

National Antimicrobial Resistance Monitoring System: Enteric Bacteria

Human Isolates Final Report

National Center for Emerging and Zoonotic Infectious Diseases Division of Foodborne, Waterborne, and Environmental Diseases

Table of Contents

List of Tables
List of Figures
List of Abbreviations and Acronyms
NARMS Working Group
Introduction
What is New in the NARMS Report for 2013
Summary of NARMS 2013 Surveillance Data
Highlights
Changes in Antimicrobial Resistance: 2013 vs. 2004–2008 and 2008–2012
Increased Resistance to Macrolides in Campylobacter
Increasing Non-Susceptibility to Quinolones among Nontyphoidal Salmonella
Continued Rise of ASSuT Resistance in Salmonella ser. I 4,[5],12:i:-
Surveillance and Laboratory Testing Methods
Results
1. <u>Nontyphoidal Salmonella</u>
A. <u>Salmonella ser. Enteritidis</u>
B. <u>Salmonella ser. Typhimurium</u>
C. <u>Salmonella ser. Newport</u>
D. <u>Salmonella ser. I 4,[5],12:i:-</u>
E. <u>Salmonella ser. Infantis</u>
F. <u>Salmonella</u> ser. Heidelberg
2. <u>Typhoidal Salmonella</u>
A. <u>Salmonella ser. Typhi</u>
B. Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C
3. <u>Shigella</u> <u>56</u>
4. <u>Escherichia coli 0157</u>
5. <u>Campylobacter</u>
6. Vibrio species other than V. cholerae
Antimicrobial Resistance: 1996–2013
References
Select NARMS Publications in 2013
Appendix A. WHO Categorization of Antimicrobial Agents
Appendix B. Criteria for Retesting of Isolates

Suggested Citation: CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2013. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2015.

Information Available Online: Previous reports and additional information about NARMS are posted on the CDC NARMS website: http://www.cdc.gov/narms

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement by the Centers for Disease Control and Prevention or the U.S. Department of Health and Human Services.

List of Tables

Table 1.	Population size and number of isolates received and tested, 2013
<u>Table 2.</u>	Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia coli O157 isolates, 1996–201325
<u>Table 3.</u>	Antimicrobial agents used for susceptibility testing of Campylobacter isolates, 1997-201328
<u>Table 4.</u>	Antimicrobial agents used for susceptibility testing of Vibrio species other than V. cholerae isolates, 2009–2013
<u>Table 5.</u>	Number of nontyphoidal Salmonella isolates among the most common serotypes tested with the number of resistant isolates by class and agent, 2013
<u>Table 6.</u>	Percentage and number of nontyphoidal Salmonella isolates with selected resistance patterns, by serotype, 2013
<u>Table 7.</u>	Percentage and number of nontyphoidal Salmonella isolates with resistance, by number of CLSI classes and serotype, 2013
<u>Table 8.</u>	Minimum inhibitory concentrations (MICs) and resistance of nontyphoidal Salmonella isolates to antimicrobial agents, 2013 (N=2178)
<u>Table 9.</u>	Percentage and number of nontyphoidal Salmonella isolates resistant to antimicrobial agents, 2004–2013
<u>Table 10.</u>	Resistance patterns of nontyphoidal Salmonella isolates, 2004–2013
<u>Table 11.</u>	Broad-Spectrum β-lactam resistance among all ceftriaxone/ceftiofur resistant nontyphoidal Salmonella isolates, 2011 (N=58), 2012 (N=64), and 2013 (N=55)
<u>Table 12.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2013 (N=382)40
<u>Table 13.</u>	Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 2004–2013
<u>Table 14.</u>	Resistance patterns of Salmonella ser. Enteritidis, 2004–2013
Table 15.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2013 (N=325)
<u>Table 16.</u>	Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 2004–2013
<u>Table 17.</u>	Resistance patterns of Salmonella ser. Typhimurium isolates, 2004–2013
<u>Table 18.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2013 (N=209)
<u>Table 19.</u>	Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents, 2004–2013
<u>Table 20.</u>	Resistance patterns of Salmonella ser. Newport isolates, 2004–201345
<u>Table 21.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2013 (N=127)
<u> Table 22.</u>	Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 2004–2013
Table 23	Resistance patterns of Salmonella ser. [4.[5].12:i:- isolates. 2004–2013

<u>Table 24.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Infantis isolates to antimicrobial agents, 2013 (N=76)	.48
<u>Table 25.</u>	Percentage and number of Salmonella ser. Infantis isolates resistant to antimicrobial agents, 2004–2013	
Table 26.	Resistance patterns of Salmonella ser. Infantis isolates, 2004–2013	_
	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg	. <u>50</u>
<u>Table 28.</u>	Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 2004–2013	. <u>51</u>
<u>Table 29.</u>	Resistance patterns of Salmonella ser. Heidelberg isolates, 2004–2013	. <u>51</u>
<u>Table 30.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2013 (N=279)	. <u>52</u>
<u>Table 31.</u>	Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 2004–2013.	. <u>53</u>
<u>Table 32.</u>	Resistance patterns of Salmonella ser. Typhi isolates, 2004–2013	. <u>53</u>
<u>Table 33.</u>	Frequency of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C, 2013	. <u>54</u>
<u>Table 34.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2013 (N=100)	. <u>54</u>
<u>Table 35.</u>	Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial agents, 2004–2013	. <u>55</u>
<u>Table 36.</u>	Resistance patterns of Salmonella ser. Paratyphi A isolates, 2004–2013	
<u>Table 37.</u>	Frequency of Shigella species, 2013	. <u>56</u>
<u>Table 38.</u>	Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2013 (N=344)	. <u>56</u>
<u>Table 39.</u>	Percentage and number of Shigella isolates resistant to antimicrobial agents, 2004–2013	. <u>57</u>
<u>Table 40.</u>	Resistance patterns of Shigella isolates, 2004–2013	. <u>57</u>
<u>Table 41.</u>	Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2013 (N=275)	. <u>58</u>
<u>Table 42.</u>	Percentage and number of Shigella sonnei isolates resistant to antimicrobial agents. 2004–2013	. <u>59</u>
<u>Table 43.</u>	Resistance patterns of Shigella sonnei isolates, 2004–2013	. <u>59</u>
<u>Table 44.</u>	Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2013 (N=64)	. <u>60</u>
<u>Table 45.</u>	Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2004–2013.	. <u>61</u>
<u>Table 46.</u>	Resistance patterns of Shigella flexneri isolates, 2004–2013	. <u>61</u>
<u>Table 47.</u>	Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2013 (N=177)	. <u>62</u>
<u>Table 48.</u>	Percentage and number of Escherichia coli O157 isolates resistant to antimicrobial agents, 2004–2013	.63

<u>Table 49.</u>	Resistance patterns of Escherichia coli O157 isolates, 2004–2013
<u> Table 50.</u>	Frequency of Campylobacter species, 201364
<u>Table 51.</u>	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2013 (N=1182)
<u>Table 52.</u>	Percentage and number of <i>Campylobacter jejuni</i> isolates resistant to antimicrobial agents, 2004–2013
<u>Table 53.</u>	Resistance patterns of Campylobacter jejuni isolates, 2004–201365
<u>Table 54.</u>	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2013 (N=142)
<u>Table 55.</u>	Percentage and number of Campylobacter coli isolates resistant to antimicrobial agents, 2004–2013
<u> Table 56.</u>	Resistance patterns of Campylobacter coli isolates, 2004–2013
<u>Table 57.</u>	Frequency of Vibrio species other than V. cholerae, 2009-2013
<u>Table 58.</u>	Minimum inhibitory concentrations (MICs) and resistance of isolates of Vibrio species other than V. cholerae to antimicrobial agents, 2013 (N=607)
<u>Table 59.</u>	Percentage and number of isolates of Vibrio species other than V. cholerae resistant to ampicillin, 2009–2013
<u>Appendix</u>	A Table A1. WHO categorization of antimicrobials of critical importance to human medicine80
<u>Appendix</u>	B Table B1. Retest criteria for unlikely or discordant resistance phenotypes
Appendix	B Table B2. Uncommon resistance phenotypes for which retesting is encouraged

List of Figures

<u>Highlight Figure H1.</u>		<u>Changes in prevalence of selected resistance patterns among Salmonella,</u> <u>Shigella, and Campylobacter isolates, 2013 compared with 2004–2008 and</u> <u>2008–2012</u>					
<u>Highlight F</u>	igure H2.	Percentage of Campylobacter isolates with resistance to macrolides, 2004–2013	<u>19</u>				
<u>Highlight F</u>	igure H3.	Percentage of nontyphoidal Salmonella isolates with resistance to nalidixic acid compared with non-susceptibility to ciprofloxacin, 1996–2013.	<u>20</u>				
<u>Highlight F</u>	igure H4.	Percentage of Salmonella ser. I 4,[5],12:i:- isolates with resistance to at least ASSuT but not chloramphenicol, 2004–2013	<u>21</u>				
Figure 1.	How to re	ad a squashtogram	<u>32</u>				
Figure 2.	<u>Proportio</u>	nal chart, a categorical graph of a squashtogram	<u>33</u>				
Figure 3.	Antimicro	bial resistance pattern for nontyphoidal Salmonella, 2013	<u>37</u>				
Figure 4.	Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2013						
Figure 5.	Antimicro	bial resistance pattern for Salmonella ser. Typhimurium, 2013	<u>42</u>				
Figure 6.	Antimicro	bial resistance pattern for Salmonella ser. Newport, 2013	<u>44</u>				
<u>Figure 7.</u>	Antimicro	bial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2013	<u>46</u>				
Figure 8.	Antimicro	bial resistance pattern for Salmonella ser. Infantis, 2013	<u>48</u>				
Figure 9.	Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2013						
Figure 10.	Antimicro	bial resistance pattern for Salmonella ser. Typhi, 2013	<u>52</u>				
Figure 11.	Antimicro	bial resistance pattern for Salmonella ser. Paratyphi A, 2013	<u>54</u>				
Figure 12.	Antimicro	bial resistance pattern for Shigella, 2013	<u>56</u>				
		bial resistance pattern for Shigella sonnei, 2013					
Figure 14.	Antimicro	bial resistance pattern for Shigella flexneri, 2013	<u>60</u>				
Figure 15.	Antimicro	bial resistance pattern for <i>Escherichia coli</i> O157, 2013	<u>62</u>				
Figure 16.	Antimicro	bial resistance pattern for Campylobacter jejuni, 2013	<u>64</u>				
Figure 17.	Antimicro	bial resistance pattern for <i>Campylobacter coli</i> , 2013	<u>66</u>				
Figure 18.		ge of nontyphoidal Salmonella isolates resistant to nalidixic acid, by year, <u>3</u>	<u>70</u>				
Figure 19.		ge of nontyphoidal <i>Salmonella</i> isolates resistant to ceftriaxone, by year, <u>3</u>	<u>71</u>				
Figure 20.		ge of <i>Salmonella</i> ser. Enteritidis isolates resistant to nalidixic acid, by year, <u>3</u>	<u>71</u>				
Figure 21.		ge of <i>Salmonella</i> ser. Heidelberg isolates resistant to ceftriaxone, by year, <u>3</u>	<u>72</u>				
Figure 22.	Percentage of Salmonella ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2013						
Figure 23.	chloramp	ge of <i>Salmonella</i> ser. Newport isolates resistant to at least ampicillin, henicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid,					
	and ceftri	<u>axone (ACSSuTAuCx), by year, 1996–2013</u>	<u>73</u>				

Figure 24.	Percentage of nontyphoidal Salmonella isolates resistant to 1 or more antimicrobial classes, by year, 1996–2013
Figure 25.	Percentage of nontyphoidal Salmonella isolates resistant to 3 or more antimicrobial classes, by year, 1996–2013
Figure 26.	Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999–2013
<u>Figure 27.</u>	Percentage of Campylobacter jejuni isolates resistant to ciprofloxacin, by year, 1997-201375
Figure 28.	Percentage of Campylobacter coli isolates resistant to ciprofloxacin, by year, 1997-201375
Figure 29.	Percentage of Shigella isolates resistant to nalidixic acid, by year, 1999-2013

List of Abbreviations and Acronyms

AAuCx	Resistance to at least ampicillin, amoxicillin-clavulanic acid, and ceftriaxone
ACSSuT	Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline
ACSSuTAuCx	Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone
ACT/S	Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole
ANT/S	Resistance to at least ampicillin, nalidixic acid and trimethoprim-sulfamethoxazole
ASSuT	Resistance to at least ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline
AT/S	Resistance to at least ampicillin and trimethoprim-sulfamethoxazole
CDC	Centers for Disease Control and Prevention
CI	Confidence interval
CLSI	Clinical and Laboratory Standards Institute
CxNal	Resistance to at least ceftriaxone and nalidixic acid
ECOFF	Epidemiological cut-off*
EIP	Emerging Infections Program
ELC	Epidemiology and Laboratory Capacity for Infectious Diseases
ESBL	Extended-spectrum β-lactamase
FDA-CVM	Food and Drug Administration-Center for Veterinary Medicine
FoodNet	Foodborne Diseases Active Surveillance Network
MIC	Minimum inhibitory concentration
NARMS	National Antimicrobial Resistance Monitoring System for Enteric Bacteria
OR	Odds ratio
S-DD	Susceptible-dose dependent
USDA-ARS	United States Department of Agriculture-Agricultural Research Service
USDA-FSIS	United States Department of Agriculture-Food Safety Inspection Service
WHO	World Health Organization

*For a description of epidemiological cut-offs see NARMS 2012 Annual Report pages 17-18

NARMS Working Group

Centers for Disease Control and Prevention

National Center for Emerging and Zoonotic Infectious Diseases

Division of Foodborne, Waterborne and Environmental Diseases

Enteric Diseases Epidemiology Branch

Enteric Diseases Laboratory Branch

Christy Bennett Amelia Bicknese Allison Brown **Davina Campbell** Amanda Conrad Jason Folster Cindy Friedman Peter Gerner-Smidt Julian Grass Patricia Griffin Caroline Jackman **Robert Michael Hoekstra** Rebecca Howie Martha Iwamoto Kevin Jovce Maria Karlsson Beth Karp Barbara Mahon Andre McCullough Felicita Medalla Allison O'Donnell Jared Reynolds Regan Rickert-Hartman Christina Smith **Robert Tauxe** Jean Whichard

U.S. Food and Drug Administration

Center for Veterinary Medicine Emily Crarey Claudine Kabera Patrick McDermott Heather Tate

U.S. Department of Agriculture

Agricultural Research Service Takiyah Ball Jodie Plumblee Eileen Thacker

Food Safety Inspection Service

William Cray J. Emilio Esteban David Goldman Joseph Hill Neelam Narang Kay Williams

