella isolates, 2005–2014	<u>57</u>
<u>Table 41.</u>	Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2014 (N=458)	<u>58</u>
<u>Table 42.</u>	Percentage and number of <i>Shigella sonnei</i> isolates resistant to antimicrobial agents, 2005–2014	<u>59</u>
<u>Table 43.</u>	Resistance patterns of Shigella sonnei isolates, 2005–2014	. <u>59</u>
<u>Table 44.</u>	Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2014 (N=68)	<u>60</u>
<u>Table 45.</u>	Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2005–2014	<u>61</u>
<u>Table 46.</u>	Resistance patterns of Shigella flexneri isolates, 2005–2014	<u>61</u>
<u>Table 47.</u>	Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2014 (N=155)	<u>62</u>
<u>Table 48.</u>	Percentage and number of Escherichia coli O157 isolates resistant to antimicrobial agents, 2005–2014	63

<u>Table 49.</u>	Resistance patterns of Escherichia coli O157 isolates, 2005–2014	33
<u>Table 50.</u>	Frequency of Campylobacter species, 2014	<u>34</u>
<u>Table 51.</u>	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2014 (N=1251)	<u>64</u>
<u>Table 52.</u>	Percentage and number of <i>Campylobacter jejuni</i> isolates resistant to antimicrobial agents, 2005–2014	<u> 65</u>
<u>Table 53.</u>	Resistance patterns of Campylobacter jejuni isolates, 2005–2014	<u>35</u>
<u>Table 54.</u>	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2014 (N=146)	<u> 66</u>
<u>Table 55.</u>	Percentage and number of <i>Campylobacter coli</i> isolates resistant to antimicrobial agents, 2005–2014	<u>67</u>
<u>Table 56.</u>	Resistance patterns of Campylobacter coli isolates, 2005–2014	<u>37</u>
<u>Table 57.</u>	Frequency of Vibrio species other than V. cholerae, 2009–2014	<u> 8</u>
<u>Table 58.</u>	Minimum inhibitory concentrations (MICs) and resistance of isolates of <i>Vibrio</i> species other than <i>V. cholerae</i> to antimicrobial agents, 2014 (N=492)	<u>8</u>
<u>Table 59.</u>	Percentage and number of isolates of <i>Vibrio</i> species other than <i>V. cholerae</i> resistant to ampicillin, 2009–2014	<u>69</u>
<u>Appendix</u>	A Table A1. WHO categorization of antimicrobials of critical importance to human medicine	<u>31</u>
<u>Appendix</u>	B Table B1. Retest criteria for unlikely or discordant resistance phenotypes	<u>32</u>
<u>Appendix</u>	B Table B2. Uncommon resistance phenotypes for which retesting is encouraged	32
<u>Appendix</u>	C Table C1. Impact of the streptomycin breakpoint change on the number and percentage of Enterobacteriaceae isolates with select resistance, 2014	33
		-

List of Figures

<u>Highlight F</u>	igure H1.	Prevalence of antimicrobial resistance genes identified among resistant nontyphoidal Salmonella isolates, by agent, 2014	<u>17</u>
<u>Highlight F</u>	igure H2.		
Highlight F	igure H3.	NARMS Now: Human Data interactive dashboard display	
Figure 1.		ad a squashtogram	
Figure 2.		nal chart, a categorical graph of a squashtogram	
Figure 3.		bial resistance pattern for nontyphoidal <i>Salmonella</i> , 2014	
Figure 4.		bial resistance pattern for Salmonella ser. Enteritidis, 2014	
Figure 5.	Antimicro	bial resistance pattern for Salmonella ser. Typhimurium, 2014	<u>42</u>
Figure 6.		bial resistance pattern for Salmonella ser. Newport, 2014	
Figure 7.		bial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2014	
Figure 8.		bial resistance pattern for Salmonella ser. Infantis, 2014	
Figure 9.	Antimicro	bial resistance pattern for Salmonella ser. Heidelberg, 2014	<u>50</u>
Figure 10.	Antimicro	bial resistance pattern for Salmonella ser. Typhi, 2014	<u>52</u>
Figure 11.	Antimicro	bial resistance pattern for Salmonella ser. Paratyphi A, 2014	<u>54</u>
Figure 12.	Antimicro	bial resistance pattern for Shigella, 2014	<u>56</u>
Figure 13.	Antimicro	bial resistance pattern for Shigella sonnei, 2014	<u>58</u>
Figure 14.	Antimicro	bial resistance pattern for Shigella flexneri, 2014	<u>60</u>
<u>Figure 15.</u>	Antimicro	bial resistance pattern for Escherichia coli O157, 2014	<u>62</u>
Figure 16.	Antimicro	bial resistance pattern for Campylobacter jejuni, 2014	<u>64</u>
Figure 17.	Antimicro	bial resistance pattern for Campylobacter coli, 2014	<u>66</u>
Figure 18.		ge of nontyphoidal <i>Salmonella</i> isolates with decreased susceptibility to acin (DSC), 1996–2014	<u>70</u>
<u>Figure 19.</u>	<u>Percentag</u>	ge of nontyphoidal Salmonella isolates resistant to ceftriaxone, 1996–2014	<u>71</u>
Figure 20.		ge of <i>Salmonella</i> ser. Enteritidis isolates with decreased susceptibility to acin (DSC), 1996–2014	<u>71</u>
Figure 21.	<u>Percentag</u>	ge of Salmonella ser. Heidelberg isolates resistant to ceftriaxone, 1996–2014	<u>72</u>
Figure 22.		ge of <i>Salmonella</i> ser. Typhimurium isolates resistant to at least ampicillin, henicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), 1996–2014	<u>72</u>
Figure 23.	chloramp	ge of Salmonella ser. Newport isolates resistant to at least ampicillin, henicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, axone (ACSSuTAuCx), 1996–2014	<u>73</u>
Figure 24.		ge of <i>Salmonella</i> ser. I 4,[5],12:i:- isolates resistant to at least ampicillin, ycin, sulfonamide, and tetracycline (ASSuT), but not chloramphenicol, 1996–2014	<u>73</u>
Figure 25.		ge of nontyphoidal <i>Salmonella</i> isolates resistant to 1 or more antimicrobial 996–2014	<u>7</u> 4

Figure 26.	Percentage of nontyphoidal Salmonella isolates resistant to 3 or more antimicrobial classes, 1996–2014	74
Figure 27.	Percentage of Salmonella ser. Typhi isolates with decreased susceptibility to ciprofloxacin (DSC), 1999–2014	
Figure 28.	Percentage of Shigella isolates resistant to nalidixic acid, 1999–2014	<u>75</u>
Figure 29.	Percentage of Campylobacter jejuni isolates resistant to ciprofloxacin, 1997–2014	<u>76</u>
Figure 30.	Percentage of Campylobacter coli isolates resistant to ciprofloxacin, 1997–2014	<u>76</u>
Figure 31.	Percentage of Campylobacter jejuni isolates with resistance to macrolides, 1997–2014	<u>77</u>
Figure 32.	Percentage of Campylobacter coli isolates with resistance to macrolides, 1997–2014	<u>77</u>

List of Abbreviations and Acronyms

AAuCx Resistance to at least ampicillin, amoxicillin-clavulanic acid, and ceftriaxone

ACSSuT Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole,

and tetracycline

ACSSuTAuCx Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole,

tetracycline, amoxicillin-clavulanic acid, and ceftriaxone

ACT/S Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole

ANT/S Resistance to at least ampicillin, nalidixic acid and trimethoprim-sulfamethoxazole

ASSuT Resistance to at least ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, and

tetracycline

AT/S Resistance to at least ampicillin and trimethoprim-sulfamethoxazole

CDC <u>Centers for Disease Control and Prevention</u>

CI Confidence interval

CLSI Clinical and Laboratory Standards Institute

CxNal Resistance to at least ceftriaxone and nalidixic acid

DSC Decreased susceptibility to ciprofloxacin (MIC ≥0.12 µg/mL for Salmonella)

ECV Epidemiological cutoff value*

EIP <u>Emerging Infections Program</u>

ELC Epidemiology and Laboratory Capacity for Infectious Diseases

ESBL Extended-spectrum β-lactamase

FDA-CVM Food and Drug Administration-Center for Veterinary Medicine

FoodNet Foodborne Diseases Active Surveillance Network

MIC Minimum inhibitory concentration

NARMS National Antimicrobial Resistance Monitoring System for Enteric Bacteria

OR Odds ratio

S-DD Susceptible-dose dependent

USDA-ARS United States Department of Agriculture-Agricultural Research Service

USDA-FSIS United States Department of Agriculture-Food Safety and Inspection Service

WHO World Health Organization
WGS Whole genome sequencing

^{*}For a description of epidemiological cutoff values (previously abbreviated as ECOFFs) see NARMS 2012 Annual Report pages 17-18

NARMS Working Group

Centers for Disease Control and Prevention

National Center for Emerging and Zoonotic Infectious Diseases

Division of Foodborne, Waterborne and Environmental Diseases

Enteric Diseases Epidemiology Branch

Enteric Diseases Laboratory Branch

Christy Bennett Amelia Bicknese Allison Brown Davina Campbell Jessica Chen

Amanda Conrad T. Byron Douglas

Jason Folster

Louise François Watkins

Cindy Friedman
Peter Gerner-Smidt
Julian Grass
Patricia Griffin
Caroline Jackman

Robert Michael Hoekstra

Rebecca Howie Martha Iwamoto Kevin Joyce Maria Karlsson Beth Karp Barbara Mahon

Andre McCullough
Felicita Medalla
Terrell Miller

Allison O'Donnell Jared Reynolds

Regan Rickert-Hartman

Zachary Rigney Michelle Sanders Christina Scheel Christina Smith Robert Tauxe

Don Wade Jean Whichard

U.S. Food and Drug Administration

Center for Veterinary Medicine

Emily Crarey Claudine Kabera Patrick McDermott Epiphanie Nyirabahizi Heather Tate

U.S. Department of Agriculture

Agricultural Research Service

Kimberly Cook Jonathan Frye Charlene Jackson Rick Meinersmann Jodie Plumblee Eileen Thacker

Food Safety and Inspection Service

William Cray Emilio Esteban David Goldman Joseph Hill Kristin Holt Scott Ladely Neelam Narang Kay Williams

Participating State and Local Health Departments

Alabama Department of Public Health

Sherri Davidson Catrina Hollins Pettway Sharon Massingale Darryl Pendergrass Tina Pippin Mychal Robinson

Alaska Department of Health and Social Services

Jennifer Faulwetter Catherine Xavier

Arizona Department of Health Services

Sherry Gower Tracy Hawkins Ken Komatsu Jen Pistole William Slanta Victor Waddell Stacy White

Arkansas Department of Health Rossina Stefanova

California Department of Public Health

Anthony Bermudez Will Probert Linda Sae-Jang

Colorado Department of Public Health and Environment

Nisha Alden Alicia Cronquist Laura Gillim-Ross Joyce Knutsen Hugh Maguire Emily Travanty

Connecticut Department of Public Health

Diane Noel
Alycia Esliger
Kimberly Holmes-Talbot
Sharon Hurd
David Johnson
Laurn Mank
Christina Nishimura
Quyen Phan
Alla Zeygerman

Delaware Health and Social Services

Gregory Hovan Brenda Redlich Debra Rutledge Nancy Valeski

District of Columbia Department of Health

Reginald Blackwell Morris Blaylock Sosina Merid

Florida Department of Health

Ronald Baker Rachel Chester Sonia Etheridge Tricia Foster Nancy Pickens

Georgia Division of Public Health

Jim Benson Cherie Drenzek Elizabeth Franko Nadine Oosmanally Tonia Parrott Lynett Poventud Melissa Tobin-D'Angelo

Hawaii Department of Health

Myra Ching-Lee Anne Folley Pamela O'Brien Norman O'Connor

Houston Health and Human Services Department

Okey Akwari Raouf Arafat Pamela Brown Gregory Dufour Salma Khuwaja Stephen Long Larry Seigler Juanita Sumpter Brenda Thorne Alan Timme Varsha Vakil Nancy Vuong Shannon York

Idaho Department of Health and Welfare

Rachel Beukelman Amanda Bruesch Joanna Lewis Lisa Smith Robert Voermans

Illinois Department of Public Health

Nancy Barstead
Robert Cox
Rebecca Hambelton
Stephen Hendren
Mary Konczyk
Carlos Morales
Mohammad Nasir
Kiran Patel
Guinevere Reserva
Jenna Worker

Indiana State Department of Health

Brent Barrett Ryan Gentry Tess Gorden Melissa Hindenlang

Iowa Department of Public Health, University Hygienic Laboratory

Ryan Jepson Gary Moet

Kansas Department of Health and Environment

Sheri Anderson Carissa Robertson Lindsey Webb

Kentucky Department of Public Health

Emily Carmichael Robin Cotten Karim George William Grooms Carrell Rush Lorrie Sims Josh Tobias

Los Angeles County Department of Health Services

Nicole Green David Jensen Laurene Mascola Roshan Reporter Benjamin Schwartz Lisa Tsunawaki Wilson Wong

Louisiana Department of Health and Hospitals

Gary Balsamo Hie Chew Erin Delaune Steven Martin Raoult Ratard Errin Rider Theresa Sokol Peter Travis

Maine Department of Health and Human Services

Jemelie Bessette Heather Grieser Jeff Randolph Amy Robbins

Maryland Department of Health and Mental Hygiene

Emily Blake
David Blythe
Michelle Boyle
Jordan Cahoon
Yaaqobah Evans
Celere Leonard
Jafar Razeq
Pat Ryan
Anila Shah

Massachusetts Department of Public Health

Catherine Brown Alfred DeMaria Emily Harvey Patricia Kludt Tracy Stiles

Michigan Department of Health and Human Services

Jennifer Beggs Jennie Finks Beth Holben Kelly Jones James Rudrik Sandio Shah

Minnesota Department of Health

Fe Leano Stephanie Meyer Kirk Smith Paula Snippes Theresa Weber

Mississippi Department of Health

Jannifer Anderson Jane Campbell Sheryl Hand Cathie Hoover Lucersia Nichols Daphne Ware

Missouri Department of Health

John Bos David Byrd Steve Gladbach Jason Herstein Jessica Meller Adam Perkins JoAnn Rudroff Erica Vaughn Melissa Walker

Montana Department of Public Health and Human Services

Dana Fejes Debbie Gibson Karl Milhon Susanne Zanto

Nebraska Health and Human Services and the Nebraska Public Health Laboratory

Peter Iwen Manjiri Joshi Susan Peters Tom Safranek Robin Williams

Nevada Department of Health and Human Services

Vince Abitria
Patricia Armour
Michele Bushnik
Jaime Frank
Paul Hug
Julie Kirch
Bradford Lee
Stephanie Van Hooser

New Hampshire Department of Health and Human Services

Christine Bean Steffany Cavallo Elizabeth Daly Rebecca Lovell Nancy Taylor Daniel Tullo

New Jersey Department of Health

Michelle Malavet Sylvia Matiuck Howard Sarubin Paul Seitz

New Mexico Department of Health

Lisa Butler
Nicole Espinoza
Sarah Khanlian
Kodi Lockey
Robert Mansman
Mary Martinez
Cynthia Nicholson
Lisa Onischuk
Paul Torres

New York City Department of Health and Mental Hygiene

Sharon Balter
Ludwin Chicaiza
Heather Hanson
John KornblumJennifer
Rakeman
Vasudha Reddy
HaeNa Waechter

New York State Department of Health

Leanna Armstrong Nellie Dumas Suzanne McGuire Kim Musser Geetha Nattanmai Tim Root Shelley Zansky

North Carolina Department of Health and Human Services

Denise Griffin Debra Springer Joanne Touchberry

North Dakota Department of Health

Eric Hieb Alicia Lepp Laura Mastel Tracy Miller Lisa Well

Ohio Department of Health

Tammy Bannerman
Karen Baransi
Rick Bokanyi
Rebekah Carman
Lynn Denny
Larry King
Kimberly Machesky
Marika Mohr
Scott Nowicki
Kim Quinn
Ellen Salehi

Oklahoma State Department of Health

Sherry Hearon Mike Lytle Mike McDermott

Oregon Public Health Division Debbie Berguist

Hillary Booth
Marianna Cavanaugh
Paul Cieslak
Dawn Daly
Emilio Debess
Julie Hatch
Karim Morey
Barbara Olson
Beletsachew Shiferaw
Janie Tierheimer
Robert Vega
Veronica Williams

Pennsylvania Department of Health and Pennsylvania Department of Agriculture

Carina Davis
Lisa Dettinger
David Faucette
James Lute
Nkuchia M'ikanatha
Barry Perry
Carol Sandt
James Tait
Deepanker Tewari

Rhode Island Department of Health

Michael Gosciminski Sharon Mallard Deanna Simmons Cindy Vanner

South Carolina Department of Health and Environmental Control

Gloria Babb Sandra J. Bandstra Eddrenna Brown Megan Davis Dana Giurgiutiu

South Dakota Department of Health

Christopher Carlson Laurie Gregg Lon Kightlinger

Tennessee Department of Health

Parvin Arjmandi John Dunn Samir Hanna Henrietta Hardin Tim Jones Sheri Roberts Amy Woron

Texas Department of State Health Services

Tamara Baldwin
Christine Bulot
Venessa Cantu
Elizabeth Delamater
Grace Kubin
Greg Leos
Inger-Marie Vilcins
Chun Wang

Utah Department of Health

Cindy Burnett
J. Chad Campbell
Stephanie McGee
Lori Smith

Vermont Department of Health

Mary Celotti Valerie Devlin Christine LaBarre Bradley Tompkins Keeley Weening

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health

Ellen Bassinger
Stephanie Dela Cruz
Angela Fritzinger
Michelle Hodges
Elaine McCaffery
Jessica Rosner
Mary Scoble
Denise Toney
Lauren Turner

Washington Department of Health

Terry DuBravac
Romesh Gautom
William Glover
Brian Hiatt
Jeff Lahti
Beth Melius
Laurie Stewart
Nusrat Syed
Mike Tran
Maryann Watkins

West Virginia Department of Health and Human Resources

Danae Bixler Christi Clark Maria del Rosario Loretta Haddy Suzanne Wilson Megan Young

Wisconsin Department of Health Services and Wisconsin State Laboratory of Hygiene

Charles Brokopp Traci DeSalvo Rachel Klos Justin Kohl Tim Monson Dave Warshauer

Wyoming Department of Health

Sarah Buss Jody Fleming Tracy Murphy Danielle Stafford Clay Van Houten Jim Walford

Introduction

The primary purpose of the National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention (CDC) is to monitor antimicrobial resistance among enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in enteric bacteria isolated from retail meats, conducted by the U.S. Food and Drug Administration's Center for Veterinary Medicine (FDA-CVM), and for resistance in enteric bacteria isolated from food-producing animals, conducted by the U.S. Department of Agriculture's Agricultural Research Service (USDA-ARS) and Food Safety and Inspection Service (USDA-FSIS).

Many NARMS activities are conducted within the framework of two CDC programs: the Foodborne Diseases Active Surveillance Network (FoodNet), which is part of CDC's Emerging Infections Program (EIP), and the Epidemiology and Laboratory Capacity (ELC) Program. In addition to population-wide surveillance of resistance in enteric pathogens, the NARMS program at CDC also conducts research into the mechanisms of resistance and performs susceptibility testing of isolates of pathogens that have caused outbreaks.

Before NARMS was established, CDC monitored antimicrobial resistance in Salmonella, Shigella, and Campylobacter through periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with ongoing monitoring of antimicrobial resistance among clinical isolates of non-Typhi Salmonella (refers to all serotypes other than Typhi, which causes typhoid fever) and Escherichia coli O157 in 14 sites. In 1997, testing of clinical isolates of Campylobacter was initiated in the five sites then participating in FoodNet. Testing of clinical Salmonella ser. Typhi and Shigella isolates was added in 1999. Starting in 2003, all 50 states forwarded all Salmonella ser. Typhi isolates and a representative sample of non-Typhi Salmonella, Shigella, and E. coli O157 isolates to NARMS for antimicrobial susceptibility testing, and 10 states now participating in FoodNet have been conducting Campylobacter surveillance. Since 2008, all 50 states have also been forwarding every Salmonella ser. Paratyphi A and C to NARMS for antimicrobial susceptibility testing. Beginning in 2009, NARMS also performed susceptibility testing on isolates of Vibrio species other than V. cholerae. Public health laboratories are asked to forward every isolate of Vibrio species that they receive to CDC. All toxigenic V. cholerae isolates are tested for antimicrobial susceptibility by the National Enteric Laboratory Diagnostic Outbreak Team; results are available in the Cholera and Other Vibrio Illness Surveillance system (COVIS) reports beginning with the 2013 Annual Summary. NARMS conducts antimicrobial susceptibility testing for isolates of species other than *V. cholerae*; results are included in this report.

This annual report includes CDC's surveillance data for 2014 for nontyphoidal *Salmonella*, typhoidal *Salmonella* (serotypes Typhi, Paratyphi A, Paratyphi B [tartrate negative], and Paratyphi C), *Shigella*, *Campylobacter*, *E. coli* O157, and *Vibrio* species other than *V. cholerae*. Surveillance data include the number of isolates of each pathogen tested by NARMS and the number and percentage of isolates that were resistant to each of the antimicrobial agents tested. Data for earlier years are presented in tables and graphs when appropriate. Antimicrobial classes defined by the Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis.

This report uses the World Health Organization's categorization of antimicrobials of critical importance to human medicine (<u>Appendix A</u>) in the tables that present minimum inhibitory concentrations (MIC) and resistant percentages.

Previous annual reports and information about NARMS activities are available at the CDC NARMS website: http://www.cdc.gov/narms/. Interactive data displays and data downloads are available on the NARMS Now: Human Data website: http://wwwn.cdc.gov/narmsnow/.

What is New in the NARMS Report for 2014

Whole Genome Sequencing of Salmonella

For the first time, NARMS is reporting whole genome sequencing (WGS) data for *Salmonella* isolated from humans. Sequencing of bacteria has become relatively inexpensive and rapid, resulting in its recent adoption as a surveillance tool. The genetic data provided by WGS can be used for multiple purposes, including identifying outbreaks, helping with source trace-back investigations, determining virulence factors, and predicting antimicrobial resistance. We sequenced nontyphoidal *Salmonella* isolated in 2014 that were phenotypically resistant to at least one agent on the NARMS panel to identify resistance genes and mutations. The results of this analysis can be found in the Highlight section beginning on page 17.

Azithromycin Epidemiological Cutoff Values for Shigella sonnei and flexneri

In 2015, microbiologists from NARMS, along with other CDC and international collaborators, worked with the Clinical and Laboratory Standards Institute (CLSI) to establish azithromycin epidemiological cutoff values (ECVs) for *Shigella sonnei* and *flexneri*. This approach separates bacterial populations, by their MICs, into wild-type and non-wild-type (referred to in this report as susceptible and resistant, respectively) groups. (For more details regarding ECVs, see NARMS 2012 Annual Report pages 17–18). In this report, we apply the newly-adopted non-wild-type ECVs of \geq 32 µg/mL for *S. sonnei* and \geq 16 µg/mL for *S. flexneri*.

Reporting Decreased Susceptibility to Ciprofloxacin for Salmonella

In this report, we categorized *Salmonella* isolates with intermediate or resistant MICs (≥0.12 µg/mL) for ciprofloxacin as having decreased susceptibility to ciprofloxacin (DSC). We included DSC in tables of *Salmonella* resistance. In our analysis to assess changes in the prevalence of resistance for *Salmonella*, we switched from using nalidixic acid resistance as a proxy to assess changes in fluoroguinolone resistance to using DSC.

NARMS Now: Human Data

Since publication of our last report, CDC launched <u>NARMS Now: Human Data</u>, an interactive web tool for viewing and downloading antimicrobial resistance data for *Salmonella*, *Shigella*, *E. coli* O157, and *Campylobacter*. Surveillance data from this report and historical data since 1996 are available to view and download. The site will be will be updated periodically. See the Highlight section on <u>page 21</u>.

Summary of NARMS 2014 Surveillance Data

Surveillance Population

In 2014, all 50 states and the District of Columbia participated in NARMS, representing the entire US population of approximately 319 million persons (<u>Table 1</u>). Surveillance was conducted in all states for *Salmonella* (typhoidal and nontyphoidal), *Shigella*, *Escherichia coli* O157, and *Vibrio* species other than *V. cholerae*. For *Campylobacter*, surveillance was conducted in the 10 states that comprise the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 49 million persons (15% of the US population).

Clinically Important Antimicrobial Resistance Patterns

In the United States, fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are commonly used to treat severe *Salmonella* infections, including typhoid and paratyphoid fever as well as severe nontyphoidal infections. In *Enterobacteriaceae*, (e.g., *Salmonella* and *Shigella*) resistance to nalidixic acid, an elementary quinolone, usually correlates with decreased susceptibility to ciprofloxacin (DSC) and fluoroquinolone treatment failure. However, over the last 10 years, we observed an increasing percentage of *Salmonella* isolates with DSC that are susceptible to nalidixic acid, which often indicates plasmid-mediated quinolone resistance. Macrolides (e.g., azithromycin), penicillins (e.g., ampicillin), and trimethoprim-sulfamethoxazole are also of clinical importance. A substantial proportion of *Enterobacteriaceae* isolates tested in 2014 demonstrated clinically important resistance.

In *Salmonella*, antimicrobial resistance varies by serotype. Overall changes in resistance among nontyphoidal *Salmonella* may reflect changes in resistance within serotypes, changes in serotype distribution, or both.

- 4.3% (92/2127) of nontyphoidal Salmonella isolates had decreased susceptibility to ciprofloxacin. Enteritidis
 was the most common serotype among nontyphoidal Salmonella isolates with decreased susceptibility to
 ciprofloxacin.
 - o 38.0% (35/92) of isolates with decreased susceptibility to ciprofloxacin were ser. Enteritidis
 - 8.0% (35/438) of ser. Enteritidis isolates had decreased susceptibility to ciprofloxacin
- 2.4% (51/2127) of nontyphoidal Salmonella isolates were resistant to ceftriaxone. The most common serotypes among the 51 ceftriaxone-resistant isolates are listed in order below. Resistance to ceftriaxone occurred in
 - o 5.3% (14/262) of ser. Typhimurium isolates
 - 3.0% (7/235) of ser. Newport isolates
 - 60.0% (6/10) of ser. Dublin isolates
 - o 8.5% (6/71) of ser. Heidelberg isolates
 - 4.5% (5/110) of ser. I 4,[5],12:i:- isolates
- 74.0% (248/335) of Salmonella ser. Typhi isolates had decreased susceptibility to ciprofloxacin
- 79.6% (86/108) of Salmonella ser. Paratyphi A isolates had decreased susceptibility to ciprofloxacin.
- No Salmonella ser. Typhi or Paratyphi A isolates were resistant to ceftriaxone

For *Shigella*, fluoroquinolones and macrolides (e.g., azithromycin) are important agents in the treatment of severe infections. (Note: In 2016, CLSI established epidemiologic cutoff values for azithromycin for *Shigella flexneri* and *sonnei*. The epidemiologic cutoff values should not be used as clinical breakpoints.)

- 2.4% (13/531) of Shigella isolates were resistant to ciprofloxacin, including
 - o 5.9% (4/68) of Shigella flexneri isolates
 - o 2.0% (9/458) of Shigella sonnei isolates
- 6.2% (33/531) of Shigella isolates were resistant to nalidixic acid, including
 - o 14.7% (10/68) of Shigella flexneri isolates
 - o 5.0% (23/458) of Shigella sonnei isolates
- 4.7% (25/531) of Shigella isolates were resistant to azithromycin, including
 - o 22.1% (15/68) of Shigella flexneri isolates
 - 2.0% (9/458) of Shigella sonnei isolates

For *Campylobacter*, fluoroquinolones and macrolides are important treatment options for severe infections. Epidemiologic cutoff values (ECVs) are used for interpreting antimicrobial susceptibility data. Because ECVs differ between *Campylobacter* species, the percentage of all resistant infections is not reported.

- 26.7% (334/1251) of Campylobacter jejuni isolates and 35.6% (52/146) of Campylobacter coli isolates were resistant to ciprofloxacin
- 1.8% (23/1251) of *Campylobacter jejuni* isolates and 10.3% (15/146) of *Campylobacter coli* isolates were resistant to macrolides (azithromycin or erythromycin)

Multidrug Resistance

Multidrug resistance is reported in NARMS in several ways, including resistance to various numbers of classes of antimicrobial agents and also by specific co-resistance phenotypes.

For nontyphoidal *Salmonella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole/sulfisoxazole), and tetracycline (ACSSuT); these agents represent five CLSI classes. A similar pattern of resistance to at least ASSuT but not chloramphenicol has emerged in recent years. Another important phenotype includes ACSSuT resistance plus at least amoxicillin-clavulanic acid and ceftriaxone (ACSSuTAuCx); these agents represent seven CLSI classes.

- 3.1% (67/2127) of nontyphoidal Salmonella isolates were resistant to at least ACSSuT. The most common serotypes are listed in order below. ACSSuT resistance occurred in
 - o 14.5% (38/262) of ser. Typhimurium isolates
 - o 9.9% (7/71) of ser. Heidelberg isolates
 - o 3.0% (7/235) of ser. Newport isolates
 - o 60% (6/10) of ser. Dublin isolates
- 3% (64/2127) of nontyphoidal *Salmonella* isolates were resistant to at least ASSuT but not chloramphenicol. The most common serotype was I 4,[5],12:i:- (47 isolates), accounting for 73% of all isolates with this resistance pattern.
 - 42.7% (47/110) of ser. I 4,[5],12:i:- isolates were resistant to ASSuT but not chloramphenical
- 1.2% (26/2127) of nontyphoidal *Salmonella* isolates were resistant to at least ACSSuTAuCx. The most common serotypes are listed in order below. ACSSuTAuCx resistance occurred in
 - o 4.2% (11/262) of ser. Typhimurium isolates
 - o 3.0% (7/235) of ser. Newport isolates
 - o 60% (6/10) of ser. Dublin isolates
- 9.3% (197/2127) of nontyphoidal Salmonella isolates were resistant to three or more CLSI classes. The most common serotypes with this resistance are listed in order below. Resistance to three or more classes occurred in
 - o 21.8% (57/262) of ser. Typhimurium isolates
 - o 50% (55/110) of ser. I 4,[5],12:i:- isolates
 - o 21.1% (15/71) of ser. Heidelberg isolates
 - o 4.7% (11/235) of ser. Newport isolates
 - o 2.1% (9/438) of ser. Enteritidis isolates
 - o 60% (6/10) of ser. Dublin isolates

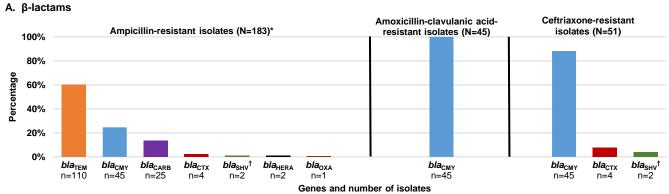
For Salmonella ser. Typhi, an important multidrug-resistance pattern includes resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (ACT/S).

- 11.3% (38/335) of isolates were resistant to at least ACT/S
- 14.3% (48/335) of isolates were resistant to three or more classes

For *Shigella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin and trimethoprim-sulfamethoxazole (AT/S).

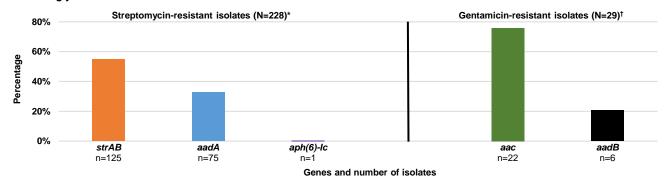
- 15.3% (81/531) of isolates were resistant to at least AT/S
- 42.4% (225/531) of isolates were resistant to three or more classes

Highlight: Whole Genome Sequencing of Resistant Nontyphoidal Salmonella


The genetic data provided by whole genome sequencing (WGS) can be used for multiple purposes, including identifying outbreaks, source trace-back investigations, virulence factor determination, and predicting antimicrobial resistance. In 2014, 376 nontyphoidal *Salmonella* isolates were resistant to ≥1 antimicrobial agents via phenotypic testing. To analyze sequence data and identify all known acquired resistance genes (using ResFinder 2.1 tool) and mutational resistance determinants (see Methods), we performed WGS on the HiSeq (Illumina, Inc.) system, using CLC Genomics Workbench 8.0 (Qiagen, Inc.) and BioNumerics 7.5 (Applied Maths, Inc.). Nineteen isolates that lost resistance between phenotypic testing and WGS (confirmed by repeated phenotypic testing) were excluded from the analysis. The genes identified among the remaining 357 isolates are shown in Figure H1.

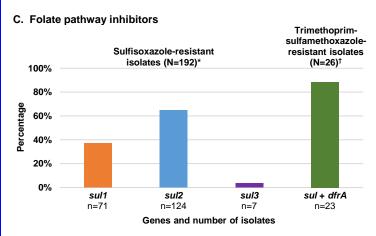
Resistance to most drugs was mediated by common resistance determinants, for example, ampicillin resistance by *bla*_{TEM-1b}, tetracycline by *tetA/B*, sulfisoxazole by *sul1/2*, and chloramphenicol by *floR*. Resistance to ceftriaxone/ceftiofur was mostly mediated by *bla*_{CMY-2}, an AmpC-type β-lactamase; however, we found several extended-spectrum β-lactamases (ESBLs), including *bla*_{SHV-12}, shv-30, cTx-M-1, cTx-M-55</sub> and two *bla*_{CTX-M-65}. The one isolate resistant to the macrolide azithromycin contained *mphA*, a macrolide resistance determinant. Decreased susceptibility to ciprofloxacin was mainly mediated by mutations in the quinolone resistance-determining region (QRDR). Most ciprofloxacin-resistant isolates had both QRDR mutations and plasmid-mediated quinolone resistance (PMQR) genes.

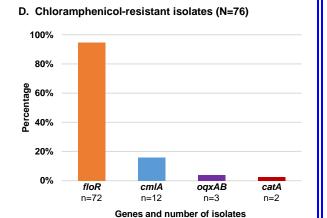
Some phenotypically resistant isolates lacked genes known to confer that resistance to that agent, suggesting they have novel resistance determinants. This highlights the need for both genotypic testing and phenotypic testing, at least for a subset of isolates. Overall, a known resistance gene was identified that accounted for 93% of all resistant phenotypic test results, showing the effectiveness of WGS analysis for resistance prediction in *Salmonella*.


Figure H1. Prevalence of antimicrobial resistance genes identified among resistant nontyphoidal *Salmonella* isolates, by agent, 2014

Note: Only identified genes known to confer resistance to the agents specified in each figure are listed

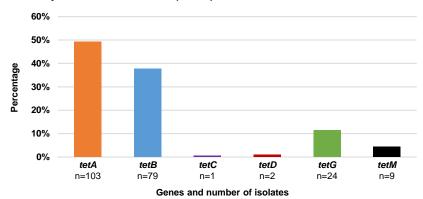
* 4 isolates lacked genes known to confer ampicililn resistance † Both isolates had ESBL variants of SHV (1 SHV-12 and 1 SHV-30)

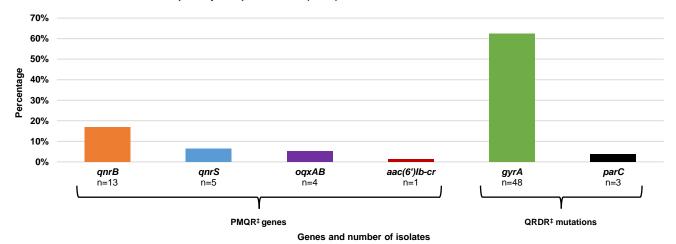

B. Aminoglycosides



* 49 isolates lacked genes known to confer streptomycin resistance

† 1 isolate lacked genes known to confer gentamicin resistance


Highlight: Whole Genome Sequencing of Resistant Nontyphoidal Salmonella


- 5 isolates lacked genes known to confer sulfisoxazole resistance
- † 3 isolates lacked genes known to confer trimethoprim resistance or sulfamethoxazole resistance

E. Tetracycline-resistant isolates (N=209)*

^{* 4} isolates lacked genes known to confer tetracycline resistance

F. Isolates with decreased susceptibility to ciprofloxacin* (N=77)†

- * Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC ≥0.12 μg/mL)
- † 12 isolates lacked genes or mutations known to confer decreased susceptibility to ciprofloxacin ‡ PMQR: plasmid-mediated quinolone resistance; QRDR: quinolone resistance-determining region of topoisomerase

Highlight:

Changes in Antimicrobial Resistance: 2014 vs. 2004-2008 and 2009-2013

To understand changes in the prevalence of antimicrobial resistance among *Salmonella*, *Shigella*, and *Campylobacter*, we used logistic regression to model annual data from 2004–2014. Since 2003, all 50 states have participated in *Salmonella* and *Shigella* surveillance, and all 10 FoodNet sites have participated in *Campylobacter* surveillance. We compared the prevalence of selected resistance patterns among bacteria isolated in 2014 with the average prevalence of resistance from two reference periods: 2004–2008 and 2009–2013. (These methods are detailed in the Data Analysis section.)

We defined the prevalence of resistance as the percentage of resistant isolates among all isolates tested. Changes in the percentage of isolates that are resistant may not reflect changes in the incidence of resistant infections because of fluctuations in the incidence of illness caused by the pathogen or serotype from year to year. The incidence and relative changes in the incidence of *Salmonella*, *Shigella*, and *Campylobacter* infections are reported annually from surveillance in FoodNet sites (CDC, 2014).

2014 vs. 2004-2008

The differences between the prevalence of resistance in 2014 and the average prevalence of resistance in 2004–2008 (Figure H2, A) were statistically significant for the following pathogen-resistance combinations:

- Among nontyphoidal Salmonella
 - o Decreased susceptibility to ciprofloxacin was higher (4.3% vs. 2.4%; odds ratio [OR]=2.0, 95% confidence interval [CI] 1.5–2.5)
- · Among Salmonella of particular serotypes
 - o ACSSuT resistance in ser. Typhimurium was lower (14.5% vs. 22.3%; OR=0.6, 95% CI 0.4-0.9)
 - o ACSSuTAuCx resistance in ser. Newport was lower (3.0% vs. 11.7%; OR=0.3, 95% CI 0.1-0.6)
 - o Decreased susceptibility to ciprofloxacin in ser. Typhi was higher (74.0% vs. 53.3%; OR=2.6, 95% Cl 2.0-3.4)
- · Among Campylobacter jejuni
 - o Resistance to ciprofloxacin was higher (26.7% vs. 21.6%; OR=1.4, 95% CI 1.2-1.6)
- Among Shigella spp.
 - o Nalidixic acid resistance was higher (6.2% vs. 2.0%; OR=4.1, 95% CI 2.5-6.7)

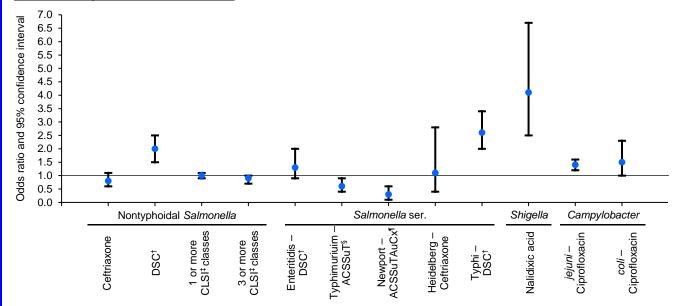
The differences between the prevalence of resistance in 2014 and the average prevalence of resistance in 2004–2008 (Figure H2, A) were *not* statistically significant for the following pathogen-resistance combinations:

- Among nontyphoidal Salmonella
 - o Ceftriaxone resistance (2.4% vs. 3.2%; OR=0.8, 95% CI 0.6-1.1)
 - Resistance to one or more classes (17.7% vs. 18.7%; OR=1.0, 95% CI 0.9–1.1)
 - Resistance to three or more classes (9.3% vs. 11.1%; OR=0.9, 95% CI 0.7-1.0)
- Among Salmonella of particular serotypes
 - o Decreased susceptibility to ciprofloxacin in ser. Enteritidis (8.0% vs. 6.2%; OR=1.3, 95% CI 0.9-2.0)
 - o Ceftriaxone resistance in ser. Heidelberg (8.5% vs. 8.5%; OR=1.1, 95% CI 0.4–2.8)
- Among Campylobacter coli
 - o Ciprofloxacin resistance (35.6% vs. 27.6%; OR=1.5, 95% CI 1.0-2.3)

2014 vs. 2009-2013

The differences between the prevalence of resistance in 2014 and the average prevalence of resistance in 2009–2013 (Figure H2, B) were statistically significant for the following selected pathogen-resistance combinations:

- Among nontyphoidal Salmonella
 - o Decreased susceptibility to ciprofloxacin was higher (4.3% vs. 3.0%; OR=1.5, 95% CI 1.2–1.9)
- Among Salmonella of particular serotypes
 - \circ Decreased susceptibility to ciprofloxacin in ser. Typhi was higher (74.0% vs. 67.7%; OR=1.4, 95% CI 1.1–1.8)
- Among Shigella spp.
 - o Nalidixic acid resistance was higher (6.2% vs. 4.5%; OR=1.9, 95% CI 1.2-3.0)


The differences between the prevalence of resistance in 2014 and the average prevalence of resistance in 2009–2013 (Figure H2, B) were *not* statistically significant for the following selected pathogen-resistance combinations:

- Among nontyphoidal Salmonella
 - o Ceftriaxone resistance (2.4% vs. 2.8%; OR=0.9, 95% CI 0.6-1.2)
 - o Resistance to one or more classes (17.7% vs. 16.3%; OR=1.1, 95% CI 1.0-1.3)
 - o Resistance to three or more classes (9.3% vs. 9.3%; OR=1.0, 95% CI 0.9-1.2)
- Among Salmonella of particular serotypes
 - o Decreased susceptibility to ciprofloxacin in ser. Enteritidis (8.0% vs. 5.9%; OR=1.4, 95% CI 1.0-2.1)
 - o ACSSuT resistance in ser. Typhimurium (14.5% vs. 17.4%; OR=0.8, 95% CI 0.6-1.2)
 - o ACSSuTAuCx resistance in ser. Newport (3.0% vs. 5.4%; OR=0.6, 95% CI 0.3-1.3)
 - o Ceftriaxone resistance in ser. Heidelberg (8.5% vs. 18.1%; OR=0.5, 95% CI 0.2-1.2)
- · Among Campylobacter jejuni and C. coli
 - o Ciprofloxacin resistance in C. jejuni (26.7% vs. 23.3%; OR=1.2, 95% CI 1.0-1.4)
 - o Ciprofloxacin resistance in *C. coli* (35.6% vs. 31.8%; OR=1.3, 95% CI 0.9–1.9)

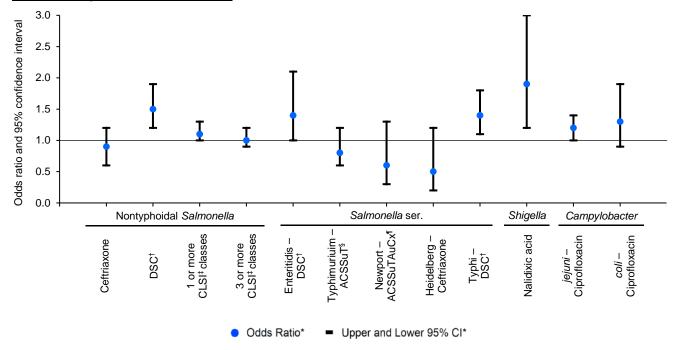

Highlight: Changes in Antimicrobial Resistance: 2014 vs. 2004–2008 and 2009–2013

Figure H2. Changes in prevalence of selected resistance patterns among *Salmonella, Shigella,* and *Campylobacter* isolates, 2014 compared with 2004–2008 and 2009–2013*

A. 2014 compared with 2004-2008*

B. 2014 compared with 2009-2013*

^{*} The prevalence of resistance in 2014 was compared with the average prevalence from two reference periods, 2004–2008 and 2009–2013. Logistic regression models adjusted for site using a 9-level categorical variable (9 US census divisions) for Salmonella and Shigella and 10-level categorical variable (10 FoodNet states) for Campylobacter. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation. ORs that do not include 1.0 in the 95% CIs are reported as statistically significant. † DSC: Decreased susceptibility to ciprofloxacin (MIC ≥0.12 μg/mL for Salmonella)

[‡] Antimicrobial classes of agents are those defined by the Clinical and Laboratory Standards Institute (CLSI)

[§] ACSSuT: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline

[¶] ACSSuTAuCx: resistance to at least ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone

Highlight: NARMS Now: Human Data – An Interactive Web Tool for Antimicrobial Resistance Data

In August 2015, CDC launched <u>NARMS Now: Human Data</u>, an interactive online tool that allows users (e.g., state health officials, the public, academia, industry, and other government agencies) to view and access antimicrobial resistance data from the past two decades for four bacteria (*Campylobacter*, *Escherichia coli* O157, *Salmonella*, and *Shigella*) transmitted commonly through food. The tool allows users to explore and analyze resistance data by bacteria, antimicrobial agent, year (1996–2014), and geographic region. It has an interactive dashboard display and users can download isolate-level datasets. Whole genome sequencing data for resistant nontypoidal *Salmonella* isolated in 2014 are also available in the downloadable dataset.

NARMS Now: Human Data can be used to

- · examine the geographic distribution of resistance
- monitor trends in resistance
- inform and evaluation prevention measures including regulatory actions

NARMS integrated antimicrobial resistance surveillance data for humans, retail meat, and animal samples is available via NARMS Now: Integrated Data on FDA's Center for Veterinary Medicine's <u>website</u>. Users can download these data in a spreadsheet format and analyze using a statistical software application of their choice.

Figure H3. NARMS Now: Human Data interactive dashboard display Select a view: Dashboard Tabular **Search Options** From 1999 To 2014 States All Bacteria Salmonella Serotype Typhi ✓ Antibiotic nalidixic acid ~ Resistance By State Display: U.S. Map Resistance by Year Display: Graph ✓ 2014 90.0 Set your search above, then press play to see changes in resistance over time: 70.0 60.0 50.0 40.0 30.0 10.0 0.0 2013 2015 Not a participating state (?) Percentage Resistant Quick Stats (based on current search) **Download** 4,951 Total Salmonella Typhi isolates tested March 2015 Download data related to your search **■** Download all NARMS data Total resistant to nalidixic acid Please read this disclaimer before using these data Mata dictionary Note: Downloadable isolate-level data are not available from all states. Data current as of June 11, 2016

21

Surveillance and Laboratory Testing Methods

Surveillance Sites and Isolate Submissions

In 2014, NARMS conducted nationwide surveillance among the approximately 319 million persons living in the United States (2014 estimates published in the 2014 U.S. Census Bureau report). Public health laboratories systematically selected every 20th nontyphoidal *Salmonella*, *Shigella*, and *Escherichia coli* O157 isolate and every *Salmonella* ser. Typhi, *Salmonella* ser. Paratyphi A, and *Salmonella* ser. Paratyphi C isolate received at their laboratories and forwarded these isolates to CDC for antimicrobial susceptibility testing. With few exceptions, serotyping was performed at the public health laboratories and not further confirmed at CDC. *Salmonella* ser. Paratyphi B was included in the sampling for nontyphoidal *Salmonella* because laboratory methods are not always available to reliably distinguish between ser. Paratyphi B (which typically causes typhoidal illness) and ser. Paratyphi B var. L(+) tartrate+ (which does not typically cause typhoidal illness). Serotype Paratyphi B isolates for which the results of tartrate fermentation testing are reported as either "negative" or "missing" are retested and confirmed at CDC. Those identified as ser. Paratyphi B var. L(+) tartrate+ are included with other nontyphoidal *Salmonella* serotypes in this report. Because the number of ser. Paratyphi B (tartrate negative) and ser. Paratyphi C isolates is very small, this report includes susceptibility results only for ser. Paratyphi A.

Since 1997, NARMS has performed antimicrobial susceptibility testing on Campylobacter isolates submitted by the public health laboratories participating in CDC's Foodborne Diseases Active Surveillance Network (FoodNet). The FoodNet sites, representing approximately 49 million persons (2014 estimates published in 2014 U.S. Census Bureau report), include Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee. and selected counties in California, Colorado, and New York. From 1997 to 2004, public health laboratories then participating in FoodNet forwarded one Campylobacter isolate each week to CDC for susceptibility testing. In 2005, a new scheme was introduced and sites began forwarding a sample of Campylobacter isolates based on the number of isolates received. They submitted every isolate (Connecticut, Georgia, Maryland, New Mexico, Oregon, and Tennessee), every other isolate (California, Colorado, and New York), or every fifth isolate (Minnesota) received. Starting in 2010, Georgia and Maryland submitted every other isolate received, and New Mexico submitted every third isolate received. State public health laboratories in FoodNet sites receive Campylobacter isolates from a convenience sample of reference and clinical laboratories in their state. Of the laboratories in each site that perform on-site testing for Campylobacter (range, 18 to 78 per site in 2014), the number submitting isolates to the state public health laboratory ranged from one to all in 2014. After June 2014, California stopped submitting Camplylobacter isolates to NARMS because the clinical laboratory that had provided isolates stopped culturing for Campylobacter. As a result, the number of Campylobacter isolates received and tested from California decreased from 74 in 2013 to 42 in 2014.

Beginning in 2009, we asked sites to forward every non-cholerae Vibrio isolate, and NARMS performed susceptibility testing on all isolates of Vibrio species other than V. cholerae. (All Vibrio isolates are first speciated and characterized by CDC's National Enteric Reference Laboratory.) Beginning in mid-2013, we selected every other Vibrio parahaemolyticus isolate received, by site, for antimicrobial susceptibility testing due to a high number of Vibrio parahaemolyticus submissions and limited laboratory capacity. We continued to test every isolate of species other than V. cholerae. For information on resistance testing of toxigenic Vibrio cholerae, refer to the Cholera and Other Vibrio Illness Surveillance System (COVIS) annual summaries.

Table 1. Population size and number of isolates received and tested, 2014

State/Site	Population		Nonty	ohoidal onella	Typh	CECEIVE oidal [†] onella		gella		i 0157	Campyl	obacter [‡]	Vibriospecies other than V. cholerae		
	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	
Alabama	4,846,411	(1.5)	57	(2.7)	2	(0.5)	19	(3.6)	3	(1.9)		` ′	6	(1.2)	
Alaska	737,046	(0.2)	4	(0.2)	0	(0)	1	(0.2)	1	(0.6)			2	(0.4)	
Arizona		(2.1)	53	(2.5)	6	(1.4)	0	(0.2)	0	` ′			6	(1.2)	
	6,728,783	(0.9)	28	` '	0	<u> </u>	23		0	(0)			1		
Arkansas California [§]	2,966,835 28,675,586	(9.0)	55	(1.3)	100	(0)	23	(4.3)	13	(0)	42	(2.0)	24	(0.2)	
Colorado	5,355,588	(9.0)	32	(2.6) (1.5)	100	(22.6)	4	(0.4)	2	(8.4)	39	(2.9)	5	(4.9)	
Connecticut	3,594,762	(1.1)	24	(1.1)	4	(0.9)	3	(0.6)	2	(1.3)	188	(13.0)	5	(1.0)	
Delaw are	935,968	(0.3)	11	(0.5)	6	(1.4)	4	(0.8)	1	(0.6)	100	(13.0)	1	(0.2)	
District of Columbia	659,836	(0.2)	15	(0.7)	1	(0.2)	17	(3.2)	2	(1.3)			0	(0.2)	
Florida	19,905,569	(6.2)	64	(3.0)	12	(2.7)	0	(0)	0	(0)			102	(20.7)	
Georgia	10,097,132	(3.2)	119	(5.6)	13	(2.7)	56	(10.5)	2	(1.3)	196	(13.6)	102	(2.0)	
Haw aii	1,420,257	(0.4)	14	(0.7)	2	(0.5)	2	(0.4)	2	(1.3)	190	(13.0)	27	(5.5)	
Houston, Texas ¹	2,239,558	(0.4)	52	(2.4)	13	(2.9)	10	(1.9)	1	(0.6)			0	(0)	
Idaho	1,634,806	(0.7)	9	(0.4)	1	(0.2)	0	(0)	2	(1.3)			0	(0)	
Illinois	12,882,189	(4.0)	90	(4.2)	19	(4.3)	38	(7.2)	7	(4.5)			2	(0.4)	
Indiana	6,597,880	(2.1)	38	(1.8)	5	(1.1)	12	(2.3)	4	(2.6)			1	(0.4)	
low a	3,109,481	(1.0)	23	(1.0)	0	(0)	3	(0.6)	5	(3.2)			0	(0.2)	
Kansas	2,902,507	(0.9)	15	(0.7)	1	(0.2)	2	(0.6)	2	(1.3)			0	(0)	
Kentucky	4,412,617	(1.4)	28	(1.3)	1	(0.2)	3	(0.4)	1	(0.6)			4	(0.8)	
Los Angeles**	10,116,705	(3.2)	60	(2.8)	18	(4.1)	3	(0.6)	1	(0.6)			0	(0.0)	
Louisiana	4,648,990	(1.5)	50	(2.4)	1	(0.2)	4	(0.8)	1	(0.6)			27	(5.5)	
Maine	1,330,256	(0.4)	7	(0.3)	0	(0.2)	5	(0.9)	4	(2.6)			5	(1.0)	
Maryland	5,975,346	(1.9)	48	(2.3)	17	(3.8)	6	(1.1)	5	(3.2)	266	(18.4)	23	(4.7)	
Massachusetts	6,755,124	(2.1)	58	(2.7)	18	(4.1)	8	(1.1)	3	(1.9)	200	(10.4)	18	(3.7)	
Michigan	9,916,306	(3.1)	48	(2.3)	8	(1.8)	13	(2.4)	2	(1.3)			2	(0.4)	
Minnesota	5,457,125	(1.7)	36	(1.7)	5	(1.1)	4	(0.8)	7	(4.5)	153	(10.6)	13	(2.6)	
Mississippi	2,993,443	(0.9)	52	(2.4)	1	(0.2)	7	(1.3)	1	(0.6)	100	(10.0)	7	(1.4)	
Missouri	6,063,827	(1.9)	62	(2.9)	5	(1.1)	60	(11.3)	10	(6.5)			0	(0)	
Montana	1,023,252	(0.3)	6	(0.3)	0	(0)	2	(0.4)	2	(1.3)			0	(0)	
Nebraska	1,882,980	(0.6)	12	(0.6)	0	(0)	9	(1.7)	4	(2.6)			1	(0.2)	
Nevada	2,838,281	(0.9)	11	(0.5)	3	(0.7)	3	(0.6)	1	(0.6)			1	(0.2)	
New Hampshire	1,327,996	(0.4)	8	(0.4)	0	(0)	1	(0.2)	1	(0.6)			1	(0.2)	
New Jersey	8,938,844	(2.8)	58	(2.7)	25	(5.6)	11	(2.1)	2	(1.3)			15	(3.0)	
New Mexico	2,085,567	(0.7)	17	(0.8)	2	(0.5)	4	(0.8)	1	(0.6)	93	(6.4)	0	(0)	
New York ^{††}	11,257,779	(3.5)	75	(3.5)	16	(3.6)	6	(1.1)	3	(1.9)	228	(15.8)	25	(5.1)	
New York City ^{‡‡}	8,491,079	(2.7)	61	(2.9)	44	(9.9)	24	(4.5)	4	(2.6)		(1010)	7	(1.4)	
North Carolina	9,940,387	(3.1)	0	(0)	0	(0)	0	(0)	0	(0)			6	(1.2)	
North Dakota	740,040	(0.2)	6	(0.3)	2	(0.5)	2	(0.4)	0	(0)			1	(0.2)	
Ohio	11,596,998	(3.6)	64	(3.0)	13	(2.9)	11	(2.1)	9	(5.8)			3	(0.6)	
Oklahoma	3,879,610	(1.2)	33	(1.6)	0	(0)	4	(0.8)	4	(2.6)			0	(0)	
Oregon	3,971,202	(1.2)	23	(1.1)	4	(0.9)	3	(0.6)	5	(3.2)	164	(11.4)	18	(3.7)	
Pennsylvania	12,793,767	(4.0)	73	(3.4)	10	(2.3)	9	(1.7)	3	(1.9)	Ì		6	(1.2)	
Rhode Island	1,054,907	(0.3)	9	(0.4)	2	(0.5)	2	(0.4)	1	(0.6)			4	(0.8)	
South Carolina	4,829,160	(1.5)	65	(3.1)	2	(0.5)	6	(1.1)	1	(0.6)			5	(1.0)	
South Dakota	853,304	(0.3)	8	(0.4)	0	(0)	16	(3.0)	1	(0.6)			0	(0)	
Tennessee	6,547,779	(2.1)	58	(2.7)	3	(0.7)	40	(7.5)	6	(3.9)	75	(5.2)	6	(1.2)	
Texas ^{§§}	24,739,520	(7.8)	175	(8.2)	11	(2.5)	24	(4.5)	2	(1.3)			26	(5.3)	
Utah	2,944,498	(0.9)	19	(0.9)	3	(0.7)	1	(0.2)	2	(1.3)			0	(0)	
Vermont	626,767	(0.2)	8	(0.4)	0	(0)	1	(0.2)	0	(0)			0	(0)	
Virginia	8,328,098	(2.6)	56	(2.6)	10	(2.3)	8	(1.5)	2	(1.3)			15	(3.0)	
Washington	7,063,166	(2.2)	38	(1.8)	22	(5.0)	7	(1.3)	8	(5.2)			51	(10.4)	
West Virginia	1,848,751	(0.6)	35	(1.6)	0	(0)	8	(1.5)	3	(1.9)			0	(0)	
Wisconsin	5,759,432	(1.8)	53	(2.5)	2	(0.5)	17	(3.2)	5	(3.2)			9	(1.8)	
Wyoming	584,304	(0.2)	4	(0.2)	0	(0)	3	(0.6)	1	(0.6)			1	(0.2)	
Total	318,907,401	(100)	2,127	(100)	443	(100)	531	(100)	155	(100)	1,444	(100)	492	(100)	

^{*} Published in 2014 U.S. Census Bureau population estimates

[†] Typhoidal Salmonella includes serotypes Typhi, Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C. Because the number of ser. Paratyphi B (tartrate negative) and ser. Paratyphi C isolates is very small, susceptibility results for them are not reported.

[‡] Campylobacter isolates are submitted only from FoodNet sites, w hich are Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York. Of the clinical laboratories in each site that perform on-site testing for Campylobacter (range,18 to 78 per site in 2014), the number submitting isolates to the state public health laboratory ranged from one to all. After June 2014, California no longer submitted Campylobacter isolates to NARMS as the clinical laboratory that provided California isolates stopped culturing for Campylobacter.

[§] Excluding Los Angeles County

[¶] Houston City

^{**} Los Angeles County, CA

^{††} Excluding New York City

^{‡‡} Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

^{§§} Excluding Houston, Texas

Testing of Salmonella, Shigella, and Escherichia coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and E. coli O157 isolates were tested using broth microdilution (Sensititre[®], Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) according to manufacturer's instructions to determine the minimum inhibitory concentrations (MICs) for each of 14 antimicrobial agents: ampicillin, amoxicillin-clavulanic acid, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole (Table 2). Interpretive criteria defined by the Clinical Laboratory Standards Institute (CLSI) were used when available. Before 2004, sulfamethoxazole was used instead of sulfisoxazole to represent the sulfonamides. In 2011, azithromycin replaced amikacin on the panel of drugs tested for Salmonella, Shigella, and E. coli O157. In 2014, kanamycin was removed from the panel to allow for lower concentrations of streptomycin to be tested (concentration range was 32–64 μg/mL before 2014, compared with a range of 2–64 μg/mL in 2014). Only historical susceptibility data are provided for amikacin and kanamycin.

CLSI breakpoints for streptomycin are not established. In the past, we used a NARMS-established breakpoint of \geq 64 µg/mL for resistance. After examining newly-available streptomycin MIC and *Salmonella* genetic data from 2014, we lowered the resistance breakpoint to \geq 32 µg/mL and applied it to all *Enterobacteriaceae*. However, due to the limited streptomycin concentration range used in testing before 2014 (32–64 µg/mL), MICs of less than 32 µg/mL could not be differentiated from MICs equal to 32, and all isolates inhibited at the lowest concentration are categorized as having an MIC \leq 32. As a result, the new breakpoint could only be applied to isolates tested during 2014 and the resistance breakpoint of \geq 64 µg/mL was maintained for isolates tested during 1996–2013. The impact of the streptomycin breakpoint change on 2014 data is summarized in Appendix C.

In January 2010, CLSI published revised interpretive criteria for ceftriaxone and Enterobacteriaceae; the revised resistance breakpoint for ceftriaxone is MIC ≥4 µg/mL. NARMS has used the revised breakpoint years starting with 2009 data. In January 2012, CLSI published revised ciprofloxacin breakpoints for invasive Salmonella infections. For those infections, ciprofloxacin susceptibility is defined as ≤0.06 µg/mL; the intermediate category is 0.12 to 0.5 µg/mL; and resistance is ≥1 µg/mL. In 2012, we applied this breakpoint to all Salmonella, including non-invasive isolates. In 2013, CLSI decided to apply these ciprofloxacin breakpoints to all subspecies and serotypes of Salmonella. In January 2014, CLSI added azithromycin MIC interpretive criteria for Salmonella ser. Typhi. Azithromycin susceptibility is defined as ≤16 μg/mL and resistance is ≥32 μg/mL. These breakpoints match the NARMS-established breakpoints used for Enterobacteriaceae since azithromycin testing began in 2011. In this report, NARMS continued to apply these breakpoints to MIC data for all Salmonella and E. coli O157 (Table 2). In December 2015, CLSI established azithromycin MIC interpretive criteria for Shigella sonnei and flexneri after adopting a proposal from the Shigella Azithromycin Breakpoint Working Group, which included participants from CDC NARMS. Based on MIC and genetic data provided by the working group, epidemiological cutoff values of ≥32 µg/mL for S. sonnei and ≥16 µg/mL for S. flexneri were established as non-wild-type. In this report, we refer to non-wild-type as resistant for simplicity and continue to apply the breakpoint for resistance of ≥32 µg/mL for the remaining Shigella species (Table 2).

Repeat testing of isolates was done based on criteria in Appendix B.

Table 2. Antimicrobial agents used for susceptibility testing for *Salmonella*, *Shigella*, and *Escherichia coli* O157 isolates, 1996–2014

			Antimicrobial Agent	MIC Inter	pretive Standard	(µg/mL)
CLSI Class	Antimicrobial Agent	Years Tested	Concentration Range (μg/mL)	Susceptible	Intermediate*/ S-DD [†]	Resistant
	Amikacin	1997–2010	0.5–64	≤16	32	≥64
	Gentamicin	all	0.25–16	≤4	8	≥16
Aminoglycosides	Kanamycin	1996–2013	8–64	≤16	32	≥64
	Otro mto modeli et	1996–2013	32–64	≤32	N/A*	≥64
	Streptomycin [‡]	2014-present	2–64	≤16	N/A*	≥32
β-lactam / β-lactamase	Amoxicillin-clavulanic acid	all	1/0.5–32/16	≤8/4	16/8	≥32/16
inhibitor combinations	Piperacillin-tazobactam§	2011-present	0.5–128	≤16/4	32/4-64/4	≥128/4
	Cefepime ^{†,§}	2011-present	0.06–32	≤2	4–8 [†]	≥16
	Cefotaxime [§]	2011-present	0.06–128	≤1	2	≥4
	Cefoxitin	2000-present	0.5–32	≤8	16	≥32
Cephems	Ceftazidime§	2011-present	0.06–128	≤4	8	≥16
	Ceftiofur	all	0.12–8	≤2	4	≥8
	Ceftriaxone [¶]	all	0.25–64	≤1	2	≥4
	Cephalothin	1996–2003	2–32	≤8	16	≥32
	Sulfamethoxazole	1996–2003	16–512	≤256	N/A*	≥512
Folate pathway inhibitors	Sulfisoxazole	2004-present	16–256	≤256	N/A*	≥512
Inhibitors	Trimethoprim- sulfamethoxazole	all	0.12/2.38–4/76	≤2/38	N/A*	≥4/76
Macrolides	Azithromycin** (Salmonella serotypes, Shigella species other than S. flexneri, and E. coli O157)	2011-present	0.12–16	≤16	N/A*	≥32
	Azithromycin** (Shigella flexneri)	2011-present	0.12–16	≤8	N/A*	≥16
Monobactams	Aztreonam [§]	2011-present	0.06–32	≤4	8	≥16
Penems	Imipenem§	2011-present	0.06–16	≤1	2	≥4
Penicillins	Ampicillin	all	1–32	≤8	16	≥32
Phenicols	Chloramphenicol	all	2–32	≤8	16	≥32
	Ciprofloxacin (Shigella and E. coli O157)	all	0.015–4	≤1	2	≥4
Quinolones	Ciprofloxacin ^{††} (Salmonella serotypes)	all	0.015–4	≤0.06	0.12-0.5	≥1
	Nalidixic acid	all	0.5–32	≤16	N/A*	≥32
Tetracyclines	Tetracycline	all	4–32	≤4	8	≥16

^{*} N/A indicates that no MIC range of intermediate susceptibility exists

[†] Cefepime MICs above the susceptible range, but below the resistant range are designated by CLSI to be susceptible-dose dependent (S-DD)

[‡] CLSI breakpoints are not established for streptomycin; breakpoints used in this report are NARMS-established breakpoints for resistance monitoring and should not be used to predict clinical efficacy. During 1996–2013 resistance was defined as ≥64 μg/mL; the breakpoint was updated to ≥32 μg/mL in 2014. The 2014 breakpoint could not be applied to previous years (see Methods for further explanation).

[§] Broad-spectrum β-lactam antimicrobial agent only tested for nontyphoidal *Salmonella* isolates displaying ceftriaxone and/or ceftiofur resistance

[¶] CLSI updated the ceftriaxone interpretive standards in January, 2010. NARMS Human Isolate Reports for 1996 through 2008 used susceptible ≤8 μg/mL, intermediate 16-32 μg/mL, and resistant ≥64 μg/mL.

^{**} CLSI breakpoints for azithromycin are only established for Salmonella ser. Typhi, Shigella sonnei, and Shigella flexneri. Interpretive criteria for Salmonella ser. Typhi are based on MIC distribution data. In December 2015, CLSI established epidemiological cutoff values (ECVs) for Shigella species sonnei and flexneri. The ECVs should not be used as clinical breakpoints and CLSI uses the terms "wild-type" and "non-wild-type" instead of susceptible and resistant, respectively, to reflect the nature of the populations of bacteria in each group and to highlight that these categories are not to be used to predict clinical efficacy. The azithromycin breakpoints used elsewhere in this report for other Shigella species, non-Typhi Salmonella, and E.coli O157 isolates are NARMS-established breakpoints for resistance monitoring and should not be used to predict clinical efficacy.