Participating State and Local Health Departments

Alabama Department of Public Health

Sherri Davidson Catrina Hollins Sharon Massingale Darryl Pendergrass Tina Pippin Mychal Robinson

Alaska Department of Health

and Social Services Jennifer Faulwetter Catherine Xavier

Arizona Department of Health Services Sherry Gower

Ken Komatsu Tori Reaves William Slanta Victor Waddell Stacy White

Arkansas Department of Health Rossina Stefanova

California Department of Public Health

Claudia Crandall Gillian Edwards Will Probert Linda Sae-Jang

Colorado Department of Public Health and Environment

Alicia Cronquist Laura Gillim-Ross Joyce Knutsen Hugh Maguire

Connecticut Department of Public Health

Diane Barden Alycia Esliger George Goad Kimberly Holmes-Talbot Sharon Hurd David Johnson Aristea Kinney Laurn Mank Christina Nishimura Quyen Phan Alla Zeygerman

Delaware Health and Social

Services Gregory Hovan Bela Patel Brenda Redlich Debra Rutledge Nancy Valeski

District of Columbia Department of Health

Reginald Blackwell Alpha A. Diallo Sosina Merid

Florida Department of Health

Ronald Baker Rachel Chester Sonia Etheridge Nancy Pickens

Georgia Division of Public Health

Jim Benson Cherie Drenzek Elizabeth Franko Mahin Park Lynett Poventud Melissa Tobin-D'Angelo

Hawaii Department of Health

Ruchi Pancholy Pamela O'Brien Norman O'Connor

Houston Health and Human

Services Department

Okey Akwari Raouf Arafat Pamela Brown-Bywaters Gregory Dufour Vern Juchau Stephen Long Joan Rogers Larry Seigler Juanita Sumpter Brenda Thorne Varsha Vakil

Idaho Department of Health and

Welfare Amanda Bruesch Joanna Lewis Lisa Smith

Illinois Department of Public Health

Robert Cox Rebecca Hambelton Stephen Hendren Steve Hopkins Mary Konczyk Mohammad Nasir Kiran Patel Guinevere Reserva

Indiana State Department of Health

Brent Barrett Mark Glazier Tess Gorden Jon Radosevic

Iowa Department of Public Health, University Hygienic Laboratory Randy Groepper

Kansas Department of Health and Environment Sheri Anderson Carissa Robertson

Carissa Robertson Lindsey Webb

Kentucky Department of Public Health

Emily Carmichael Robin Cotten Karim George William Grooms Carrell Rush Darrin Sevier Josh Tobias

Los Angeles County

Department of Health Services

Rita Bagby Sheena Chu Mary Beth Duke J. Michael Janda Laurene Mascola Roshan Reporter Michael Stephens Joan Sturgeon Wilson Wong

Louisiana Department of Health

and Hospitals Gary Balsamo Erin Delaune Steven Martin Raoult Ratard Theresa Sokol Susanne Straif-Bourgeois

Maine Department of Health and Human Services

Jemelie Bessette Heather Grieser Jeff Randolph Amy Robbins Stephen Sears

Maryland Department of Health and Mental Hygiene

Emily Blake David Blythe Jordan Cahoon Yaaqobah Evan Fay Lee Celere Leonard Amanda Palmer Jafar Razeq Emily Ricotta Pat Ryan

Massachusetts Department of Public Health

Catherine Brown Peter Belanger Alfred DeMaria Emily Harvey Patricia Kludt Tracy Stiles

Michigan Department of Community Health

Carrie Anglewicz Jennifer Beggs Jennie Finks James Rudrik Kelly Scott Sandip Shah

Minnesota Department of Health

Billie Juni Fe Leano Stephanie Meyer Kirk Smith Paula Snippes Charlotte Taylor Theresa Weber

Mississippi Department of Health

Jannifer Anderson Jane Campbell Sheryl Hand Cathie Hoover Lucersia Nichols Alice Singley Daphne Ware

Missouri Department of Health

John Bos David Byrd Steve Gladbach Jason Herstein JoAnn Rudroff Melissa Walker

Montana Department of Public

Health and Human Services Dana Fejes Debbie Gibson Karl Milhon Susanne Zanto

Nebraska Health and Human Services and the Nebraska Public Health Laboratory

Paul Fey Peter Iwen Manjiri Joshi Tom Safranek Robin Williams

Nevada Department of Health and Human Services

Vince Abitria Patricia Armour Michele Bushnik Jaime Frank Paul Hug Julie Kirch Bradford Lee Stephanie Van Hooser

New Hampshire Department of Health and Human Services

Christine Bean Steffany Cavallo Elizabeth Daly Rebecca Lovell Nancy Taylor Daniel Tullo

New Jersey Department of Health

Michelle Malavet Sylvia Matiuck Howard Sarubin Paul Seitz

New Mexico Department of

Health Lisa Butler Nicole Espinoza Sarah Khanlian Kodi Lockey Robert Mansman Cynthia Nicholson Lisa Onischuk Erica Pierce Paul Torres

New York City Department of Health and Mental Hygiene

Sharon Balter Ludwin Chicaiza Heather Hanson Lillian Lee Jennifer Rakeman Vasudha Reddy HaeNa Waechter

New York State Department of Health

Leanna Armstrong Nellie Dumas Suzanne McGuire Kim Musser Tim Root Shelley Zansky

North Carolina Department of

Health and Human Services Denise Griffin Debra Springer

North Dakota Department of Health

Eric Hieb Alicia Lepp Laura Mastel Tracy Miller Lisa Well

Ohio Department of Health

Tammy Bannerman Rick Bokanyi Rebekah Carman Lynn Denny Dayna Eckels Larry King Kimberly Machesky Marika Mohr Scott Nowicki Kim Quinn Ellen Salehi

Oklahoma State Department of Health

Sherry Hearon Sarah Hoss Mike Lytle Mike McDermott

Oregon Public Health Division

Debbie Berquist Hillary Booth Marianna Cavanaugh Paul Cieslak Dawn Daly Emilio Debess Julie Hatch Karim Morey Barbara Olson Beletsachew Shiferaw Janie Tierheimer Robert Vega Veronica Williams

Pennsylvania Department of Human Service

Carina Davis Lisa Dettinger David Faucette Yu Lung Li James Lute Nkuchia M'ikanatha Barry Perry Carol Sandt James Tait Deepanker Tewari

Rhode Island Department of Health

Michael Gosciminski Sharon Mallard Deanna Simmons Cindy Vanner

South Carolina Department of Health and Environmental

Control

Gloria Babb Sandra J. Bandstra Eddrenna Brown Megan Davis Dana Giurgiutiu

South Dakota Department of Health

Christopher Carlson Laurie Gregg Lon Kightlinger

Tennessee Department of Health

Parvin Arjmandi John Dunn Samir Hanna Henrietta Hardin Tim Jones Sheri Roberts Amy Woron

Texas Department of State Health Services

Tamara Baldwin Venessa Cantu Elizabeth Delamater Grace Kubin Greg Leos Tori Ponson Inger-Marie Vilcins Chun Wang

Utah Department of Health

J. Chad Campbell Lori Smith

Vermont Department of Health

Mary Celotti Valerie Devlin Christine LaBarre Bradley Tompkins

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health

Ellen Bassinger Stephanie Dela Cruz Angela Fritzinger Sherry Giese Jody Lowman Mary Mismas Jessica Rosner Denise Toney

Washington Department of Health

Romesh Gautom Brian Hiatt Yolanda Houze Nicola Marsden-Haug Beth Melius Sandra Moon Nusrat Syed Mike Tran Maryann Watkins

West Virginia Department of Health and Human Resources

Danae Bixler Christi Clark Maria del Rosario Loretta Haddy Suzanne Wilson Megan Young

Wisconsin Department of Health and Family Services

Susan Ahrabi-Fard Charles Brokopp Jeffrey Davis Rick Hefferman Rachel Klos Tim Monson Dave Warshauer

Wyoming Department of Health

Richard Harris John Harrison Tracy Murphy Clay Van Houten Jim Walford

Introduction

The primary purpose of the National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention (CDC) is to monitor antimicrobial resistance among enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in enteric bacteria isolated from retail meats, conducted by the U.S. Food and Drug Administration's Center for Veterinary Medicine (FDA-CVM)

(http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMoni toringSystem/default.htm), and for resistance in enteric bacteria isolated from food-producing animals, conducted by the U.S. Department of Agriculture's Agricultural Research Service (USDA-ARS) (http://www.ars.usda.gov/Business/docs.htm?docid=6750&page=1) and Food Safety and Inspection Service (USDA-FSIS) (http://www.fsis.usda.gov/OPPDE/rdad/FSISNotices/13-13.pdf?redirecthttp=true).

Many NARMS activities are conducted within the framework of two CDC programs: the Foodborne Diseases Active Surveillance Network (FoodNet), which is part of CDC's Emerging Infections Program (EIP), and the Epidemiology and Laboratory Capacity (ELC) Program. In addition to population-wide surveillance of resistance in enteric pathogens, the NARMS program at CDC also conducts research into the mechanisms of resistance and performs susceptibility testing of isolates of pathogens that have caused outbreaks.

Before NARMS was established, CDC monitored antimicrobial resistance in Salmonella, Shigella, and Campylobacter through periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with ongoing monitoring of antimicrobial resistance among clinical isolates of non-Typhi Salmonella (refers to all serotypes other than Typhi, which causes typhoid fever) and Escherichia coli O157 in 14 sites. In 1997, testing of clinical isolates of Campylobacter was initiated in the five sites then participating in FoodNet. Testing of clinical Salmonella ser. Typhi and Shigella isolates was added in 1999. Starting in 2003, all 50 states forwarded all Salmonella ser. Typhi isolates and a representative sample of non-Typhi Salmonella, Shigella, and E. coli O157 isolates to NARMS for antimicrobial susceptibility testing, and 10 states now participating in FoodNet have been conducting Campylobacter surveillance. Since 2008, all 50 states have also been forwarding every Salmonella ser. Paratyphi A and C to NARMS for antimicrobial susceptibility testing. Beginning in 2009, NARMS also performed susceptibility testing on isolates of Vibrio species other than V. cholerae. Public health laboratories are asked to forward every isolate of Vibrio species that they receive to CDC. All toxigenic V. cholerae isolates are tested for antimicrobial susceptibility by the National Enteric Laboratory Diagnostic Outbreak Team: results are available in the Cholera and Other Vibrio Illness Surveillance system (COVIS) reports beginning with the 2013 Annual Summary. NARMS conducts antimicrobial susceptibility testing for isolates of species other than V. cholerae; results are included in this report.

This annual report includes CDC's surveillance data for 2013 for nontyphoidal *Salmonella*, typhoidal *Salmonella* (serotypes Typhi, Paratyphi A, Paratyphi B [tartrate negative], and Paratyphi C), *Shigella*, *Campylobacter, E. coli* O157, and *Vibrio* species other than *V. cholerae*. Surveillance data include the number of isolates of each pathogen tested by NARMS and the number and percentage of isolates that were resistant to each of the antimicrobial agents tested. Data for earlier years are presented in tables and graphs when appropriate. Antimicrobial classes defined by the Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis.

This report uses the World Health Organization's categorization of antimicrobials of critical importance to human medicine (<u>Appendix A</u>) in the tables that present minimum inhibitory concentrations (MIC) and resistant percentages.

Additional NARMS data and more information about NARMS activities are available at http://www.cdc.gov/narms/.

What is New in the NARMS Report for 2013

New Baselines for Assessing Changes in Prevalence of Antimicrobial Resistance

To assess changes in the prevalence of antimicrobial resistance among *Salmonella, Shigella,* and *Campylobacter* isolates, NARMS models annual data using logistic regression. In previous reports, we compared the prevalence of resistance for the current year to the average prevalence during a historical baseline reference period of 2003–2007. In this report, we compared the prevalence of resistance among isolates tested in 2013 with the average prevalence from two reference periods: 2004–2008 and the previous five years, 2008–2012. The 2004–2008 reference period begins with the second year that all 50 states participated in *Salmonella* and *Shigella* surveillance and all 10 FoodNet sites participated in NARMS *Campylobacter* surveillance. The additional 2008–2012 reference period allows comparison with more recent years. The results of these analyses can be found on pages 17–18.

Changes in Antimicrobial Susceptibility Testing for Vibrio Species other than V. cholerae

Since 2009, NARMS has tested *Vibrio* species other than *V. cholerae* to determine the minimum inhibitory concentrations for ampicillin, cephalothin, chloramphenicol, ciprofloxacin, kanamycin, nalidixic acid, streptomycin, tetracycline, and trimethoprim-sulfamethoxazole. In 2013, we added four antimicrobial agents to the panel: cefotaxime, ceftazidime, gentamicin, and imipenem. To accommodate these additions, cephalothin, kanamycin, and streptomycin were removed. Further details regarding testing can be found on page 29, and susceptibility results can be found in the <u>Vibrio species other than V. cholerae</u> section of this report.

Summary of NARMS 2013 Surveillance Data

Surveillance Population

In 2013, all 50 states and the District of Columbia participated in NARMS, representing the entire US population of approximately 316 million persons (<u>Table 1</u>). Surveillance was conducted in all states for *Salmonella* (typhoidal and nontyphoidal), *Shigella, Escherichia coli* O157, and *Vibrio* species other than *V. cholerae*. For *Campylobacter*, surveillance was conducted in the 10 states that comprise the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 48 million persons (15% of the US population).

Clinically Important Antimicrobial Resistance Patterns

In the United States, fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are commonly used to treat severe *Salmonella* infections, including typhoid and paratyphoid fever as well as severe nontyphoidal infections. In *Enterobacteriaceae*, (e.g., *Salmonella* and *Shigella*) resistance to nalidixic acid, an elementary quinolone, usually correlates with decreased susceptibility to ciprofloxacin (Table 2) and possible fluoroquinolone treatment failure, although sometimes resistance or decreased susceptibility to ciprofloxacin occurs in the absence of nalidixic acid resistance. Macrolides (e.g., azithromycin), penicillins (e.g., ampicillin), and trimethoprim-sulfamethoxazole are also of clinical importance. A substantial proportion of *Enterobacteriaceae* isolates tested in 2013 demonstrated clinically important resistance.

In *Salmonella*, antimicrobial resistance varies by serotype. Overall changes in resistance among nontyphoidal *Salmonella* may reflect changes in resistance within serotypes, changes in serotype distribution, or both.

- 3% (61/2178) of nontyphoidal *Salmonella* isolates were resistant to nalidixic acid. Enteritidis was the most common serotype among nalidixic acid-resistant nontyphoidal *Salmonella* isolates.
 - o 36% (22/61) of nalidixic acid-resistant isolates were ser. Enteritidis
 - o 6% (22/382) of ser. Enteritidis isolates were resistant to nalidixic acid
- 3% (55/2178) of nontyphoidal *Salmonella* isolates were resistant to ceftriaxone. The most common serotypes among the 55 ceftriaxone-resistant isolates were Newport, Dublin, Typhimurium, Heidelberg, and Infantis. Resistance to ceftriaxone occurred in
 - o 5% (11/209) of ser. Newport isolates
 - 92% (11/12) of ser. Dublin isolates
 - o 3% (11/325) of ser. Typhimurium isolates
 - 15% (9/60) of ser. Heidelberg isolates
 - 7% (5/76) of ser. Infantis isolates
- 67% (188/279) of *Salmonella* ser. Typhi isolates were resistant to nalidixic acid, and 9% (24/279) were resistant to ciprofloxacin.
- 81% (81/100) of Salmonella ser. Paratyphi A isolates were resistant to nalidixic acid, and 4% (4/100) were resistant to ciprofloxacin.
- No Salmonella ser. Typhi or Salmonella ser. Paratyphi A isolates were resistant to ceftriaxone.

For *Shigella*, fluoroquinolones and macrolides (e.g., azithromycin) are important agents in the treatment of severe infections. (Note: Azithromycin breakpoints were established by NARMS for resistance monitoring and should not be used to predict clinical efficacy. CLSI has not established breakpoints for *Shigella*.)

- 3% (12/344) of Shigella isolates were resistant to ciprofloxacin, including
 - 6% (4/64) of Shigella flexneri isolates
 - o 3% (8/275) of Shigella sonnei isolates
- 5% (12/344) of Shigella isolates were resistant to nalidixic acid, including
 - 13% (8/64) of Shigella flexneri isolates
 - o 3% (9/275) of Shigella sonnei
- 4% (13/344) of *Shigella* isolates were resistant to azithromycin, including
 - o 16% (10/64) of Shigella flexneri isolates
 - 1% (3/275) of Shigella sonnei isolates

For *Campylobacter*, fluoroquinolones and macrolides are important treatment options for severe infections. ECOFF values are used for interpreting antimicrobial susceptibility data. Since ECOFFs differ between *Campylobacter* species, the percentage resistant for *Campylobacter* overall is not reported.

- 22% (263/1182) of *Campylobacter jejuni* isolates and 34% (45/134) of *Campylobacter coli* isolates were resistant to ciprofloxacin
- 2% (26/1182) of *Campylobacter jejuni* isolates and 17% (24/142) of *Campylobacter coli* isolates were resistant to erythromycin
- 2% (26/1182) of Campylobacter jejuni isolates and 18% (25/142) of Campylobacter coli isolates were resistant to azithromycin

Multidrug Resistance

Multidrug resistance is reported in NARMS in several ways, including resistance to various numbers of classes of antimicrobial agents and also by specific co-resistance phenotypes.

For nontyphoidal *Salmonella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole/sulfisoxazole), and tetracycline (ACSSuT); these agents represent five CLSI classes. A similar pattern of resistance to at least ASSuT (but not chloramphenicol) has emerged in recent years. Another important phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx); these agents represent seven CLSI classes.

- 3% (74/2178) of nontyphoidal *Salmonella* isolates were resistant to at least ACSSuT. The most common serotypes were Typhimurium, Newport, and Dublin. ACSSuT resistance occurred in
 - o 12% (39/325) ser. Typhimurium isolates
 - o 5% (10/209) ser. Newport isolates
 - 83% (10/12) ser. Dublin isolates
- 3% (74/2178) of nontyphoidal Salmonella isolates were resistant to at least ASSuT but not chloramphenicol. The most common serotype was I 4,[5],12:i:- (59 isolates) followed by Typhimurium. This resistance pattern occurred in
 - o 47% (59/127) ser. I 4,[5],12:i:- isolates
 - o 1% (4/325) ser. Typhimurium isolates
- 1% (31/2178) of nontyphoidal *Salmonella* isolates were resistant to at least ACSSuTAuCx. The most common serotypes were Newport, Dublin, and Typhimurium. This resistance pattern occurred in
 - o 5% (10/209) ser. Newport isolates
 - o 83% (10/12) ser. Dublin isolates
 - 2% (7/325) ser. Typhimurium isolates
- 10% (214/2178) of nontyphoidal Salmonella isolates were resistant to three or more CLSI classes. The most common serotypes with this resistance were I 4,[5],12:i:, Typhimurium, Heidelberg, Newport, Dublin, and Infantis. Resistance to three or more classes occurred in
 - o 51% (65/127) ser. I 4,[5],12:i:- isolates
 - o 17% (55/325) ser. Typhimurium isolates
 - 33% (20/60) ser. Heidelberg isolates
 - o 6% (12/209) ser. Newport isolates
 - 92% (11/12) ser. Dublin isolates
 - o 11% (8/76) ser. Infantis isolates

For Salmonella ser. Typhi, an important multidrug-resistance phenotype includes resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (ACT/S).

8% (23/279) of ser. Typhi isolates were resistant to at least ACT/S, and 10% (29/279) were resistant to three
or more classes

For *Shigella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin and trimethoprim-sulfamethoxazole (AT/S).

26% (88/344) of Shigella isolates were resistant to at least AT/S, and 54% (184/344) were resistant to three
or more classes

Changes in Antimicrobial Resistance: 2013 vs. 2004–2008 and 2008–2012

To understand changes in the prevalence of antimicrobial resistance among *Salmonella, Shigella*, and *Campylobacter* over time, we used logistic regression to model annual data from 2004–2013. Since 2003, all 50 states have participated in *Salmonella* and *Shigella* surveillance, and all 10 FoodNet sites have participated in *Campylobacter* surveillance. We compared the prevalence of selected resistance patterns among isolates tested in 2013 with the average prevalence of resistance from two reference periods: 2004–2008 and 2008–2012. (These methods are detailed in the <u>Data Analysis</u> section.)

We defined the prevalence of resistance as the percentage of resistant isolates among the total isolates tested. Changes in the percentage of isolates that are resistant may not reflect changes in the incidence of resistant infections because of fluctuations in the incidence of illness caused by the pathogen or serotype from year to year. The incidence and relative changes in the incidence of *Salmonella*, *Shigella*, and *Campylobacter* infections are reported annually from surveillance in FoodNet sites (CDC, 2014).

2013 vs. 2004-2008

The differences between the prevalence of resistance in 2013 and the average prevalence of resistance in 2004–2008 (Figure H1, A) were statistically significant for the following:

- Among Salmonella of particular serotypes
 - ACSSuT resistance in ser. Typhimurium was lower (12.0% vs. 22.3%; odds ratio [OR]=0.5, 95% confidence interval [CI] 0.3–0.7)
 - Nalidixic acid resistance in ser. Typhi was higher (67.4% vs. 53.1%; OR=1.9, 95% CI 1.4–2.5)
- Among *Shigella* spp.
 - Nalidixic acid resistance was higher (5.2% vs. 2.0%; OR=3.2, 95% Cl 1.8–5.7).

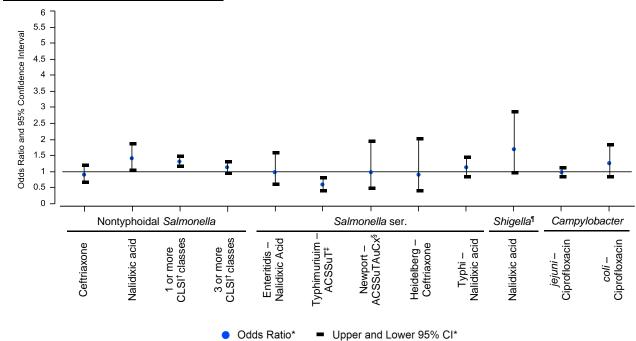
The differences between the prevalence of resistance in 2013 and the average prevalence of resistance in 2004–2008 (Figure H1, A) were *not* statistically significant for the following selected pathogen-resistance combinations:

- Among nontyphoidal Salmonella
 - Ceftriaxone resistance (2.5% vs. 3.2%; OR=0.9, 95% CI 0.6–1.1)
 - o Nalidixic acid resistance (2.8% vs. 2.2%; OR=1.4, 95% CI 1.0-1.9)
 - Resistance to one or more classes (19.2% vs. 18.7%; OR=1.1, 95% CI 1.0–1.2)
 - o Resistance to three or more classes (9.8% vs. 11.2%; OR=0.9, 95% CI 0.8-1.1)
- Among Salmonella of particular serotypes
 - Nalidixic acid resistance in ser. Enteritidis (5.8% vs. 6.3%; OR=1.0, 95% CI 0.6–1.5)
 - o ACSSuTAuCx resistance in ser. Newport (4.8% vs. 11.7%; OR=0.5, 95% CI 0.3-1.1)
 - Ceftriaxone resistance in ser. Heidelberg (15.0% vs. 8.5%; OR=1.9, 95% CI 0.8–4.2)
- Among Campylobacter jejuni and C. coli
 - o Ciprofloxacin resistance in *C. jejuni* (22.3% vs. 21.6%; OR=1.1, 95% CI 0.9–1.3)
 - o Ciprofloxacin resistance in C. coli (34.5% vs. 27.2%; OR=1.4, 95% CI 0.9–2.2)

2013 vs. 2008-2012

The differences between the prevalence of resistance in 2013 and the average prevalence of resistance in 2008–2012 (Figure H1, B) were statistically significant for the following:

- Among nontyphoidal Salmonella
 - Resistance to one or more classes was higher (19.2% vs. 15.7%; OR=1.3, 95% CI 1.2–1.5)
- Among Salmonella of particular serotypes
 - o ACSSuT resistance in ser. Typhimurium was lower (12.0% vs. 19.7%;OR=0.6, 95% CI 0.4-0.8)


The differences between the prevalence of resistance in 2013 and the average prevalence of resistance in 2008–2012 (Figure H1, B) were *not* statistically significant for the following selected pathogen-resistance combinations:

- Among nontyphoidal Salmonella
 - Ceftriaxone resistance (2.5% vs. 2.9%; OR=0.9, 95% CI 0.7–1.2)
 - o Nalidixic acid resistance (2.8% vs. 2.1%; OR=1.4, 95% CI 1.0-1.9)
 - Resistance to three or more classes (9.8% vs. 9.2%; OR=1.1, 95% Cl 1.0–1.3)
- Among Salmonella of particular serotypes
 - Nalidixic acid resistance in ser. Enteritidis (5.8% vs. 6.2%; OR=1.0, 95% CI 0.6–1.6)
 - o ACSSuTAuCx resistance in ser. Newport (4.8% vs. 6.7%; OR=1.0, 95% CI 0.5–2.0)
 - Ceftriaxone resistance in ser. Heidelberg (15.0% vs. 16.7%; OR=0.9, 95% CI 0.4–2.0)
 - Nalidixic acid resistance in ser. Typhi (67.4% vs. 65.5%; OR=1.1, 95% CI 0.9–1.5)
- Among Campylobacter jejuni and C. coli
 - o Ciprofloxacin resistance in *C. jejuni* (22.3% vs. 23.4%; OR=1.0, 95% CI 0.8–1.1)
 - o Ciprofloxacin resistance in C. coli (34.5% vs. 30.8%; OR=1.2, 95% CI 0.8–1.8)
- Among *Shigella* spp.
 - Nalidixic acid resistance (5.2% vs. 3.8% (OR=1.7, 95% CI 1.0–2.9)

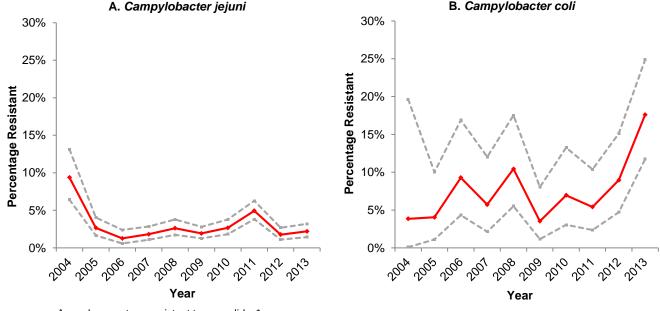
Changes in Antimicrobial Resistance: 2013 vs. 2004–2008 and 2008–2012

Figure H1. Changes in prevalence of selected resistance patterns among Salmonella, Shigella, and Campylobacter isolates, 2013 compared with 2004–2008 and 2008–2012* A. 2013 compared with 2004-2008* 6 5.5 Odds Ratio and 95% Confidence Interval 5 4.5 4 3.5 3 2.5 2 1.5 1 Ţ 0.5 0 Nontyphoidal Salmonella Salmonella ser. Shigella Campylobacter Newport – ACSSuTAuCx[§] 1 or more CLSI[†] classes 3 or more CLSI[†] classes Enteritidis – Nalidixic Acid Typhi – Nalidixic acid Typhimuriuim -ACSSuT[‡] Validixic acid Heidelberg – Ceftriaxone Validixic acid Ciprofloxacin Ciprofloxacin Ceftriaxone jejuni – coli

B. 2013 compared with 2008-2012*

* The prevalence of resistance in 2013 was compared with the average prevalence from two reference periods, 2004–2008 and 2008–2012. Logistic regression models adjusted for site using a 9-level categorical variable (9 US census regions) for Salmonella and Shigella and 10level categorical variable (10 FoodNet states) for Campylobacter. The odds ratios (ORs) and 95% confidence intervals (Cls) were calculated using unconditional maximum likelihood estimation. ORs that do not include 1.0 in the 95% Cls are reported as statistically significant.

- + Antimicrobial classes of agents are those defined by the Clinical and Laboratory Standards Institute (CLSI)
- ‡ ACSSuT: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline
- § ACSSuTAuCx: resistance to at least ACSSuT,[‡] amoxicillin-clavulanic acid, and ceftriaxone


For 2013 vs. 2008–2012, the main effects model was adjusted for site using a two-level categorical variable (East, West)

Increased Resistance to Macrolides in Campylobacter

Campylobacter is estimated to cause 1.3 million infections in the United States each year.¹ Symptoms include diarrhea (often bloody), abdominal pain, and fever.² Less common but more severe complications include extraintestinal infections, reactive arthritis, and Guillain-Barré syndrome.² The primary antimicrobial treatment options for *Campylobacter* infection are fluoroquinolones and macrolides.² Resistance to fluoroquinolones is common in the United States (24% in 2013) and elsewhere,^{3,4} at times leaving macrolides as the only treatment option.² Historically, *Campylobacter* resistance to macrolides in the United States has been low (<5%), but increasing resistance to macrolides has been reported in many parts of the world.⁴

In 2013, the percentage of human *Campylobacter* isolates with macrolide resistance increased. The change was small (from 1.8% in 2012 to 2.2% in 2013) among *Campylobacter jejuni* (Figure H2, A), the most common species isolated from humans, but larger among *Campylobacter coli*, increasing from 9.0% in 2012 to 17.6% in 2013 (Figure H2, B).