^{††} CLSI updated the ciprofloxacin interpretive standards for Salmonella in January, 2012. NARMS Human Isolate Reports for 1996 through 2010 used susceptible ≤1 μg/mL, intermediate 2 μg/mL, and resistant ≥4 μg/mL.

Additional Testing of Salmonella Strains

Whole Genome Sequencing

In 2014, nontyphoidal *Salmonella* displaying resistance to at least one antimicrobial agent on the Trek Sensititre[®] gram-negative panel were sequenced to identify genetic resistance determinants. Genomic DNA was purified using an NXP Genomic DNA Extraction System or Qiagen Blood & Tissue Genomic Kit. Whole genome sequencing was performed on a HiSeq with 2 x 250bp reads (Illumina, Inc.). *De novo* assemblies were performed in CLC genomics workbench 8.0. Contigs having less than 10% the average genome coverage were discarded and genomes with less than 20X coverage or N50 values less than 30kb were excluded using a custom perl script. Antimicrobial resistance genes were identified using the Resfinder 2.1 database (Center for Genomic Epidemiology, DTU - last accessed on 1/22/2016) (megaBLAST using 90% ID and 60% gene coverage cutoffs). The colistin-resistance genes *mcr-1* and *mcr-2* were later added to our version of the Resfinder 2.1 database and neither were detected among the isolates tested. For mutational resistance, *gyrA* and *parC* were extracted from genome assemblies using perl scripts (https://github.com/lskatz/lskScripts/blob/ master/blastAndExtract.pl), imported into CLC workbench, and aligned to identify mutations.

β-lactam Panel Testing

Since 2011, nontyphoidal *Salmonella* isolates displaying resistance to either ceftriaxone (MIC \geq 4 µg/mL) or ceftiofur (MIC \geq 8 µg/mL) on the Trek Sensititre® gram-negative panel were subsequently tested by broth microdilution for resistance to additional broad-spectrum β -lactam drugs (aztreonam, cefepime, cefotaxime, ceftazidime, imipenem, and piperacillin-tazobactam) using the Trek Sensititre® β -lactam panel (Table 2). Briefly, each isolate was suspended in water to a McFarland standard equivalency of 0.5, and 10µL of each suspension was then used to inoculate a 10mL tube of cation-adjusted Mueller-Hinton (MH) broth. Inoculated MH broth was dosed at 50 µL/ well into the 96-well Trek β -lactam panel plate, and results were read manually after 18–20 hours of incubation at 35°C. Quality control isolates for this testing were *E. coli* (ATCC 25922), *Klebsiella pneumoniae* (ATCC 700603), *Pseudomonas aeruginosa* (ATCC 27853), and *Staphylococcus aureus* (ATCC 29213).

Cephalosporin Retesting of Isolates from 1996–1998

Some Salmonella isolates tested in NARMS during 1996 to 1998 had inconsistent cephalosporin susceptibility results. In particular, some isolates previously reported in NARMS as ceftiofur-resistant exhibited a low ceftriaxone MIC, and some did not exhibit an elevated MIC to other β -lactams. Because these findings suggested that some previously reported results were inaccurate, isolates of Salmonella tested in NARMS during 1996 to 1998 that exhibited an MIC $\ge 2 \, \mu \text{g/mL}$ to ceftiofur or ceftriaxone were retested using the 2003 NARMS Sensititre® plate. The retest results have been included in the NARMS annual reports since 2003.

Serotype Confirmation/Categorization

The Salmonella serotype reported by the submitting laboratory was used for reporting with few exceptions. The serotype was confirmed by CDC for isolates that underwent subsequent molecular analysis. Because of challenges in interpretation of tartrate fermentation assays, ability to ferment tartrate was confirmed for isolates reported as Salmonella ser. Paratyphi B by the submitting laboratory (ser. Paratyphi B is by definition unable to ferment L(+) tartrate). To distinguish Salmonella ser. Paratyphi B and ser. Paratyphi B var. L(+) tartrate+ (formerly ser. Java), CDC performed Jordan's tartrate test or Kauffmann's tartrate test or both tests on all Salmonella ser. Paratyphi B isolates for which the tartrate result was not reported or was reported to be negative. Isolates negative for tartrate fermentation by all assays conducted were categorized as ser. Paratyphi B; as noted above, because the number of ser. Paratyphi B (tartrate negative) is very small, this report does not include susceptibility results for this serotype. Isolates that were positive for tartrate fermentation by either assay were categorized as ser. Paratyphi B var. L(+) tartrate+ and were included with other nontyphoidal Salmonella in this report. CDC did not confirm other biochemical reactions or somatic and flagellar antigens.

Because of increased submissions of *Salmonella* ser. I 4,[5],12:i:- noted in previous years and recognition of the possibility that this serotype may have been underreported in previous years, antigen results provided for isolates reported only as serogroup B and tested in NARMS during 1996 to 2012 were reviewed; isolates that could be clearly identified as serogroup B, first-phase flagellar antigen "i," second phase flagellar antigen absent, were categorized as *Salmonella* ser. I 4,[5],12:i:-.

Testing of Campylobacter

Changes in Identification, Speciation, and Antimicrobial Susceptibility Testing Over Time

From 1997 to 2002, isolates were confirmed as *Campylobacter* by determination of typical morphology and motility using dark-field microscopy and a positive oxidase test reaction. *C. jejuni* bacteria were identified using colorimetric detection of their ability to hydrolyze hippurate. *Campylobacter* species unable to hydrolyze hippurate were subject to PCR using primers targeting species-specific genetic loci, including *mapA* or *hipO* (*C. jejuni*) and *ceuE* (*C. coli*) or other species-specific primers (Linton et al., 1997; Gonzales et al., 1997; Pruckler et al., 2006) followed by Sanger sequencing and identification by comparative sequence analyses. From 2003 to 2004, *Campylobacter* isolates were identified as *C. jejuni* or *C. coli* using BAX® System PCR Assay according to the manufacturer's instructions (DuPont, Wilmington, DE). Isolates not identified as *C. jejuni* or *C. coli* were further characterized using a standard set phenotypic and molecular identification tests including species-specific PCR assays (Linton et al., 1996). Between 2005 and 2009, dark-field microscopy and biochemical tests were reinstituted as a means of *Campylobacter* identification, along with traditional PCR. Beginning in 2010, the *ceuE* PCR was discontinued, and a multiplex PCR (Vandamme et al., 1997) was used to confirm speciation of *C. jejuni* and suspected *C. coli* isolates. Since 2012, all genus-confirmed *Campylobacter* isolates were identified at the species level through a combination of multiplex PCR, biochemical tests, and other species-specific PCRs as needed.

Methods for susceptibility testing of Campylobacter and criteria for interpreting the results have also changed during the course of NARMS surveillance. From 1997 to 2004, Etest® (AB bioMerieux, Solna, Sweden) was used for susceptibility testing of Campylobacter isolates. Campylobacter-specific CLSI interpretive criteria were first used to determine susceptibility to erythromycin, ciprofloxacin, and tetracycline in 2004. NARMS breakpoints were used for agents for which CLSI breakpoints were not available; these were based on the MIC distributions of NARMS isolates, as well as the presence of known resistance genes or mutations. Before 2004, NARMS reported non-CLSI breakpoints based on those of similar bacterial organisms. The establishment of NARMS breakpoints based on MIC distributions resulted in higher resistance cutoffs for azithromycin and erythromycin compared with those reported for isolates obtained before 2004. In 2005, NARMS instituted the Trek Sensititre® system to determine the MICs for Campylobacter against a panel of nine antimicrobial agents: azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline (Table 3). Broth microdilution was performed according to manufacturer's instructions and CLSI recommendations, and recommended quality control strains and procedures were followed. In 2012, the criteria for interpretation of results were changed from the previously used breakpoints to European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cutoff values (ECVs). The interpretive criteria listed in Table 3 have been applied to MIC data collected for all years so that resistance prevalence is comparable over time. Repeat testing of isolates was based on criteria in Appendix B.

Table 3. Antimicrobial agents used for susceptibility testing of Campylobacter isolates, 1997-2014

			Antimicrobial	MIC	Interpretive S	Standard (µg/ml	_) [†]
CLSI Class	Antimicrobial Agent	Years Tested	Agent Concentration	C. jej	iuni	С. с	oli
	Agent		Range (µg/mL)	Susceptible	Resistant	Susceptible	Resistant
Aminoglycosides	Gentamicin	1998-present	0.12–32 0.016–256*	≤2	≥4	≤2	≥4
Ketolides	Telithromycin [‡]	2005-present	0.015–8	≤4	≥8	≤4 [‡]	≥8‡
Lincosamides	Clindamycin	all	0.03–16 0.016–256*	≤0.5	≥1	≤1	≥2
Macrolides	Azithromycin	1998-present	0.015–64 0.016–256*	≤0.25	≥0.5	≤0.5	≥1
Macrolides	Erythromycin	all	0.03-64 0.016-256*	≤4	≥8	≤8	≥16
Phenicols	Chloramphenicol	1997–2004	0.016–256*	≤16	≥32	≤16	≥32
Frienicois	Florfenicol	2005-present	0.03-64	≤4	≥8	≤4	≥8
Quinolones	Ciprofloxacin	all	0.015–64 0.002–32*	≤0.5	≥1	≤0.5	≥1
Quinolones	Nalidixic acid	all	4–64 0.016–256*	≤16	≥32	≤16	≥32
Tetracyclines	Tetracycline	all	0.06–64 0.016–256*	≤1	≥2	≤2	≥4

^{*} Etest dilution range used from 1997-2004

[†] MIC interpretative standard is based on epidemiological cutoff values (ECVs) established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST – last accessed on 8/4/2016). This approach was adopted in 2012 and applied to all years. EUCAST uses the terms "wild-type" and "non-wild-type" instead of susceptible and resistant, respectively, to reflect the nature of the populations of bacteria in each group and to highlight that these categories are not to be used to predict clinical efficacy.

[‡] A telithromycin ECV for Campylobacter coli is not currently published by EUCAST. In this report, we applied the <u>previously published</u> ECV of 4 μg/mL to all *C. coli* isolates, designating "wild-type" isolates (MIC ≤4 μg/mL) as sensitive and "non-wild-type" isolates (MIC ≥8 μg/mL) as resistant.

Testing of Vibrio species other than V. cholerae

Sampling of *Vibrio* species other than *V. cholerae* is described in the <u>Surveillance Sites and Isolate Submissions section</u>. Minimum inhibitory concentrations were determined by Etest® (AB bioMerieux, Solna, Sweden) according to manufacturer's instructions for ten antimicrobial agents: ampicillin, cefotaxime, ceftazidime, chloramphenicol, ciprofloxacin, gentamicin, imipenem, nalidixic acid, tetracycline, and trimethoprimsulfamethoxazole (<u>Table 4</u>). In 2013, cefotaxime, ceftazidime, gentamicin, and imipenem were added to the panel of drugs tested, and cephalothin, kanamycin, and streptomycin were removed. In 2014, not all *Vibrio* isolates could be tested against nalidixic acid and imipenem due to a manufacturer shortage of Etest® strips. Of 492 isolates included in this report, 183 could not be tested against nalidixic acid; 116 of those also lacked imipenem testing. Overall, 309 (63%) isolates have results for nalidixic acid and 376 (76%) have results for imipenem.

CLSI breakpoints specific for *Vibrio* species other than *V. cholerae* were available for ampicillin, cefotaxime, ceftazidime, ciprofloxacin, gentamicin, imipenem, tetracycline, and trimethoprim-sulfamethoxazole. In October 2015, CLSI published revised interpretive criteria for imipenem and *Vibrio* species; the revised resistance breakpoint for imipenem is MIC ≥4 µg/mL. The percentage of isolates in 2014 that are susceptible, intermediate, and resistant to agents with CLSI interpretive standards, including MIC distributions for all agents, are shown in this report (Table 58). Historical resistance data are shown for ampicillin only, as resistance to the other tested drugs is extremely low. For information on toxigenic *Vibrio cholerae*, refer to the Cholera and Other *Vibrio* Illness Surveillance System (COVIS) annual summaries.

Repeat testing of isolates was done based on criteria in Appendix B.

Table 4. Antimicrobial agents used for susceptibility testing of *Vibrio* species other than *V. cholerae* isolates, 2009–2014

CLSI Class	Antimicrobial	Years Tested	Antimicrobial Agent Concentration Range	MIC Interpretive Standard (μg/mL)							
CLSI Class	Agent	rears rested	(μg/mL)	Susceptible	Intermediate*	Resistant					
	Gentamicin	2013-present	0.064–1024	≤4	8	≥16					
Aminoglycosides	Kanamycin	2009–2012	0.016–256	No CLS	SI or NARMS brea	kpoints					
	Streptomycin	2009–2012	0.064–1024	No CLS	SI or NARMS brea	kpoints					
	Cefotaxime	2013-present	0.016–256	≤1	2	≥4					
Cephems	Ceftazidime	2013-present	2013–present 0.016–256		8	≥16					
	Cephalothin	2009–2012	0.016–256	No CLS	SI or NARMS brea	akpoints					
Folate pathway inhibitors	Trimethoprim- sulfamethoxazole	all	0.002–32	≤2/38	N/A*	≥4/76					
Penems	Imipenem [†]	2013-present	0.002–32	≤1	2	≥4					
Penicillins	Ampicillin	all	0.016–256	≤8	16	≥32					
Phenicols	Chloramphenicol	all	0.016–256	No CLS	SI or NARMS brea	kpoints					
Ocionhana	Ciprofloxacin	all	0.002–32	≤1	2	≥4					
Quinolones	Nalidixic acid	all	0.016–256	No CLSI or NARMS breakpoints							
Tetracyclines	Tetracycline	all	0.016–256	≤4	8	≥16					

^{*} N/A indicates that no MIC range of intermediate susceptibility exists

[†] CLSI updated the imipenem interpretive standards in October, 2015. The 2013 NARMS Human Isolate Report used susceptible ≤4 μg/mL, intermediate 8 μg/mL, and resistant ≥16 μg/mL.

Data Analysis

For all pathogens, isolates were categorized as resistant, intermediate (if applicable), or susceptible. For *Salmonella*, isolates with ciprofloxacin MICs categorized as intermediate or resistant (MIC ≥0.12 µg/mL) were defined as having decreased susceptibility to ciprofloxacin (DSC). For *Campylobacter*, epidemiological cutoff values (ECVs) established by the European Committee on Antimicrobial Susceptibility Testing (<u>EUCAST</u>- last accessed on 8/4/2016) were used to interpret MICs. For *Shigella sonnei* and *flexneri*, ECVs established by CLSI were used to interpret azithromycin MICs. This approach assigns bacteria to one of two groups: wild-type or non-wild-type. For simplicity, the EUCAST and CLSI wild-type and non-wild-type categories are referred to in this report as susceptible and resistant, respectively.

Analysis was restricted to the first isolate received per patient in the calendar year (per serotype for *Salmonella*, per species for *Campylobacter*, *Shigella*, and *Vibrio* species other than *Vibrio* cholerae). If two or more *Salmonella* ser. Typhi isolates were received for the same patient, the first blood isolate, or other isolate from a normally sterile site collected, was included in the analysis. If no blood isolate or other isolate from a normally sterile site was submitted, the first isolate collected was included in analysis. The 95% confidence intervals (CIs) for the percentage resistant, which were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method, are included in the MIC distribution tables.

In the analysis of antimicrobial class resistance among *Salmonella, Shigella,* and *E. coli* O157, nine CLSI classes (<u>Table 2</u>) were represented by the following agents: amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole. Isolates that were not resistant to any of these agents were considered to have no resistance detected. In the analysis of antimicrobial class resistance among *Campylobacter*, seven CLSI classes were represented by azithromycin, ciprofloxacin, chloramphenicol/florfenicol, clindamycin, erythromycin, gentamicin, nalidixic acid, telithromycin, and tetracycline (<u>Table 3</u>). Isolates that were not resistant to any of these agents were considered to have no resistance detected.

Using logistic regression, we modelled annual data from 2004–2014 to assess changes in the prevalence of antimicrobial resistance among *Salmonella*, *Shigella*, and *Campylobacter* isolates. We compared the prevalence of resistance among isolates tested in 2014 with the average prevalence from two reference periods, 2004–2008 and the previous five years, 2009–2013. The 2004–2008 reference period begins with the second year that all 50 states participated in *Salmonella* and *Shigella* surveillance and all 10 FoodNet sites participated in NARMS *Campylobacter* surveillance. The additional 2009–2013 reference period allows for comparisons with more recent years. We defined the prevalence of resistance as the percentage of resistant isolates among the total number of isolates tested. Changes in the percentage of isolates that are resistant may not reflect changes in the incidence of resistant infections because of fluctuations in the incidence of illness caused by the pathogen or serotype from year to year. The incidence and relative changes in the incidence of *Salmonella*, *Shigella*, and *Campylobacter* infections are reported annually from surveillance in FoodNet sites (CDC, 2016). Comparisons were made for the following:

- Nontyphoidal Salmonella: decreased susceptibility to ciprofloxacin, resistance to ceftriaxone, resistance to one or more CLSI classes, and resistance to three or more CLSI classes
- Salmonella of particular serotypes
 - Salmonella ser. Enteritidis: decreased susceptibility to ciprofloxacin
 - Salmonella ser. Typhimurium: resistance to at least ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline)
 - Salmonella ser. Newport: resistance to at least ACSSuTAuCx (ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone)
 - o Salmonella ser. Heidelberg: resistance to ceftriaxone
 - Salmonella ser. Typhi: decreased susceptibility to ciprofloxacin
- Shigella: resistance to nalidixic acid
- Campylobacter jejuni, C. coli: resistance to ciprofloxacin

In the logistic regression analysis for main effects, year was modelled as a 10-level categorical variable. To account for site-to-site variation in the prevalence of antimicrobial resistance, we included adjustments for site. The final regression models for *Salmonella* and *Shigella* adjusted for the submitting site using the nine division categories described by the U.S. Census Bureau: East North Central, East South Central, Middle Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. For *Campylobacter*, the final regression models adjusted for the submitting site using the 10 FoodNet states. Odds

ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation. The adequacy of model fit was assessed in several ways (Fleiss et al., 2004; Kleinbaum et al., 2008). The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. When the main effect of year was significant, we report ORs with 95% CIs (for 2014 compared with 2004-2008 and 2009–2013) that did not include 1.0 as statistically significant.

MIC Distribution Tables and Proportional Figures

An explanation of "how to read a squashtogram" has been provided to assist the reader with the table (<u>Figure 1</u>). A squashtogram shows the distribution of MICs for antimicrobial agents tested. Proportional figures visually display data from squashtograms for an immediate comparative summary of resistance in specific pathogens and serotypes. These figures are a visual aid for the interpretation of MIC values. For most antimicrobial agents tested, three categories (susceptible, intermediate, and resistant) are used to interpret MICs. The proportion representing each category is shown in a horizontal proportional bar chart (<u>Figure 2</u>).

Figure 1. How to read a squashtogram

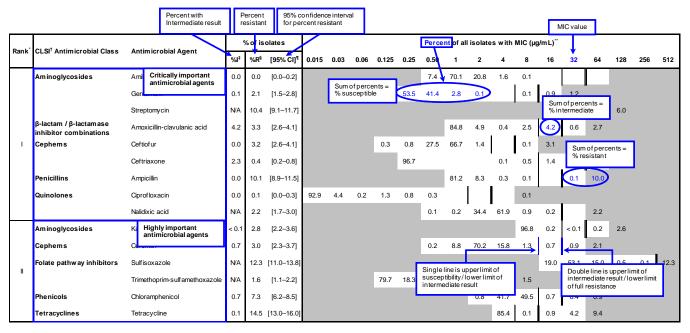
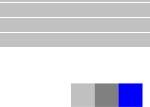



Figure 2. Proportional chart, a categorical graph of a squashtogram

Jank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perd	entage	of isolates						Percent	tage of	all isola	tes wit	h MIC (ug/m L)	•				
Rank	CLSI Antimicrobiai Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	<0.1	1.7	[1.2 - 2.3]					8.3	76.4	13.1	0.5		<0.1	0.2	1.5				
		Kanamycin	<0.1	1.7	[1.2 - 2.3]										98.2	0.1	<0.1	<0.1	1.6		
		Streptomycin	N/A	9.8	[8.6 - 11.1]												90.2	2.3	7.5		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.0	2.6	[2.0 - 3.3]							89.2	1.7	0.6	3.9	2.0	0.8	1.8			
	Cephems	Ceftiofur	<0.1	2.5	[1.9 - 3.2]				0.3	0.8	37.7	57.7	1.0	<0.1	0.2	2.3					
•		Ceftriaxone	<0.1	2.5	[1.9 - 3.2]					97.5			<0.1	0.1	0.3	1.0	0.8	0.3	0.1		
	Macrolide	Azithromycin	N/A	0.2	[0.1 - 0.5]						0.2	0.4	11.2	80.4	7.3	0.2	0.2				
	Penicillins	Ampicillin	0.1	9.1	[8.0 - 10.3]			_				86.9	3.5	0.3	0.1	0.1	0.2	8.9			
	Quinolones	Ciprofloxacin	2.8	0.2	[0.0 - 0.4]	91.9	4.9	0.2	1.0	0.9	0.9	0.1			0.1		-				
		Nalidixic acid	N/A	2.4	[1.8 - 3.1]		T	_	•		0.2	0.6	47.4	48.1	0.	0.4	0.1	2.3			
	Cephems	Cefoxitin	0.2	2.6	[2.0 - 3.3]						0.4	31.1	53.7	10.7	1.3	0.2	1.1	1.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	8.6	[7.5 - 9.8]										/	5.9	46.1	37.8	1.5		8.6
II		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.8 - 1.7]		1		96.8	1.7	0.2		<0.1	<0.1	1.2						
	Phenicols	Chloramphenicol	0.6	4.4	[3.6 - 5.3]								0.9	51.0	43.1	0.6	0.1	4.3			
	Tetracyclines	Tetracycline	0.2	10.5	[9.2 - 11.8]									89.4	0.2	0.3	1.9	8.2)		

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Table 1): Rank I, Critically Important; Rank II, Hi † CLSt Clinical and Laboratory Standards Institute

Fercentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

Fercentage of isolates that were resistant

The 95% confidence intervals (Q) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double ve shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concent or less than the low est tested concentration. CLSI breakpoints were used when available. points for resistance. Numbers in the centages of isolates with MICs equal to tions represent the p

Results

1. Nontyphoidal Salmonella

Table 5. Number of nontyphoidal *Salmonella* isolates among the most common serotypes* tested with the number of resistant isolates by class and agent, 2014

				Nui	nber o	of Isola	ites					Numbe	r of Re	sistant	Isolate	s by Cl	_SI [†] Antimicro	bial Class and	Agent [‡]			
	Isol	ates		Number of CLSI [†] Antimicrobial Classes to which Isolates are Resistant					Aminoglycosides		β-lactam/β- lactamase inhibitor combinations	С	ephem	ıs	Folate pathway inhibitors		Macrolides	Penicillins	Phenicols	Quinolones		Tetracyclines
Serotype*	N	(%)	0	1	2-3	4–5	6–7	8	GEN	STR	AMC	FOX	TIO	AXO	FIS	СОТ	AZI	AMP	CHL	CIP	NAL	TET
Enteritidis	438	(20.6)	384	38	10	4	1	1	0	13	2	3	2	2	8	2	0	14	5	1	35	11
Typhimurium	262	(12.3)	180	13	20	38	10	1	8	65	14	14	14	14	66	6	1	52	42	1	7	59
Newport	235	(11.0)	219	5	1	3	7	0	1	11	7	7	7	7	11	1	0	9	10	0	1	12
Javiana	128	(6.0)	115	9	4	0	0	0	0	10	1	1	1	1	2	2	0	3	0	0	0	3
I 4,[5],12:i:-	110	(5.2)	42	6	10	50	2	0	2	58	3	3	5	5	55	2	0	56	4	2	7	59
Infantis	73	(3.4)	62	6	1	2	2	0	1	5	1	1	3	3	4	2	0	5	3	0	3	6
Heidelberg	71	(3.3)	44	8	10	9	0	0	11	18	6	6	6	6	11	2	0	16	7	0	3	11
Saintpaul	52	(2.4)	42	4	5	1	0	0	3	3	1	1	2	2	3	2	0	5	0	0	2	6
Muenchen	45	(2.1)	44	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1
Montevideo	44	(2.1)	42	1	1	0	0	0	0	0	1	1	1	1	0	0	0	1	0	0	0	1
Oranienburg	36	(1.7)	35	0	0	1	0	0	0	1	0	0	0	0	1	1	0	1	0	0	0	1
Braenderup	31	(1.5)	29	1	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	0
Mississippi	26	(1.2)	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agona	25	(1.2)	19	1	3	1	1	0	1	5	1	1	1	1	5	2	0	2	2	0	0	4
Thompson	24	(1.1)	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Berta	19	(0.9)	15	4	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3
Rubislaw	19	(0.9)	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Paratyphi B var. L(+) tartrate+	18	(0.8)	15	2	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	٥	1	2
Poona	18	(0.8)	17	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bareilly	16	(0.8)	15	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1
Panama	16	(0.8)	14	0	1	1	0	0	0	0	1	1	1	1	1	1	0	2	1	٥	0	1
Anatum	13	(0.6)	11	2	0	0	0	0	0	1	0	0		0	0	0	0	0	0	0	1	0
Norwich	13	(0.6)	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Schwarzengrund	13	(0.6)	12	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
Stanley	13	(0.6)	7	3	3	1	0	0	0	0	0	0	0	0	1	1	0	6	1	0	0	1
14,[5],12:b:-	12	(0.6)	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Litchfield	12	(0.6)	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hartford			10	0	1		-		0	1	0	0	0	0	4	4	0	0	0	0	0	1
Dublin	11 10	(0.5)	3	0	1	0	0 6	0	0	7	6	5	6	-	6	0	0	6	6	0	1	6
		(0.5)	-		-			-	0	•	0	5	6	6 0	-	-	-	-	-	0	-	0
I 13,23:b:-	10 10	(0.5)	9	1 0	0 1	0 2	0	0	0	1 2	0	0	0	0	0 3	0	0 0	0 2	0 1	0	0	0 2
Mbandaka Subtotal	1823	(0.5) (85.7)	1498	104	76	114	29	2	27	205	44	44	50	50	182	26	1	183	83	4	61	196
All other serotypes	271	(12.7)	225	17	22	7	0	0	3	31	1	2	1	1	18	20	0	103	2	5	13	24
Partially serotyped	2	(0.1)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rough/Nonmotile isolates	6	(0.1)	5	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
Unknown serotype	25	(1.2)	21	4	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	0	1
Total	2127	(100)		125	99	121	29	2	30	239	45	46	51	51	201	28	1	194	85	9	74	221
1044	2121	(100)	170	123	33	121	23	_	30	200	7.7		J.	91	201	20		137	0.5			

^{*} Only serotypes with at least 10 isolates are listed individually

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Antimicrobial agent abbreviations: GEN, gentamicin; STR, streptomycin; AMC, amoxicillin-clavulanic acid; FOX, cefoxitin; TIO, ceftiofur; AXO, ceftriaxone; FIS, sulfisoxazole; COT, trimethoprim-sulfamethoxazole; AZI, azithromycin; AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; NAL, nalidixic acid; TET, tetracycline

Table 6. Percentage and number of nontyphoidal Salmonella isolates with selected resistance patterns,

by serotype, 2014

БУ З	erotype, 2014		At least At least At least At least At least										1.1 . 20.08		
				t least	At least					t least		t least	At least DSC§		
		N		CSSuT* (%)	ACT/S [†]			SuTAuCx [‡] (%)		DSC [§] (%)	ceftriaxone n (%)		and ceftriaxone n (%)		
Twon	nty most common serotypes	N	n	(70)	n	(70)	n	(79)	n	(70)	n	(70)	n	(70)	
1	Enteritidis	438	2	(3.0)	0	(0)	1	(3.8)	35	(38.0)	2	(3.9)	1	(14.3)	
2	Typhimurium	262	38	(56.7)	4	(33.3)	11	(42.3)	9	(9.8)	14	(27.5)		(14.3)	
3	Newport	235	7	(10.4)	0	(0)	7	(26.9)	2	(2.2)	7	(13.7)		(14.3)	
4	Javiana	128	0	(0)	0	(0)	0	(0)	1	(1.1)	1	(2.0)	0	(0)	
5	I 4,[5],12:i:-	110	4	(6.0)	1	(8.3)	0	(0)	9	(9.8)	5	(9.8)	1	(14.3)	
6	Infantis	73	1	(1.5)	2	(16.7)	0	(0)	3	(3.3)	3	(5.9)	2	(28.6)	
7	Heidelberg	71	7	(10.4)	1	(8.3)	0	(0)	3	(3.3)	6	(11.8)	1 1	(14.3)	
8	Saintpaul	52	0	(0)	o	(0)	0	(0)	3	(3.3)	2	(3.9)	0	(0)	
9	Muenchen	45	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	o	(0)	
10	Montevideo	44	0	(0)	o	(0)	0	(0)	0	(0)	1	(2.0)	o	(0)	
11	Oranienburg	36	0	(0)	o	(0)	0	(0)	0	(0)	0	(0)	o	(0)	
12	Braenderup	31	0	(0)	0	(0)	0	(0)	0	(0)	1	(2.0)	0	(0)	
13	Mississippi	26	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	
14	Agona	25	1	(1.5)	1	(8.3)	1	(3.8)	0	(0)	1	(2.0)	0	(0)	
15	Thompson	24	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	
16	Berta	19	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Rubislaw	19	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	
18	Paratyphi B var. L(+) tartrate+	18	1	(1.5)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Poona	18	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	
20	Bareilly	16	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Panama	16	0	(0)	1	(8.3)	0	(0)	0	(0)	1	(2.0)	0	(0)	
Addit	ional serotypes [¶]														
	Stanley	13	0	(0)	1	(8.3)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Dublin	10	6	(9.0)	0	(0)	6	(23.1)	1	(1.1)	6	(11.8)	0	(0)	
	Give	9	0	(0)	1	(8.3)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Kentucky	9	0	(0)	0	(0)	0	(0)	3	(3.3)	0	(0)	0	(0)	
	Hadar	8	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Oslo	5	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Potsdam	5	0	(0)	0	(0)	0	(0)	2	(2.2)	0	(0)	0	(0)	
	Urbana	4	0	(0)	0	(0)	0	(0)	2	(2.2)	0	(0)	0	(0)	
	Virchow	3	0	(0)	0	(0)	0	(0)	2	(2.2)	0	(0)	0	(0)	
	Guinea	2	0	(0)	0	(0)	0	(0)	2	(2.2)	0	(0)	0	(0)	
	I 4,[5],12:-:1,2	2	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	IV 44:z4,z23:-	2	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Telelkebir	2	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Apapa	1	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Grumpensis	1	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	I 4,[5],12:r:-	1	0	(0)	0	(0)	0	(0)	0	(0)	1	(2.0)	0	(0)	
	Isangi	1	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
	Ituri	1	0	(0)	0	(0)	0	(0)	1	(1.1)	0	(0)	0	(0)	
Subto		1785	67	(100)	12	(100)	26	(100)	92	(100)	51	(100)	7	(100)	
	All other serotypes	309	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	
	Partially serotyped	2	0	(0)	0	(0)	0	(0)	0	(0.0)	0	(0)	0	(0)	
	Rough/Nonmotile isolates	6	0	(0)	0	(0)	0	(0)	0	(0.0)	0	(0)	0	(0)	
	Unknown serotype	25	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	
Total		2127	67	(100)	12	(100)	26	(100)	92	(100)	51	(100)	7	(100)	

 $^{^{\}star} \ \text{ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline}$

[†] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[‡] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone § DSC: decreased susceptibility to ciprofloxacin (MIC ≥0.12 µg/mL); includes MICs categorized as intermediate or resistant

[¶] Additional serotypes that displayed resistance to at least one of the selected patterns