Macrolide resistance in *Campylobacter* is usually mediated by a mutation in one or more copies of the chromosomal 23S rRNA gene (*Campylobacter* has three copies of 23S). However, a new horizontally transferable resistance determinant, *ermB*, was recently identified among macrolide resistant *Campylobacter coli*. The *ermB* gene encodes an rRNA methylase and can be plasmid-encoded, allowing for rapid dissemination.⁵ Molecular studies are ongoing to identify the mechanism responsible for macrolide resistance among US *Campylobacter* isolates.

Figure H2. Percentage of Campylobacter isolates with resistance to macrolides*, 2004–2013

Annual percentage resistant to macrolides*

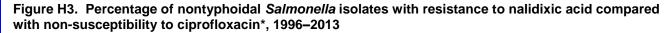
----- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

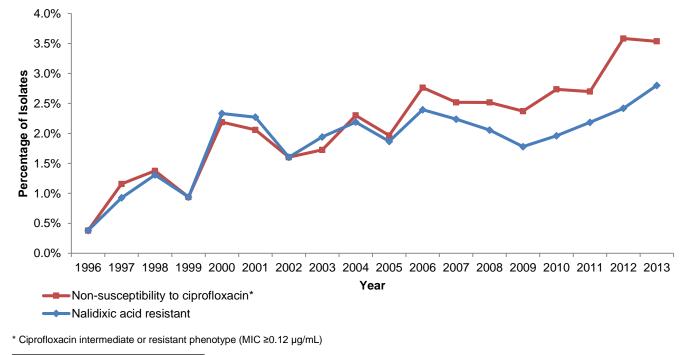
* Resistance to azithromycin or erythromycin

and Campylobacter coli strains. J Antimicrob Chemother. 2010;65(10):2083–88.

^{1.} Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et el. Foodborne Illness acquired in the United States-major pathogens (expanded table 2). Emerg Infect Dis. 2011;17(1):7–15.

^{2.} Blaser MJ, Engberg J. Clinical aspects of Campylobacter jejuni and Campylobacter coli infections. In: Nachamkin I, Szymanski CM, Blaser MJ, editors. Campylobacter, 3rd ed. Washington, DC: ASM Press; 2008. p. 99–121.


Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I. Quinolone and macrolide resistance in *Campylobacter jejuni* and *C. coli*: resistance mechanisms and trends in human isolates. Emerg Infect Dis. 2001;7(1):24–34.
 Pérez-Boto D, López-Portolés JA, Simón C, Valdezate S, Echeita MA. Study of the molecular mechanisms involved in high-level macrolide resistance of Spanish Campylobacter jejuni


Wang Y, Zhang M, Deng F, Shen Z, Wu C, Zhang J, et al. Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob Agents Chemother 2014;58(9):5405–12.

Increasing Non-Susceptibility to Quinolones among Nontyphoidal Salmonella

Fluoroquinolones (e.g., ciprofloxacin), a subset of the quinolone antimicrobial class, are important therapeutic options for severe nontyphoidal *Salmonella* (NTS) infections, especially in adults.¹ NARMS tests isolates of NTS for resistance to ciprofloxacin; a minimum inhibitory concentration (MIC) of $0.12-0.5 \mu g/mL$ is defined as intermediate, and MIC $\geq 1 \mu g/mL$ is defined as resistant. The quinolone nalidixic acid is also tested; MIC $\geq 32 \mu g/mL$ is defined as resistant, and there is no intermediate category. Although nalidixic acid is not used to treat invasive salmonellosis, monitoring susceptibility to this drug is important for surveillance purposes. Resistance to nalidixic acid is correlated with non-susceptibility to ciprofloxacin (intermediate or resistant) and may predict fluoroquinolone treatment failure.² In NTS and other *Enterobacteriaceae*, a single point mutation in the quinolone resistance-determining region (QRDR) of topoisomerase usually leads to nalidixic acid resistance and reduced susceptibility to ciprofloxacin.^{3,4} Resistance to fluoroquinolones typically requires stepwise mutations in the QRDR that also result in nalidixic acid resistance. Non-susceptibility to ciprofloxacin in absence of nalidixic acid resistance may indicate extra-chromosomal (non-QRDR), plasmid-mediated quinolone resistance (PMQR) mechanisms.⁴

Non-susceptibility to quinolones has increased among NTS since 1996. Although both resistance to nalidixic acid and non-susceptibility to ciprofloxacin have been recently increasing, the trends diverged after 2005, with higher percentages of isolates with ciprofloxacin non-susceptibility than nalidixic acid resistance (Figure H3). From 2009 to 2013, the percentage of isolates resistant to nalidixic acid increased from 1.8% (39/2193) to 2.8% (61/2178), while the percentage with non-susceptibility to ciprofloxacin increased from 2.4% (52/2193) to 3.5% (77/2178). Among NTS isolates with non-susceptibility to ciprofloxacin, the proportion that lacked nalidixic acid resistance was only 9.3% (24/258) during 1996–2005, compared with 24.8% (127/513) during 2006–2013. Testing of NTS isolates collected during 2004–2006⁵ and 2007⁴ showed an increase in the proportion of isolates harboring PMQR mechanisms compared with 1996–2003.⁶ NARMS is currently investigating the molecular mechanisms of resistance and possible sources of the more recent infections and undertaking analyses to describe correlations between nalidixic acid resistance and ciprofloxacin non-susceptibility in more detail at the serotype level.

Acheson D, Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32(2):263–9.

6. Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, et al. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis. 2006;43(3):297–304.

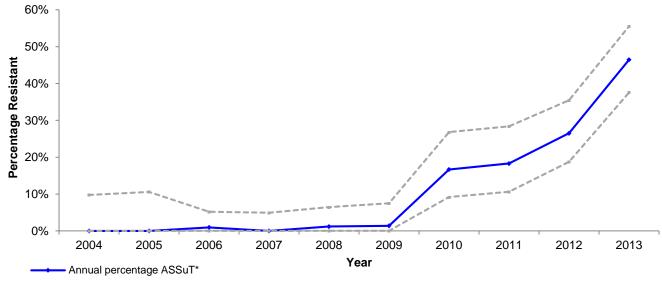
Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis. 2003;37(a):75–81.

Hakanen A, Kotilainen P, Jalava, J, Siitonen A, Huovinen P. Detection of decreased fluoroquinolone susceptibility in Salmonellas and validation of nalidixic acid screening test. J Clin Microbiol. 1999;37(11):3572–7.
 Sjölund-Karlsson M, Howie R, Rickert R, Krueger A, Tran TT, Zhao S, et al. Plasmid-mediated quinolone resistance among non-Typhi Salmonella enterica isolates, USA. Emerg Infect

Sjölund-Karlsson M, Folster JP, Pecic G, Joyce K, Medalla F, Rickert R, et al. Emergence of plasmid-mediated quinolone resistance among non-Typhi Salmonella enterica isolates
 Sjölund-Karlsson M, Folster JP, Pecic G, Joyce K, Medalla F, Rickert R, et al. Emergence of plasmid-mediated quinolone resistance among non-Typhi Salmonella enterica isolates

from humans in the United States. Antimicrob Agents Chemother. 2009;53(5):2142–4.

Continued Rise of ASSuT Resistance in Salmonella ser. 14,[5],12:i:-


In 2013, the percentage of human Salmonella ser. I 4,[5],12:i:- isolates with resistance to ampicillin, streptomycin, sulfonamide, and tetracycline (ASSuT) but not chloramphenicol continued to increase. Resistance emerged in 2010 when the percentage of resistant isolates increased to nearly 17% from less than 1.5% for the previous 14 years.¹ This resistance increased to 18.3% (15/82) in 2011, 26.5% (31/117) in 2012, and 45.5% (59/127) in 2013 (Figure H4).

Serotype I 4,[5],12:i:- is a monophasic variant of serotype Typhimurium (I 4,[5],12:i:1,2). Resistance to ampicillin, streptomycin, sulfonamide, and tetracycline has also been observed among NARMS isolates of serotype Typhimurium; however, the majority of Typhimurium isolates resistant to these four agents have shown additional resistance to chloramphenicol. In 2013. 90.7% (39/43) of Typhimurium isolates resistant to at least ASSuT were also chloramphenicol resistant (ACSSuT). compared with only 1.7% (1/60) of ASSuT I 4,[5],12:i:- isolates. Among all nontyphoidal Salmonella isolates tested by NARMS in 2013, 74 (3.4%) were resistant to ASSuT but not chloramphenicol; 59 (79.7%) of these were serotype I 4,[5],12:i:-. The next most common serotype was Typhimurium with 4 (5.4%) isolates. (See the nontyphoidal Salmonella section for more detail).

In Europe, a notable increase of Salmonella ser. I 4,[5],12:i:- infections with resistance to ASSuT but not chloramphenicol has been observed since the early 2000s, predating the emergence in the United States. The European emergence was caused by a clonal group of I 4,[5],12:i:- ASSuT strains commonly belonging to definitive phage type DT193, with resistance conferred by blaTEM-1, strA/B, sul2, and tet(B) genes on the chromosome 2.3 Similar to ACSSuT in DT104, ASSuT in DT193 is due to a Salmonella Genomic Island (SGI) located in the chromosome; however, the SGI type and location differ between the two strains. Exposure to pigs or pork products has frequently been reported in persons infected with the DT193 "European clone," and the organism has been isolated from pigs.²

In the United States, ASSuT-resistant serotype I 4,[5],12:i- with pulsed-field gel electrophoresis (PFGE) pattern JPXX01.1314 (identical to DT193) and resistant determinates blaTEM-1, strA/B, sul2, and tet(B) has caused multiple outbreaks. Frequently, these events have been linked with animal exposure or consumption of pork or beef, including meats purchased from live animal markets.⁴ The increase of ASSuT-resistant serotype I 4,[5],12:i- in the United States is likely due to clonal expansion, given the frequency of the PFGE pattern and the resistance determinants likely being chromosomal, limiting horizontal transfer. These characteristics parallel the spread of DT193 in Europe.

Figure H4. Percentage of Salmonella ser. I 4,[5],12:i:- isolates with resistance to at least ASSuT* but not chloramphenicol. 2004-2013

----- Upper and lower limits of the individual 95% confidence intervals for annual percentage ASSuT*

* Ampicillin, streptomycin, sulphonamides, and tetracycline

CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2011. Atlanta, Georgia: U.S. Department of Health and 1.

Human Services, CDC, 2013 Hopkins KL, Kirchner M, Guerra B. Granier SA, Lucarelli C, Porrero MC, et al. Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain? Euro Surveill. 2. 2010:15(22):19580. Lucarelli C, Dionisi AM, Filetici E, Owczarek S, Luzzi I, Villa L. Nucleotide sequence of the chromosomal region conferring multidrug resistance (R-type ASSuT) in Salmonella 3

Typhimurium and monophasic Salmonella Typhimurium strains. J Antimicrob Chemother. 2012;67(1):111-4

Imanishi M, Anderson TC, Routh J, Brown C, Conidi G, Glenn L, et al. Salmonellosis and meat purchased at live-bird and animal-slaughter markets, United States, 2007–2012. Emerg Infect Dis. 2014;20(1):167-9.

Surveillance Sites and Isolate Submissions

In 2013, NARMS conducted nationwide surveillance among the approximately 316 million persons living in the United States (2013 estimates published in the 2013 U.S. Census Bureau report). Public health laboratories systematically selected every 20th nontyphoidal *Salmonella*, *Shigella*, and *Escherichia coli* O157 isolate and every *Salmonella* ser. Typhi, *Salmonella* ser. Paratyphi A, and *Salmonella* ser. Paratyphi C isolate received at their laboratories and forwarded these isolates to CDC for antimicrobial susceptibility testing. With few exceptions, serotyping was performed at the public health laboratories and not further confirmed at CDC. *Salmonella* ser. Paratyphi B was included in the sampling for nontyphoidal *Salmonella* because laboratory methods are not always available to reliably distinguish between ser. Paratyphi B (which typically causes typhoidal illness) and ser. Paratyphi B var. L(+) tartrate+ (which does not typically cause typhoidal illness). Serotype Paratyphi B isolates for which the results of tartrate fermentation testing are reported as either "negative" or "missing" are retested and confirmed at CDC. Those identified as ser. Paratyphi B var. L(+) tartrate+ are included with other nontyphoidal *Salmonella* serotypes in this report. Because the number of ser. Paratyphi B (tartrate negative) and ser. Paratyphi C isolates is very small, this report includes susceptibility results only for ser. Paratyphi A.

Beginning in 2009, NARMS performed susceptibility testing on isolates of *Vibrio* species other than *V. cholerae* submitted by the NARMS participating public health laboratories. Participants were asked to forward every *Vibrio* isolate that they received to CDC. Isolates of *Vibrio* species other than *V. cholerae* are confirmed in CDC's National Enteric Reference Laboratory and tested for antimicrobial susceptibility by NARMS, whereas isolates of *Vibrio cholerae* are only characterized in the Reference Laboratory and not tested by NARMS. Due to an increasing number of *Vibrio parahaemolyticus* submissions, NARMS began selecting every other *Vibrio parahaemolyticus* isolate for antimicrobial susceptibility testing during 2013. NARMS continued to test every isolate of the remaining *Vibrio* species other than *Vibrio cholerae*. For information on toxigenic *Vibrio cholerae*, refer to the <u>Cholera and Other Vibrio Illness Surveillance System (COVIS) annual summaries</u>.

Since 1997, NARMS has performed antimicrobial susceptibility testing on *Campylobacter* isolates submitted by the public health laboratories participating in CDC's Foodborne Diseases Active Surveillance Network (FoodNet). The FoodNet sites, representing approximately 48 million persons (2013 estimates published in <u>2013 U.S.</u> <u>Census Bureau report</u>), include Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York. From 1997 to 2004, public health laboratories then participating in FoodNet forwarded one *Campylobacter* isolate each week to CDC for susceptibility testing. In 2005, a new scheme was introduced and sites began forwarding a sample of *Campylobacter* isolates based on the number of isolates received. They submitted every isolate (Georgia, Maryland, New Mexico, Oregon, and Tennessee), every other isolate (California, Colorado, Connecticut, and New York), or every fifth isolate (Minnesota) received. Starting in 2010, Georgia and Maryland submitted every other isolate received, and New Mexico submitted every third isolate received. State public health laboratories in FoodNet sites receive *Campylobacter* isolates from a convenience sample of reference and clinical laboratories in their state. Of the laboratories in each site that perform on-site testing for *Campylobacter* (range,19 to 101 per site in 2013), the number submitting isolates to the state public health laboratory ranged from one to 101 in 2013.

State/Site	Population Size*		Nontyphoidal Salmonella		Typhoidal [†] Salmonella		Shigella		E. coli 0157		Campylobacter [‡]		Vibrio species other than V. cholerae	
	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Alabama	4,833,722	(1.5)	66	(3.0)	6	(1.6)	15	(4.4)	0	(0)			0	(0)
Alaska	735,132	(0.2)	3	(0.1)	5	(1.3)	1	(0.3)	0	(0)			2	(0.3)
Arizona	6,626,624	(2.1)	54	(2.5)	13	(3.4)	0	(0.0)	4	(2.3)			2	(0.3)
Arkansas	2,959,373	(0.9)	30	(1.4)	0	(0)	10	(0)	4	(0.6)			0	(0.3)
California [§]	28,315,453	(0.3)	54	(2.5)	40	(10.5)	0	(0)	10	(5.6)	74	(5.4)	30	(0)
Colorado	5,268,367	(1.7)	33	(1.5)	5	(10.3)	6	(0)	3	(1.7)	28	(2.0)	10	(1.6)
Connecticut	3,596,080	(1.1)	25	(1.3)	7	(1.8)	3	(0.9)	1	(0.6)	158	(11.5)	25	(4.1)
Delaw are	925,749	(0.3)	8	(0.4)	3	(0.8)	1	(0.3)	1	(0.6)	100	(11.5)	20	(0.3)
District of Columbia	646,449	(0.2)	9	(0.4)	1	(0.3)	2	(0.6)	0	(0)			0	(0.0)
Florida	19,552,860	(6.2)	76	(3.5)	12	(3.2)	6	(1.7)	0	(0)			124	(20.4)
Georgia	9,992,167	(3.2)	125	(5.7)	11	(2.9)	45	(13.1)	2	(1.1)	193	(14.1)	14	(2.3)
Haw aii	1,404,054	(0.4)	9	(0.4)	2	(0.5)	3	(0.9)	3	(1.7)	100	(14.1)	25	(4.1)
Houston, Texas ¹	2,195,914	(0.7)	48	(2.2)	5	(1.3)	31	(0.0)	0	(0)			0	(0)
Idaho	1,612,136	(0.5)	8	(0.4)	2	(0.5)	1	(0.3)	2	(1.1)			0	(0)
Illinois	12,882,135	(0.3)	105	(0.4)	24	(6.3)	17	(0.3)	10	(5.6)			1	(0)
Indiana	6,570,902	(4.1)	39	(4.8)	4	(0.3)	2	(0.6)	6	(3.4)	1		4	(0.2)
low a	3,090,416	(2.1)	23	(1.8)	2	(0.5)	1	(0.3)	4	(2.3)	1		7	(0.7)
Kansas	2,893,957	(0.9)	15	(0.7)	1	(0.3)	2	(0.6)	2	(1.1)			0	(0)
Kentucky	4,395,295	(0.3)	20	(0.9)	2	(0.5)	0	(0.0)	2	(1.1)			1	(0.2)
Los Angeles"	10,017,068	(3.2)	56	(2.6)	18	(4.7)	2	(0.6)	1	(0.6)			0	(0.2)
Louisiana	4,625,470	(1.5)	49	(2.0)	0	(0)	12	(3.5)	0	(0.0)			21	(3.5)
Maine	1,328,302	(0.4)	4	(0.2)	0	(0)	1	(0.3)	3	(1.7)			7	(1.2)
Maryland	5,928,814	(1.9)	47	(0.2)	15	(3.9)	4	(0.3)	5	(2.8)	249	(18.1)	24	(1.2)
Massachusetts	6,692,824	(2.1)	77	(3.5)	20	(5.3)	11	(3.2)	3	(1.7)	245	(10.1)	47	(7.7)
Michigan	9,895,622	(3.1)	44	(2.0)	3	(0.8)	6	(1.7)	0	(0)			4	(0.7)
Minnesota	5,420,380	(1.7)	40	(1.8)	6	(1.6)	7	(1.7)	8	(4.5)	166	(12.1)	13	(2.1)
Mississippi	2,991,207	(0.9)	40	(1.0)	0	(0)	8	(2.3)	1	(0.6)	100	(12.1)	7	(1.2)
Missouri	6,044,171	(1.9)	61	(2.8)	1	(0.3)	7	(2)	. 14	(7.9)			2	(0.3)
Montana	1,015,165	(0.3)	9	(0.4)	0	(0.0)	4	(1.2)	6	(3.4)			2	(0.3)
Nebraska	1,868,516	(0.6)	11	(0.5)	0	(0)	8	(2.3)	4	(2.3)			2	(0.3)
Nevada	2,790,136	(0.9)	17	(0.8)	1	(0.3)	0	(0)	1	(0.6)			2	(0.3)
New Hampshire	1,323,459	(0.4)	9	(0.4)	3	(0.8)	0	(0)	0	(0)			3	(0.5)
New Jersey	8,899,339	(2.8)	49	(2.2)	25	(6.6)	7	(2)	6	(3.4)			22	(3.6)
New Mexico	2,085,287	(0.7)	21	(1.0)	1	(0.3)	2	(0.6)	0	(0)	90	(6.6)	1	(0.2)
New York ^{††}	11,245,290	(3.6)	71	(3.3)	13	(3.4)	4	(1.2)	5	(2.8)	196	(14.3)	35	(5.8)
New York City ^{‡‡}	8,405,837	(2.7)	62	(2.8)	39	(10.3)	15	(4.4)	4	(2.3)		()	12	(2)
North Carolina	9,848,060	(3.1)	91	(4.2)	9	(2.4)	5	(1.5)	1	(0.6)			4	(0.7)
North Dakota	723,393	(0.2)	6	(0.3)	0	(0)	2	(0.6)	1	(0.6)			1	(0.2)
Ohio	11,570,808	(3.7)	65	(3.0)	9	(2.4)	8	(2.3)	7	(4.0)			3	(0.5)
Oklahoma	3,850,568	(1.2)	33	(1.5)	1	(0.3)	2	(0.6)	6	(3.4)			0	(0)
Oregon	3,930,065	(1.2)	21	(1.0)	4	(1.1)	4	(1.2)	7	(4.0)	145	(10.6)	7	(1.2)
Pennsylvania	12,773,801	(4)	75	(3.4)	12	(3.2)	6	(1.7)	6	(3.4)	-	/	2	(0.3)
Rhode Island	1,051,511	(0.3)	8	(0.4)	1	(0.3)	8	(2.3)	0	(0)	1		10	(1.6)
South Carolina	4,774,839	(1.5)	54	(2.5)	0	(0)	4	(1.2)	1	(0.6)	İ		7	(1.2)
South Dakota	844,877	(0.3)	9	(0.4)	0	(0)	2	(0.6)	1	(0.6)	1		0	(0)
Tennessee	6,495,978	(2.1)	44	(2.0)	3	(0.8)	27	(7.8)	4	(2.3)	73	(5.3)	3	(0.5)
Texas ^{§§}	24,252,279	(7.7)	153	(7.0)	11	(2.9)	10	(2.9)	4	(2.3)	1		32	(5.3)
Utah	2,900,872	(0.9)	16	(0.7)	2	(0.5)	1	(0.3)	2	(1.1)			1	(0.2)
Vermont	626,630	(0.2)	4	(0.2)	0	(0)	1	(0.3)	1	(0.6)			0	(0)
Virginia	8,260,405	(2.6)	52	(2.4)	14	(3.7)	4	(1.2)	1	(0.6)	1		21	(3.5)
Washington	6,971,406	(2.2)	34	(1.6)	20	(5.3)	7	(2)	11	(6.2)	1		62	(10.2)
West Virginia	1,854,304	(0.6)	35	(1.6)	0	(0)	5	(1.5)	5	(2.8)	1		0	(0)
Wisconsin	5,742,713	(1.8)	50	(2.3)	4	(1.1)	2	(0.6)	5	(2.8)	İ		3	(0.5)
Wyoming	582,658	(0.2)	5	(0.2)	0	(0)	2	(0.6)	2	(1.1)	1		0	(0)
Total	316,128,839	(100)	2,178	(100)	380	(100)	344	(100)	177	(100)	1,372	(100)	607	(100)

Table 1. Population size and number of isolates received and tested, 2013

* Published in 2013 U.S. Census Bureau population estimates

† Typhoidal Salmonella includes serotypes Typhi, Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C. Because the number of ser. Paratyphi B (tartrate negative) and ser. Paratyphi C isolates is very small, susceptibility results for them are not reported.

‡ Campylobacter isolates are submitted only from FoodNet sites, which are Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York. Of the clinical laboratories in each site that perform on-site testing for Campylobacter (range,19 to 101 per site in 2013), the number submitting isolates to the state public health laboratory ranged from one to all.

§ Excluding Los Angeles County

¶ Houston City

** Los Angeles County

tt Excluding New York City

tt Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

§§ Excluding Houston City

Testing of Salmonella, Shigella, and Escherichia coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and *E. coli* O157 isolates were tested using broth microdilution (Sensititre[®], Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) according to manufacturer's instructions to determine the MICs for each of 15 antimicrobial agents: ampicillin, amoxicillin-clavulanic acid, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole (Table 2). Interpretive criteria defined by CLSI were used when available. Before 2004, sulfamethoxazole was used instead of sulfisoxazole to represent the sulfonamides. In 2011, azithromycin replaced amikacin on the panel of drugs tested for *Salmonella*, *Shigella*, and *E. coli* O157, so only historical susceptibility data are provided for amikacin.

In January 2010, CLSI published revised interpretive criteria for ceftriaxone and *Enterobacteriaceae;* the revised resistance breakpoint for ceftriaxone is MIC \geq 4 µg/mL. Since the 2009 report, NARMS has applied the revised CLSI breakpoint for ceftriaxone resistance to data from all years. In January 2012, CLSI published revised ciprofloxacin breakpoints for invasive *Salmonella* infections. For those infections, ciprofloxacin susceptibility is defined as \leq 0.06 µg/mL; the intermediate category is defined as 0.12 to 0.5 µg/mL; and resistance is defined as \geq 1 µg/mL. In 2013, CLSI decided to apply these ciprofloxacin breakpoints to all subspecies and serotypes of *Salmonella*. In January 2014, CLSI added azithromycin MIC interpretive criteria for *Salmonella* ser. Typhi. Azithromycin susceptibility is defined as \leq 16 µg/mL and resistance is defined as \geq 32 µg/mL. These breakpoints match the NARMS-established breakpoints used for *Enterobacteriaceae* since azithromycin testing began in 2011. In this report, NARMS continued to apply these breakpoints to MIC data for all *Salmonella*, *Shigella*, and *E. coli* O157 (Table 2).

Repeat testing of isolates was done based on criteria in Appendix B.

			Antimicrobial Agent	MIC Interpretive Standard (µg/mL)			
CLSI Class	Antimicrobial Agent	Years Tested	Concentration Range (µg/mL)	Susceptible	Intermediate*/ S-DD [†]	Resistant	
	Amikacin	1997–2010	0.5–64	≤16	32	≥64	
Aminoglycosides	Gentamicin	all	0.25–16	≤4	8	≥16	
	Kanamycin	all	8–64	≤16	32	≥64	
	Streptomycin [‡]	all	32–64	≤32	N/A*	≥64	
β–lactam / β–lactamase inhibitor combinations	Amoxicillin-clavulanic acid	all	1/0.5–32/16	≤8/4	16/8	≥32/16	
	Piperacillin- tazobactam§	2011-present	0.5–128	≤16/4	32/4-64/4	≥128/4	
	Cefepime ^{†,§}	2011-present	0.06–32	≤2	4–8 [†]	≥16	
	Cefotaxime§	2011-present	0.06–128	≤1	2	≥4	
	Cefoxitin	2000-present	0.5–32	≤8	16	≥32	
Cephems	Ceftazidime§	2011-present	0.06–128	≤4	8	≥16	
	Ceftiofur	all	0.12–8	≤2	4	≥8	
	Ceftriaxone [®]	all	0.25–64	≤1	2	≥4	
	Cephalothin ^{††}	1996–2003	2–32	≤8	16	≥32	
	Sulfamethoxazole ^{‡‡}	1996–2003	16–512	≤256	N/A*	≥512	
Folate pathway inhibitors	Sulfisoxazole	2004-present	16–256	≤256	N/A*	≥512	
	Trimethoprim- sulfamethoxazole	all	0.12/2.38–4/76	≤2/38	N/A*	≥4/76	
Macrolides	Azithromycin**	2011-present	0.12–16	≤16	N/A*	≥32	
Monobactams	Aztreonam§	2011-present	0.06–32	≤4	8	≥16	
Penems	Imipenem§	2011-present	0.06–16	≤1	2	≥4	
Penicillins	Ampicillin	all	1–32	≤8	16	≥32	
Phenicols	Chloramphenicol	all	2–32	≤8	16	≥32	
	Ciprofloxacin (<i>Shigella</i> and <i>E. coli</i> O157)	all	0.015–4	≤1	2	≥4	
Quinolones	Ciprofloxacin ^{††} (<i>Salmonella</i> serotypes)	all	0.015–4	≤0.06	0.12–0.5	≥1	
	Nalidixic acid	all	0.5–32	≤16	N/A*	≥32	
Tetracyclines	Tetracycline	all	4–32	≤4	8	≥16	

Table 2. Antimicrobial agents used for susceptibility testing for *Salmonella*, *Shigella*, and *Escherichia coli* O157 isolates, 1996–2013

* N/A indicates that no MIC range of intermediate susceptibility exists

+ Cefepime MICs above the susceptible range, but below the resistant range are now designated by CLSI to be susceptible-dose dependent (S-DD)

‡ CLSI breakpoints are not established for streptomycin; resistance breakpoint used in NARMS is ≥64 µg/mL

§ Broad-spectrum β-lactam antimicrobial agent only tested for nontyphoidal Salmonella isolates displaying ceftriaxone

and/or ceftiofur resistance

¶ CLSI updated the ceftriaxone interpretive standards in January, 2010. NARMS Human Isolate Reports for 1996 through

2008 used susceptible ≤8 µg/mL, intermediate 16-32 µg/mL, and resistant ≥64 µg/mL.

** CLSI breakpoints for azithromycin are only established for Salmonella ser. Typhi. The azithromycin breakpoints used elsewhere in this report for nontyphi Salmonella, Shigella, and E.coli O157 isolates are NARMS-established breakpoints for resistance monitoring and should not be used to predict clinical efficacy.