Table 7. Percentage and number of nontyphoidal *Salmonella* isolates with resistance, by number of CLSI* classes and serotype, 2014

	ses and serviype,			LSI classes*	≥ 4 CI	SI classes*	≥ 5 CLSI class	LSI classes*	≥ 6 C	LSI classes*	≥ 7 C	≥ 7 CLSI classes*		CLSI classes*	≥ 9 CL	SI classes*
		N	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Twent	y most common serotypes			(3)		(1.9)		()		(2.9)		(2.9)		()		(,
1	Enteritidis	438	9	(4.6)	6	(3.9)	4	(4.9)	2	(6.5)	1	(3.7)	1	(50.0)	0	-
2	Typhimurium	262	57	(28.9)	49	(32.2)	41	(50.0)	11	(35.5)	11	(40.7)	1	(50.0)	0	-
3	Newport	235	11	(5.6)	10	(6.6)	7	(8.5)	7	(22.6)	7	(25.9)	0	(0)	0	-
4	Javiana	128	3	(1.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
5	I 4,[5],12:i:-	110	55	(27.9)	52	(34.2)	8	(9.8)	2	(6.5)	0	(0)	0	(0)	0	-
6	Infantis	73	5	(2.5)	4	(2.6)	3	(3.7)	2	(6.5)	1	(3.7)	0	(0)	0	-
7	Heidelberg	71	15	(7.6)	9	(5.9)	8	(9.8)	О	(0)	0	(0)	0	(0)	0	-
8	Saintpaul	52	4	(2.0)	1	(0.7)	1	(1.2)	0	(0)	0	(0)	0	(0)	0	-
9	Muenchen	45	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
10	Montevideo	44	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
11	Oranienburg	36	1	(0.5)	1	(0.7)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
12	Braenderup	31	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
13	Mississippi	26	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
14	Agona	25	4	(2.0)	2	(1.3)	1	(1.2)	1	(3.2)	1	(3.7)	0	(0)	0	_
15	Thompson	24	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
16	Berta	19	0	(0)	0	(0)	0	(0)	o	(0)	0	(0)	0	(0)	0	_
	Rubislaw	19	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
18	Paratyphi B var. L(+) tartrate+	18	l 1	(0.5)	1	(0.7)	1	(1.2)	ō	(0)	ō	(0)	ō	(0)	0	-
	Poona	18	o	(0)	o	(0)	0	(0)	Ō	(0)	ō	(0)	0	(0)	0	-
20	Bareilly	16	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	o	_
	Panama	16	2	(1.0)	Ĭĭ	(0.7)	0	(0)	ő	(0)	ő	(0)	0	(0)	ő	-
Additi	onal serotypes [†]					<u> </u>		(-)		(-,		(-)		(-)		
, taaiti	Stanley	13	1	(0.5)	1	(0.7)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
	Hartford	11	1	(0.5)	o	(0)	0	(0)	0	(0)	ō	(0)	0	(0)	0	-
	Dublin	10	6	(3.0)	6	(3.9)	6	(7.3)	6	(19.4)	6	(22.2)	0	(0)	0	_
	Mbandaka	10	2	(1.0)	2	(1.3)	0	(0)	0	(0)	0	(0)	0	(0)	0	_
	Give	9	1 1	(0.5)	1	(0.7)	0	(0)	o	(0)	0	(0)	0	(0)	0	_
	Kentucky	9	Ιi	(0.5)	1	(0.7)	1	(1.2)	o	(0)	0	(0)	0	(0)	0	_
	Reading	9	4	(2.0)	1	(0.7)	0	(0)	ő	(0)	ő	(0)	0	(0)	0	_
	Hadar	8	2	(1.0)	1	(0.7)	0	(0)	0	(0)	0	(0)	0	(0)	0	_
	Derby	7	4	(2.0)	1	(0.7)	0	(0)	0	(0)	0	(0)	Ô	(0)	0	_
	Monschaui	7	1 1	(0.5)	0	(0)	0	(0)	ő	(0)	0	(0)	0	(0)	0	_
	Hvittingfoss	5	Ιi	(0.5)	1	(0.7)	0	(0)	ő	(0)	0	(0)	0	(0)	0	_
	Oslo	5	Ιi	(0.5)	1	(0.7)	1	(1.2)	ő	(0)	0	(0)	0	(0)	0	_
	Agbeni	4	Ιi	(0.5)	0	(0)	0	(0)	ő	(0)	0	(0)	0	(0)	ő	_
	I 4,[5],12:r:-	1	1	(0.5)	0	(0)	0	(0)	ő	(0)	0	(0)	0	(0)	o	_
Subto	Subtotal 1		197	(100)	152	(100)	82	(100)	31	(100)	27	(100)	2	(100)	0	-
	All other serotypes	280	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
	Partially serotyped	2	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	o	_
	Rough/Nonmotile isolates	6	0	(0)	0	(0)	0	(0)	ő	(0)	0	(0)	0	(0)	ő	_
	Unknown serotype	25	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	_
Total		2127	197	(100)	152	(100)	82	(100)	31	(100)	27	(100)	2	(100)	0	_

^{*} CLSI: Clinical and Laboratory Standards Institute † Additional serotypes that displayed resistance to at least three CLSI classes

Table 8. Minimum inhibitory concentrations (MICs) and resistance of nontyphoidal Salmonella isolates to antimicrobial agents, 2014 (N=2127)

Danlet	CLSI [†] Antimicrobial Class	Audiminahial Assaul	Perc	entage	of isolates						Percent	tage of	all isola	tes wit	h MIC (I	ıg/mL)*	*				
Rank	CLSI Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.2	1.4	[1.0 - 2.0]					21.9	64.8	11.3	0.4		0.2	0.3	1.1				
		Streptomycin	N/A	11.2	[9.9 - 12.7]								13.3	16.5	47.9	11.0	2.5	2.1	6.6		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.1	2.1	[1.5 - 2.8]							87.1	3.2	1.4	4.0	2.1		2.1			
	Cephems	Ceftiofur	0.1	2.4	[1.8 - 3.1]				0.1	0.3	29.0	66.3	1.7	0.1	0.2	2.2					
1		Ceftriaxone	0.0	2.4	[1.8 - 3.1]					97.4	0.2			<0.1	0.2	1.1	0.6	0.2	0.2		
	Macrolides	Azithromycin	N/A	<0.1	[0.0 - 0.3]						0.1	0.1	39.5	55.3	4.5	0.4	<0.1				
	Penicillins	Ampicillin	0.0	9.1	[7.9 - 10.4]							80.6	9.4	0.7	0.2		0.2	8.9			
	Quinolones	Ciprofloxacin	3.9	0.4	[0.2 - 0.8]	90.6	4.7	0.4	1.6	1.1	1.2	0.3			0.1						
		Nalidixic acid	N/A	3.5	[2.7 - 4.3]						<0.1	0.1	27.1	67.0	1.7	0.6	0.5	3.0			
	Cephems	Cefoxitin	0.2	2.2	[1.6 - 2.9]						<0.1	5.6	71.1	19.7	1.2	0.2	1.0	1.1			
	Folate pathway inhibitors	Sulfisoxazole	N/A	9.4	[8.2 - 10.8]											11.5	44.2	31.1	3.4	0.3	9.4
II		Trimethoprim-sulfamethoxazole	N/A	1.3	[0.9 - 1.9]				96.0	2.4	0.2		0.1		1.3						
	Phenicols	Chloramphenicol	1.2	4.0	[3.2 - 4.9]								0.5	52.8	41.5	1.2	0.3	3.7			
	Tetracyclines	Tetracycline	0.8	10.4	[9.1 - 11.8]									88.8	0.8	0.2	1.1	9.1			

- Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important
 † CLSt: Clinical and Laboratory Standards Institute
 ‡ Percentage of isolates with intermediate susceptibility. NA if no MC range of intermediate susceptibility exists
 § Percentage of isolates with were resistant
 † The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 * The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate.

Figure 3. Antimicrobial resistance pattern for nontyphoidal Salmonella, 2014

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Table 9. Percentage and number of nontyphoidal Salmonella isolates resistant to antimicrobial agents, 2005-2014

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total I	solates		2036	2170	2145	2384	2192	2448	2335	2233	2178	2127
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	< 0.1% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	2.2% 44	2.0% 44	2.1% 45	1.5% 35	1.3% 28	1.0% 24	1.7% 40	1.2% 26	2.0% 43	1.4% 30
		Kanamycin (MIC ≥ 64)	3.4% 70	2.9% 63	2.8% 61	2.1% 50	2.5% 54	2.2% 54	1.7% 39	1.1% 24	1.6% 35	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	11.1% 225	10.7% 233	10.3% 222	10.0% 238	8.9% 196	8.6% 210	9.8% 229	8.4% 187	11.5% 251	11.2% 239
	B-lactam/β-lactamase inhibitor Amoxicillin-clavulanic acid (omc ≥ 32/16) Cenhems Ceticity Ceticity		3.2% 65	3.7% 81	3.3% 70	3.1% 73	3.4% 75	2.9% 70	2.6% 60	2.9% 65	2.4% 53	2.1% 45
	Cephems	Ceftiofur (MIC ≥ 8)	2.9% 59	3.6% 79	3.3% 70	3.1% 73	3.4% 75	2.8% 69	2.5% 58	2.9% 64	2.5% 55	2.4% 51
į		Ceftriaxone (MIC ≥ 4)	2.9% 59	3.6% 79	3.3% 70	3.1% 73	3.4% 75	2.9% 70	2.5% 58	2.9% 64	2.5% 55	2.4% 51
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.2% 5	< 0.1% 1	0.2% 5	< 0.1% 1
	Penicillins	Ampicillin (MIC ≥ 32)	11.3% 231	10.9% 237	10.1% 217	9.7% 232	9.9% 216	9.1% 223	9.1% 213	8.8% 196	10.4% 227	9.1% 194
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.1% 2	0.1% 3	0.1% 2	0.2% 5	0.3% 7	0.2% 6	0.2% 4	0.3% 7	0.5% 11	0.4% 9
		Decreased susceptibility to ciprofloxacin [‡] (MIC ≥ 0.12)	2.0% 40	2.7% 59	2.5% 54	2.5% 60	2.3% 51	2.7% 67	2.7% 63	3.6% 80	3.5% 76	4.3% 92
		Nalidixic acid (MIC ≥ 32)	1.9% 38	2.4% 51	2.2% 48	2.1% 49	1.8% 39	2.0% 48	2.2% 51	2.4% 54	2.8% 61	3.5% 74
	Cephems	Cefoxitin (MIC ≥ 32)	3.0% 62	3.5% 77	2.9% 63	3.0% 72	3.2% 71	2.6% 63	2.6% 60	2.7% 61	2.4% 53	2.2% 46
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	12.6% 256	12.1% 263	12.3% 264	10.1% 240	9.9% 217	9.0% 221	8.6% 201	8.4% 188	10.3% 225	9.4% 201
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	1.7% 34	1.7% 36	1.5% 33	1.6% 37	1.7% 38	1.6% 38	1.2% 28	1.3% 29	1.4% 31	1.3% 28
	Phenicols	Chloramphenicol (MIC ≥ 32)	7.8% 159	6.4% 139	7.3% 156	6.1% 146	5.7% 125	5.0% 122	4.4% 103	3.9% 87	3.9% 85	4.0% 85
	Tetracyclines	Tetracycline (MIC ≥ 16)	13.9% 282	13.5% 293	14.5% 310	11.5% 275	11.9% 261	11.0% 270	10.5% 245	11.1% 247	12.6% 275	10.4% 221

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute † Includes isolates with MICs categorized as intermediate or resistant

Table 10. Resistance patterns of nontyphoidal Salmonella isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	2036	2170	2145	2384	2192	2448	2335	2233	2178	2127
Resistance Pattern										
No resistance detected	81.0%	80.6%	81.1%	83.9%	83.3%	84.7%	84.9%	84.7%	80.8%	82.3%
	1649	1749	1739	2001	1825	2073	1982	1892	1760	1751
Resistance ≥ 1 CLSI* class	19.0%	19.4%	18.9%	16.1%	16.7%	15.3%	15.1%	15.3%	19.2%	17.7%
	387	421	406	383	367	375	353	341	418	376
Resistance ≥ 2 CLSI* classes	14.5%	14.6%	14.0%	12.5%	12.8%	11.1%	11.0%	11.8%	13.2%	11.8%
	295	317	300	298	281	271	258	263	288	251
Resistance ≥ 3 CLSI* classes	11.8%	11.7%	11.0%	9.5%	9.6%	9.1%	9.1%	8.6%	9.8%	9.3%
	240	253	236	226	210	223	213	193	214	197
Resistance ≥ 4 CLSI* classes	8.8%	7.9%	8.1%	7.4%	7.2%	6.8%	6.5%	6.1%	7.7%	7.1%
	180	171	174	176	157	166	152	137	167	152
Resistance ≥ 5 CLSI* classes	7.2%	6.3%	6.9%	6.6%	6.1%	5.2%	4.6%	3.9%	4.0%	3.9%
	146	137	149	157	133	128	108	87	87	82
At least ACSSuT [†]	6.9%	5.6%	6.3%	5.8%	5.1%	4.4%	3.9%	3.4%	3.4%	3.1%
	141	121	136	138	112	107	91	77	74	67
At least ASSuT [‡] and not resistant to	0.8%	1.0%	0.8%	0.7%	0.6%	1.7%	1.8%	2.0%	3.4%	3.0%
chloramphenicol	16	22	17	17	14	42	42	44	74	64
At least ACT/S§	0.9%	0.7%	0.7%	0.5%	0.7%	0.4%	0.4%	0.3%	0.5%	0.6%
	18	15	16	11	15	11	9	7	10	12
At least ACSSuTAuCx [¶]	2.0%	2.0%	2.1%	1.8%	1.4%	1.3%	1.5%	1.5%	1.4%	1.2%
	41	43	46	44	30	33	36	34	31	26
At least AAuCx**	2.9%	3.6%	3.0%	2.9%	3.3%	2.5%	2.5%	2.8%	2.3%	2.1%
	59	78	65	69	73	62	58	62	51	45
At least ceftriaxone resistant and decreased	< 0.1%	0.1%	0.3%	0.1%	0.2%	0.2%	0.1%	0.5%	0.3%	0.3%
susceptibility to ciprofloxacin ^{††}	1	3	6	3	4	4	3	12	7	7
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.1%	0.0%	0.1%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	3	0	3	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	< 0.1%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	1	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

 $^{\ \ \, \}uparrow \, ACSSuT: resistance \, to \, ampicillin, \, chloramphenicol, \, streptomycin, \, sulfamethoxazole/sulfis oxazole, \, tetracycline$

[‡] ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC \geq 0.12 μ g/mL)

Table 11. Broad-Spectrum β-lactam resistance among all ceftriaxone or ceftiofur-resistant nontyphoidal Salmonella isolates, 2011 (N=58), 2012 (N=64), 2013 (N=55), and 2014 (N=51)

Percentage of isolates Percentage of all isolates with MIC $(\mu g/mL)^{\dagger\dagger}$ CLSI[†] Antimicrobial Antim icrobial Year (# of isolates % I[‡] (or S-DD[§]) %R[¶] [95% CI]** 0.015 0.03 0.06 0.125 0.25 0.50 β-lactam / β-lactamase Piperacillin 2011 (58) 10.3 [3.9 - 21.2] 5.2 15.5 39.7 12.1 5.2 10.3 3.4 6.9 [1.7 - 15.2] 7.8 3.1 3.1 2012 (64) 6.3 3.1 12.5 56.3 12.5 1.6 9.4 2013 (55) 1.8 [0.0 - 9.7] 3.6 7.3 2014 (51) 5.9 2.0 [0.0 - 10.4] 5.9 35.3 37.3 13.7 2.0 3.9 2.0 Cephems Cef epime§ 2011 (58) 1.7 [0.0 - 9.2] 32.8 41.4 13.8 5.2 1.7 1.7 2012 (64) (4.7§) 0.0 [0.0 - 5.6] 12.5 56.3 17.2 7.8 1 6§ 3.1 1.8§ 2013 (55) (3.6§)1.8 [0.0 - 9.7]16.4 58.2 10.9 5.5 1.8§ 1.8 2.0[§] 2.0 2014 (51) (3.9[§]) [0.5 - 13.5] 11.8 2.0 2.0 3.9 41.7 29.4 5.9 Cefotaxime 2011 (58) 0.0 100 [93.8 - 100] 1.7 10.3 37.9 34.5 10.3 3.4 1.7 1.6 100 [94.4 - 100] 50.0 34.4 4.7 1.6 2012 (64) 0.0 3.1 4.7 2013 (55) 2014 (51) 0.0 100 [93.0 - 100] 11.8 52.9 17.6 5.9 Ceftazidime 2011 (58) 1.7 2012 (64) 4.7 90.6 [80.7 - 96.5] 4.7 4.7 40.6 37.5 9.4 3.1 2013 (55) 5.5 89.1 [77.8 - 95.9] 3.6 1.8 5.5 25.5 47.3 16.4 2014 (51) 3.9 90.2 [78.6 - 96.7] 2.0 3.9 3.9 54.9 23.5 11.8 Monobactams Aztreonam 2011 (58) 43.1 41.4 [28.6 - 55.1] 6.9 8.6 43.1 27.6 8.6 5.2 2012 (64) 56.3 28.1 [17.6 - 40.8] 1.6 12.5 56.3 18.8 7.8 1.6 1.6 2013 (55) 43.6 32.7 [20.7 - 46.7] 3.6 20.0 43.6 1.8 2014 (51) 27.5 [15.9 - 41.7] 2.0 2.0 21.6 47. 17.6 2.0 7.8 2011 (58) 2012 (64) 0.0 0.0 [0.0 - 5.6] 3.1 56.3 40.6 2013 (55) 0.0 0.0 [0.0 - 6.5] 1.8 7.3 87.3 3.6 2014 (51) 0.0 0.0 [0.0 - 7.0] 2.0 68.6 29.4

Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important

[†] CLSI: Clinical and Laboratory Standards Institute Percentage of isolates with intermediate susceptibility

[§] Percentage of isolates that are susceptible-dose dependent (S-DD). Cefepime MICs above the susceptible range but below the resistant range are now designated by CLSI to be S-DD. Corresponding dilution ranges are

[¶] Percentage of isolates that were resistant

^{**} The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method
†† The unshaded and orange-shaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Orange-shaded areas also indicate the dilution range for susceptible-dose dependent (S-DD). Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the gray shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used

Salmonella ser. Enteritidis

Table 12. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2014 (N=438)

Percentage of isolates Percentage of all isolates with MIC (µg/mL)** CLSI[†] Antimicrobial Class Antimicrobial Agent [95% CI][¶] 0.015 0.03 0.06 0.125 0.50 128 512 0.25 49.1 [0.0 - 0.8] 46.8 3.7 0.5 Aminoalvcosides Gentamicin 0.5 0.0 2.7 N/Α 3.0 [1.6 - 5.0] 61.0 32.0 1.4 1.1 0.9 0.9 β-lactam / β-lactamase inhibitor combinations 0.5 Amoxicillin-clavulanic acid 0.7 0.5 [0.1 - 1.6] 92.7 3.4 0.9 1.8 0.7 0.2 0.2 Cephems Ceftiofur 0.5 [0.1 - 1.6] 7.1 90.9 1.4 0.5 0.0 0.5 [0.1 - 1.6] 0.5 99.1 Ceftriaxone N/Α 0.0 [0.0 - 0.8] Macrolides Azithromycin 0.2 56.2 41.8 1.6 0.2 Penicillins Ampicillin 0.0 3.2 [1.8 - 5.3] 74.2 21.5 0.9 0.2 0.2 3.0 Quinolones Ciprofloxacin 7.8 0.2 [0.0 - 1.3] 0.7 0.2 Nalidixic acid [5.6 - 10.9] 14.8 75.1 0.2 0.2 1.8 Cephems Cefoxitin 0.0 0.7 [0.1 - 2.0] 0.9 86.1 11.9 0.5 0.2 0.5 7.5 55.7 1.8 Folate pathway inhibitors Sulfisoxazole N/Α 1.8 [0.8 - 3.6] 31.7 Ш Trimethoprim-sulfamethoxazole N/A 0.5 [0.1 - 1.6] 97.7 1.8 0.5 0.5 1.1 [0.4 - 2.6] 71.0 27.4 0.5 0.7 0.5

Figure 4. Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2014

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute

† CLSt Clinical and Laboratory Standards Institute

† Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

† Percentage of isolates that were resistant

¹ The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method to the Paulson exact method to

Table 13. Percentage and number of *Salmonella ser*. Enteritidis isolates resistant to antimicrobial agents, 2005–2014

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total I	solates		384	412	385	442	410	513	391	364	382	438
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.8% 3	0.2% 1	0.0% 0	0.2% 1	0.0% 0	0.2% 1	0.5% 2	0.0% 0	0.0% 0	0.0% 0
		Kanamycin (MIC ≥ 64)	0.3% 1	0.2% 1	0.5% 2	0.0% 0	0.2% 1	0.2% 1	0.3% 1	0.0% 0	0.0% 0	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	1.0% 4	1.2% 5	0.5% 2	0.7% 3	1.2% 5	0.6% 3	1.8% 7	1.9% 7	2.6% 10	3.0% 13
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.8% 3	0.5% 2	0.5% 2	0.0% 0	0.0% 0	0.4% 2	0.3% 1	0.5% 2	0.0%	0.5% 2
	Cephems	Ceftiofur (MIC ≥ 8)	0.3% 1	0.5% 2	0.3% 1	0.2% 1	0.0%	0.0%	0.3% 1	0.5% 2	0.3% 1	0.5% 2
'		Ceftriaxone (MIC ≥ 4)	0.3% 1	0.5% 2	0.3% 1	0.2% 1	0.0%	0.0%	0.3% 1	0.5% 2	0.3% 1	0.5% 2
	Macrolides	Azithromycin (MIC ≥ 32)		Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0% 0	0.0% 0	0.0%	0.0% 0
	Penicillins	Ampicillin (MIC ≥ 32)	2.6% 10	4.1% 17	2.1% 8	4.1% 18	3.9% 16	2.3% 12	5.1% 20	4.1% 15	5.8% 22	3.2% 14
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.2% 1	0.0% 0	0.0% 0	0.0% 0	0.2% 1
		Decreased susceptibility to ciprofloxacin [‡] (MIC ≥ 0.12)	3.9% 15	7.0% 29	6.0% 23	7.2% 32	3.7% 15	5.1% 26	7.2% 28	8.0% 29	5.5% 21	8.0% 35
		Nalidixic acid (MIC ≥ 32)	4.7% 18	7.0% 29	5.7% 22	7.2% 32	3.7% 15	5.3% 27	7.2% 28	7.7% 28	5.8% 22	8.0% 35
	Cephems	Cefoxitin (MIC ≥ 32)	1.0% 4	0.5% 2	0.3% 1	0.0% 0	0.0% 0	0.0% 0	0.3% 1	0.5% 2	0.0% 0	0.7% 3
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	1.6% 6	1.5% 6	1.6% 6	1.4% 6	1.7% 7	1.9% 10	2.0% 8	2.7% 10	1.6% 6	1.8% 8
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.5% 2	0.5% 2	1.0% 4	0.9% 4	0.7% 3	1.0% 5	0.5% 2	1.1% 4	0.5% 2	0.5% 2
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.5% 2	0.0% 0	0.5% 2	0.5% 2	0.0% 0	0.6% 3	0.0% 0	0.5% 2	0.3% 1	1.1% 5
	Tetracyclines	Tetracycline (MIC ≥ 16)	2.3% 9	1.7% 7	3.9% 15	1.8% 8	1.2% 5	2.1% 11	1.8% 7	3.6% 13	4.5% 17	2.5% 11

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

Table 14. Resistance patterns of Salmonella ser. Enteritidis isolates, 2005-2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	384	412	385	442	410	513	391	364	382	438
Resistance Pattern										
No resistance detected	91.4%	88.8%	90.4%	87.3%	92.2%	92.0%	88.0%	88.2%	87.4%	87.7%
No resistance detected	351	366	348	386	378	472	344	321	334	384
Resistance ≥ 1 CLSI* class	8.6%	11.2%	9.6%	12.7%	7.8%	8.0%	12.0%	11.8%	12.6%	12.3%
	33	46	37	56	32	41	47	43	48	54
Resistance ≥ 2 CLSI* classes	3.1%	2.9%	3.4%	2.3%	2.4%	2.9%	2.6%	4.9%	4.5%	3.7%
	12	12	13	10	10	15	10	18	17	16
Resistance ≥ 3 CLSI* classes	1.3%	1.7%	0.8%	0.7%	1.0%	2.1%	2.3%	2.7%	1.6%	2.1%
	5	7	3	3	4	11	9	10	6	9
Resistance ≥ 4 CLSI* classes	1.0%	0.7%	0.3%	0.2%	0.5%	0.4%	1.3%	1.6%	1.6%	1.4%
	4	3	1	1	2	2	5	6	6	6
Resistance ≥ 5 CLSI* classes	0.5%	0.2%	0.3%	0.0%	0.2%	0.0%	0.5%	0.5%	0.3%	0.9%
	2	1	1	0	1	0	2	2	1	4
At least ACSSuT [†]	0.5%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%
	2	0	1	0	0	0	0	0	1	2
At least ASSuT [‡] and not resistant to	0.0%	0.2%	0.0%	0.0%	0.2%	0.4%	1.3%	1.1%	0.8%	0.2%
chloramphenicol	0	1	0	0	1	2	5	4	3	1
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ACSSuTAuCx [¶]	0.3%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%
	1	0	1	0	0	0	0	0	0	1
At least AAuCx**	0.3%	0.5%	0.3%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%	0.5%
	1	2	1	0	0	0	1	2	0	2
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.3%	0.2%	0.0%	0.0%	0.0%	0.0%	0.3%	0.2%
susceptibility to ciprofloxacin ^{††}	0	0	1	1	0	0	0	0	1	1
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Includes isolates with MICs categorized as intermediate or resistant

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

 $[\]ddagger \ \mathsf{ASSuT:} \ \mathsf{resistance} \ \mathsf{to} \ \mathsf{ampicillin}, \mathsf{streptomycin}, \mathsf{sulfamethox} \mathsf{azole/sulfisox} \mathsf{azole}, \mathsf{tetracycline}$

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

^{**} AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC \geq 0.12 $\mu g/mL$)

B. Salmonella ser. Typhimurium

Table 15. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2014 (N=262)

	T	iobiai ageiiis, z																			
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (ug/m L)*	*				
		3	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	3.1	[1.3 - 5.9]					12.2	69.1	15.3	0.4			0.4	2.7				
		Streptomycin	N/A	24.8	[19.7 - 30.5]									4.2	55.3	15.6	3.1	8.0	13.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	11.1	5.3	[2.9 - 8.8]							78.2	2.3	0.4	2.7	11.1		5.3			
	Cephems	Ceftiofur	0.0	5.3	[2.9 - 8.8]						24.4	68.7	1.5			5.3					
- 1		Ceftriaxone	0.0	5.3	[2.9 - 8.8]					94.7					1.1	2.7	1.1	0.4			
	Macrolides	Azithromycin	N/A	0.4	[0.0 - 2.1]						0.4	0.4	51.5	45.8	1.5		0.4				
	Penicillins	Ampicillin	0.0	19.8	[15.2 - 25.2]							72.1	7.6	0.4			0.4	19.5			
	Quinolones	Ciprofloxacin	3.1	0.4	[0.0 - 2.1]	93.5	3.1		0.8		2.3	0.4					_				
		Nalidixic acid	N/A	2.7	[1.1 - 5.4]				•			_	25.6	70.2	1.1	0.4		2.7			
	Cephems	Cefoxitin	0.8	5.3	[2.9 - 8.8]							3.1	76.7	13.7	0.4	0.8	2.7	2.7			
	Folate pathway inhibitors	Sulfisoxazole	N/A	25.2	[20.1 - 30.9]											8.8	45.4	20.6			25.2
п		Trimethoprim-sulfamethoxazole	N/A	2.3	[0.8 - 4.9]				89.7	7.3	0.8				2.3						
	Phenicols	Chloramphenicol	0.4	16.0	[11.8 - 21.0]								0.8	48.1	34.7	0.4	0.4	15.6			
	Tetracyclines	Tetracycline	0.4	22.5	[17.6 - 28.1]									77.1	0.4	1.1	6.9	14.5			

Figure 5. Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2014

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSi: Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

§ Percentage of isolates with were resistant

¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

* The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs are quality or less than the low est tested concentration. CLSI breakpoints were used when available.

Table 16. Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial

agents, 2005-2014

Year	,		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
	solates		438	408	405	396	370	359	323	296	325	262
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	Tested	Tested	Tested	Tested
		Gentamicin	1.8%	2.7%	2.5%	1.5%	1.9%	0.8%	1.9%	3.0%	1.2%	3.1%
		(MIC ≥ 16)	8	11	10	6	7	3	6	9	4	8
		Kanamycin	5.7%	5.1%	5.9%	2.5%	4.9%	7.2%	4.0%	2.0%	0.3%	Not
		(MIC ≥ 64)	25	21	24	10	18	26	13	6	1	Tested
		Streptomycin	28.1%	29.4%	32.3%	28.5%	25.9%	25.6%	25.7%	24.0%	20.6%	24.8%
		(MIC ≥ 32; pre-2014: MIC ≥ 64)	123	120	131	113	96	92	83	71	67	65
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	3.2%	4.4%	6.7%	3.5%	6.2%	4.2%	7.1%	5.7%	3.4%	5.3%
	combinations	(MIC ≥ 32/16)	14	18	27	14	23	15	23	17	11	14
	Cephems	Ceftiofur	2.5%	4.2%	6.4%	3.5%	6.5%	4.7%	6.8%	5.7%	3.4%	5.3%
		(MIC ≥ 8)	11	17	26	14	24	17	22	17	11	14
'		Ceftriaxone	2.5%	4.2%	6.4%	3.5%	6.5%	4.7%	6.8%	5.7%	3.4%	5.3%
		(MIC ≥ 4)	11	17	26	14	24	17	22	17	11	14
	Macrolides	Azithromycin	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.4%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	1
	Penicillins	Ampicillin	29.0%	28.2%	31.6%	26.3%	28.1%	26.2%	26.0%	23.6%	16.6%	19.8%
		(MIC ≥ 32)	127	115	128	104	104	94	84	70	54	52
	Quinolones	Ciprofloxacin	0.2%	0.2%	0.0%	0.0%	0.8%	0.0%	0.0%	0.3%	0.0%	0.4%
		(MIC ≥ 1)	1	1	0	0	3	0	0	1	0	1
		Decreased susceptibility to ciprofloxacin [‡]	1.4%	1.7%	2.0%	2.3%	2.4%	1.9%	1.9%	1.7%	2.5%	3.4%
		(MIC ≥ 0.12)	6	7	8	9	9	7	6	5	8	9
		Nalidixic acid	0.9%	0.7%	1.5%	1.0%	2.2%	1.4%	0.3%	1.7%	1.5%	2.7%
		(MIC ≥ 32)	4	3	6	4	8	5	1	5	5	7
	Cephems	Cefoxitin	2.5%	3.9%	5.7%	3.5%	5.4%	3.3%	6.8%	5.4%	3.4%	5.3%
		(MIC ≥ 32)	11	16	23	14	20	12	22	16	11	14
	Folate pathway inhibitors	Sulfisoxazole	32.0%	33.3%	37.3%	30.3%	30.0%	28.7%	27.2%	27.0%	20.9%	25.2%
		(MIC ≥ 512)	140	136	151	120	111	103	88	80	68	66
۱		Trimethoprim-sulfamethoxazole	2.7%	2.2%	2.5%	1.8%	3.0%	1.9%	1.9%	1.7%	1.2%	2.3%
II		(MIC ≥ 4/76)	12	9	10	7	11	7	6	5	4	6
	Phenicols	Chloramphenicol	24.4%	22.1%	25.4%	23.5%	20.5%	20.3%	19.8%	18.2%	13.5%	16.0%
		(MIC ≥ 32)	107	90	103	93	76	73	64	54	44	42
	Tetracyclines	Tetracycline	30.4%	31.6%	36.8%	27.8%	28.9%	29.0%	27.2%	27.0%	21.2%	22.5%
		(MIC ≥ 16)	133	129	149	110	107	104	88	80	69	59

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

Table 17. Resistance patterns of Salmonella ser. Typhimurium isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	438	408	405	396	370	359	323	296	325	262
Resistance Pattern										
No resistance detected	65.3%	62.5%	57.5%	68.2%	63.5%	66.9%	69.0%	68.6%	69.5%	68.7%
	286	255	233	270	235	240	223	203	226	180
Resistance ≥ 1 CLSI* class	34.7% 152	37.5% 153	42.5% 172	31.8% 126	36.5% 135	33.1% 119	31.0% 100	31.4% 93	30.5% 99	31.3% 82
Resistance ≥ 2 CLSI* classes	32.6% 143	34.1% 139	38.3% 155	31.3% 124	32.7% 121	29.2% 105	28.8% 93	29.1% 86	22.8% 74	26.3% 69
Resistance ≥ 3 CLSI* classes	29.9%	30.4%	33.8%	27.5%	28.1%	27.0%	26.3%	24.7%	16.9%	21.8%
Resistance ≥ 4 CLSI* classes	131 26.7%	124 25.7%	137 29.6%	109 24.7%	104 24.1%	97 24.2%	85 22.0%	73 20.9%	55 14.8%	57 18.7%
	117	105	120	98	89	87	71	62	48	49
Resistance ≥ 5 CLSI* classes	22.8% 100	20.8% 85	24.9% 101	24.0% 95	21.9% 81	20.9% 75	21.1% 68	18.6% 55	12.3% 40	15.6% 41
At least ACSSuT [†]	22.4%	19.6%	22.7%	23.2%	19.5%	18.7%	19.8%	17.2%	12.0%	14.5%
	98	80	92	92	72	67	64	51	39	38
At least ASSuT [‡] and not resistant to	2.3%	3.2%	3.7%	0.3%	1.6%	3.6%	1.2%	1.7%	1.2%	2.3%
chloramphenicol	10	13	15	1	6	13	4	5	4	6
At least ACT/S [§]	2.1% 9	0.7% 3	2.0% 8	0.5% 2	2.2% 8	1.1% 4	0.6% 2	0.7% 2	0.0% 0	1.5% 4
At least ACSSuTAuCx [¶]	1.8%	2.9%	3.7%	2.3%	1.6%	1.7%	5.3%	4.1%	2.2%	4.2%
	8	12	15	9	6	6	17	12	7	11
At least AAuCx**	2.5%	4.2%	6.2%	3.5%	6.2%	3.6%	6.8%	5.7%	3.4%	5.3%
	11	17	25	14	23	13	22	17	11	14
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.2%	0.0%	0.5%	0.3%	0.0%	0.7%	0.0%	0.4%
susceptibility to ciprofloxacin ^{††}	0	0	1	0	2	1	0	2	0	1
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Includes isolates with MICs categorized as intermediate or resistant

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

 $[\]ddagger \ \mathsf{ASSuT:} \ \mathsf{resistance} \ \mathsf{to} \ \mathsf{ampicillin}, \mathsf{streptomycin}, \mathsf{sulfamethox} \mathsf{azole/sulfisox} \mathsf{azole}, \mathsf{tetracycline}$

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

^{**} AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC \geq 0.12 $\mu g/mL$)

C. Salmonella ser. Newport

Table 18. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2014 (N=235)