++ CLSI updated the ciprofloxacin interpretive standards for *Salmonella* in January, 2012. NARMS Human Isolate Reports for 1996 through 2010 used susceptible ≤1 μg/mL, intermediate 2 μg/mL, and resistant ≥4 μg/mL.

Additional Testing of Salmonella Strains

β-lactam Panel Testing

Isolates displaying resistance to either ceftriaxone (MIC $\geq 4 \mu g/mL$) or ceftiofur (MIC $\geq 8 \mu g/mL$) on the Trek Sensititre[®] gram-negative panel were subsequently tested using broth microdilution on a Sensititre[®] β -lactam panel (Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) according to manufacturer's instructions. The panel contained additional broad-spectrum β -lactam drugs: aztreonam, cefepime, cefotaxime, ceftazidime, imipenem, and piperacillin-tazobactam (Table 2). Briefly, a suspension of each isolate was made in water to a McFarland standard equivalency of 0.5, 10uL of this suspension was then used to inoculate a 10mL tube of cation-adjusted Mueller-Hinton broth, 50uL of this inoculated broth was dosed into each well of the 96-well β -lactam panel plate, and results were read manually after 18-20 hours of incubation at 35°C. Quality control isolates for this testing were *E. coli* ATCC 25922, *K. pneumoniae* ATCC 700603, *P. aeruginosa* ATCC 27853, and *S. aureus* ATCC 29213.

Cephalosporin Retesting of Isolates from 1996–1998

Some Salmonella isolates tested in NARMS during 1996 to 1998 had inconsistent cephalosporin susceptibility results. In particular, some isolates previously reported in NARMS as ceftiofur-resistant exhibited a low ceftriaxone MIC, and some did not exhibit an elevated MIC to other β -lactams. Because these findings suggested that some previously reported results were inaccurate, isolates of Salmonella tested in NARMS during 1996 to 1998 that exhibited an MIC $\geq 2 \mu g/mL$ to ceftiofur or ceftriaxone were retested using the 2003 NARMS Sensititre[®] plate. The retest results have been included in the NARMS annual reports since 2003.

Serotype Confirmation/Categorization

The *Salmonella* serotype reported by the submitting laboratory was used for reporting with few exceptions. The serotype was confirmed by CDC for isolates that underwent subsequent molecular analysis. Because of challenges in interpretation of tartrate fermentation assays, ability to ferment tartrate was confirmed for isolates reported as *Salmonella* ser. Paratyphi B by the submitting laboratory (ser. Paratyphi B is by definition unable to ferment L(+) tartrate). To distinguish *Salmonella* ser. Paratyphi B and ser. Paratyphi B var. L(+) tartrate+ (formerly ser. Java), CDC performed Jordan's tartrate test or Kauffmann's tartrate test or both tests on all *Salmonella* ser. Paratyphi B isolates for which the tartrate result was not reported or was reported to be negative. Isolates negative for tartrate fermentation by all assays conducted were categorized as ser. Paratyphi B; as noted above, because the number of ser. Paratyphi B (tartrate negative) is very small, this report does not include susceptibility results for this serotype. Isolates that were positive for tartrate fermentation by either assay were categorized as ser. Paratyphi B var. L(+) tartrate+ and were included with other nontyphoidal *Salmonella* in this report. CDC did not confirm other biochemical reactions or somatic and flagellar antigens.

Because of increased submissions of *Salmonella* ser. I 4,[5],12:i:- noted in previous years and recognition of the possibility that this serotype may have been underreported in previous years, antigen results provided for isolates reported only as serogroup B and tested in NARMS during 1996 to 2012 were reviewed; isolates that could be clearly identified as serogroup B, first-phase flagellar antigen "i," second phase flagellar antigen absent, were categorized as *Salmonella* ser. I 4,[5],12:i:-.

Testing of Campylobacter

Changes in Identification/Speciation and Antimicrobial Susceptibility Testing Over Time

From 2003 to 2004, *Campylobacter* isolates were identified as *C. jejuni* or *C. coli* using BAX® System PCR Assay according to the manufacturer's instructions (DuPont, Wilmington, DE). Isolates not identified as *C. jejuni* or *C. coli* were further characterized by other PCR assays (Linton *et al.* 1996) or were characterized by the CDC National *Campylobacter* Reference Laboratory. From 1997 to 2002, methodology similar to that used from 2005 to 2009 was used.

From 2005 to 2010, isolates were confirmed as *Campylobacter* by determination of typical morphology and motility using dark-field microscopy and a positive oxidase test reaction. Identification of *C. jejuni* was performed using the hippurate hydrolysis test. Hippurate-positive isolates were identified as *C. jejuni*. Hippurate-negative isolates were further characterized with PCR assays with specific targets for *C. jejuni* (*mapA* or *hipO* gene), *C. coli*-specific *ceuE* gene (Linton *et al.* 1997, Gonzales *et al.* 1997, Pruckler *et al.* 2006), or other species-specific primers. In 2010, all *C. jejuni* and suspected *C. coli* isolates were also confirmed through a multiplex PCR (Vandamme *et al.* 1997). In 2010 and 2011, the *ceuE* PCR was not used, and all *C. jejuni* and suspected *C. coli* isolates were confirmed through a multiplex PCR (Vandamme *et al.* 1997). From 2012 to present, all genus-confirmed *Campylobacter* isolates were identified at the species level through a combination of multiplex PCR, biochemical tests, and other species-specific PCRs as needed.

The methods for susceptibility testing of *Campylobacter* and criteria for interpreting the results have also changed during the course of NARMS surveillance. From 1997 to 2004, Etest® (AB bioMerieux, Solna, Sweden) was used for susceptibility testing of Campylobacter isolates. Campylobacter-specific CLSI interpretive criteria were used for erythromycin, ciprofloxacin, and tetracycline beginning with the 2004 NARMS annual report. NARMS breakpoints were used for agents for which CLSI breakpoints were not available. Beginning in 2004, NARMS breakpoints were established based on the MIC distributions of NARMS isolates and the presence of known resistance genes or mutations. In pre-2004 annual reports, NARMS breakpoints used had been based on those available for other organisms. Establishment of breakpoints based on MIC distributions resulted in higher MIC breakpoints for azithromycin and erythromycin resistance compared with those reported in pre-2004 annual reports. Beginning in 2005, broth microdilution using the Sensititre® system (Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) was performed according to manufacturer's instructions to determine the MICs for nine antimicrobial agents: azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline (Table 3). CLSI recommendations for quality control were followed. The interpretive criteria listed in Table 3 have been applied to MIC data collected for all years so that resistance prevalence is comparable over time. In 2012, the criteria for interpretation of results were changed from the previously used breakpoints to European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off values (ECOFFs). Repeat testing of isolates was based on criteria in Appendix B.

Table 3. Antimicrobial agents used for susceptibility testing of *Campylobacter* isolates, 1997–2013

			Antimicrobial	MIC Interpretive Standard (µg/mL) [†]					
CLSI Class	Antimicrobial	Years Tested	Agent	C. jej	uni	C. coli			
	Agent		Range (µg/mL)	Susceptible	Resistant	Susceptible	Resistant		
Aminoglycosides	Gentamicin	1998–present	0.12–32 0.016–256*	≤2	≥4	≤2	≥4		
Ketolides	Telithromycin	2005-present	0.015–8	≤4	≥8	4	≥8		
Lincosamides	Clindamycin	all	0.03–16 0.016–256*	≤0.5	≥1	≤1	≥2		
	Azithromycin	1998-present	0.015–64 0.016–256*	≤0.25	≥0.5	≤0.5	≥1		
Macrolides	Erythromycin	all	0.03–64 0.016–256*	≤4	≥8	≤8	≥16		
Dhaniasla	Chloramphenicol	1997–2004	0.016–256*	≤16	≥32	≤16	≥32		
Phenicols	Florfenicol	2005-present	0.03–64	≤4	≥8	≤4	≥8		
Quinelance	Ciprofloxacin	all	0.015–64 0.002–32*	≤0.5	≥1	≤0.5	≥1		
Quinolones	Nalidixic acid	all	4–64 0.016–256*	≤16	≥32	≤16	≥32		
Tetracyclines	Tetracycline	all	0.06–64 0.016–256*	≤1	≥2	≤2	≥4		

* Etest dilution range used from 1997-2004

† MIC interpretative standard is based on epidemiological cut-off values established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). This approach was adopted in 2012 and applied to all years. EUCAST uses the terms "wild type" and "non-wild type" instead of susceptible and resistant, respectively, to reflect the nature of the populations of bacteria in each group and to highlight that these categories are not to be used to predict clinical efficacy.

Testing of Vibrio species other than V. cholerae

NARMS participating public health laboratories were asked to forward every *Vibrio* isolate that they received to CDC. Isolates of *Vibrio* species other than *V. cholerae* are confirmed in CDC's National Enteric Reference Laboratory and tested for antimicrobial susceptibility by NARMS, whereas isolates of *Vibrio cholerae* are only characterized in the Reference Laboratory and not tested by NARMS. Due to an increasing number of *Vibrio parahaemolyticus* submissions, NARMS began selecting every other *Vibrio parahaemolyticus* isolate for antimicrobial susceptibility testing during 2013. NARMS continued to test every isolate of the remaining *Vibrio species* other than *Vibrio cholerae*.

Minimum inhibitory concentrations were determined by Etest® (AB bioMerieux, Solna, Sweden) according to manufacturer's instructions for ten antimicrobial agents: ampicillin, cefotaxime, ceftazidime, chloramphenicol, ciprofloxacin, gentamicin, imipenem, nalidixic acid, tetracycline, and trimethoprim-sulfamethoxazole (Table 4). In 2013, cefotaxime, ceftazidime, gentamicin, and imipenem were added to the panel of drugs tested, while cephalothin, kanamycin, and streptomycin were removed. CLSI breakpoints specific for *Vibrio* species other than *V. cholerae* were available for ampicillin, cefotaxime, ceftazidime, ciprofloxacin, gentamicin, imipenem, tetracycline, and trimethoprim-sulfamethoxazole. The percentage of isolates susceptible, intermediate, and resistant to those agents in 2013 is shown in this report (Table 58). MIC distributions are shown for all agents tested in 2013. Historical resistance data are shown for ampicillin only, as resistance to the other tested drugs is extremely low. For information on toxigenic *Vibrio cholerae*, refer to the <u>Cholera and Other *Vibrio* Illness</u> <u>Surveillance System (COVIS) annual summaries</u>.

CLSI Class	Antimicrobial	Years Tested	Antimicrobial Agent Concentration Range	MIC Interpretive Standard (µg/mL)			
CLSI Class	Agent	rears rested	concentration Range (μg/mL)	Susceptible	Intermediate*	Resistant	
	Gentamicin	2013	0.064–1024	≤4	8	≥16	
Aminoglycosides	Kanamycin	2009–2012	0.015–256	No CLS	I or NARMS brea	kpoints	
	Streptomycin	2009–2012	0.064–1024	No CLS	I or NARMS brea	kpoints	
	Cefotaxime	2013	0.016–256	≤1	2	≥4	
Cephems	Ceftazidime	2013	0.016–256	≤4	8	≥16	
	Cephalothin	2009–2012	0.015–256	No CLSI or NARMS breakpoints		kpoints	
Folate pathway inhibitors	Trimethoprim- sulfamethoxazole	all	0.002–32	≤2/38	N/A	≥4/76	
Penems	Imipenem	2013	0.002–32	≤4	8	≥16	
Penicillins	Ampicillin	all	0.015–256	≤8	16	≥32	
Phenicols Chloramphenicol		all	0.015–256	No CLSI or NARMS breakpoints		kpoints	
Ostadaraa	Ciprofloxacin	all	0.002–32	≤1 2		≥4	
Quinolones	Nalidixic acid	all	0.015–256	No CLS	I or NARMS brea	kpoints	
Tetracyclines	Tetracycline	all	0.015–256	≤4	8	≥16	

Table 4. Antimicrobial agents used for susceptibility testing of *Vibrio* species other than *V. cholerae* isolates, 2009–2013

* N/A indicates that no MIC range of intermediate susceptibility exists

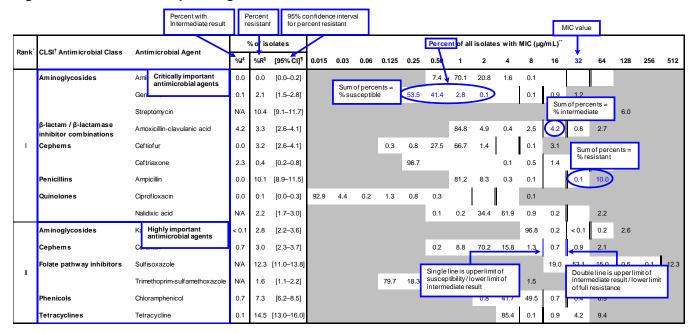
Data Analysis

For all pathogens, isolates were categorized as resistant, intermediate (if applicable), or susceptible. For *Campylobacter*, epidemiological cutoff values established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) were used to interpret MICs. This approach assigns bacteria to one of two groups: wild type or non-wild type. For simplicity, the EUCAST wild type and non-wild type are referred to in this report as susceptible and resistant, respectively.

Analysis was restricted to the first isolate received per patient in the calendar year (per serotype for *Salmonella*, per species for *Campylobacter, Shigella*, and *Vibrio* species other than *Vibrio* cholerae). If two or more *Salmonella* ser. Typhi isolates were received for the same patient, the first blood isolate, or other isolate from a normally sterile site collected, was included in the analysis. If no blood isolate or other isolate from a normally sterile site was submitted, the first isolate collected was included in analysis. The 95% confidence intervals (CIs) for the percentage resistant, which were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method, are included in the MIC distribution tables.

In the analysis of antimicrobial class resistance among *Salmonella, Shigella*, and *E. coli* O157, nine CLSI classes (<u>Table 2</u>) were represented by the following agents: amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole. Isolates that were not resistant to any of these agents were considered to have no resistance detected. In the analysis of antimicrobial class resistance among *Campylobacter*, seven CLSI classes were represented by azithromycin, ciprofloxacin, chloramphenicol/florfenicol, clindamycin, erythromycin, gentamicin, nalidixic acid, telithromycin, and tetracycline (<u>Table 3</u>). *Campylobacter* isolates that were not resistant to any of these agents were considered to have no resistant to any of these agents were considered to have no resistant to any of these agents were considered is that were not resistant to any of these agents were considered to have no resistant to any of these agents were considered to have no resistant to any of these agents were considered to have no resistant to any of these agents were considered to have no resistance detected.