			Perc	entage	of isolates						Percent	age of	all isola	tes wit	n MIC (µ	ıg/m L)*	•				
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.4	[0.0 - 2.3]					11.1	77.4	11.1					0.4				
		Streptomycin	N/A	4.7	[2.4 - 8.2]									17.0	72.3	6.0	0.4		4.3		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.4	3.0	[1.2 - 6.0]							94.5	1.7		0.4	0.4		3.0			
	Cephems	Ceftiofur	0.0	3.0	[1.2 - 6.0]				0.4	0.4	34.9	61.3	_			3.0					
- 1		Ceftriaxone	0.0	3.0	[1.2 - 6.0]					97.0					-	0.9	1.3	0.4	0.4		
	Macrolides	Azithromycin	N/A	0.0	[0.0 - 1.6]							0.4	66.0	33.2		0.4					
	Penicillins	Ampicillin	0.0	3.8	[1.8 - 7.1]							92.8	3.0	0.4				3.8			
	Quinolones	Ciprofloxacin	0.9	0.0	[0.0 - 1.6]	99.1			0.4		0.4										
		Nalidixic acid	N/A	0.4	[0.0 - 2.3]				•		'	0.4	26.4	72.3		0.4	0.4				
	Cephems	Cefoxitin	0.4	3.0	[1.2 - 6.0]							6.8	86.8	3.0		0.4	1.7	1.3			
	Folate pathway inhibitors	Sulfisoxazole	N/A	4.7	[2.4 - 8.2]											2.6	37.9	47.2	7.2	0.4	4.7
Ш		Trimethoprim-sulfamethoxazole	N/A	0.4	[0.0 - 2.3]				98.7	0.9					0.4						
	Phenicols	Chloramphenicol	0.0	4.3	[2.1 - 7.7]								1.3	86.8	7.7			4.3			
	Tetracyclines	Tetracycline	0.4	5.1	[2.7 - 8.8]									94.5	0.4			5.1			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute
† Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
§ Percentage of isolates that were resistant

Figure 6. Antimicrobial resistance pattern for Salmonella ser. Newport, 2014

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 19% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method to the Paulson exact me

Table 19. Percentage and number of *Salmonella* ser. Newport isolates resistant to antimicrobial agents, 2005–2014

Year	J-2014		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
	Isolates		207	218	222	258	239	306	286	258	209	235
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	1.0% 2	0.9% 2	0.9% 2	0.4% 1	0.4% 1	0.3% 1	0.7% 2	0.0% 0	0.5% 1	0.4% 1
		Kanamycin (MIC ≥ 64)	1.9% 4	2.8% 6	0.9% 2	3.5% 9	1.7% 4	0.7% 2	0.3% 1	0.0% 0	0.5% 1	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	14.0% 29	14.2% 31	10.4% 23	13.6% 35	8.4% 20	8.5% 26	4.2% 12	3.9% 10	5.7% 12	4.7% 11
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	12.6% 26	12.8% 28	8.1% 18	12.4% 32	7.5% 18	7.8% 24	3.8% 11	6.2% 16	5.3% 11	3.0% 7
	Cephems	Ceftiofur (MIC ≥ 8)	12.6% 26	12.8% 28	8.1% 18	12.4% 32	7.1% 17	7.5% 23	3.8% 11	6.2% 16	5.3% 11	3.0% 7
'		Ceftriaxone (MIC ≥ 4)	12.6% 26	12.8% 28	8.1% 18	12.4% 32	7.1% 17	7.5% 23	3.8% 11	6.2% 16	5.3% 11	3.0% 7
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0% 0	0.0% 0	0.0% 0	0.0%
	Penicillins	Ampicillin (MIC ≥ 32)	14.0% 29	15.6% 34	9.9% 22	14.3% 37	8.4% 20	7.8% 24	3.8% 11	7.0% 18	6.2% 13	3.8% 9
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0%	0.0% 0								
		Decreased susceptibility to ciprofloxacin [‡] (MIC ≥ 0.12)	0.0%	0.5% 1	0.0% 0	0.4% 1	0.0% 0	1.0% 3	0.7% 2	3.1% 8	1.9% 4	0.9% 2
		Nalidixic acid (MIC ≥ 32)	0.0%	0.5% 1	0.0% 0	0.4% 1	0.0% 0	0.3% 1	0.3% 1	0.0% 0	0.0% 0	0.4% 1
	Cephems	Cefoxitin (MIC ≥ 32)	12.6% 26	13.3% 29	8.1% 18	12.4% 32	6.7% 16	7.5% 23	3.8% 11	6.2% 16	5.3% 11	3.0% 7
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	15.5% 32	15.6% 34	10.4% 23	13.2% 34	8.8% 21	7.8% 24	4.5% 13	3.9% 10	4.8% 10	4.7% 11
П		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	1.9% 4	3.7% 8	1.8% 4	3.1% 8	1.3% 3	1.3% 4	0.0% 0	0.4% 1	0.5% 1	0.4% 1
	Phenicols Chloramphenicol (MIC ≥ 32)		13.5% 28	12.8% 28	9.5% 21	12.0% 31	7.5% 18	7.5% 23	3.5% 10	3.9% 10	4.8% 10	4.3% 10
	Tetracyclines Tetracycline (MIC ≥ 16)			14.7% 32	9.9% 22	14.0% 36	8.8% 21	8.5% 26	4.9% 14	4.3% 11	6.2% 13	5.1% 12

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

Table 20. Resistance patterns of Salmonella ser. Newport isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	207	218	222	258	239	306	286	258	209	235
Resistance Pattern										
No resistance detected	84.1%	82.6%	89.2%	85.3%	89.5%	90.5%	94.1%	93.0%	91.9%	93.2%
	174	180	198	220	214	277	269	240	192	219
Resistance ≥ 1 CLSI* class	15.9%	17.4%	10.8%	14.7%	10.5%	9.5%	5.9%	7.0%	8.1%	6.8%
	33	38	24	38	25	29	17	18	17	16
Resistance ≥ 2 CLSI* classes	15.0%	16.5%	10.8%	13.6%	9.2%	8.2%	4.5%	6.6%	5.7%	4.7%
	31	36	24	35	22	25	13	17	12	11
Resistance ≥ 3 CLSI* classes	14.5%	15.6%	10.8%	13.6%	8.4%	7.8%	3.8%	6.2%	5.7%	4.7%
	30	34	24	35	20	24	11	16	12	11
Resistance ≥ 4 CLSI* classes	14.0%	13.8%	9.5%	13.6%	7.5%	7.8%	3.8%	3.9%	4.8%	4.3%
	29	30	21	35	18	24	11	10	10	10
Resistance ≥ 5 CLSI* classes	12.6%	13.3%	8.6%	12.8%	7.1%	7.5%	3.5%	3.9%	4.8%	3.0%
	26	29	19	33	17	23	10	10	10	7
At least ACSSuT [†]	12.6%	12.4%	8.6%	11.6%	7.1%	7.5%	3.5%	3.9%	4.8%	3.0%
	26	27	19	30	17	23	10	10	10	7
At least ASSuT [‡] and not resistant to	0.5%	1.4%	0.5%	1.6%	0.0%	0.3%	0.0%	0.0%	0.0%	0.4%
chloramphenicol	1	3	1	4	0	1	0	0	0	1
At least ACT/S§	1.9%	2.8%	0.5%	2.7%	1.3%	1.3%	0.0%	0.4%	0.5%	0.0%
	4	6	1	7	3	4	0	1	1	0
At least ACSSuTAuCx [¶]	12.6%	11.0%	8.1%	11.6%	7.1%	7.5%	3.5%	3.9%	4.8%	3.0%
	26	24	18	30	17	23	10	10	10	7
At least AAuCx**	12.6%	12.4%	8.1%	12.4%	7.1%	7.5%	3.8%	6.2%	5.3%	3.0%
	26	27	18	32	17	23	11	16	11	7
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.3%	1.9%	1.0%	0.4%
susceptibility to ciprofloxacin ^{††}	0	0	0	0	0	1	1	5	2	1
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Includes isolates with MICs categorized as intermediate or resistant

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

^{**} AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC $\geq\!0.12~\mu\text{g/mL})$

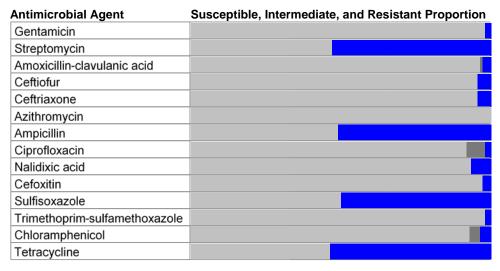

D. Salmonella ser. I 4,[5],12:i:-

Table 21. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:isolates to antimicrobial agents, 2014 (N=110)

			Perc	entage	of isolates						Percent	age of	all isola	tes wit	h MIC (į	.g/mL)*	•				
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.8	[0.2 - 6.4]					18.2	63.6	15.5	0.9			0.9	0.9				
		Streptomycin	N/A	52.7	[43.0 - 62.3]									1.8	39.1	6.4	3.6	1.8	47.3		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.9	2.7	[0.6 - 7.8]							47.3	1.8	5.5	41.8	0.9		2.7			
	Cephems	Ceftiofur	0.0	4.5	[1.5 - 10.3]						34.5	58.2	2.7			4.5					
- 1		Ceftriaxone	0.0	4.5	[1.5 - 10.3]					95.5					-	2.7		0.9	0.9		
	Macrolides	Azithromycin	N/A	0.0	[0.0 - 3.3]								46.4	48.2	4.5	0.9					
	Penicillins	Ampicillin	0.0	50.9	[41.2 - 60.6]							45.5	3.6				0.9	50.0			
	Quinolones	Ciprofloxacin	6.4	1.8	[0.2 - 6.4]	87.3	3.6	0.9		1.8	4.5	1.8				•					
		Nalidixic acid	N/A	6.4	[2.6 - 12.7]				•		'	-	23.6	66.4	3.6		4.5	1.8			
	Cephems	Cefoxitin	0.0	2.7	[0.6 - 7.8]							7.3	74.5	15.5			1.8	0.9			
	Folate pathway inhibitors	Sulfisoxazole	N/A	50.0	[40.3 - 59.7]											2.7	23.6	23.6			50.0
Ш		Trimethoprim-sulfamethoxazole	N/A	1.8	[0.2 - 6.4]				94.5	2.7			0.9		1.8						
	Phenicols	Chloramphenicol	3.6	3.6	[1.0 - 9.0]								'	39.1	53.6	3.6		3.6			
	Tetracyclines	Tetracycline	0.0	53.6	[43.9 - 63.2]									46.4		İ		53.6			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute † Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists § Percentage of isolates that were resistant

Figure 7. Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2014

¹ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

** The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the lowest tested concentrations represent the percentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Table 22. Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial

agents, 2005-2014

Year	Isolates		2005 33	2006 105	2007 73	2008 84	2009 72	2010 78	2011 82	2012 117	2013 127	2014 110
Rank*	CLSI [†] Antimicrobial	Antibiotic	33	105	/3	84	72	78	82	117	127	110
Railk	Class	(Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.0% 0	4.8% 5	1.4% 1	3.6% 3	2.8% 2	1.3% 1	2.4% 2	2.6% 3	4.7% 6	1.8% 2
		Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	1.4% 1	1.2% 1	0.0% 0	1.3% 1	0.0%	0.0% 0	0.8% 1	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	3.0% 1	3.8% 4	8.2% 6	10.7% 9	12.5% 9	19.2% 15	24.4% 20	29.1% 34	53.5% 68	52.7% 58
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	3.0% 1	3.8% 4	1.4% 1	4.8% 4	4.2% 3	3.8%	3.7% 3	1.7% 2	1.6% 2	2.7%
	Cephems	Ceftiofur (MIC ≥ 8)	3.0% 1	3.8% 4	2.7% 2	4.8% 4	2.8% 2	2.6% 2	3.7% 3	0.9% 1	1.6% 2	4.5% 5
'		Ceftriaxone (MIC ≥ 4)	3.0% 1	3.8% 4	2.7% 2	4.8% 4	2.8% 2	2.6% 2	3.7% 3	0.9% 1	1.6% 2	4.5% 5
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0%	0.0%	1.6% 2	0.0% 0
	Penicillins	Ampicillin (MIC ≥ 32)	6.1% 2	6.7% 7	5.5% 4	9.5% 8	11.1% 8	21.8% 17	25.6% 21	29.1% 34	49.6% 63	50.9% 56
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.3% 1	0.0%	0.0% 0	0.8% 1	1.8% 2
		Decreased susceptibility to ciprofloxacin [‡] (MIC ≥ 0.12)	0.0% 0	1.0% 1	1.4% 1	1.2% 1	0.0% 0	2.6% 2	0.0%	0.0% 0	2.4% 3	8.2% 9
		Nalidixic acid (MIC ≥ 32)	0.0% 0	1.0% 1	1.4% 1	1.2% 1	0.0% 0	2.6% 2	0.0%	0.0% 0	0.8% 1	6.4% 7
	Cephems	Cefoxitin (MIC ≥ 32)	3.0% 1	3.8% 4	1.4% 1	4.8% 4	2.8% 2	2.6% 2	4.9% 4	0.9% 1	1.6% 2	2.7% 3
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	0.0% 0	8.6% 9	4.1% 3	13.1% 11	13.9% 10	19.2% 15	23.2% 19	29.1% 34	53.5% 68	50.0% 55
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.0% 0	0.0% 0	1.4% 1	4.8% 4	1.4% 1	1.3% 1	1.2% 1	0.0% 0	2.4% 3	1.8% 2
	Phenicols Chloramphenicol (MIC ≥ 32)			1.9% 2	1.4% 1	6.0% 5	8.3% 6	1.3% 1	1.2% 1	0.0% 0	2.4% 3	3.6% 4
	Tetracyclines	3.0% 1	8.6% 9	9.6% 7	16.7% 14	16.7% 12	28.2% 22	25.6% 21	33.3% 39	55.1% 70	53.6% 59	

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 23. Resistance patterns of Salmonella ser. I 4.[5].12:i:- isolates. 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	33	105	73	84	72	78	82	117	127	110
Resistance Pattern										
No resistance detected	87.9%	85.7%	82.2%	76.2%	76.4%	66.7%	65.9%	62.4%	39.4%	38.2%
	29	90	60	64	55	52	54	73	50	42
Resistance ≥ 1 CLSI* class	12.1%	14.3%	17.8%	23.8%	23.6%	33.3%	34.1%	37.6%	60.6%	61.8%
	4	15	13	20	17	26	28	44	77	68
Resistance ≥ 2 CLSI* classes	3.0%	11.4%	6.8%	17.9%	16.7%	21.8%	28.0%	31.6%	54.3%	56.4%
	1	12	5	15	12	17	23	37	69	62
Resistance ≥ 3 CLSI* classes	3.0%	9.5%	5.5%	9.5%	12.5%	21.8%	26.8%	28.2%	51.2%	50.0%
	1	10	4	8	9	17	22	33	65	55
Resistance ≥ 4 CLSI* classes	0.0%	3.8%	2.7%	7.1%	9.7%	19.2%	19.5%	26.5%	48.8%	47.3%
	0	4	2	6	7	15	16	31	62	52
Resistance ≥ 5 CLSI* classes	0.0%	2.9%	1.4%	4.8%	6.9%	3.8%	0.0%	0.9%	2.4%	7.3%
	0	3	1	4	5	3	0	1	3	8
At least ACSSuT [†]	0.0%	1.9%	1.4%	3.6%	6.9%	1.3%	0.0%	0.0%	0.8%	3.6%
	0	2	1	3	5	1	0	0	1	4
At least ASSuT [‡] and not resistant to	0.0%	1.0%	0.0%	1.2%	1.4%	16.7%	18.3%	26.5%	46.5%	42.7%
chloramphenicol	0	1	0	1	1	13	15	31	59	47
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%	0.9%
	0	0	0	0	0	0	0	0	1	1
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	2.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	2	0	0	0	0	0	0
At least AAuCx**	3.0%	3.8%	1.4%	4.8%	2.8%	2.6%	3.7%	0.9%	1.6%	2.7%
	1	4	1	4	2	2	3	1	2	3
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.9%
susceptibility to ciprofloxacin ^{††}	0	0	0	0	0	0	0	0	0	1
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.8%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	1	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[‡] Includes isolates with MICs categorized as intermediate or resistant

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

^{**} AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC ≥0.12 μg/mL)

E. Salmonella ser. Infantis

Table 24. Minimum inhibitory concentrations (MICs) and resistance of *Salmonella* ser. Infantis isolates to antimicrobial agents, 2014 (N=73)

		115, 2014 (N=73)	Perc	entage	of isolates						Percent	tage of	all isola	tes wit	h MIC (ı	ua/m L)*	*				
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	2.7	1.4	[0.0 - 7.4]					28.8	65.8	1.4			2.7	1.4					
		Streptomycin	N/A	6.8	[2.2 - 15.3]								1.4	19.2	60.3	12.3	5.5		1.4		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	1.4	[0.0 - 7.4]							89.0	6.8	2.7				1.4			
	Cephems	Ceftiofur	0.0	4.1	[0.8 - 11.5]						2.7	89.0	4.1			4.1	-				
ı		Ceftriaxone	0.0	4.1	[0.8 - 11.5]					95.9					•		1.4		2.7		
	Macrolides	Azithromycin	N/A	0.0	[0.0 - 4.9]								15.1	76.7	6.8	1.4					
	Penicillins	Ampicillin	0.0	6.8	[2.2 - 15.3]							86.3	5.5	1.4				6.8			
	Quinolones	Ciprofloxacin	4.1	0.0	[0.0 - 4.9]	91.8	2.7	1.4	2.7		1.4						•				
		Nalidixic acid	N/A	4.1	[0.8 - 11.5]				•				47.9	47.9				4.1			
	Cephems	Cefoxitin	0.0	1.4	[0.0 - 7.4]	1							5.5	87.7	5.5			1.4			
	Folate pathway inhibitors	Sulfisoxazole	N/A	5.5	[1.5 - 13.4]											12.3	39.7	39.7	2.7		5.5
ш		Trimethoprim-sulfamethoxazole	N/A	2.7	[0.3 - 9.5]				97.3						2.7						
	Phenicols	Chloramphenicol	2.7	4.1	[0.8 - 11.5]									9.6	83.6	2.7	1.4	2.7			
	Tetracyclines	Tetracycline	1.4	8.2	[3.1 - 17.0]									90.4	1.4	ľ		8.2			

Figure 8. Antimicrobial resistance pattern for Salmonella ser. Infantis, 2014

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSi: Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

§ Percentage of isolates with were resistant

¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

* The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs are quality or less than the low est tested concentration. CLSI breakpoints were used when available.

Table 25. Percentage and number of Salmonella ser. Infantis isolates resistant to antimicrobial agents, 2005-2014

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total I	solates		30	22	26	51	44	53	63	90	76	73
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.0% 0	4.5% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.6% 1	0.0% 0	3.9% 3	1.4% 1
		Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	6.8% 3	0.0% 0	0.0% 0	2.2% 2	3.9% 3	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	3.3% 1	4.5% 1	3.8% 1	2.0% 1	6.8% 3	1.9% 1	4.8% 3	0.0% 0	3.9% 3	6.8% 5
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	9.1% 4	3.8% 2	1.6% 1	1.1% 1	3.9% 3	1.4% 1
١,	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	0.0% 0	3.8% 1	0.0% 0	11.4% 5	3.8% 2	1.6% 1	2.2% 2	6.6% 5	4.1% 3
Ι΄.	Macrolides	Ceftriaxone (MIC ≥ 4)	0.0% 0	0.0% 0	3.8% 1	0.0% 0	11.4% 5	3.8% 2	1.6% 1	2.2%	6.6% 5	4.1% 3
		Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0% 0	0.0%	0.0%	0.0%
	Penicillins	Ampicillin (MIC ≥ 32)	0.0%	0.0%	3.8% 1	2.0% 1	13.6% 6	5.7% 3	1.6% 1	2.2%	9.2% 7	6.8% 5
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0%	0.0% 0							
		Decreased susceptibility to ciprofloxacin [‡] (MIC ≥ 0.12)	3.3% 1	0.0%	0.0%	2.0% 1	2.3% 1	0.0% 0	1.6% 1	4.4% 4	3.9%	4.1% 3
		Nalidixic acid (MIC ≥ 32)	3.3% 1	0.0%	0.0% 0	2.0% 1	2.3% 1	0.0% 0	1.6% 1	4.4% 4	5.3% 4	4.1% 3
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0	0.0%	0.0% 0	0.0% 0	11.4% 5	3.8% 2	1.6% 1	1.1% 1	3.9% 3	1.4% 1
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	6.7% 2	9.1% 2	3.8% 1	3.9% 2	6.8% 3	7.5% 4	4.8% 3	3.3% 3	9.2% 7	5.5% 4
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.0% 0	0.0% 0	0.0% 0	2.0% 1	2.3% 1	1.9% 1	1.6% 1	4.4% 4	3.9% 3	2.7% 2
	Phenicols Chloramphenicol (MIC ≥ 32)		0.0% 0	0.0% 0	0.0% 0	2.0% 1	4.5% 2	3.8% 2	1.6% 1	1.1% 1	3.9% 3	4.1% 3
	Tetracyclines Tetracycline (MIC ≥ 16)			4.5% 1	7.7% 2	3.9% 2	11.4% 5	3.8% 2	4.8% 3	4.4% 4	13.2% 10	8.2% 6

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute † Includes isolates with MICs categorized as intermediate or resistant

Table 26. Resistance patterns of Salmonella ser. Infantis isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	30	22	26	51	44	53	63	90	76	73
Resistance Pattern										
No resistance detected	90.0%	90.9%	92.3%	96.1%	84.1%	88.7%	93.7%	92.2%	81.6%	84.9%
Resistance ≥ 1 CLSI* class	27 10.0%	20 9.1%	24 7.7%	49	37 15.9%	47	59	83 7.8%	62 18.4%	62 15.1%
Resistance 2 i CLSi class	3	9.1%	2	3.9% 2	7	11.3% 6	6.3% 4	7.0%	16.4%	15.1%
Resistance ≥ 2 CLSI* classes	3.3%	9.1%	7.7%	3.9%	15.9%	7.5%	6.3%	4.4%	11.8%	6.8%
	1	2	2	2	7	4	4	4	9	5
Resistance ≥ 3 CLSI* classes	3.3%	4.5%	7.7%	3.9%	13.6%	3.8%	6.3%	4.4%	10.5%	6.8%
	1	1	2	2	6	2	4	4	8	5
Resistance ≥ 4 CLSI* classes	0.0%	0.0%	0.0%	2.0%	6.8%	1.9%	3.2%	2.2%	5.3%	5.5%
	0	0	0	1	3	1	2	2	4	4
Resistance ≥ 5 CLSI* classes	0.0%	0.0%	0.0%	2.0%	4.5%	1.9%	0.0%	1.1%	5.3%	4.1%
	0	0	0	1	2	1	0	1	4	3
At least ACSSuT [†]	0.0%	0.0%	0.0%	2.0%	4.5%	1.9%	0.0%	0.0%	1.3%	1.4%
	0	0	0	1	2	1	0	0	1	1
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	1.4%
chloramphenicol	0	0	0	0	0	0	0	0	1	1
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	2.7%
	0	0	0	0	0	0	0	0	1	2
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	0.0%	4.5%	1.9%	0.0%	0.0%	1.3%	0.0%
	0	0	0	0	2	1	0	0	1	0
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	9.1%	3.8%	1.6%	1.1%	3.9%	1.4%
	0	0	0	0	4	2	1	1	3	1
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	2.6%	2.7%
susceptibility to ciprofloxacin ^{††}	0	0	0	0	0	0	0	1	2	2
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

 $[\]uparrow \uparrow \ \, \text{Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC \geq 0.12 \ \mu g/mL)}$

F. Salmonella ser. Heidelberg

Table 27. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2014 (N=71)

		iobiai agents, z		•																	
Pank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates						Percent	tage of	all isola	tes wit	h MIC (µg/m L)*	*				
Rank	OLOI Antimici obiai olass	Altillici obiai Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	15.5	[8.0 - 26.0]					8.5	54.9	19.7	1.4			2.8	12.7				
		Streptomycin	N/A	25.4	[15.8 - 37.1]										38.0	36.6	5.6	8.5	11.3		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.8	8.5	[3.2 - 17.5]							70.4	5.6	1.4	11.3	2.8		8.5			
	Cephems	Ceftiofur	0.0	8.5	[3.2 - 17.5]						21.1	69.0	1.4			8.5					
1		Ceftriaxone	0.0	8.5	[3.2 - 17.5]					91.5						5.6	1.4	1.4			
	Macrolides	Azithromycin	N/A	0.0	[0.0 - 5.1]									85.9	14.1						
	Penicillins	Ampicillin	0.0	22.5	[13.5 - 34.0]							69.0	7.0	1.4				22.5			
	Quinolones	Ciprofloxacin	4.2	0.0	[0.0 - 5.1]	93.0	1.4	1.4	1.4	1.4	1.4						_				
		Nalidixic acid	N/A	4.2	[0.9 - 11.9]				•			-	8.5	85.9	1.4		1.4	2.8			
	Cephems	Cefoxitin	0.0	8.5	[3.2 - 17.5]							26.8	56.3	8.5			4.2	4.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	15.5	[8.0 - 26.0]											29.6	43.7	11.3			15.5
II		Trimethoprim-sulfamethoxazole	N/A	2.8	[0.3 - 9.8]				97.2						2.8						
	Phenicols	Chloramphenicol	1.4	9.9	[4.0 - 19.3]								'	23.9	64.8	1.4		9.9			
	Tetracyclines	Tetracycline	2.8	15.5	[8.0 - 26.0]									81.7	2.8	1	2.8	12.7			

Figure 9. Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2014

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSi: Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

§ Percentage of isolates with were resistant

¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

* The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs are quality or less than the low est tested concentration. CLSI breakpoints were used when available.

Table 28. Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial

agents, 2005-2014

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
	Isolates		125	102	98	75	86	62	70	41	60	71
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	6.4% 8	4.9% 5	16.3% 16	14.7% 11	2.3% 2	8.1% 5	20.0% 14	7.3% 3	21.7% 13	15.5% 11
		Kanamycin (MIC ≥ 64)	12.8% 16	8.8% 9	11.2% 11	26.7% 20	20.9% 18	21.0% 13	21.4% 15	9.8% 4	26.7% 16	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	13.6% 17	11.8% 12	12.2% 12	30.7% 23	23.3% 20	25.8% 16	37.1% 26	17.1% 7	40.0% 24	25.4% 18
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	8.8% 11	9.8% 10	7.1% 7	8.0% 6	20.9% 18	24.2% 15	10.0% 7	22.0% 9	13.3% 8	8.5% 6
	Cephems	Ceftiofur (MIC ≥ 8)	8.8% 11	9.8% 10	7.1% 7	8.0% 6	20.9% 18	24.2% 15	8.6% 6	22.0% 9	15.0% 9	8.5% 6
		Ceftriaxone (MIC ≥ 4)	8.8% 11	9.8% 10	7.1% 7	8.0% 6	20.9% 18	24.2% 15	8.6% 6	22.0% 9	15.0% 9	8.5% 6
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0%	0.0%	0.0%	0.0%
	Penicillins	Ampicillin (MIC ≥ 32)	20.0% 25	18.6% 19	18.4% 18	28.0% 21	27.9% 24	38.7% 24	30.0% 21	26.8% 11	33.3% 20	22.5% 16
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0%	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0%	0.0%	0.0%	0.0%	0.0%
		Decreased susceptibility to ciprofloxacin [‡] (MIC ≥ 0.12)	0.8% 1	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	0.0%	2.4%	0.0%	4.2% 3
		Nalidixic acid (MIC ≥ 32)	0.8% 1	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0%	0.0%	0.0%	0.0%	4.2% 3
	Cephems	Cefoxitin (MIC ≥ 32)	8.8% 11	8.8% 9	7.1% 7	8.0% 6	19.8% 17	24.2% 15	8.6% 6	22.0% 9	15.0% 9	8.5% 6
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	8.0% 10	4.9% 5	18.4% 18	12.0% 9	7.0% 6	11.3% 7	7.1% 5	2.4% 1	15.0% 9	15.5% 11
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.8% 1	0.0% 0	0.0%	2.7% 2	3.5% 3	0.0%	1.4% 1	0.0%	1.7% 1	2.8%
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.8% 1	0.0% 0	3.1% 3	1.3% 1	4.7% 4	1.6% 1	4.3% 3	0.0% 0	6.7% 4	9.9% 7
	Tetracyclines	Tetracycline (MIC ≥ 16)	18.4% 23	13.7% 14	22.4% 22	36.0% 27	27.9% 24	22.6% 14	34.3% 24	14.6% 6	33.3% 20	15.5% 11

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 29. Resistance patterns of Salmonella ser. Heidelberg isolates, 2005-2014

Year	2005 125	2006 102	2007 98	2008 75	2009 86	2010 62	2011 70	2012 41	2013 60	2014 71
Total Isolates	125	102	98	/5	86	62	70	41	60	71
Resistance Pattern										
No resistance detected	62.4%	67.6%	58.2%	57.3%	60.5%	53.2%	55.7%	61.0%	46.7%	62.0%
	78	69	57	43	52	33	39	25	28	44
Resistance ≥ 1 CLSI* class	37.6%	32.4%	41.8%	42.7%	39.5%	46.8%	44.3%	39.0%	53.3%	38.0%
	47	33	41	32	34	29	31	16	32	27
Resistance ≥ 2 CLSI* classes	23.2%	21.6%	27.6%	40.0%	34.9%	41.9%	44.3%	39.0%	51.7%	26.8%
	29	22	27	30	30	26	31	16	31	19
Resistance ≥ 3 CLSI* classes	15.2%	12.7%	17.3%	28.0%	25.6%	33.9%	30.0%	26.8%	33.3%	21.1%
	19	13	17	21	22	21	21	11	20	15
Resistance ≥ 4 CLSI* classes	4.0%	2.0%	5.1%	13.3%	17.4%	11.3%	4.3%	2.4%	8.3%	12.7%
	5	2	5	10	15	7	3	1	5	9
Resistance ≥ 5 CLSI* classes	1.6%	2.0%	4.1%	6.7%	11.6%	9.7%	4.3%	0.0%	6.7%	11.3%
	2	2	4	5	10	6	3	0	4	8
At least ACSSuT [†]	0.0%	0.0%	3.1%	1.3%	3.5%	1.6%	1.4%	0.0%	6.7%	9.9%
	0	0	3	1	3	1	1	0	4	7
At least ASSuT [‡] and not resistant to	0.8%	0.0%	0.0%	6.7%	2.3%	6.5%	0.0%	0.0%	0.0%	0.0%
chloramphenicol	1	0	0	5	2	4	0	0	0	0
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	3.5%	0.0%	1.4%	0.0%	1.7%	1.4%
	0	0	0	0	3	0	1	0	1	1
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%	1.4%	0.0%	1.7%	0.0%
	0	0	0	0	1	0	1	0	1	0
At least AAuCx**	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	8.6%	22.0%	13.3%	8.5%
	11	10	7	6	18	15	6	9	8	6
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%
susceptibility to ciprofloxacin ^{††}	0	0	0	0	0	0	0	0	0	1
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[‡] Includes isolates with MICs categorized as intermediate or resistant

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

^{**} AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC ≥0.12 μg/mL)

2. Typhoidal Salmonella

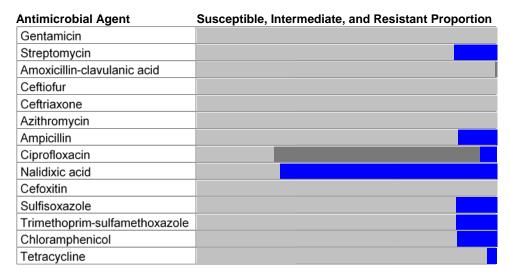

A. Salmonella ser. Typhi

Table 30. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2014 (N=335)

			Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (į	.g/m L)*	*				
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.1]					76.1	23.0	0.9									
		Streptomycin	N/A	14.3	[10.8 - 18.5]								0.6	2.4	43.6	39.1	3.0	0.6	10.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6	0.0	[0.0 - 1.1]							87.2		2.1	10.1	0.6					
	Cephems	Ceftiofur	0.0	0.0	[0.0 - 1.1]				0.3	6.0	77.0	15.8	0.9								
1		Ceftriaxone	0.0	0.0	[0.0 - 1.1]					100.0					.						
	Macrolides	Azithromycin	N/A	0.0	[0.0 - 1.1]							0.6	31.0	64.2	3.9	0.3					
	Penicillins	Ampicillin	0.0	12.8	[9.4 - 16.9]							86.6	0.6					12.8			
	Quinolones	Ciprofloxacin	68.7	5.4	[3.2 - 8.4]	23.9	0.3	1.8	13.7	41.8	13.1	0.3	0.6	0.3	4.2	•	•				
		Nalidixic acid	N/A	72.2	[67.1 - 77.0]						0.6	6.0	17.9	0.9	2.4		1.5	70.7			
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 1.1]						1.8	30.4	11.3	43.3	13.1						
	Folate pathway inhibitors	Sulfisoxazole	N/A	13.4	[10.0 - 17.6]											61.5	18.5	5.7		0.9	13.4
п		Trimethoprim-sulfamethoxazole	N/A	13.4	[10.0 - 17.6]				86.3				0.3		13.4						
	Phenicols	Chloramphenicol	0.0	13.1	[9.7 - 17.2]								3.0	69.9	14.0			13.1			
	Tetracyclines	Tetracycline	0.0	3.3	[1.6 - 5.8]									96.7			•	3.3			

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

Figure 10. Antimicrobial resistance pattern for Salmonella ser. Typhi, 2014

[†] CLSI: Clinical and Laboratory Standards Institute

Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists
 Percentage of isolates that were resistant

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent per

Table 31. Percentage and number of *Salmonella* ser. Typhi isolates resistant to antimicrobial agents, 2005–2014

Year	J 2017		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total	Isolates		318	323	400	407	363	446	383	327	278	335
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	Tested	Tested	Tested	Tested
		Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	0	0	0	0	0	0	0
		Kanamycin	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	Not
		(MIC ≥ 64)	0	0	0	0	0	1	0	0	0	Tested
		Streptomycin	13.2%	18.9%	15.8%	11.5%	10.7%	10.1%	10.7%	9.2%	7.9%	14.3%
		(MIC ≥ 32; pre-2014: MIC ≥ 64)	42	61	63	47	39	45	41	30	22	48
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.3%	0.3%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
	combinations	(MIC ≥ 32/16)	0	1	1	0	1	0	0	0	0	0
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 8)	0	0	0	0	0	0	0	0	0	0
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
	Macrolides	Azithromycin	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
	Penicillins	Ampicillin	13.2%	20.4%	17.0%	13.0%	12.7%	12.3%	11.2%	10.1%	10.4%	12.8%
		(MIC ≥ 32)	42	66	68	53	46	55	43	33	29	43
	Quinolones	Ciprofloxacin	0.3%	0.9%	2.0%	0.7%	3.9%	4.3%	7.3%	6.7%	8.6%	5.4%
		(MIC ≥ 1)	1	3	8	3	14	19	28	22	24	18
		Decreased susceptibility to ciprofloxacin [‡]	48.1%	54.8%	63.0%	58.0%	59.8%	69.1%	71.5%	68.5%	69.4%	74.0%
		(MIC ≥ 0.12)	153	177	252	236	217	308	274	224	193	248
		Nalidixic acid	48.4%	54.5%	62.0%	59.0%	59.8%	69.3%	70.8%	68.5%	67.3%	72.2%
		(MIC ≥ 32)	154	176	248	240	217	309	271	224	187	242
	Cephems	Cefoxitin	0.0%	0.3%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	0	1	2	0	0	0	0	0	0	0
	Folate pathway inhibitors	Sulfisoxazole	14.2%	20.7%	17.5%	13.0%	13.8%	12.3%	12.0%	10.4%	11.2%	13.4%
		(MIC ≥ 512)	45	67	70	53	50	55	46	34	31	45
ш		Trimethoprim-sulfamethoxazole	14.5%	20.7%	16.3%	12.5%	12.7%	11.9%	11.7%	10.1%	10.8%	13.4%
		(MIC ≥ 4/76)	46	67	65	51	46	53	45	33	30	45
	Phenicols	Chloramphenicol	13.2%	19.5%	15.8%	12.8%	11.8%	11.7%	10.7%	10.1%	9.4%	13.1%
		(MIC ≥ 32)	42	63	63	52	43	52	41	33	26	44
	Tetracyclines	Tetracycline	10.1%	8.4%	6.3%	4.4%	6.1%	3.6%	4.4%	1.5%	2.2%	3.3%
		(MIC ≥ 16)	32	27	25	18	22	16	17	5	6	11

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

Table 32. Resistance patterns of Salmonella ser. Typhi isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	318	323	400	407	363	446	383	327	278	335
Resistance Pattern										
No resistance detected	48.1%	40.2%	35.5%	38.3%	37.5%	29.4%	27.9%	30.6%	29.5%	24.5%
	153	130	142	156	136	131	107	100	82	82
Resistance ≥ 1 CLSI* class	51.9%	59.8%	64.5%	61.7%	62.5%	70.6%	72.1%	69.4%	70.5%	75.5%
	165	193	258	251	227	315	276	227	196	253
Resistance ≥ 2 CLSI* classes	14.5%	21.7%	18.0%	14.3%	14.6%	13.7%	12.5%	11.0%	11.5%	17.0%
	46	70	72	58	53	61	48	36	32	57
Resistance ≥ 3 CLSI* classes	13.8%	20.7%	17.5%	13.3%	13.2%	13.5%	12.3%	10.4%	10.4%	14.3%
	44	67	70	54	48	60	47	34	29	48
Resistance ≥ 4 CLSI* classes	12.9%	19.2%	17.0%	12.8%	12.7%	11.7%	11.2%	9.5%	9.0%	12.8%
	41	62	68	52	46	52	43	31	25	43
Resistance ≥ 5 CLSI* classes	11.9%	16.7%	14.8%	10.8%	10.2%	9.6%	9.9%	8.9%	7.2%	9.9%
	38	54	59	44	37	43	38	29	20	33
At least ACSSuT [†]	9.1%	5.9%	3.8%	2.5%	2.8%	1.6%	2.3%	0.9%	0.4%	0.9%
	29	19	15	10	10	7	9	3	1	3
At least ASSuT [‡] and not resistant to	0.0%	0.6%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%
chloramphenicol	0	2	1	0	0	0	0	0	1	0
At least ACT/S§	12.9%	18.6%	15.2%	12.0%	11.0%	10.5%	10.4%	9.2%	8.3%	11.3%
	41	60	61	49	40	47	40	30	23	38
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
susceptibility to ciprofloxacin ^{††}	0	0	0	0	0	0	0	0	0	0
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Includes isolates with MICs categorized as intermediate or resistant

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

^{**} AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC \geq 0.12 $\mu g/mL$)

B. Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C

Table 33. Frequency* of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C, 2014

Serotype*	n	(%)
Paratyphi A	108	(100)
Paratyphi B	0	(0)
Paratyphi C	0	(0)
Total	108	(100)

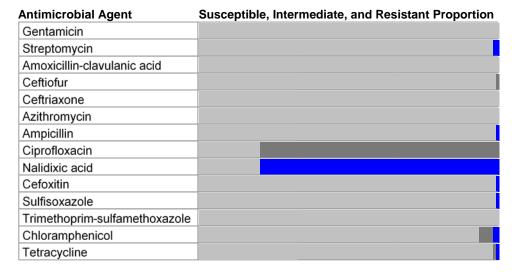

^{*}See Methods for varying sampling method by serotype

Table 34. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2014 (N=108)

		nobiai agents, z		•																	
Pank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates					1	Percent	age of	all isola	tes wit	h MIC (µg/m L)*	*				
Karik	OEGI Antimicrobiai Giass	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 3.4]					96.3	3.7										
		Streptomycin	N/A	1.9	[0.2 - 6.5]								0.9	1.9	55.6	39.8	0.9	0.9			
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.0	[0.0 - 3.4]							25.0	73.1	1.9	_						
	Cephems	Ceftiofur	0.9	0.0	[0.0 - 3.4]						0.9	97.2	0.9	0.9							
- 1		Ceftriaxone	0.0	0.0	[0.0 - 3.4]					99.1		0.9			-						
	Macrolides	Azithromycin	N/A	0.0	[0.0 - 3.4]								0.9	35.2	59.3	4.6					
	Penicillins	Ampicillin	0.0	0.9	[0.0 - 5.0]							0.9	93.5	4.6			0.9				
	Quinolones	Ciprofloxacin	79.6	0.0	[0.0 - 3.4]	12.0	7.4	0.9		1.9	77.8						-				
		Nalidixic acid	N/A	79.6	[70.8 - 86.8]									19.4	0.9			79.6			
	Cephems	Cefoxitin	0.0	0.9	[0.0 - 5.0]								0.9	76.9	21.3			0.9			
	Folate pathway inhibitors	Sulfisoxazole	N/A	0.9	[0.0 - 5.0]											25.9	60.2	11.1	1.9		0.9
11		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 3.4]				98.1	1.9											
	Phenicols	Chloramphenicol	4.6	1.9	[0.2 - 6.5]									1.9	91.7	4.6	1.9				
	Tetracyclines	Tetracycline	0.9	0.9	[0.0 - 5.0]									98.1	0.9	İ	-	0.9			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

Figure 11. Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, 2014

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

⁺ rescenses on sources with intermediate susceptionity; IVA if no MIC range of intermediate susceptibility exists

Percentage of isolates that were resistant

Proceedings of isolates that were resistant

Proceedings of isolates that were resistant

Proceedings of isolates that were resistant

Proceedings of isolates that were resistant

Proceedings of isolates that were resistant

Proceedings of isolates that proceedings of its control of its proceedings of its pro

The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Table 35. Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial

agents, 2005-2014

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
	solates	T	13	10	16	116	100	145	152	110	101	108
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.7% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0
		Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.7% 1	0.0% 0	0.0% 0	0.0% 0	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	2.1% 3	0.0% 0	0.0% 0	1.0% 1	1.9% 2
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0% 0	0.0%								
	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	0.0%								
		Ceftriaxone (MIC ≥ 4)	0.0% 0									
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0%	0.0%	0.0%	0.0% 0
	Penicillins	Ampicillin (MIC ≥ 32)	0.0%	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0%	0.0% 0	0.0%	0.9% 1
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0%	0.0% 0	0.0%	0.9% 1	0.0%	2.8% 4	2.0%	2.7% 3	4.0% 4	0.0%
		Decreased susceptibility to ciprofloxacin [‡] (MIC ≥ 0.12)	92.3% 12	80.0% 8	93.8% 15	88.8% 103	88.0% 88	92.4% 134	97.4% 148	95.5% 105	81.2% 82	79.6% 86
		Nalidixic acid (MIC ≥ 32)	92.3% 12	80.0% 8	93.8% 15	88.8% 103	86.0% 86	92.4% 134	96.7% 147	94.5% 104	80.2% 81	79.6% 86
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0	0.9% 1								
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	0.0%	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0%	0.0%	0.0%	0.9% 1
Ш		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.0%	0.0% 0	0.0%	0.0% 0	1.0% 1	2.1% 3	0.0%	0.0% 0	0.0%	0.0%
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0% 0	0.9% 1	0.0% 0	1.9% 2
	Tetracyclines	Tetracycline (MIC ≥ 16)	0.0% 0	0.0% 0	0.0% 0	0.9% 1	1.0% 1	1.4% 2	0.0% 0	0.9% 1	0.0% 0	0.9% 1

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 36. Resistance patterns of Salmonella ser. Paratyphi A isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	13	10	16	116	100	145	152	110	101	108
Resistance Pattern										
No resistance detected	7.7%	20.0%	6.3%	10.3%	13.0%	5.5%	3.3%	5.5%	19.8%	19.4%
	1	2	1	12	13	8	5	6	20	21
Resistance ≥ 1 CLSI* class	92.3%	80.0%	93.8%	89.7%	87.0%	94.5%	96.7%	94.5%	80.2%	80.6%
	12	8	15	104	87	137	147	104	81	87
Resistance ≥ 2 CLSI* classes	0.0%	0.0%	0.0%	0.0%	1.0%	2.8%	0.0%	0.9%	1.0%	3.7%
	0	0	0	0	1	4	0	1	1	4
Resistance ≥ 3 CLSI* classes	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%	0.9%	0.0%	2.8%
	0	0	0	0	1	2	0	1	0	3
Resistance ≥ 4 CLSI* classes	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	2	0	0	0	0
Resistance ≥ 5 CLSI* classes	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	1	0	0	0	0
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	1	0	0	0	0
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%	0.0%
chloramphenicol	0	0	0	0	0	1	0	0	0	0
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	1	0	0	0	0
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone resistant and decreased	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
susceptibility to ciprofloxacin ^{††}	0	0	0	0	0	0	0	0	0	0
At least azithromycin resistant and	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
decreased susceptibility to ciprofloxacin ^{††}	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[‡] Includes isolates with MICs categorized as intermediate or resistant

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

^{**} AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

^{††} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC ≥0.12 μg/mL)

3. Shigella

Table 37. Frequency of Shigella species, 2014

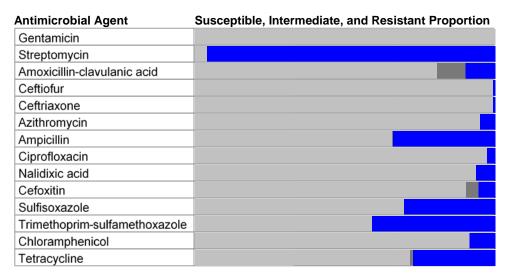

Species	n	(%)
Shigella sonnei	458	(86.3)
Shigella flexneri	68	(12.8)
Other	5	(0.9)
Total	531	(100)

Table 38. Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2014 (N=531)

D	or out A		Perc	entage	of isolates					I	Percent	tage of	all isola	tes wit	h MIC (į	µg/m L)*	*				
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 0.7]					0.2	6.0	83.1	10.7								
		Streptomycin	N/A	95.9	[93.8 - 97.4]								0.2	0.6	2.4	0.9	3.0	52.2	40.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	9.4	9.8	[7.4 - 12.6]							0.9	2.8	55.2	21.8	9.4	4.7	5.1			
	Cephems	Ceftiofur	0.0	0.4	[0.0 - 1.4]				5.5	73.3	10.7	10.0	0.2			0.4					
- 1		Ceftriaxone	0.0	0.4	[0.0 - 1.4]					94.7	4.7	0.2						0.2	0.2		
	Macrolides	Azithromycin ^{††}	N/A	4.7	[3.1 - 6.9]						2.6	3.2	11.3	73.1	4.9	0.4	4.5				
	Penicillins	Ampicillin	0.4	33.9	[29.9 - 38.1]							3.8	39.9	21.5	0.6	0.4		33.9			
	Quinolones	Ciprofloxacin	0.0	2.4	[1.3 - 4.2]	91.9		0.4	2.4	2.3	0.2	0.4		1.3	1.1						
		Nalidixic acid	N/A	6.2	[4.3 - 8.6]						2.3	70.4	18.1	2.1	0.9		0.4	5.8			
	Cephems	Cefoxitin	3.8	5.6	[3.8 - 8.0]							0.8	62.3	26.0	1.5	3.8	5.1	0.6			
	Folate pathway inhibitors	Sulfisoxazole	N/A	30.1	[26.3 - 34.2]											60.6	7.5	1.7			30.1
II		Trimethoprim-sulfamethoxazole	N/A	40.9	[36.7 - 45.2]				4.1	2.4	12.4	24.3	15.8	7.7	33.1						
	Phenicols	Chloramphenicol	0.2	8.5	[6.2 - 11.2]								5.5	77.8	8.1	0.2	0.6	7.9			
	Tetracyclines	Tetracycline	0.9	27.3	[23.6 - 31.3]									71.8	0.9	0.2	1.3	25.8			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically important; Rank II, Highly Important

Figure 12. Antimicrobial resistance pattern for Shigella, 2014

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Percentage of isolates that were resistant.

Percentage of isolates that were resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (O) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to

or less than the low est tested concentrations. CLSI breakpoints were used when available.

The Breakpoints for azithromycin resistance differ between Shigella flexneri (MIC≥16 µg/mL) and other Shigella species (MIC≥32 µg/mL). Double vertical bars indicating breakpoints for azithromycin resistance are ommitted here, but shown in subsequent species-specific Shigella MIC distribution tables.

Table 39. Percentage and number of Shigella isolates resistant to antimicrobial agents, 2005-2014

Year Total I	solates		2005 396	2006 402	2007 480	2008 551	2009 473	2010 411	2011 293	2012 353	2013 344	2014 531
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	1.0% 4	0.2% 1	0.8% 4	0.4% 2	0.6% 3	0.5% 2	0.7% 2	0.0% 0	0.3% 1	0.0% 0
		Kanamycin (MIC ≥ 64)	0.8% 3	0.0% 0	0.2% 1	0.5% 3	0.4% 2	0.0% 0	0.0% 0	0.3% 1	0.0% 0	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	68.7% 272	60.7% 244	73.3% 352	80.6% 444	89.2% 422	91.0% 374	87.7% 257	83.0% 293	91.6% 315	95.9% 509
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	1.0%	1.5%	0.4%	3.3% 18	2.1%	0.0%	2.0%	1.7% 6	2.9%	9.8% 52
- 1	Cephems	Ceftiofur (MIC ≥ 8)	0.5% 2	0.2% 1	0.0% 0	0.0% 0	0.6% 3	0.2% 1	1.7% 5	1.1% 4	1.2% 4	0.4% 2
		Ceftriaxone (MIC ≥ 4)	0.5% 2	0.2% 1	0.0% 0	0.0% 0	0.6% 3	0.2% 1	1.7% 5	1.1% 4	1.2% 4	0.4% 2
	Macrolides	Azithromycin (MIC ≥ 32; S. flexneri: MIC ≥ 16)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	3.4% 10	4.5% 16	3.8% 13	4.7% 25
	Penicillins	Ampicillin (MIC ≥ 32)	70.7% 280	62.4% 251	63.8% 306	62.4% 344	46.3% 219	40.9% 168	33.8% 99	25.5% 90	36.0% 124	33.9% 180
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0% 0	0.2% 1	0.2% 1	0.7% 4	0.6% 3	1.7% 7	2.4% 7	2.0% 7	3.5% 12	2.4% 13
		Nalidixic acid (MIC ≥ 32)	1.5% 6	3.5% 14	1.7% 8	1.6% 9	2.1% 10	4.4% 18	6.1% 18	4.5% 16	5.2% 18	6.2% 33
	Cephems	Cefoxitin (MIC ≥ 32)	0.5% 2	0.0% 0	0.0% 0	0.0% 0	0.6% 3	0.0% 0	1.0% 3	0.6% 2	1.7% 6	5.6% 30
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	57.6% 228	40.3% 162	25.8% 124	28.5% 157	30.4% 144	29.9% 123	44.7% 131	34.8% 123	48.0% 165	30.1% 160
Ш		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	53.3% 211	46.0% 185	25.8% 124	31.2% 172	40.4% 191	47.7% 196	66.9% 196	43.3% 153	49.7% 171	40.9% 217
	Phenicols	Chloramphenicol (MIC ≥ 32)	10.9% 43	10.9% 44	8.3% 40	6.9% 38	9.1% 43	10.0% 41	12.3% 36	11.3% 40	11.6% 40	8.5% 45
	Tetracyclines	Tetracycline (MIC ≥ 16)	38.4% 152	34.6% 139	25.6% 123	24.3% 134	29.4% 139	31.4% 129	40.6% 119	37.1% 131	43.6% 150	27.3% 145

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 40 Resistance patterns of Shigella isolates 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	396	402	480	551	473	411	293	353	344	531
Resistance Pattern										
No resistance detected	4.5%	6.5%	7.1%	4.5%	3.8%	3.6%	4.4%	7.4%	4.1%	1.9%
	18	26	34	25	18	15	13	26	14	10
Resistance ≥ 1 CLSI* class	95.5%	93.5%	92.9%	95.5%	96.2%	96.4%	95.6%	92.6%	95.9%	98.1%
	378	376	446	526	455	396	280	327	330	521
Resistance ≥ 2 CLSI* classes	72.0%	64.7%	65.4%	68.2%	68.1%	69.8%	74.4%	53.8%	61.0%	59.1%
	285	260	314	376	322	287	218	190	210	314
Resistance ≥ 3 CLSI* classes	58.6%	43.8%	27.7%	35.2%	36.4%	39.7%	51.2%	37.7%	53.5%	42.4%
	232	176	133	194	172	163	150	133	184	225
Resistance ≥ 4 CLSI* classes	19.2%	15.4%	11.7%	10.3%	12.9%	14.1%	22.2%	19.5%	23.8%	23.0%
	76	62	56	57	61	58	65	69	82	122
Resistance ≥ 5 CLSI* classes	4.8%	5.2%	4.6%	2.7%	6.3%	4.6%	9.9%	7.6%	9.9%	7.9%
	19	21	22	15	30	19	29	27	34	42
At least ACSSuT [†]	4.0%	5.0%	3.8%	2.2%	5.7%	4.4%	6.1%	5.7%	7.3%	4.7%
	16	20	18	12	27	18	18	20	25	25
At least ACT/S [‡]	6.3%	6.0%	4.0%	2.9%	6.6%	4.9%	7.8%	7.4%	8.1%	4.7%
	25	24	19	16	31	20	23	26	28	25
At least AT/S§	35.6%	26.6%	12.9%	16.0%	17.3%	17.8%	25.9%	15.6%	25.6%	15.3%
	141	107	62	88	82	73	76	55	88	81
At least ANT/S [¶]	0.5%	0.5%	0.8%	0.0%	0.2%	1.2%	2.4%	0.8%	1.2%	0.9%
	2	2	4	0	1	5	7	3	4	5
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.3%	0.2%	0.0%	0.0%	0.0%	0.2%	1.4%	0.8%	0.3%	0.4%
resistant	1	1	0	0	0	1	4	3	1	2
At least azithromycin and nalidixic acid	Not	Not	Not	Not	Not	Not	0.3%	0.3%	0.3%	0.6%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	1	1	1	3
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.2%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	1

^{*} CLSI: Clinical and Laboratory Standards Institute

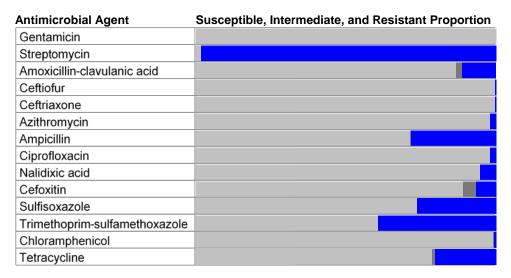
[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

[¶] ANT/S: resistance to AT/S, nalidixic acid

** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone


Table 41. Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to

antimicrobial agents, 2014 (N=458)

D	or out And the Control of the	A-12-1-1-1-1-1	Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (ug/m L)*					
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[8.0 - 0.0]						4.1	84.3	11.6								
		Streptomycin	N/A	98.3	[96.6 - 99.2]									0.2	0.7	0.9	2.0	57.4	38.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.2	11.1	[8.4 - 14.4]							0.7	0.2	62.2	23.6	2.2	5.2	5.9			
	Cephems	Ceftiofur	0.0	0.2	[0.0 - 1.2]				0.4	76.6	11.1	11.4	0.2			0.2					
- 1		Ceftriaxone	0.0	0.2	[0.0 - 1.2]					94.1	5.5	0.2			=				0.2		
	Macrolides	Azithromycin	N/A	2.0	[0.9 - 3.7]							0.2	8.3	83.6	5.7	0.2	2.0				
	Penicillins	Ampicillin	0.4	28.2	[24.1 - 32.5]							0.7	45.4	24.7	0.7	0.4		28.2			
	Quinolones	Ciprofloxacin	0.0	2.0	[0.9 - 3.7]	93.4		0.4	2.8	1.3				1.1	0.9						
		Nalidixic acid	N/A	5.0	[3.2 - 7.4]						2.4	76.9	12.9	2.0	0.9		0.4	4.6			
	Cephems	Cefoxitin	4.4	6.6	[4.5 - 9.2]							0.4	68.6	18.8	1.3	4.4	5.9	0.7			
	Folate pathway inhibitors	Sulfisoxazole	N/A	26.2	[22.2 - 30.5]											63.8	8.1	2.0			26.2
п		Trimethoprim-sulfamethoxazole	N/A	39.1	[34.6 - 43.7]				0.2	0.4	13.8	28.2	18.3	9.0	30.1						
	Phenicols	Chloramphenicol	0.2	0.7	[0.1 - 1.9]								1.5	88.4	9.2	0.2		0.7			
	Tetracyclines	Tetracycline	1.1	20.1	[16.5 - 24.1]									78.8	1.1	0.2	1.3	18.6			

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Ortically important; Rank II, Highly Important

Figure 13. Antimicrobial resistance pattern for Shigella sonnei, 2014

[†] CLSt: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

[#] Percentage of isolates with intermediate susceptibility; NVA if no MIC range of intermediate susceptibility exists

Percentage of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the lowest tested concentrations represent the percentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Table 42. Percentage and number of Shigella sonnei isolates resistant to antimicrobial agents, 2005-2014

Year		and manner or orngon	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
	solates		340	321	414	494	410	337	226	287	275	458
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in μg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	1.2% 4	0.0% 0	1.0% 4	0.4% 2	0.7% 3	0.0% 0	0.9% 2	0.0% 0	0.0% 0	0.0% 0
		Kanamycin (MIC ≥ 64)	0.0%	0.0% 0	0.2% 1	0.6% 3	0.2% 1	0.0% 0	0.0%	0.3% 1	0.0% 0	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	70.3% 239	61.7% 198	76.8% 318	82.4% 407	91.5% 375	96.1% 324	95.6% 216	89.2% 256	97.8% 269	98.3% 450
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clawlanic acid (MIC ≥ 32/16)	1.2% 4	1.9% 6	0.5% 2	3.2% 16	2.0% 8	0.0% 0	2.7% 6	1.7% 5	3.6% 10	11.1% 51
- 1	Cephems	Ceftiofur (MIC ≥ 8)	0.6% 2	0.0% 0	0.0% 0	0.0% 0	0.5% 2	0.3% 1	1.8% 4	1.0% 3	0.7% 2	0.2% 1
		Ceftriaxone (MIC ≥ 4)	0.6% 2	0.0% 0	0.0%	0.0%	0.5% 2	0.3% 1	1.8% 4	1.0% 3	0.7% 2	0.2% 1
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.9%	2.1%	1.1%	2.0%
	Penicillins	Ampicillin (MIC ≥ 32)	70.6% 240	62.6% 201	64.0% 265	61.3% 303	43.2% 177	36.8% 124	27.4% 62	18.1% 52	28.0% 77	28.2% 129
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0%	0.0%	0.0%	0.6%	0.0%	1.5% 5	1.3%	2.1% 6	2.9% 8	2.0% 9
		Nalidixic acid (MIC ≥ 32)	1.2% 4	2.8% 9	1.2% 5	1.6% 8	1.7% 7	3.3% 11	3.5% 8	4.2% 12	3.3% 9	5.0% 23
	Cephems	Cefoxitin (MIC ≥ 32)	0.6% 2	0.0% 0	0.0%	0.0% 0	0.7% 3	0.0%	1.3% 3	0.7% 2	2.2% 6	6.6% 30
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	57.9% 197	33.3% 107	20.0% 83	24.5% 121	23.9% 98	25.2% 85	39.4% 89	30.0% 86	45.1% 124	26.2% 120
Ш		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	55.0% 187	42.7% 137	22.0% 91	29.1% 144	36.1% 148	46.9% 158	68.6% 155	41.8% 120	47.6% 131	39.1% 179
	Phenicols	Chloramphenicol (MIC ≥ 32)	2.4% 8	0.9% 3	1.2% 5	0.8% 4	1.2% 5	1.5% 5	2.7% 6	3.1% 9	0.7% 2	0.7% 3
	Tetracyclines	Tetracycline (MIC ≥ 16)	29.4% 100	22.7% 73	16.2% 67	16.8% 83	20.7% 85	21.4% 72	29.6% 67	27.5% 79	34.9% 96	20.1% 92

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 43. Resistance patterns of Shigella sonnei isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	340	321	414	494	410	337	226	287	275	458
Resistance Pattern										
No resistance detected	4.4%	6.2%	6.8%	4.7%	3.7%	1.5%	0.9%	5.9%	0.7%	0.2%
	15	20	28	23	15	5	2	17	2	1
Resistance ≥ 1 CLSI* class	95.6%	93.8%	93.2%	95.3%	96.3%	98.5%	99.1%	94.1%	99.3%	99.8%
	325	301	386	471	395	332	224	270	273	457
Resistance ≥ 2 CLSI* classes	70.6%	59.8%	63.0%	65.4%	65.4%	68.0%	73.5%	49.1%	56.4%	55.5%
	240	192	261	323	268	229	166	141	155	254
Resistance ≥ 3 CLSI* classes	55.3%	35.8%	21.3%	29.4%	29.8%	32.6%	44.7%	31.0%	48.0%	36.9%
	188	115	88	145	122	110	101	89	132	169
Resistance ≥ 4 CLSI* classes	12.4%	8.1%	5.1%	5.3%	5.6%	6.5%	13.3%	11.5%	14.5%	15.7%
	42	26	21	26	23	22	30	33	40	72
Resistance ≥ 5 CLSI* classes	0.9%	0.0%	1.2%	0.4%	0.5%	0.6%	3.5%	2.8%	1.8%	2.6%
	3	0	5	2	2	2	8	8	5	12
At least ACSSuT [†]	0.3%	0.0%	0.5%	0.2%	0.0%	0.6%	0.4%	1.0%	0.4%	0.7%
	1	0	2	1	0	2	1	3	1	3
At least ACT/S [‡]	2.4%	0.9%	0.5%	0.8%	1.0%	0.9%	2.2%	2.8%	0.7%	0.7%
	8	3	2	4	4	3	5	8	2	3
At least AT/S§	35.6%	22.7%	9.4%	14.2%	12.2%	14.2%	22.1%	10.8%	19.3%	11.6%
	121	73	39	70	50	48	50	31	53	53
At least ANT/S [¶]	0.3%	0.0%	0.7%	0.0%	0.0%	0.0%	1.3%	1.0%	0.0%	0.4%
	1	0	3	0	0	0	3	3	0	2
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.3%	0.0%	0.0%	0.0%	0.0%	0.3%	1.3%	0.7%	0.0%	0.2%
resistant	1	0	0	0	0	1	3	2	0	1
At least azithromycin and nalidixic acid	Not	Not	Not	Not	Not	Not	0.0%	0.3%	0.0%	0.2%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	1	0	1
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

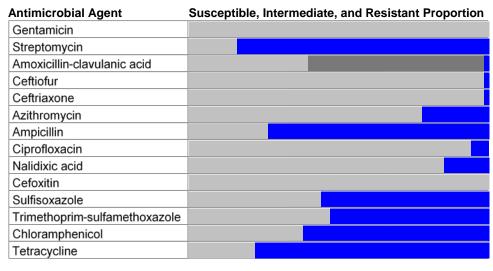
[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

[¶] ANT/S: resistance to AT/S, nalidixic acid

** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone


Table 44. Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial

agents, 2014 (N=68)

	01.01* 4	A. (1 1 1.1.1 A	Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (į	ug/m L)*	*				
Kank-	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 5.3]					1.5	19.1	73.5	5.9								
		Streptomycin	N/A	83.8	[72.9 - 91.6]								1.5	2.9	10.3	1.5	10.3	20.6	52.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	58.8	1.5	[0.0 - 7.9]							2.9	17.6	8.8	10.3	58.8	1.5				
	Cephems	Ceftiofur	0.0	1.5	[0.0 - 7.9]				33.8	54.4	8.8	1.5				1.5					
- 1		Ceftriaxone	0.0	1.5	[0.0 - 7.9]					98.5					='			1.5			
	Macrolides	Azithromycin	N/A	22.1	[12.9 - 33.8]						20.6	22.1	27.9	7.4		1.5	20.6				
	Penicillins	Ampicillin	0.0	73.5	[61.4 - 83.5]							22.1	2.9	1.5				73.5			
	Quinolones	Ciprofloxacin	0.0	5.9	[1.6 - 14.4]	82.4				7.4	1.5	2.9		2.9	2.9						
		Nalidixic acid	N/A	14.7	[7.3 - 25.4]							27.9	54.4	1.5	1.5			14.7			
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 5.3]								25	72.1	2.9						
	Folate pathway inhibitors	Sulfisoxazole	N/A	55.9	[43.3 - 67.9]											39.7	4.4				55.9
II		Trimethoprim-sulfamethoxazole	N/A	52.9	[40.4 - 65.2]				26.5	16.2	4.4				52.9					•	
	Phenicols	Chloramphenicol	0.0	61.8	[49.2 - 73.3]								29.4	7.4	1.5		4.4	57.4			
	Tetracyclines	Tetracycline	0.0	77.9	[66.2 - 87.1]									22.1		İ	1.5	76.5			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

Figure 14. Antimicrobial resistance pattern for Shigella flexneri, 2014

[#] Percentage of isolates with intermediate susceptibility; NVA if no MIC range of intermediate susceptibility exists

Percentage of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the lowest tested concentrations represent the percentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Table 45. Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2005-

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total I	solates		52	74	61	49	57	61	58	59	64	68
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0% 0	0.0%	0.0%	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.0%	1.4% 1	0.0%	0.0% 0	0.0% 0	3.3% 2	0.0%	0.0% 0	1.6% 1	0.0% 0
		Kanamycin (MIC ≥ 64)	3.8%	0.0% 0	0.0% 0	0.0% 0	1.8% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	57.7% 30	58.1% 43	52.5% 32	63.3% 31	73.7% 42	68.9% 42	58.6% 34	55.9% 33	67.2% 43	83.8% 57
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0%	0.0% 0	0.0% 0	4.1% 2	3.5% 2	0.0% 0	0.0% 0	1.7% 1	0.0% 0	1.5% 1
- 1	Cephems	Ceftiofur (MIC ≥ 8)	0.0%	1.4% 1	0.0%	0.0% 0	1.8% 1	0.0% 0	1.7% 1	1.7% 1	3.1% 2	1.5% 1
		Ceftriaxone (MIC ≥ 4)	0.0%	1.4% 1	0.0%	0.0%	1.8% 1	0.0%	1.7% 1	1.7% 1	3.1% 2	1.5% 1
	Macrolides	Azithromycin (MIC ≥ 16)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	12.1% 7	16.9% 10	15.6% 10	22.1% 15
	Penicillins	Ampicillin (MIC ≥ 32)	75.0% 39	63.5% 47	63.9% 39	75.5% 37	70.2% 40	67.2% 41	60.3% 35	61.0% 36	70.3% 45	73.5% 50
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0%	1.4% 1	1.6% 1	2.0% 1	3.5% 2	3.3% 2	6.9% 4	1.7% 1	6.3% 4	5.9% 4
		Nalidixic acid (MIC ≥ 32)	3.8% 2	5.4% 4	4.9% 3	2.0% 1	3.5% 2	11.5% 7	12.1% 7	5.1% 3	12.5% 8	14.7% 10
	Cephems	Cefoxitin (MIC ≥ 32)	0.0%	0.0% 0								
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	55.8% 29	68.9% 51	62.3% 38	63.3% 31	73.7% 42	55.7% 34	60.3% 35	55.9% 33	59.4% 38	55.9% 38
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	44.2% 23	59.5% 44	49.2% 30	49.0% 24	68.4% 39	55.7% 34	58.6% 34	50.8% 30	57.8% 37	52.9% 36
	Phenicols	Chloramphenicol (MIC ≥ 32)	65.4% 34	54.1% 40	55.7% 34	65.3% 32	66.7% 38	55.7% 34	50.0% 29	52.5% 31	59.4% 38	61.8% 42
	Tetracyclines	Tetracycline (MIC ≥ 16)	94.2% 49	83.8% 62	83.6% 51	87.8% 43	87.7% 50	86.9% 53	79.3% 46	84.7% 50	81.3% 52	77.9% 53