Using logistic regression, we modelled annual data from 2004–2013 to assess changes in the prevalence of antimicrobial resistance among *Salmonella, Shigella,* and *Campylobacter* isolates. We compared the prevalence of resistance among isolates tested in 2013 with the average prevalence from two reference periods, 2004–2008 and the previous five years, 2008–2012. The 2004–2008 reference period begins with the second year that all 50 states participated in *Salmonella* and *Shigella* surveillance and all 10 FoodNet sites participated in NARMS *Campylobacter* surveillance. The additional 2008–2012 reference period allows for comparisons with more recent years. We defined the prevalence of resistance as the percentage of resistant isolates among the total number of isolates tested. Changes in the percentage of isolates that are resistant may not reflect changes in the incidence of resistant infections because of fluctuations in the incidence of *Salmonella, Shigella*, and *Campylobacter* infections are reported annually from surveillance in FoodNet sites (CDC, 2014). Comparisons were made for the following:


- Nontyphoidal Salmonella: resistance to nalidixic acid, ceftriaxone, one or more CLSI classes, three or more CLSI classes
- Salmonella of particular serotypes
 - Salmonella ser. Enteritidis: resistance to nalidixic acid
 - Salmonella ser. Typhimurium: resistance to at least ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline)
 - Salmonella ser. Newport: resistance to at least ACSSuTAuCx (ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone)
 - o Salmonella ser. Heidelberg resistance to ceftriaxone
 - Salmonella ser. Typhi: resistance to nalidixic acid
- Shigella: resistance to nalidixic acid
- Campylobacter jejuni, C. coli: resistance to ciprofloxacin

In the logistic regression analysis for main effects, year was modelled as a 10-level categorical variable. To account for site-to-site variation in the prevalence of antimicrobial resistance, we included adjustments for site. The final regression models for *Salmonella* and *Shigella* adjusted for the submitting site using the nine division categories described by the U.S. Census Bureau: East North Central, East South Central, Middle Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. For *Campylobacter*, the final regression models adjusted for the submitting site using the 10 FoodNet states. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood

estimation. The adequacy of model fit was assessed in several ways (Fleiss et al., 2004; Kleinbaum et al., 2008). The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. When the main effect of year was significant, we report ORs with 95% Cls (for 2013 compared with 2004-2008 and 2008–2012) that did not include 1.0 as statistically significant.

MIC Distribution Tables and Proportional Figures

An explanation of "how to read a squashtogram" has been provided to assist the reader with the table (Figure 1). A squashtogram shows the distribution of MICs for antimicrobial agents tested. Proportional figures visually display data from squashtograms for an immediate comparative summary of resistance in specific pathogens and serotypes. These figures are a visual aid for the interpretation of MIC values. For most antimicrobial agents tested, three categories (susceptible, intermediate, and resistant) are used to interpret MICs. The proportion representing each category is shown in a horizontal proportional bar chart (Figure 2).

Figure 1. How to read a squashtogram

Figure 2.	Proportional	chart. a	categorical	graph of	a squashtogram

	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates	Percentage of all isolates with MIC (µg/mL) ["]															
капк	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	<0.1	1.7	[1.2 - 2.3]					8.3	76.4	13.1	0.5		<0.1	0.2	1.5				
		Kanamycin	<0.1	1.7	[1.2 - 2.3]										98.2	0.1	<0.1	<0.1	1.6		
		Streptomycin	N/A	9.8	[8.6 - 11.1]											_	90.2	2.3	7.5		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.0	2.6	[2.0 - 3.3]							89.2	1.7	0.6	3.9	2.0	0.8	1.8			
	Cephems	Ceftiofur	<0.1	2.5	[1.9 - 3.2]				0.3	0.8	37.7	57.7	1.0	<0.1	0.2	2.3					
		Ceftriaxone	<0.1	2.5	[1.9 - 3.2]					97.5			<0.1	0.1	0.3	1.0	0.8	0.3	0.1		
	Macrolide	Azithromycin	N/A	0.2	[0.1 - 0.5]						0.2	0.4	11.2	80.4	7.3	0.2	0.2				
	Penicillins	Ampicillin	0.1	9.1	[8.0 - 10.3]	_		_				86.9	3.5	0.3	0.1	0.1	0.2	8.9			
	Quinolones	Ciprofloxacin	2.8	0.2	[0.0 - 0.4]	91.9	4.9	0.2	1.0	0.9	0.9	0.1			0.1						
		Nalidixic acid	N/A	2.4	[1.8 - 3.1]		\mathbf{T}	_			0.2	0.6	47.4	48.1	•	0.4	0.1	2.3			
	Cephems	Cefoxitin	0.2	2.6	[2.0 - 3.3]						0.4	31.1	53.7	10.7	.3	0.2	1.1	1.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	8.6	[7.5 - 9.8]										/	5.9	46.1	37.8	1.5		8.6
ш		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.8 - 1.7]				96.8	1.7	0.2		<0.1	<0.1	1.2						
	Phenicols	Chloramphenicol	0.6	4.4	[3.6 - 5.3]								0.9	51.0	43.1	0.6	0.1	4.3			
	Tetracyclines	Tetracycline	0.2	10.5	[9.2 - 11.8]									89.4	0.2	0.3	1.9	8.2	>		

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Table 1): Rank I, Critically Important; Rank II, Highly mortant

 * Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Table 1): Rank I, Critically Important; Rank II, H
 * CLSt Clinical and Laboratory Standards Institute
 * Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 § Percentage of isolates that were resistant
 * The 55% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 * The unshaded areas indicate the eliverability is loaders with MIC's greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concent or less than the west tested concentration. CLSI breakpoints were used when available. points for resistance. Numbers in the centages of isolates with MICs equal to al bars indicate bre ions represent the

Antimicrobial Agent

Susceptible, Intermediate, and Resistant Proportion Gentamicin Kanamycin Streptomycin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Azithromycin Ampicillin Ciprofloxacin

Nalidixic acid Cefoxitin Sulfisoxazole Trimethoprim-sulfamethoxazole Chloramphenicol

Tetracycline

Results

1. Nontyphoidal Salmonella

Table 5. Number of nontyphoidal *Salmonella* isolates of the most common serotypes* tested with the number of resistant isolates by class and agent, 2013

	Number of Isolates									Number of Resistant Isolates by CLSI [†] Antimicrobial Class and Agent [‡]													
	Isol	ates				ch Iso	microbi lates ar		Amir	oglyc	osides	β-lactam/β- lactamase inhibitor combinations	c.	ephem	IS	Fol path inhib	way	Macrolides	Penicillins	Phenicols	Quine	olones	Tetracyclines
Serotype*	Ν	(%)	0	1	2–3	4–5	6–7	8	GEN	KAN	STR	AMC	FOX	TIO	AXO	FIS	сот	AZI	AMP	CHL	CIP	NAL	TET
Enteritidis	382	(17.5)	334	31	11	5	1	0	0	0	10	0	0	1	1	6	2	0	22	1	0	22	17
Typhimurium	325	(14.9)	226	25	26	40	8	0	4	1	67	11	11	11	11	68	4	0	54	44	0	5	69
Newport	209	(9.6)	192	5	2	0	10	0	1	1	12	11	11	11	11	10	1	0	13	10	0	0	13
Javiana	140	(6.4)	126	12	2	0	0	0	0	0	6	1	0	0	0	0	0	0	1	0	0	4	4
I 4,[5],12:i:-	127	(5.8)	50	8	7	60	2	0	6	1	68	2	2	2	2	68	3	2	63	3	1	1	70
Infantis	76	(3.5)	62	5	5	1	3	0	3	3	3	3	3	5	5	7	3	0	7	3	0	4	10
Heidelberg	60	(2.8)	28	1	26	4	1	0	13	16	24	8	9	9	9	9	1	0	20	4	0	0	20
Muenchen	59	(2.7)	58	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1
Saintpaul	56	(2.6)	44	6	6	0	0	0	3	0	5	0	0	0	0	4	1	0	4	0	0	2	7
Montevideo	53	(2.4)	51	2	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0
Braenderup	44	(2.0)	44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mississippi	36	(1.7)	35	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Oranienburg	34	(1.6)	30	2	2	0	0	0	1	0	1	0	1	0	0	1	0	0	2	0	0	1	0
Thompson	33	(1.5)	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agona	28	(1.3)	23	2	1	1	0	1	1	2	2	1	1	1	1	3	2	0	2	2	0	2	4
Paratyphi B var. L(+) tartrate+	28	(1.3)	22	4	0	2	0	0	0	0	2	0	0	0	0	2	0	0	2	3	1	3	2
Anatum	20	(0.9)	19	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Bareilly	19	(0.9)	16	1	2	0	0	0	0	0	1	0	0	0	0	2	1	0	0	0	0	0	2
Poona	17	(0.8)	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Berta	16	(0.7)	13	2	1	0	0	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0	1
Litchfield	15	(0.7)	13	0	2	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	2	0	2
Schwarzengrund	15	(0.7)	12	2	1	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	1
Rubislaw	14	(0.6)	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mbandaka	13	(0.6)	9	3	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	1	2
Dublin	12	(0.6)	1	0	0	0	10	1	2	8	10	11	10	11	11	11	1	0	11	11	0	1	11
Hadar	11	(0.5)	2	0	9	0	0	0	0	0	9	0	0	0	0	0	0	0	1	0	0	0	9
Panama	11	(0.5)	10	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Uganda	11	(0.5)	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Hartford	10	(0.5)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sandiego	10	(0.5)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subtotal	1884	(86.5)	1514	115	105	113	35	2	34	32	228	49	49	52	52	196	22	2	203	81	4	49	245
All other serotypes	239	(11.0)	203	12	12	8	4	0	6	1	15	3	2	2	2	23	8	1	16	4	5	9	25
Partially serotyped	13	(0.6)	11	0	1	1	0	0	1	2	2	0	1	0	0	1	0	1	1	0	1	1	1
Rough/Nonmotile isolates	6	(0.3)	4	1	0	1	0	0	0	0	1	0	0	0	0	1	1	1	1	0	0	1	0
Unknown serotype	36	(1.7)	28	2	3	3	0	0	2	0	5	1	1	1	1	4	0	0	6	0	1	1	4
Total	2178	(100)	1760	130	121	126	39	2	43	35	251	53	53	55	55	225	31	5	227	85	11	61	275

* Only serotypes with at least 10 isolates are listed individually

† CLSI: Clinical and Laboratory Standards Institute

+ Antimicrobial agent abbreviations: GEN, gentamicin; KAN, kanamycin; STR, streptomycin; AMC, amoxicillin-clavulanic acid; FOX, cefoxitin; TIO, ceftiofur; AXO, ceftriaxone; FIS, sulfisoxazole; COT, trimethoprim-sulfamethoxazole; AZI, azithromycin;

AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; NAL, nalidixic acid; TET, tetracycline

			A	t least	A	t least	A	t least					A	At least
			AC	CSSuT*	4	ACT/S [†]	ACSS	SuTAuCx [‡]	Nalio	dixic Acid	Cef	triaxone		CxN [§]
		Ν	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Twen	ty most common serotypes													
1	Enteritidis	382	1	(1.4)	0	(0)	0	(0)	22	(36.1)	1	(1.8)	1	(20.0)
2	Typhimurium	325	39	(52.7)	0	(0)	7	(22.6)	5	(8.2)	11	(20.0)	0	(0)
3	Newport	209	10	(13.5)	1	(10.0)	10	(32.3)	0	(0)	11	(20.0)	0	(0)
4	Javiana	140	0	(0)	0	(0)	0	(0)	4	(6.6)	0	(0)	0	(0)
5	l 4,[5],12:i:-	127	1	(1.4)	1	(10.0)	0	(0)	1	(1.6)	2	(3.6)	0	(0)
6	Infantis	76	1	(1.4)	1	(10.0)	1	(3.2)	4	(6.6)	5	(9.1)	2	(40.0)
7	Heidelberg	60	4	(5.4)	1	(10.0)	1	(3.2)	0	(0)	9	(16.4)	0	(0)
8	Muenchen	59	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
9	Saintpaul	56	0	(0)	0	(0)	0	(0)	2	(3.3)	0	(0)	0	(0)
10	Montevideo	53	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
11	Braenderup	44	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
12	Mississippi	36	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
13	Oranienburg	34	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
14	Thompson	33	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
15	Agona	28	2	(2.7)	2	(20.0)	1	(3.2)	2	(3.3)	1	(1.8)	1	(20.0)
	Paratyphi B var. L(+) tartrate+	28	2	(2.7)	0	(0)	0	(0)	3	(4.9)	0	(0)	0	(0)
17	Anatum	20	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
18	Bareilly	19	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
19	Poona	17	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
20	Berta	16	0	(0)	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)
Additi	ional serotypes [¶]													
	Mbandaka	13	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
	Dublin	12	10	(13.5)	1	(10.0)	10	(32.3)	1	(1.6)	11	(20.0)	1	(20.0)
	Uganda	11	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
	Senftenberg	7	1	(1.4)	1	(10.0)	1	(3.2)	0	(0)	1	(1.8)	0	(0)
	Kentucky	6	0	(0)	0	(0)	0	(0)	3	(4.9)	1	(1.8)	0	(0)
	Muenster	6	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
	Bredeney	4	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
	Choleraesuis	2	2	(2.7)	2	(20.0)	0	(0)	2	(3.3)	0	(0)	0	(0)
	Indiana	2	1	(1.4)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
	London	2	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
Subtotal		1827	74	(100)	10	(100)	31	(100)	58	(95.1)	54	(98.2)	5	(100)
	All other serotypes	296	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Partially serotyped	13	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
	Rough/Nonmotile isolates	6	0	(0)	0	(0)	0	(0)	1	(1.6)	0	(0)	0	(0)
	Unknown serotype	36	0	(0)	0	(0)	0	(0)	1	(1.6)	1	(1.8)	0	(0)
Total		2178	74	(100)	10	(100)	31	(100)	61	(100)	55	(100)	5	(100)

Table 6. Percentage and number of nontyphoidal Salmonella isolates with selected resistance patterns, hy serotype 2013

* ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline

+ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

‡ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone

\$ CxN: resistance to ceftriaxone and nalidixic acid
 ¶ Additional serotypes that displayed resistance to at least one of the selected patterns

Table 7. Percentage and number of nontyphoidal Salmonella isolates with resistance, by number of CLSI* classes and serotype, 2013

	ses and service,		≥ 3 CL	SI classes*	≥ 4 CL	SI classes*	≥ 5 C	LSI classes*	≥ 6 CI	SI classes*	≥ 7 CI	SI classes*	≥ 8 CI	SI classes*	≥ 9 CL	SI classes*
		N	_ 0 0_	(%)	 _ n	(%)	n	(%)	n	(%)	 n	(%)	n	(%)	_ 0 0_	(%)
Twen	ty most common serotypes			<u>(</u> , , ,		(19		(**		(19		(14		(19		(14)
1	Enteritidis	382	6	(2.8)	6	(3.6)	1	(1.1)	1	(2.4)	1	(2.9)	0	(0)	0	-
2	Typhimurium	325	55	(25.7)	48	(28.7)	40	(46.0)	8	(19.5)	7	(20.0)	ŏ	(0)	Ő	-
3	Newport	209	12	(5.6)	10	(6.0)	10	(11.5)	10	(24.4)	10	(28.6)	0	(0)	0	-
4	Javiana	140	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	ō	(0)	0	-
5	I 4,[5],12:i:-	127	65	(30.4)	62	(37.1)	3	(3.4)	2	(4.9)	1	(2.9)	ō	(0)	0	-
6	Infantis	76	8	(3.7)	4	(2.4)	4	(4.6)	3	(7.3)	2	(5.7)	ő	(0)	Ő	-
7	Heidelberg	60	20	(9.3)	5	(3.0)	4	(4.6)	1	(2.4)	1	(2.9)	0	(0)	0	-
8	Muenchen	59	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	ō	(0)	0	-
9	Saintpaul	56	4	(1.9)	Ő	(0)	Ő	(0)	õ	(0)	Ő	(0)	õ	(0)	0	-
10	Montevideo	53	0	(0)	ŏ	(0)	Ő	(0)	ŏ	(0)	Ő	(0)	ŏ	(0)	Ő	-
11	Braenderup	44	0	(0)	0	(0)	0	(0)	õ	(0)	Ő	(0)	ō	(0)	0	-
12	Mississippi	36	0	(0)	Ő	(0)	Ő	(0)	õ	(0)	0	(0)	ō	(0)	0	_
13	Oranienburg	34	õ	(0)	Ő	(0)	0	(0)	õ	(0)	0	(0)	õ	(0)	ŏ	_
14	Thompson	33	0	(0)	0 0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	_
15	Agona	28	2	(0.9)	2	(1.2)	2	(2.3)	1	(2.4)	1	(2.9)	1	(50.0)	ŏ	_
10	Paratyphi B var. L(+) tartrate+	28	2	(0.9)	2	(1.2)	2	(2.3)	0	(0)	0	(0)	0	(0)	ő	_
17	Anatum	20	0	(0.3)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	
18	Bareilly	19	0	(0)	Ő	(0)	Ő	(0)	Ő	(0)	0	(0)	0	(0)	ŏ	_
19	Poona	17	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	_
20	Berta	16	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
-	onal serotypes [†]	10		(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	Ŭ	-
Auuiti	Litchfield	15	2	(0.9)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	
	Dublin	12	11	(5.1)	11	(6.6)	11	(12.6)	11	(26.8)	11	(31.4)	1	(0) (50.0)	0	-
	Hadar	11	1	(0.5)	0	(0.0)	0	(12.0)	0	(20.0)	0	(0)	0	(0)	0	-
	Senftenberg	7	1	(0.5)	1	(0.6)	1	(0)	1	(0)	1	(2.9)	0	(0)	0	-
	Kentucky	6	4	(0.5)	3	(0.8)	2	(1.1)	0	(2.4)	0	(0)	0	(0)	0	-
	Brandenburg	5	4	(0.5)	0	(0)	0	(2.3)	0	(0)	0	(0)	0	(0)	0	-
	Derby	ວ 5	2	(0.5) (0.9)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
	Bredeney	4	1	(0.5)	1	(0) (0.6)	1	(0)	0	(0)	0	(0)	0	(0)	0	-
	Lomalinda	4	1	(0.5)	1	(0.6)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
	Choleraesuis	4	2	• •	2	• •	2		2	(0) (4.9)	0		0	• • •	0	-
		2	2	(0.9)	1	(1.2)	1	(2.3) (1.1)	1	• •	0	(0)	0	(0)	0	-
	Indiana	2	1	(0.5)	1	(0.6)	1	• •	0	(2.4)	0	(0)	-	(0)	0	-
	London	2 1		(0.5)		(0.6)		(1.1)	-	(0)	0	(0)	0	(0)	0	-
	IIIb 48:i:z	1	1 1	(0.5)	1	(0.6)	0	(0)	0	(0)	-	(0)	-	(0)	-	-
.	Reading		-	(0.5)	1	(0.6)	0	(0)		(0)	0	(0)	0	(0)	0	-
Subto		1839	206	(96.3)	162	(97)	85	(97.7)	41	(100)	35	(100)	2	(100)	0	-
	All other serotypes	284	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
	Partially serotyped	13	2	(0.9)	1	(0.6)	1	(1.1)	0	(0)	0	(0)	0	(0)	0	-
	Rough/Nonmotile isolates	6	1	(0.5)	1	(0.6)	0	(0)	0	(0)	0	(0)	0	(0)	0	-
	Unknown serotype	36	5	(2.3)	3	(1.8)	1	(1.1)	0	(0)	0	(0)	0	(0)	0	-
Total		2178	214	(100)	167	(100)	87	(100)	41	(100)	35	(100)	2	(100)	0	-

* CLSI: Clinical and Laboratory Standards Institute † Additional serotypes that displayed resistance to at least three CLSI classes

Table 8. Minimum inhibitory concentrations (MICs) and resistance of nontyphoidal Salmonella isolates to antimicrobial agents, 2013 (N=2178)

Devilt	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates					I	Percent	age of	all isola	tes wit	h MIC (µ	ıg/mL)*	*				
Rank-	CLSI [®] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] ¹	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	<0.1	2.0	[1.4 - 2.7]					11.6	77.5	8.3	0.6	0.1	<0.1	0.6	1.4				
		Kanamycin	0.1	1.6	[1.1 - 2.2]										98.0	0.2	0.1	0.2	1.4		
		Streptomycin	N/A	11.5	[10.2 - 12.9]												88.5	3.0	8.5		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.6	2.4	[1.8 - 3.2]							84.2	3.9	1.7	5.2	2.6	0.1	2.3			
Ι.	Cephems	Ceftiofur	0.1	2.5	[1.9 - 3.3]				0.1	0.2	13.3	81.7	2.1	0.1	0.1	2.4	-				
·		Ceftriaxone	<0.1	2.5	[1.9 - 3.3]					97.2	0.1	<0.1	<0.1		0.2	1.1	1.0	0.2	<0.1		
	Macrolide	Azithromycin	N/A	0.2	[0.1 - 0.5]					<0.1	<0.1	0.1	2.8	82.8	13.3	0.6	0.2				
	Penicillins	Ampicillin	0.0	10.4	[9.2 - 11.8]							81.1	7.2	0.9	0.4		0.1	10.3			
	Quinolones	Ciprofloxacin	3.0	0.5	[0.3 - 0.9]	83.0	13.1	0.4	1.0	1.1	0.9	0.1	0.1		0.3		-				
		Nalidixic acid	N/A	2.8	[2.1 - 3.6]				•		<0.1	0.1	30.3	64.6	1.2	0.9	0.5	2.3			
	Cephems	Cefoxitin	0.4	2.4	[1.8 - 3.2]						0.1	5.9	72.0	17.9	1.3	0.4	0.7	1.7			
	Folate pathway inhibitors	Sulfisoxazole	N/A	10.3	[9.1 - 11.7]									_		10.8	56.2	21.7	0.6	0.4	10.3
н		Trimethoprim-sulfamethoxazole	N/A	1.4	[1.0 - 2.0]				95.7	2.4	0.3	<0.1	0.1	0.2	1.2					-	
	Phenicols	Chloramphenicol	0.9	3.9	[3.1 - 4.8]								0.5	37.3	57.3	0.9	<0.1	3.9			
	Tetracyclines	Tetracycline	1.0	12.6	[11.3 - 14.1]									86.4	1.0	0.2	2.1	10.4			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

+ CLSI: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; WA if no MIC range of intermediate susceptibility exists

Procentage of isolates with interineular subceptionity. IVA in it with a large of interine black subceptionity exists
 Procentage of isolates with were resistant
 The 95% confidence intervals (Q) for percent resistant (%R) were calculated using the Paulson-Camp-Prat approximation to the Copper-Pearson exact method
 The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 3. Antimicrobial resistance pattern for nontyphoidal Salmonella, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Year			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total I	solates		1782	2036	2171	2145	2384	2193	2449	2335	2233	2178
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	< 0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	1	0	0	0	0	0	Tested	Tested	Tested
		Gentamicin	1.3%	2.2%	2.0%	2.1%	1.5%	1.3%	1.0%	1.7%	1.2%	2.0%
		(MIC ≥ 16)	24	44	44	45	35	28	24	40	26	43
		Kanamycin	2.8%	3.4%	2.9%	2.8%	2.1%	2.5%	2.2%	1.7%	1.1%	1.6%
		(MIC ≥ 64)	50	70	63	61	50	54	54	39	24	35
		Streptomycin	12.0%	11.1%	10.7%	10.3%	10.0%	8.9%	8.6%	9.8%	8.4%	11.5%
		(MIC ≥ 64)	213	225	233	222	238	196	210	229	187	251
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	3.7%	3.2%	3.7%	3.3%	3.1%	3.4%	2.9%	2.6%	2.9%	2.4%
	combinations	(MIC ≥ 32/16)	66	65	81	70	73	75	70	60	65	53
	Cephems	Ceftiofur	3.4%	2.9%	3.6%	3.3%	3.1%	3.4%	2.8%	2.5%	2.9%	2.5%
•		(MIC ≥ 8)	60	59	79	70	73	75	69	58	64	55
		Ceftriaxone	3.3%	2.9%	3.7%	3.3%	3.1%	3.4%	2.9%	2.5%	2.9%	2.5%
		(MIC ≥ 4)	59	59	80	70	73	75	70	58	64	55
	Macrolides	Azithromycin	Not	0.2%	< 0.1%	0.2%						
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	Tested	5	1	5
	Penicillins	Ampicillin	12.1%	11.3%	10.9%	10.1%	9.7%	9.8%	9.1%	9.1%	8.8%	10.4%
		(MIC ≥ 32)	216	231	237	217	232	216	223	213	196	227
	Quinolones	Ciprofloxacin	0.3%	0.1%	0.1%	0.1%	0.2%	0.3%	0.2%	0.2%	0.3%	0.5%
		(MIC ≥ 1)	5	2	3	2	5	7	6	4	7	11
		Nalidixic Acid	2.2%	1.9%	2.4%	2.2%	2.1%	1.8%	2.0%	2.2%	2.4%	2.8%
		(MIC ≥ 32)	39	38	52	48	49	39	48	51	54	61
	Cephems	Cefoxitin	3.4%	3.0%	3.5%	2.9%	3.0%	3.2%	2.6%	2.6%	2.7%	2.4%
		(MIC ≥ 32)	61	62	77	63	72	71	63	60	61	53
	Folate pathway inhibitors	Sulfisoxazole	13.3%	12.6%	12.1%	12.3%	10.1%	9.9%	9.0%	8.6%	8.4%	10.3%
		(MIC ≥ 512)	237	256	263	264	240	217	221	201	188	225
Ш		Trimethoprim-sulfamethoxazole	1.7%	1.7%	1.7%	1.5%	1.6%	1.7%	1.6%	1.2%	1.3%	1.4%
		(MIC ≥ 4/76)	31	34	36	33	37	38	38	28	29	31
	Phenicols	Chloramphenicol	7.6%	7.8%	6.4%	7.3%	6.1%	5.7%	5.0%	4.4%	3.9%	3.9%
		(MIC ≥ 32)	136	159	139	156	146	125	122	103	87	85
	Tetracyclines	Tetracycline	13.6%	13.9%	13.5%	14.5%	11.5%	11.9%	11.0%	10.5%	11.1%	12.6%
		(MIC ≥ 16)	242	282	293	310	275	261	270	245	247	275

Table 9. Percentage and number of nontyphoidal Salmonella isolates resistant to antimicrobial agents, 2004-2013

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 10. Resistance patterns of nontyphoidal Salmonella isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	1782	2005	2008	2145	2008	2193	2010	2335	2012	2013
	1/82	2036	2171	2145	2384	2193	2449	2330	2233	2178
Resistance Pattern										
No resistance detected	79.9%	80.9%	80.5%	81.1%	83.9%	83.2%	84.6%	84.8%	84.7%	80.8%
	1424	1648	1748	1739	2000	1824	2073	1981	1892	1760
Resistance ≥ 1 CLSI* class	20.1%	19.1%	19.5%	18.9%	16.1%	16.8%	15.4%	15.2%	15.3%	19.2%
	358	388	423	406	384	369	376	354	341	418
Resistance ≥ 2 CLSI* classes	15.0%	14.8%	14.7%	14.2%	12.5%	13.0%	11.3%	11.1%	11.8%	13.2%
	267	301	320	305	298	284	276	259	264	288
Resistance ≥ 3 CLSI* classes	11.4%	11.9%	11.8%	11.1%	9.6%	9.6%	9.2%	9.1%	8.6%	9.8%
	204	243	256	239	228	211	225	213	193	214
Resistance ≥ 4 CLSI classes	9.3%	9.1%	8.2%	8.2%	7.4%	7.3%	6.8%	6.5%	6.1%	7.7%
	165	185	177	176	177	159	166	152	137	167
Resistance \geq 5 CLSI* classes	8.0%	7.2%	6.3%	6.9%	6.6%	6.2%	5.2%	4.6%	3.9%	4.0%
	142	146	137	149	157	137	128	108	88	87
At least ACSSuT [†]	7.2%	6.9%	5.6%	6.3%	5.8%	5.1%	4.4%	3.9%	3.4%	3.4%
	129	141	121	136	138	112	107	91	77	74
At least ASSuT [‡] and not resistant to	1.1%	0.8%	1.0%	0.8%	0.7%	0.6%	1.7%	1.8%	2.0%	3.4%
chloramphenicol	19	16	22	17	17	14	42	42	44	74
At least ACT/S§	0.6%	0.9%	0.7%	0.7%	0.5%	0.7%	0.4%	0.4%	0.3%	0.5%
	10	18	15	16	11	15	11	9	7	10
At least ACSSuTAuCx ¹	2.4%	2.0%	2.0%	2.1%	1.8%	1.4%	1.3%	1.5%	1.5%	1.4%
	42	41	43	46	44	30	33	36	34	31
At least AAuCx**	3.3%	2.9%	3.6%	3.0%	2.9%	3.3%	2.5%	2.5%	2.8%	2.3%
	59	59	78	65	69	73	62	58	62	51
At least ceftriaxone and nalidixic acid	0.1%	< 0.1%	0.