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 46. Resistance patterns of Shigella flexneri isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	52	74	61	49	57	61	58	59	64	68
Resistance Pattern										
No resistance detected	5.8%	5.4%	9.8%	4.1%	5.3%	9.8%	17.2%	11.9%	15.6%	8.8%
	3	4	6	2	3	6	10	7	10	6
Resistance ≥ 1 CLSI* class	94.2%	94.6%	90.2%	95.9%	94.7%	90.2%	82.8%	88.1%	84.4%	91.2%
	49	70	55	47	54	55	48	52	54	62
Resistance ≥ 2 CLSI* classes	80.8%	85.1%	80.3%	93.9%	86.0%	83.6%	77.6%	76.3%	81.3%	85.3%
	42	63	49	46	49	51	45	45	52	58
Resistance ≥ 3 CLSI* classes	78.8%	75.7%	68.9%	85.7%	82.5%	80.3%	72.4%	69.5%	76.6%	80.9%
	41	56	42	42	47	49	42	41	49	55
Resistance ≥ 4 CLSI* classes	65.4%	47.3%	55.7%	57.1%	63.2%	57.4%	56.9%	59.3%	62.5%	72.1%
	34	35	34	28	36	35	33	35	40	49
Resistance ≥ 5 CLSI* classes	30.8%	28.4%	27.9%	26.5%	49.1%	27.9%	32.8%	32.2%	45.3%	44.1%
	16	21	17	13	28	17	19	19	29	30
At least ACSSuT [†]	28.8%	27.0%	26.2%	22.4%	47.4%	26.2%	27.6%	28.8%	37.5%	32.4%
	15	20	16	11	27	16	16	17	24	22
At least ACT/S [‡]	32.7%	28.4%	26.2%	24.5%	47.4%	27.9%	29.3%	30.5%	40.6%	32.4%
	17	21	16	12	27	17	17	18	26	22
At least AT/S§	38.5%	43.2%	36.1%	32.7%	52.6%	41.0%	41.4%	37.3%	51.6%	39.7%
	20	32	22	16	30	25	24	22	33	27
At least ANT/S [¶]	1.9%	2.7%	1.6%	0.0%	1.8%	8.2%	5.2%	0.0%	6.2%	4.4%
	1	2	1	0	1	5	3	0	4	3
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	1.7%	1.7%	1.6%	1.5%
resistant	0	1	0	0	0	0	1	1	1	1
At least azithromycin and nalidixic acid	Not	Not	Not	Not	Not	Not	0.0%	0.0%	1.6%	2.9%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	1	2
At least azithromycin and ceftriaxone	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%	1.5%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0	1

^{*} CLSI: Clinical and Laboratory Standards Institute

 $[\]uparrow \ \text{ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline}$

 $[\]ddagger \ \text{ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole}$

[¶] ANT/S: resistance to AT/S, nalidixic acid

** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

4. Escherichia coli O157

Table 47. Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2014 (N=155)

			Perc	entage	of isolates					1	Percent	tage of	all isola	tes wit	h MIC (µg/m L)*	*				
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 2.4]					9.7	63.2	25.2	1.9								
		Streptomycin	N/A	5.8	[2.7 - 10.7]								7.1	74.8	9.7	2.6	1.3	2.6	1.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6	0.0	[0.0 - 2.4]								3.9	94.2	1.3	0.6					
	Cephems	Ceftiofur	0.0	0.0	[0.0 - 2.4]				0.6	5.8	93.5										
1		Ceftriaxone	0.0	0.0	[0.0 - 2.4]					100.0					-						
	Macrolides	Azithromycin	N/A	0.0	[0.0 - 2.4]						0.6	14.2	78.7	6.5							
	Penicillins	Ampicillin	0.0	1.9	[0.4 - 5.6]							0.6	64.5	32.9				1.9			
	Quinolones	Ciprofloxacin	0.0	0.6	[0.0 - 3.5]	94.2			0.6	3.9	0.6				0.6		-				
		Nalidixic acid	N/A	5.8	[2.7 - 10.7]						0.6		74.2	19.4			0.6	5.2			
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 2.4]							0.6	3.2	74.2	21.9						
	Folate pathway inhibitors	Sulfisoxazole	N/A	7.1	[3.6 - 12.3]											79.4	11.0	2.6			7.1
п		Trimethoprim-sulfamethoxazole	N/A	1.3	[0.1 - 4.6]				96.8	1.9					1.3						
	Phenicols	Chloramphenicol	1.9	0.0	[0.0 - 2.4]								1.3	11.0	85.8	1.9					
	Tetracyclines	Tetracycline	1.3	7.1	[3.6 - 12.3]									91.6	1.3	1	1.3	5.8			

Figure 15. Antimicrobial resistance pattern for Escherichia coli O157, 2014

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSi: Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

§ Percentage of isolates with were resistant

¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

* The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs are quality or less than the low est tested concentration. CLSI breakpoints were used when available.

Table 48. Percentage and number of *Escherichia coli* O157 isolates resistant to antimicrobial agents, 2005-2014

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total I	solates		194	233	189	161	187	170	162	166	177	155
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0%	0.0%	0.0%	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.5% 1	0.0% 0	0.0%	1.2% 2	0.5% 1	0.6% 1	0.6% 1	0.6% 1	0.6% 1	0.0% 0
		Kanamycin (MIC ≥ 64)	0.5% 1	0.4% 1	0.0%	0.0%	0.5% 1	1.2% 2	1.9% 3	0.0%	0.0% 0	Not Tested
		Streptomycin (MIC ≥ 32; pre-2014: MIC ≥ 64)	2.1% 4	2.6% 6	2.1% 4	1.9% 3	4.8% 9	2.4% 4	4.3% 7	2.4% 4	6.8% 12	5.8% 9
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0%	1.3% 3	0.0%	0.6% 1	0.5% 1	0.0% 0	0.0%	0.6% 1	1.1% 2	0.0% 0
1	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	1.3% 3	0.0% 0	0.6% 1	0.0% 0	0.0% 0	0.0% 0	0.6% 1	0.6% 1	0.0% 0
		Ceftriaxone (MIC ≥ 4)	0.0%	1.3% 3	0.0%	0.6% 1	0.0%	0.0% 0	0.0%	0.6% 1	0.6% 1	0.0%
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0%	0.6% 1	0.0% 0	0.0%
	Penicillins	Ampicillin (MIC ≥ 32)	4.1% 8	2.6% 6	2.1% 4	3.7% 6	4.3% 8	1.8% 3	3.7% 6	1.8% 3	4.5% 8	1.9% 3
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0%	0.4% 1	0.5% 1	0.0%	0.5% 1	0.0% 0	0.6% 1	0.0%	0.6% 1	0.6% 1
		Nalidixic acid (MIC ≥ 32)	1.5% 3	2.1% 5	2.1% 4	1.2% 2	2.1% 4	1.2% 2	1.2% 2	2.4% 4	2.8% 5	5.8% 9
	Cephems	Cefoxitin (MIC ≥ 32)	0.0%	1.3% 3	0.0%	1.2% 2	0.5% 1	0.0% 0	0.0%	0.6% 1	1.1% 2	0.0% 0
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	6.7% 13	3.0% 7	2.6% 5	3.1% 5	6.4% 12	4.7% 8	4.9% 8	3.6% 6	5.6% 10	7.1% 11
П		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.5% 1	0.4% 1	1.1% 2	1.2% 2	4.3% 8	1.2% 2	2.5% 4	1.2% 2	1.7% 3	1.3% 2
	Phenicols	Chloramphenicol (MIC ≥ 32)	1.0%	1.3% 3	0.5% 1	0.6% 1	1.1% 2	0.6% 1	1.2% 2	1.8% 3	2.8% 5	0.0% 0
	Tetracyclines	Tetracycline (MIC ≥ 16)	8.8% 17	4.7% 11	4.2% 8	1.9% 3	7.5% 14	4.7% 8	4.9% 8	5.4% 9	8.5% 15	7.1% 11

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 49. Resistance patterns of Escherichia coli O157 isolates, 2005-2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	194	233	189	161	187	170	162	166	177	155
Resistance Pattern										
No resistance detected	88.1%	91.8%	92.6%	91.9%	89.8%	93.5%	92.6%	92.2%	84.7%	87.1%
	171	214	175	148	168	159	150	153	150	135
Resistance ≥ 1 CLSI* class	11.9%	8.2%	7.4%	8.1%	10.2%	6.5%	7.4%	7.8%	15.3%	12.9%
	23	19	14	13	19	11	12	13	27	20
Resistance ≥ 2 CLSI* classes	6.7%	4.7%	2.6%	3.1%	7.5%	4.7%	4.9%	4.2%	7.9%	6.5%
	13	11	5	5	14	8	8	7	14	10
Resistance ≥ 3 CLSI* classes	5.2%	3.4%	2.1%	2.5%	5.9%	4.1%	4.3%	3.0%	6.2%	5.8%
	10	8	4	4	11	7	7	5	11	9
Resistance ≥ 4 CLSI* classes	1.0%	2.1%	1.1%	1.2%	3.7%	0.6%	2.5%	1.8%	2.3%	2.6%
	2	5	2	2	7	1	4	3	4	4
Resistance ≥ 5 CLSI* classes	0.0%	0.9%	0.5%	0.0%	0.5%	0.0%	0.6%	1.2%	1.1%	0.0%
	0	2	1	0	1	0	1	2	2	0
At least ACSSuT [†]	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	0.6%	1.2%	1.1%	0.0%
	0	2	0	0	0	0	1	2	2	0
At least ACT/S [‡]	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	1.2%	0.6%	1.1%	0.0%
	0	0	0	1	0	0	2	1	2	0
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	1	0	0	0	0	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

5. Campylobacter

Table 50. Frequency of Campylobacter species, 2014

Species	n	(%)
Campylobacter jejuni	1251	(86.6)
Campylobacter coli	146	(10.1)
Other	47	(3.3)
Total	1444	(100)

Table 51. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2014 (N=1251)

			Perd	centage	of isolates						Percen	tage of	all isola	tes wit	h MIC (µg/m L)*					
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	N/A	1.4	[0.8 - 2.2]					0.2	31.7	63.9	3.0					1.4			
	Ketolide	Telithromycin	N/A	1.8	[1.2 - 2.7]				0.1	3.2	19.3	54.6	19.4	1.5	0.1	1.8					
١.	Macrolides	Azithromycin	N/A	1.8	[1.2 - 2.7]	0.1	13.4	54.0	27.7	3.0									1.8		
'		Erythromycin	N/A	1.8	[1.2 - 2.7]			0.1	1.6	21.9	52.2	20.1	2.2	0.2					1.8		
	Quinolones	Ciprofloxacin	N/A	26.7	[24.3 - 29.2]		0.3	19.5	44.9	7.4	1.1	0.1	0.2	0.6	10.4	9.0	3.7	1.8	0.9		
		Nalidixic acid	N/A	26.5	[24.1 - 29.1]							-		58.3	13.4	1.8	0.2	0.2	26.2		
	Lincosamides	Clindamycin	N/A	2.6	[1.8 - 3.6]		0.1	8.1	57.5	26.9	5.0	0.6	0.1	0.3	0.6	0.3	0.7				
II	Phenicols	Florfenicol	N/A	1.0	[0.5 - 1.7]						2.7	75.7	17.1	3.5	1.0						
	Tetracyclines	Tetracycline	N/A	48.6	[45.8 - 51.4]			0.2	17.7	26.5	5.0	2.0	0.5	0.1	0.1	0.1	0.6	6.1	41.2		

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute

Figure 16. Antimicrobial resistance pattern for Campylobacter jejuni, 2014

Antimicrobial Agent Susceptible, Intermediate, and Resistant Proportion Gentamicin Telithromycin Azithromycin Erythromycin Ciprofloxacin Nalidixic acid Clindamycin Florfenicol Tetracycline

[‡] Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

[#] Percentage of isolates with intermediate susceptibility; WA if no MC range of intermediate susceptibility exists

Percentage of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitive Plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentration to the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs greater than the highest concentration. ECOFFs were used when available.

Table 52. Percentage and number of Campylobacter jejuni isolates resistant to antimicrobial agents, 2005-2014

Year Total I	solates		2005 788	2006 709	2007 991	2008 1033	2009 1350	2010 1159	2011 1282	2012 1190	2013 1183	2014 1251
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Gentamicin (MIC ≥ 4)	0.1% 1	0.0% 0	0.8% 8	1.1% 11	0.6% 8	0.6% 7	1.0% 13	1.0% 12	1.6% 19	1.4% 17
	Ketolides	Telithromycin (MIC ≥ 8)	0.8% 6	1.0% 7	1.3% 13	2.2% 23	1.9% 25	2.4% 28	2.6% 33	1.4% 17	2.0% 24	1.8% 23
	Macrolides	Azithromycin (MIC ≥ 0.5)	2.7% 21	1.3% 9	1.8% 18	2.6% 27	1.9% 26	2.7% 31	4.9% 63	1.8% 21	2.2% 26	1.8% 23
'		Erythromycin (MIC ≥ 8)	1.5% 12	0.8% 6	1.6% 16	2.2% 23	1.5% 20	1.2% 14	1.8% 23	1.5% 18	2.2% 26	1.8% 23
	Quinolones	Ciprofloxacin (MIC ≥ 1)	21.6% 170	19.6% 139	26.0% 258	22.6% 233	23.1% 312	22.0% 255	24.1% 309	25.3% 301	22.2% 263	26.7% 334
		Nalidixic acid (MIC ≥ 32)	22.5% 177	19.5% 138	26.4% 262	22.8% 236	23.1% 312	22.1% 256	24.1% 309	25.5% 303	22.1% 262	26.5% 332
	Lincosamides	Clindamycin (MIC ≥ 1)	3.2% 25	2.4% 17	3.4% 34	3.8% 39	2.9% 39	14.1% 163	21.4% 274	10.8% 129	3.2% 38	2.6% 32
II	Phenicols	Florfenicol (MIC ≥ 8)	0.4% 3	0.0% 0	0.0% 0	0.6% 6	0.6% 8	1.5% 17	2.1% 27	1.4% 17	1.2% 14	1.0% 12
	Tetracyclines	Tetracycline (MIC ≥ 2)	43.7% 344	48.7% 345	45.6% 452	45.3% 468	44.1% 595	44.2% 512	48.4% 621	47.8% 569	49.1% 581	48.6% 608

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 53. Resistance patterns of Campylobacter jejuni isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	788	709	991	1033	1350	1159	1282	1190	1183	1251
Resistance Pattern										
No resistance detected	46.3%	42.5%	44.3%	45.2%	45.9%	39.5%	33.0%	38.7%	44.5%	44.2%
	365	301	439	467	620	458	423	460	527	553
Resistance ≥ 1 CLSI* class	53.7%	57.5%	55.7%	54.8%	54.1%	60.5%	67.0%	61.3%	55.5%	55.8%
	423	408	552	566	730	701	859	730	656	698
Resistance ≥ 2 CLSI* classes	16.2%	13.1%	18.8%	15.8%	15.1%	19.0%	23.6%	20.0%	17.2%	20.9%
	128	93	186	163	204	220	302	238	204	262
Resistance ≥ 3 CLSI* classes	2.4%	1.3%	1.9%	3.5%	2.7%	4.2%	7.5%	4.8%	3.1%	3.0%
	19	9	19	36	37	49	96	57	37	37
Resistance ≥ 4 CLSI* classes	1.0%	0.7%	1.3%	1.9%	1.6%	1.9%	3.6%	1.8%	2.2%	2.0%
	8	5	13	20	21	22	46	21	26	25
Resistance ≥ 5 CLSI* classes	0.0%	0.3%	1.1%	1.5%	1.0%	1.0%	1.9%	0.9%	1.8%	1.2%
	0	2	11	16	13	12	24	11	21	15
At least macrolide and quinolone resistant	1.4%	0.7%	1.4%	1.5%	1.2%	1.3%	3.0%	1.3%	1.9%	1.4%
	11	5	14	15	16	15	38	16	22	18

^{*} CLSI: Clinical and Laboratory Standards Institute

Table 54. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to

antimicrobial agents, 2014 (N=146)

	CLSI [†] Antimicrobial Class		Perc	entage	of isolates						Percent	age of	all isola	tes witl	MIC (.g/m L)*	*				
Rank*	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	N/A	3.4	[1.1 - 7.8]						8.9	67.8	19.9					3.4			
	Ketolide	Telithromycin	N/A	19.9	[13.7 - 27.3]				1.4	11.6	15.1	15.1	18.5	18.5	9.6	10.3					
١.	Macrolides	Azithromycin	N/A	10.3	[5.9 - 16.4]		2.1	13.7	37.7	31.5	4.8								10.3		
'		Erythromycin	N/A	10.3	[5.9 - 16.4]					4.1	28.8	19.9	21.9	14.4	0.7				10.3		
	Quinolones	Ciprofloxacin	N/A	35.6	[27.9 - 44.0]			8.2	26.0	20.5	9.6		0.7	1.4	6.8	15.1	8.2	3.4			
		Nalidixic acid	N/A	35.6	[27.9 - 44.0]							_		21.9	35.6	6.8		2.1	33.6		
	Lincosamides	Clindamycin	N/A	13.7	[8.6 - 20.4]				11.0	28.8	30.8	15.8	2.7	0.7	6.2	2.7	1.4				
ш	Phenicols	Florfenicol	N/A	0.0	[0.0 - 2.5]						4.1	43.8	37.7	14.4							
	Tetracyclines	Tetracycline	N/A	50.0	[41.6 - 58.4]				3.4	18.5	17.8	8.2	2.1		0.7	0.7	1.4		47.3		

Figure 17. Antimicrobial resistance pattern for Campylobacter coli, 2014

Antimicrobial Agent Susceptible, Intermediate, and Resistant Proportion Gentamicin Telithromycin Azithromycin Erythromycin Ciprofloxacin Nalidixic acid Clindamycin Florfenicol Tetracycline

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute † Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists § Percentage of isolates with were resistant ¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method * The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. ECOFFs were used when available.

Table 55. Percentage and number of *Campylobacter coli* isolates resistant to antimicrobial agents, 2005–2014

Year Total I	solates		2005 98	2006 96	2007 104	2008 115	2009 141	2010 115	2011 149	2012 134	2013 142	2014 146
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint in µg/mL)										
	Aminoglycosides	Gentamicin (MIC ≥ 4)	3.1% 3	1.0% 1	0.0%	1.7% 2	3.5% 5	12.2% 14	12.1% 18	6.0% 8	2.1% 3	3.4% 5
	Ketolides	Telithromycin (MIC ≥ 8)	8.2% 8	8.3% 8	9.6% 10	10.4% 12	7.1% 10	13.9% 16	10.7% 16	11.2% 15	21.8% 31	19.9% 29
١.	Macrolides	Azithromycin (MIC ≥ 1)	4.1% 4	9.4% 9	5.8% 6	10.4% 12	3.5% 5	7.0% 8	5.4% 8	9.0% 12	16.9% 24	10.3% 15
'		Erythromycin (MIC ≥ 16)	4.1% 4	8.3% 8	5.8% 6	10.4% 12	3.5% 5	5.2% 6	2.7% 4	9.0% 12	17.6% 25	10.3% 15
	Quinolones	Ciprofloxacin (MIC ≥ 1)	24.5% 24	21.9% 21	29.8% 31	29.6% 34	24.1% 34	30.4% 35	36.2% 54	33.6% 45	34.5% 49	35.6% 52
		Nalidixic acid (MIC ≥ 32)	26.5% 26	22.9% 22	29.8% 31	29.6% 34	24.1% 34	30.4% 35	36.2% 54	33.6% 45	35.2% 50	35.6% 52
	Lincosamides	Clindamycin (MIC ≥ 2)	8.2% 8	13.5% 13	9.6% 10	14.8% 17	7.8% 11	17.4% 20	16.8% 25	16.4% 22	21.1% 30	13.7% 20
п	Phenicols	Florfenicol (MIC ≥ 8)	1.0% 1	0.0% 0	0.0%	0.0%	0.0% 0	0.0%	0.7% 1	1.5% 2	0.7% 1	0.0% 0
	Tetracyclines	Tetracycline (MIC ≥ 4)	31.6% 31	39.6% 38	44.2% 46	39.1% 45	45.4% 64	50.4% 58	50.3% 75	45.5% 61	51.4% 73	50.0% 73

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 56. Resistance patterns of Campylobacter coli isolates, 2005–2014

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Total Isolates	98	96	104	115	141	115	149	134	142	146
Resistance Pattern										
No resistance detected	50.0%	43.8%	38.5%	43.5%	44.0%	33.9%	30.9%	42.5%	31.7%	28.1%
	49	42	40	50	62	39	46	57	45	41
Resistance ≥ 1 CLSI* class	50.0%	56.3%	61.5%	56.5%	56.0%	66.1%	69.1%	57.5%	68.3%	71.9%
	49	54	64	65	79	76	103	77	97	105
Resistance ≥ 2 CLSI* classes	19.4%	19.8%	22.1%	28.7%	21.3%	38.3%	43.0%	32.8%	35.9%	34.2%
	19	19	23	33	30	44	64	44	51	50
Resistance ≥ 3 CLSI* classes	7.1%	9.4%	8.7%	8.7%	7.1%	13.9%	14.8%	12.7%	21.1%	13.7%
	7	9	9	10	10	16	22	17	30	20
Resistance ≥ 4 CLSI* classes	4.1%	6.3%	5.8%	7.0%	4.3%	7.0%	4.7%	9.0%	14.1%	6.2%
	4	6	6	8	6	8	7	12	20	9
Resistance ≥ 5 CLSI* classes	2.0%	2.1%	1.0%	3.5%	2.8%	3.5%	1.3%	6.0%	8.5%	5.5%
	2	2	1	4	4	4	2	8	12	8
At least macrolide and quinolone resistant	2.0%	4.2%	1.9%	4.3%	2.8%	3.5%	3.4%	8.2%	9.2%	5.5%
•	2	4	2	5	4	4	5	11	13	8

^{*} CLSI: Clinical and Laboratory Standards Institute

6. Vibrio species other than V. cholerae

Table 57. Frequency of Vibrio species other than V. cholerae, 2009–2014

	20	09	20	10	20	11	20	12	20	13*	20	14*
Species	n	(%)										
Vibrio parahaemolyticus	149	(53.0)	179	(54.4)	201	(50.5)	370	(61.4)	315	(52.1)	200	(40.7)
Vibrio alginolyticus	46	(16.4)	49	(14.9)	103	(25.9)	117	(19.4)	122	(20.2)	127	(25.8)
Vibrio vulnificus	50	(17.8)	61	(18.5)	63	(15.8)	65	(10.8)	87	(14.4)	80	(16.3)
Vibrio fluvialis	21	(7.5)	24	(7.3)	18	(4.5)	28	(4.6)	40	(6.6)	45	(9.1)
Vibrio mimicus	11	(3.9)	9	(2.7)	9	(2.3)	11	(1.8)	27	(4.5)	22	(4.5)
Vibrio harveyi	0	(0)	2	(0.6)	4	(1.0)	3	(0.5)	5	(8.0)	6	(1.2)
Other	4	(1.4)	5	(1.5)	0	(0)	9	(1.5)	9	(1.5)	12	(2.4)
Total	281	(100)	329	(100)	398	(100)	603	(100)	605	(100)	492	(100)

^{*} Frequencies reflect the number of isolates tested, not number of culture-confirmed cases. See Methods for varying sampling method by species.

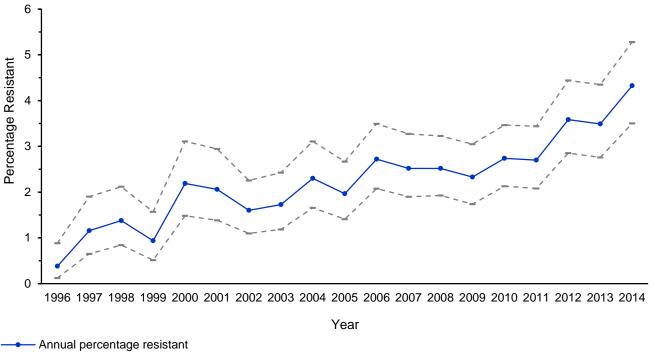
Table 58. Minimum inhibitory concentrations (MICs) and resistance of isolates of Vibrio species other than V. cholerae to antimicrobial agents, 2014 (N=492)

Manifestic minimate Manifestic minimate	ındı	n <i>V. cholerae</i> t	o antimicron				2014	4 (r	V= 4	192)																	
Manifestic minimate Manifestic minimate	Rank*			Perc			1								ntage	of all is	olates	with M	IC (µg	m L)**							
Currantion	·	Antimicrobial Agent	Species (# of isolates)	%l‡	%R ⁵	[95% CI] [¶]	0.002	0.004	0.007	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048
Part		Aminoglycosides																									
All Carling in a planophysics (177) 0.0 0.		Gentamicin	AII (492)	0.0	0.0	[0.0 - 0.7]								0.6	6.5	38.4	51.4	3.0									
Second Second			parahaemolyticus (200)	0.0	0.0	[0.0 - 1.8]									0.5	35.5	62.0	2.0									
Confidency Con			alginolyticus (127)	0.0	0.0	[0.0 - 2.9]									1.6	55.1	41.7	1.6									
Coltaniewa			vulnificus (80)	0.0	0.0	[0.0 - 4.5]										7.5	81.3	11.3									
Part		Cephems																									
Colacidine Alignophicus (127) Colacidine Alignophicus (127) Colacidine		Cefotaxime	AII (492)	0.6	1.4	[0.6 - 2.9]					4.1	9.1	50.2	27.6	3.5	3.5	0.6		0.4		0.2	0.6			0.2		
Coftaxisme			parahaemolyticus (200)	0.0	0.0	[0.0 - 1.8]						7.0	50.5	39.5	2.5	0.5											
Caltaciens Adi (422) 0.0 0.2 [0.0 - 1.1] Caltaciens Adi (422) 0.0 0.2 [0.0 - 1.1] Aprahamonylrican (200) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			alginolyticus (127)	0.0	0.0	[0.0 - 2.9]							58.3	38.6	2.4	0.8											
Process			vulnificus (80)	0.0	0.0	[0.0 - 4.5]						20.0	78.8		1.3												
Process																				_							
Pariams		Ceftazidime	All (492)	0.0	0.2	[0.0 - 1.1]							4.1	25.8	37.6	31.3	1.0								0.2		
Params			parahaemolyticus (200)	0.0	0.0	[0.0 - 1.8]							4.5	30.0	22.5	41.0	2.0										
Panems			alginolyticus (127)	0.0	0.0	[0.0 - 2.9]							8.7	26.8	52.0	12.6											
Mathematic Mat			vulnificus (80)	0.0	0.0	[0.0 - 4.5]								12.5	48.8	38.8											
Paramemolyticus (140) 0.0		Penems			l																						
All class All		lmipenem ^{††}	AII (376)	11.2	2.7	[1.3 - 4.8]					0.3	0.3	48.4	34.6	1.9	0.8	11.2	2.7									
Penicilime	- 1		parahaemolyticus (148)	0.0	0.0	[0.0 - 2.5]						0.7	75.0	24.3													
Paricilling			alginolyticus (100)	0.0	1.0	[0.0 - 5.4]							67.0	32.0				1.0									
Ampicial Ampicial			vulnificus (69)	0.0	0.0	[0.0 - 5.2]							2.9	87.0	10.1												
Paramemolyticus (200 20 30 30 30 30 30 30		Penicillins																									
All (1922) All		Ampicillin	All (492)	10.2	47.8	[43.3 - 52.3]									0.2	6.3	10.2	11.6	13.8	10.2	10.6	6.1	2.0	1.4	27.6		
Cuinolones			parahaemolyticus (200)	21.0	37.0	[30.3 - 44.1]									0.5		1.0	19.0	21.5	21.0	19.5	10.0	2.0	1.0	4.5		
Captal Content			alginolyticus (127)	0.8	97.6	[93.3 - 99.5]										0.8			0.8	0.8	3.1	4.7	3.1	3.1	83.5		
Cprofixacin Ali (482)			vulnificus (80)	0.0	2.5	[0.3 - 8.7]										36.3	58.8	1.3	1.3		1.3	1.3					
Parahamolyticus (200 0.0		Quinolones																			•						
Naidxic acid 1.11		Ciprofloxacin	AII (492)	0.0	0.0	[0.0 - 0.7]		0.8	3.3	7.9	3.7	15.4	39.6	27.4	1.8												
Nalidxic acid 1-11			parahaemolyticus (200)	0.0	0.0	[0.0 - 1.8]				0.5	1.0	2.0	64.0	31.5	1.0												
Nalidxic acid ^{11.21} All (309)			alginolyticus (127)	0.0	0.0	[0.0 - 2.9]				0.8	0.8	4.7	38.6	52.8	2.4												
Parahaemolyticus (112)			vulnificus (80)	0.0	0.0	[0.0 - 4.5]					10.0	76.3	11.3	2.5													
Parahaemolyticus (112)																											
Foliate pathway inhibitors		Nalidixic acid ^{††,‡‡}	AII (309)	N/A	N/A	N/A								0.6	1.9	34.6	53.7	8.4	0.3						0.3		
Plate pathway inhibitors			parahaemolyticus (112)	N/A	N/A	N/A								0.9	0.9	33.9	56.3	6.3	0.9						0.9		
Foliate pathway inhibitors			alginolyticus (86)	N/A	N/A	N/A									1.2	20.9	62.8	15.1									
Trimethoprim-sulfamethoxazole All (492) NA 0.2 (0.0 - 1.1] 0.2 0.8 3.3 5.87 36.4 0.4			vulnificus (60)	N/A	N/A	N/A									1.7	40.0	48.3	10									
Phenicols Mail (492) NA NA NA NA NA NA NA N		Folate pathway inhibitors																									
All (492)		Trimethoprim-sulfamethoxazole	All (492)	N/A	0.2	[0.0 - 1.1]				0.2	0.8	3.3	58.7	36.4	0.4							0.2					
Phenicols			parahaemolyticus (200)	N/A	0.0	[0.0 - 1.8]							22.5	76.5	1.0												
Phenicols Chloramphenicol ^{†‡} All (492) NA NA NA NA NA NA NA NA NA NA NA NA NA			alginolyticus (127)	N/A	0.8	[0.0 - 4.3]				0.8	3.1	3.9	78.0	13.4								0.8					
Chloramphenicol ^{IT}			vulnificus (80)	N/A	0.0	[0.0 - 4.5]						7.5	87.5	5.0													
Remolyticus (200) NA NA NA NA NA NA NA N		Phenicols			l																						
alginolyticus (127) N/A N/A N/A N/A 3.1 91.3 5.5 vulnificus (80) N/A N/A N/A 16.3 83.8 Tetracyclines Tetracycline All (492) 0.0 0.0 [0.0 - 0.7] 0.8 10.6 74.2 14.0 0.4 parahaemolyticus (200) 0.0 0.0 [0.0 - 1.8] 2.0 86.0 12.0 alginolyticus (127) 0.0 0.0 [0.0 - 2.9] 5.5 89.0 5.5		Chloramphenicol ^{‡‡}	All (492)	N/A	N/A	N/A									4.9	89.4	5.7										
alginolyticus (127) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ш		parahaemolyticus (200)	N/A	N/A	N/A									1.0	89.0	10.0										
Tetracyclines Tetracycline All (492) 0.0 0.0 [0.0 - 0.7] 0.8 10.6 74.2 14.0 0.4 parahaemolyticus (200) 0.0 0.0 [0.0 - 1.8] 2.0 86.0 12.0 alginolyticus (127) 0.0 0.0 [0.0 - 2.9] 5.5 89.0 5.5				N/A	N/A	N/A									3.1	91.3	5.5										
Tetracycline All (492) 0.0 0.0 [0.0 - 0.7] 0.8 10.6 74.2 14.0 0.4 parahaemolyticus (200) 0.0 0.0 [0.0 - 1.8] 2.0 86.0 12.0 alginolyticus (127) 0.0 0.0 [0.0 - 2.9] 5.5 89.0 5.5			vulnificus (80)	N/A	N/A	N/A									16.3	83.8											
Tetracycline All (492) 0.0 0.0 [0.0 - 0.7] 0.8 10.6 74.2 14.0 0.4 parahaemolyticus (200) 0.0 0.0 [0.0 - 1.8] 2.0 86.0 12.0 alginolyticus (127) 0.0 0.0 [0.0 - 2.9] 5.5 89.0 5.5		Tetracyclines			I																						
alginolyticus (127) 0.0 0.0 [0.0 - 2.9] 5.5 89.0 5.5			All (492)	0.0	0.0	[0.0 - 0.7]								0.8	10.6	74.2	14.0	0.4									
alginolyticus (127) 0.0 0.0 [0.0 - 2.9] 5.5 89.0 5.5			parahaemolyticus (200)	0.0	0.0	[0.0 - 1.8]									2.0	86.0	12.0										
															5.5	89.0											
variances (00) 0.0 0.0 [0.0 4.0] 5.0 30.0 30.3 1.3			vulnificus (80)	0.0	0.0	[0.0 - 4.5]								3.8	38.8	56.3	1.3										

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically important; Rank II, Highly important;

† CLSt Chica

Table 59. Percentage and number of isolates of *Vibrio* species other than *V. cholerae* resistant to ampicillin, 2009–2014


Species	2009	2010	2011	2012	2013	2014
Vibria narabaamah tiaus	9.4%	8.4%	40.3%	14.1%	41.0%	37.0%
Vibrio parahaemolyticus	14	15	81	52	129	74
Vibrio alginaliticus	82.6%	89.8%	95.1%	98.3%	95.9%	97.6%
Vibrio alginolyticus	38	44	98	115	117	124
Vibrio vulnificus	2.0%	0%	4.8%	1.5%	2.3%	2.5%
Vibrio vairiiricus	1	0	3	1	2	2
Vibrio fluvialis	33.3%	12.5%	44.4%	21.4%	50.0%	55.6%
VIDIO IIUVIAIIS	7	3	8	6	20	25
Vibrio mimicus	9.1%	0%	0%	9.1%	7.4%	0%
VIDITO MIMICUS	1	0	0	1	2	0
Vibrio bonrovi	N/A*	50.0%	100%	100%	80.0%	100%
Vibrio harveyi	0	1	4	3	4	6
Othor	25.0%	0%	N/A*	22.2%	55.6%	33.3%
Other	1	0	0	2	5	4
Tatal	22.1%	19.1%	48.7%	29.9%	46.1%	47.8%
Total	62	63	194	180	279	235

^{*} N/A indicates that no isolates were received and tested

Antimicrobial Resistance: 1996–2014

The following figures display resistance to selected agents and combinations of agents from 1996–2014 for nontyphoidal Salmonella, 1999–2014 for Salmonella ser. Typhi and Shigella, and 1997–2014 for Campylobacter.

Figure 18. Percentage of nontyphoidal Salmonella isolates with decreased susceptibility to ciprofloxacin (DSC)*, 1996-2014

Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

^{*} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC ≥0.12 µg/mL)

Figure 19. Percentage of nontyphoidal Salmonella isolates resistant to ceftriaxone, by year, 1996-2014

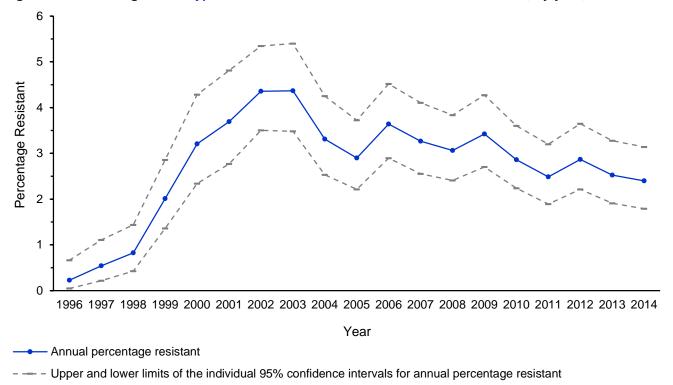
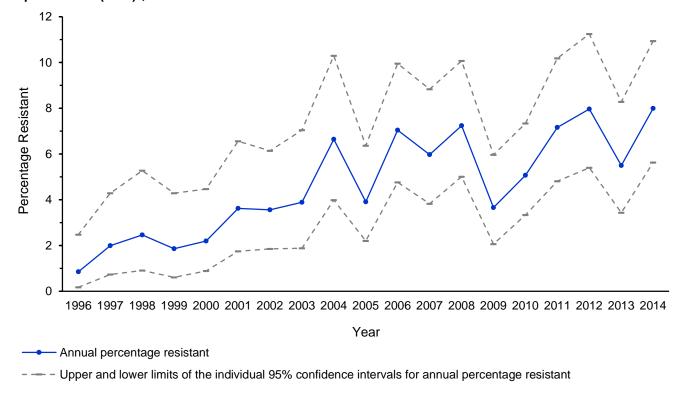



Figure 20. Percentage of *Salmonella* ser. Enteritidis isolates with decreased susceptibility to ciprofloxacin (DSC)*, 1996–2014

* Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC ≥0.12 µg/mL)

Figure 21. Percentage of Salmonella ser. Heidelberg isolates resistant to ceftriaxone, by year, 1996-2014



Figure 22. Percentage of Salmonella ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2014

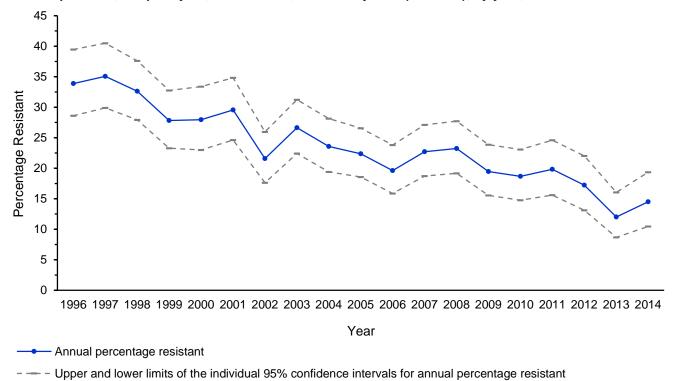


Figure 23. Percentage of *Salmonella* ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx), by year, 1996–2014

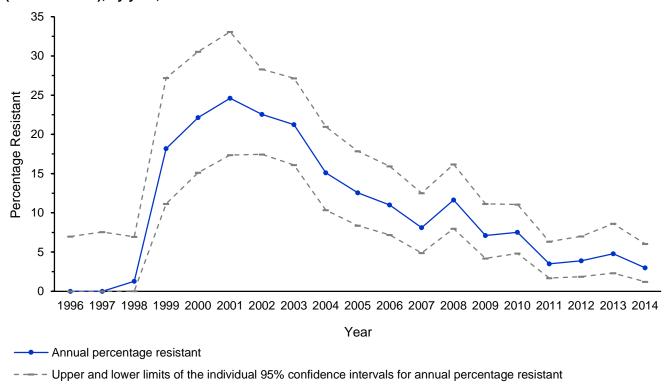
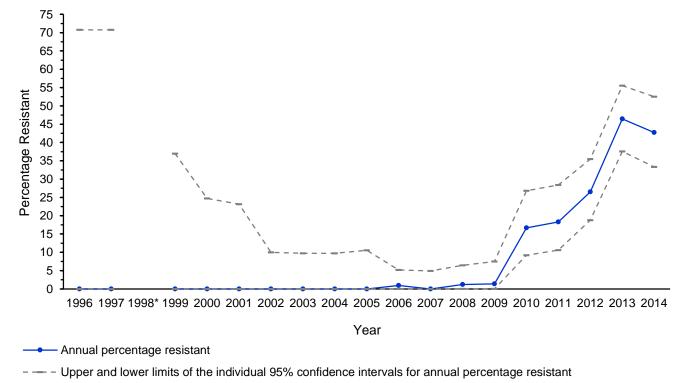



Figure 24. Percentage of Salmonella ser. I 4,[5],12:i:- isolates resistant to at least ampicillin, streptomycin, sulfonamide, and tetracycline (ASSuT), but not chloramphenicol, 1996–2014*

^{*} No Salmonella ser. I 4,[5],12:i:- isolates were received for testing in 1998

Figure 25. Percentage of nontyphoidal *Salmonella* isolates resistant to 1 or more antimicrobial classes, by year, 1996–2014

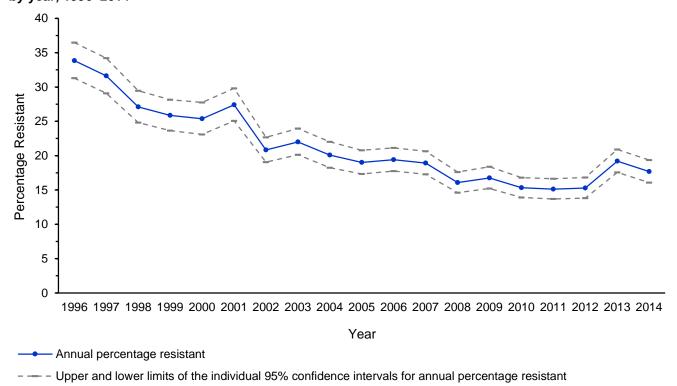


Figure 26. Percentage of nontyphoidal *Salmonella* isolates resistant to 3 or more antimicrobial classes, by year, 1996–2014

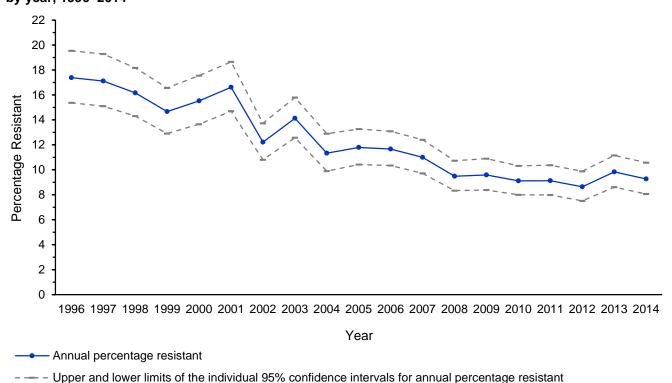
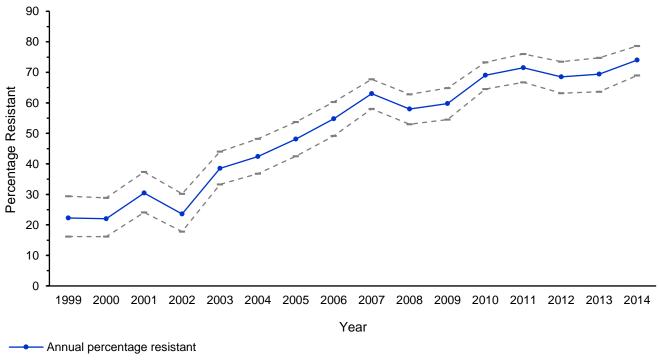
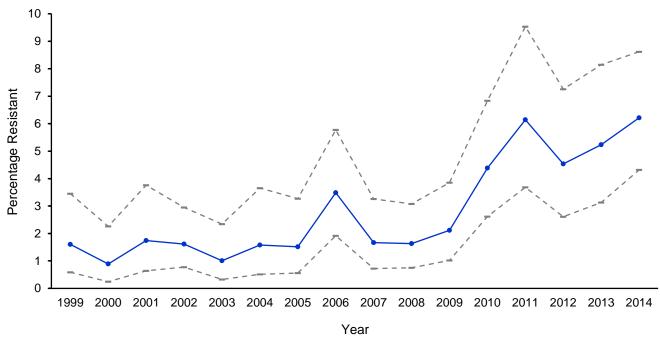
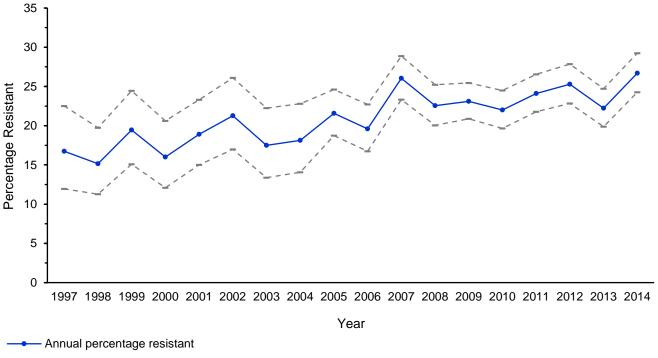




Figure 27. Percentage of *Salmonella* ser. Typhi isolates with decreased susceptibility to ciprofloxacin (DSC)*, 1999–2014

- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Figure 28. Percentage of Shigella isolates resistant to nalidixic acid, 1999-2014



Annual percentage resistant

- — - Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

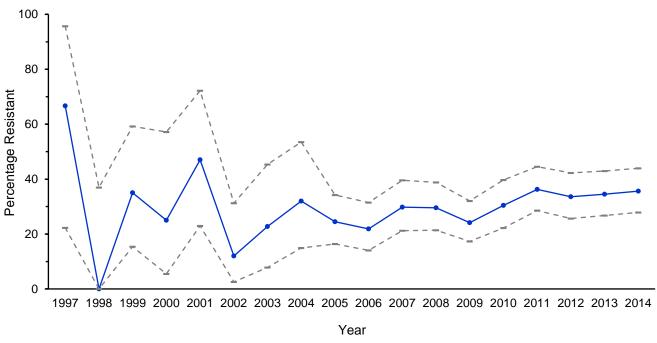
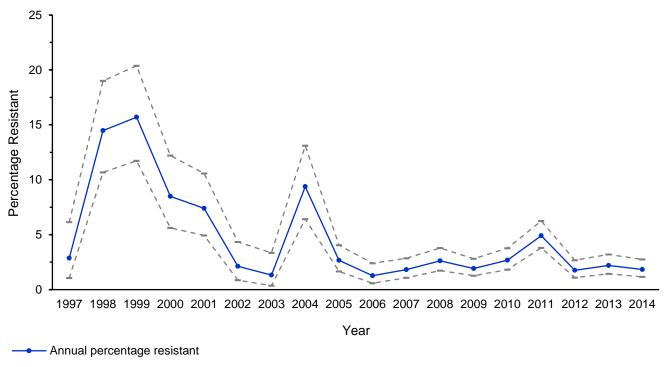

^{*} Includes isolates with MICs categorized as intermediate or resistant for ciprofloxacin (MIC ≥0.12 μg/mL)

Figure 29. Percentage of Campylobacter jejuni isolates resistant to ciprofloxacin, by year, 1997-2014

- — - Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant


Figure 30. Percentage of Campylobacter coli isolates resistant to ciprofloxacin, by year, 1997-2014

--- Annual percentage resistant

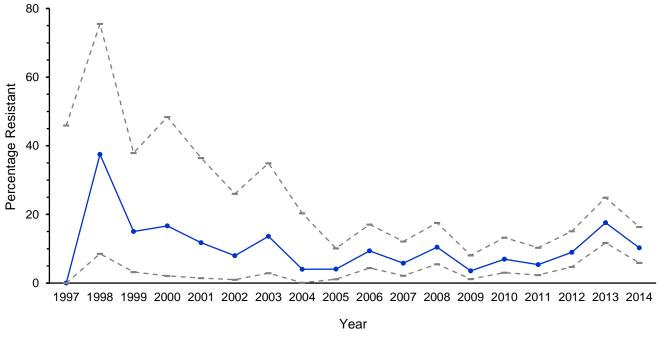

- - - Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Figure 31. Percentage of Campylobacter jejuni isolates with resistance to macrolides*, 1997-2014

- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Figure 32. Percentage of Campylobacter coli isolates with resistance to macrolides*, 1997–2014

--- Annual percentage resistant

- — - Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

^{*} Resistance to azithromycin or erythromycin

^{*} Resistance to azithromycin or erythromycin

References

American Academy of Pediatrics. 2012 Shigella infections. In: L.K. Pickering (ed.), Red Book: 2012 Report of the Committee on Infectious Diseases, 29 ed. American Academy of Pediatrics, Elk Frove Village, IL.

CDC. <u>Foodborne Diseases Active Surveillance Network (FoodNet)</u>: <u>FoodNet Surveillance Report for 2014 (Final Report)</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2016.

CDC. <u>National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2013 human isolates final report.</u> Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2015.

CDC. <u>National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2012 human isolates final report</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2014.

CDC. <u>National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2005 human isolates final report</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2007.

CDC. <u>National Enteric Disease Surveillance: Cholera and Other Vibrio Illness Surveillance (COVIS) Annual Summary, 2014</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2016.

Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: Third Edition. CLSI Document M45, 3rd ed. CLSI, Wayne, Pennsylvania, 2015.

Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: approved guideline—Second Edition. CLSI Document M45-A2. CLSI, Wayne, Pennsylvania, 2010.

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard---Ninth Edition. CLSI Document M07-A9. CLSI, Wayne, Pennsylvania, 2012.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-Fifth Informational Supplement. CLSI Document M100-S25. CLSI, Wayne, Pennsylvania, 2015.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved Standard-Fourth Edition. CLSI Document VET01-A4. CLSI, Wayne, Pennsylvania, 2013.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Second Informational Supplement. CLSI Document VET01-S2. CLSI, Wayne, Pennsylvania, 2013.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-Sixth Informational Supplement. CLSI Document M100-S26. CLSI, Wayne, Pennsylvania, 2016.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-Fifth Informational Supplement. CLSI Document M100-S25. CLSI, Wayne, Pennsylvania, 2015.

Collignon PC, Conly JM, Andremont A, McEwen SA, Aidara-Kane A on behalf of members of the World Health Organization Advisory Group, Bogota meeting on Integrated Surveillance of Antimicrobial Resistant (WHO-AGISAR). World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016 Jul 20; [Epub ahead of print]

Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for *Salmonella enterica* serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis. 2003;37:75–81.

European Society of Clinical Microbiology and Infectious Diseases. The European Committee on Antimicrobial Susceptibility Testing - EUCAST 2015. Sweden. 2013. [Accessed 2015 Jan 16]. Available from: http://www.eucast.org/.

European Society of Clinical Microbiology and Infectious Diseases. The European Committee on Antimicrobial Susceptibility Testing - EUCAST. Wide consultation on proposed ECOFFS and clinical breakpoints for *C. jejuni* and *C. coli.* 2012 Aug. [Accessed 2016 Aug 4]. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST files/Consultation/Campylobacter wide consultation August 2012.pdf

Fleiss JL, Levin B, Paik MC. <u>Statistical methods in for rates and proportions</u>. In: Shewart WA, Wilks SS, eds. Wiley Series in Probability and Statistics. Published Online; 2004:284–308.

Gonzalez, I, Grant KA, Richardson PT, Park SF, Collins MD. <u>Specific identification of the enteropathogens</u> <u>Campylobacter jejuni</u> and <u>Campylobacter coli by using a PCR test based on the <u>ceuE</u> gene encoding a putative <u>virulence determinant</u>. Journal of Clinical Microbiology 1997;35:759–63.</u>

Howie RL, Folster JP, Bowen A, Barzilay EJ, Whichard JM. Reduced azithromycin susceptibility in Shigella sonnei, United States. Microb Drug Resist. 2010 Dec;16(4):245-8.

Kleinbaum DG, Kupper LL, Nizam A, Muller KE. Applied Regression Analysis and Other Multivariable Methods, 4th ed. Belmont. CA: Duxbury; 2008.

Linton D, Lawson AJ, Owen RJ, Stanley J. <u>PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples</u>. Journal of Clinical Microbiology 1997;35:2568–72.

Linton D, Owen RJ, Stanley J. Rapid Identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Research in Microbiology 1996;147:707–18. Pruckler J et al., Comparison of four real-time PCR methods for the identification of the genus Campylobacter and speciation of C. jejuni and C. coli. ASM 106th General meeting; Poster C282.

Sjölund-Karlsson M, Joyce K, Blickenstaff K. et al. Antimicrobial Susceptibility to Azithromycin among *Salmonella enterica* isolated in the United States. Antimicrob Agents Chemother. 2011 Jun 20.

- U.S. Census Bureau. <u>Annual Estimates of the Resident Population for the United States, Regions, States, and Puerto Rico: April 1, 2010 to July 1, 2015.</u> Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2016.
- U.S. Census Bureau. <u>Census Regions and Divisions of the United States</u>. Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2015.
- U.S. Census Bureau. <u>Population Estimates Current Estimates Data</u>. Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2016.

Vandamme P, Van Doorn LJ, al Rashid ST, Quint WG, van der Plas J, Chan VL, On SL. <u>Campylobacter hyoilei</u> <u>Alderton et al. 1995 and Campylobacter coli Veron and Chatelain 1973 are subjective synonyms</u>. Inter. J. Syst. Bacteriol 1997; 47:1055–60.

World Health Organization (WHO). <u>Critically Important Antimicrobials for Human Medicine. 3rd Revision.</u> Switzerland, 2011.

World Health Organization (WHO). <u>Guidelines for the control of shigellosis</u>, including epidemics due to <u>Shigella</u> dysenteriae type 1. Switzerland, 2005.

Select NARMS Publications in 2014

Centers for Disease Control and Prevention. <u>Notes from the field: Shigella with decreased susceptibility to azithromycin among men who have sex with men—United States, 2002–2013</u>. MMWR Morb Mortal Wkly Rep. 2014;63(06):132–33.

Folster JP, Pecic G, Stroika S, Rickert R, Whichard JM. <u>Changing plasmid types responsible for extended spectrum cephalosporin resistance in *Escherichia coli* O157:H7 in the United States, 1996–2009. J Glob Antimicrob Resist. 2014: 2(2): 87-91. doi:10.1016/j.jgar.2014.01.004</u>

Folster JP, Tolar B, Pecic G, Sheehan D, Rickert R, Hise K, Zhao S, Fedorka-Cray PJ, McDermott P, Whichard JM. <u>Characterization of *bla*_{CMY} plamids and their possible role in source attribution of *Salmonella enterica* serotype Typhimurium infections. Foodborne Pathog Dis. 2014;11(4):301-306. doi:10.1089/fpd.2013.1670.</u>

Heiman KE, Grass JE, Sjölund-Karlsson M, Bowen A. <u>Shigellosis with decreased susceptibility to azithromycin</u>. Pediatr Infect Dis J. 2014: 3(11): 1204–1205. doi:10.1097/INF.000000000000397.

Krueger AL, Greene SA, Barzilay EJ, Henao O, Vugia D, Hanna S, Meyer S, Smith K, Pecic G, Hoefer D, Griffin PM. <u>Clinical outcomes of nalidixic acid, ceftriaxone, and multidrug-resistant nontyphoidal Salmonella infections compared with pansusceptible infections in FoodNet sites, 2006–2008.</u> Foodborne Pathog Dis. 2014: 11(5): 335-341. doi:10.1089/fpd.2013.1642.

O'Donnell AT, Vieira AR, Huang JY, Whichard JM, Cole D, Karp BE. <u>Quinolone-resistant Salmonella enterica</u> serotype Enteritidis infections associated with international travel. Clin Infect Dis. 2014: 59(9): e139-e141. doi: 10.1093/cid/ciu505

Rickert-Hartman R, Folster JP. <u>Ciprofloxacin-resistant Salmonella enterica serotype Kentucky sequence type 198.</u> Emerg Infect Dis. 2014: 20(5): 910–911. doi.org/10.3201/eid2005.131575

Sjölund-Karlsson M, Howie RL, Crump JA, Whichard JM. <u>Fluoroquinolone susceptibility testing of Salmonella enterica</u>: detection of acquired resistance and selection of zone diameter breakpoints for levofloxacin and <u>ofloxacin</u>. J Clin Microbiol. 2014: 52(3): 877-887. doi: 10.1128/JCM.02679-13

Appendix A. WHO Categorization of Antimicrobial Agents

The World Health Organization (WHO) has developed criteria to rank antimicrobial agents according to their relative importance to human medicine. Participants in the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) provide updates to these rankings (WHO, 2011; Collignon et al., 2016). The participants categorize antimicrobial agents as either Critically Important, Highly Important, or Important based upon two criteria: (1) used as sole therapy or one of the few alternatives to treat serious human disease and (2) used to treat disease caused by either organisms that may be transmitted via non–human sources or diseases caused by organisms that may acquire resistance genes from non–human sources. Antimicrobial agents tested in NARMS have been included in the WHO categorization table.

- Antimicrobial agents are critically important if both criteria (1) and (2) are true.
- Antimicrobial agents are highly important if either criterion (1) or (2) is true.
- Antimicrobial agents are important if neither criterion is true.

Table A1. WHO categorization of antimicrobials of critical importance to human medicine

WHO Category Level	Importance	CLSI* Class	Antimicrobial Agent tested in NARMS
			Amikacin
		A minorily coolidge	Gentamicin
		Aminoglycosides	Kanamycin
			Streptomycin
		β-lactam / β-lactamase inhibitor	Amoxicillin-clavulanic acid
		combinations	Piperacillin-tazobactam
			Cefepime
		Cephems	Cefotaxime
1	Critically important	Cepnems	Ceftazidime
	Critically important		Ceftriaxone
		Ketolides	Telithromycin
		Macrolides	Azithromycin
		Macrolides	Erythromycin
		Monobactams	Aztreonam
		Penems	Imipenem
		Penicillins	Ampicillin
		Quinolones	Ciprofloxacin
		Quilloidles	Nalidixic acid
		Conhomo	Cefoxitin
		Cephems	Cephalothin
		Falata mathurar inhihitana	Sulfamethoxazole / Sulfisoxazole
H H	Highly important	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole
		Lincosamides	Clindamycin
		Phenicols	Chloramphenicol
		Tetracyclines	Tetracycline

^{*} CLSI: Clinical and Laboratory Standards Institute

Appendix B. Criteria for Retesting of Isolates

Repeat testing of an isolate must be done when one or more of the following conditions occur:

- No growth on panel
- · Growth in all wells
- · Multiple skip patterns
- Apparent contamination in wells or isolate preparation
- Unlikely or discordant susceptibility results (<u>Table B1</u>)

If an isolate is retested, data for <u>all</u> antimicrobial agents should be replaced with the new test results. Categorical changes may require a third test (and may indicate a mixed culture).

Uncommon but possible test results (<u>Table B2</u>) may represent emerging resistance phenotypes. Retesting is encouraged.

Table B1. Retest criteria for unlikely or discordant resistance phenotypes

Organism(s)	Resistance phenotype (MIC values in µg/mL)	Comments
Salmonella / E. coli O157 /	ceftiofur ^R (≥8) OR ceftriaxone ^R (≥4) AND ampicillin ^S (≤8)	The presence of an ESBL* or AmpC beta- lactamase should confer resistance to ampicillin
Shigella	ceftiofur ^R (≥8) AND ceftriaxone ^S (≤1) OR ceftiofur ^S (≤2) AND ceftriaxone ^R (≥4)	Both antimicrobial agents are 3 rd generation β-lactams and should have equal susceptibility interpretations
	ampicillin ^S (≤8) AND amoxicillin-clavulanic acid ^R (≥32/16)	
Salmonella and E. coli 0157	sulfisoxazole ^S (≤256) AND trimethoprim-sulfamethoxazole ^R (≥4/76)	
Salmonella	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥1)	The stepwise selection of mutations in the QRDR [†] does not support this phenotype, although it may occur with plasmid-mediated mechanisms
E. coli O157 and Shigella	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥4)	The stepwise selection of mutations in the QRDR [†] does not support this phenotype
Campylobacter jejuni and coli	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥1) nalidixic acid ^R (≥32) AND	In Campylobacter, one mutation is sufficient to confer resistance to both nalidixic acid and ciprofloxacin
Campylobacter jejuni	ciprofloxacin ^S (≤0.5) erythromycin ^S (≤4) AND azithromycin ^R (≥0.5)	·
	erythromycin ^R (≥8) AND azithromycin ^S (≤0.25)	Erythromycin is class representative for 14- and
Campylobacter coli	erythromycin ^S (≤8) AND azithromycin ^R (≥1)	15-membered macrolides (azithromycin, clarithromycin, roxithromycin, and dirithromycin)
	erythromycin ^R (≥16) AND azithromycin ^S (≤0.5)	

^{*} Extended-spectrum beta-lactamase

Table B2. Uncommon resistance phenotypes for which retesting is encouraged

Organism(s)	Resistance phenotype (MIC values in µg/mL)
Salmonella /	Pan-resistance
E. coli 0157 /	Resistance to azithromycin (>16)
Shigella	ceftriaxone and/or ceftiofur MIC ≥2 AND
	ciprofloxacin MIC ≥0.125 and/or nalidixic acid MIC ≥32
Campylobacter	Pan-resistance
<i>jejuni</i> and <i>coli</i>	Resistance to gentamicin (≥4)
	Resistance to florfenicol (≥8)
Vibrio	Resistance to ciprofloxacin (>2)
	Resistance to tetracycline (>8)
	Resistance to trimethoprim-sulfamethoxazole (>2)

[†]Quinolone resistance-determining regions

Appendix C. Impact of the Streptomycin Breakpoint Change on 2014 Data

CLSI breakpoints for streptomycin are not established; in past years, a NARMS-established resistance breakpoint of \geq 64 µg/mL has been used. After examining newly-available streptomycin MIC and *Salmonella* genetic data from 2014, the NARMS program lowered the resistance breakpoint to \geq 32 µg/mL and applied it to all *Enterobacteriaceae*. However, due to the limited streptomycin concentration range used in testing before 2014 (32–64 µg/mL), the new breakpoint could only be applied to isolates tested during 2014 and the resistance breakpoint of \geq 64 µg/mL was maintained for isolates tested during 1996–2013. The impact of the streptomycin breakpoint change on select 2014 data is summarized in <u>Table C1</u>. Positive percentage differences indicate the breakpoint of \geq 64 µg/mL underestimated resistance.

Table C1. Impact of the streptomycin breakpoint change on the number and percentage of *Enterobacteriaceae* isolates with select resistance, 2014

	Streptomycin resistance				at least 3 classes				at least ACSSuT [†]				at least ACSSuTAuCx [‡]				No resistance detected			
Pathogen (N in 2014)	Pre-2014 BP (≥64)*	2014 BP (≥32)*	Relative % difference	•	Pre-2014 BP (≥64)*	2014 BP (≥32)*	Relative % difference		Pre-2014 BP (≥64)*	2014 BP (≥32)*	Relative % difference	% point difference	Pre-2014 BP (≥64)*	2014 BP (≥32)*	Relative % difference	•	Pre-2014 BP (≥64)*	2014 BP (≥32)*	Relative % difference	
NTS (2127)	8.7%	11.2%	28.5%	2.5%	9.1%	9.3%	1.5%	0.1%	3.1%	3.1%	1.5%	0.0%	1.2%	1.2%	0.0%	0.0%	84.1%	82.3%	-2.1%	-1.8%
	186	239			194	197	1.3%		66	67	1.576		26	26	0.076		1789	1751	-2.170	
Enteritidis (438)	1.8%	3.0%	62.5%	1.1%	2.1%	2.1%	0.0%	0.0%	0.5%	0.5%	0.0%	0.0%	0.2%	0.2%	0.0%	0.0%	87.9%	87.7%	-0.3%	-0.2%
	8	13			9	9	0.070	0.070	2	2	0.076		1	1	0.076		385	384	-0.570	-0.270
Typhimurium (262)	21.8%	24.8%	14.0%	3.1%	21.8%	21.8%	0.0%	0.0%	14.5%	14.5%	0.0%	0.0%	4.2%	4.2%	0.0%	0.0%	71.0%	68.7%	-3.2%	-2.3%
	57	65			57	57	0.070	0.070	38	38	0.070		11	11	0.070	0.070	186	180		
Newport (235)	4.3%	4.7%	10.0%	0.4%	4.7%	4.7%	0.0%	0.0%	3.0%	3.0%	0.0%	0.0%	3.0%	3.0%	0.0%	0.0%	93.6%	93.2%	-0.5%	-0.4%
	10	11			11	11	0.070		7	7	0.070		7	7	0.070	3.370	220	219	0.070	
I 4,[5],12:i:- (110)	49.1%	52.7%	7.4%	3.6%	50.0%	50.0%	0.0%	0.0%	3.6%	3.6%	0.0%	0.0%	0.0%	0.0%	_	0.0%	40.9%	38.2%	-6.7%	-2.7%
	54	58			55	55	0.070		4	4	0.070		0	0			45	42	0.1 70	
Infantis (73)	1.4%	6.8%	400.0%	5.5%	6.8%	6.8%	0.0%	0.0%	0.0%	1.4%	_	1.4%	0.0%	0.0%	_	0.0%	89.0%	84.9%	-4.6%	-4.1%
	1	5	100.070		5	5	0.070		0	1			0	0			65	62		
Heidelberg (71)	19.7%	25.4%	28.6%	5.6%	21.1%	21.1%	0.0%	0.0%	9.9%	9.9%	0.0%	0.0%	0.0%	0.0%	_	0.0%	66.2%	62.0%	-6.4%	-4.2%
	14	18			15	15	0.070	5.570	7	7	0.070		0	0			47	44	3.470	,,
Typhi (335)	11.3%	14.3%	26.3%	3.0%	14.0%	14.3%	2.1%	0.3%	0.9%	0.9%	0.0%	0.0%	0.0%	0.0%	_	0.0%	25.1%	24.5%	-2.4%	-0.6%
	38	48			47	48	2.170		3	3	0.070	0.070	0	0		0.070	84	82	2.770	
Paratyphi A (108)	0.9%	1.9%	100.0%	0.9%	1.9%	2.8%	50.0%	0.9%	0.0%	0.0%	_	0.0%	0.0%	0.0%	_	0.0%	19.4%	19.4%	0.0%	0.0%
	1	2	100.070	0.570	2	3	00.070	0.070	0	0		0.070	0	0		3.370	21	21	0.070	0.070
E. coli O157 (155)	4.5%	5.8%	28.6%	1.3%	5.2%	5.8%	12.5%	0.6%	0.0%	0.0%	_	0.0%	0.0%	0.0%	_	0.0%	87.7%	87.1%	-0.7%	-0.6%
	7	9	20.070	1.070	8	9	12.070	0.070	0	0		0.070	0	0			136	135	0.170	0.070
Shigella (531)	92.8%	95.9%	3.2%	3.0%	42.4%	42.4%	0.0%	0.0%	3.4%	4.7%	38.9%	1.3%	0.0%	0.0%	_	0.0%	2.1%	1.9%	-9.1%	-0.2%
	493	509	J. Z /0		225	225	5.576	0.070	18	25	55.570	1.570	0	0		0.076	11	10	-3.170	

^{*} MIC resistance breakpoint (in µg/mL)

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone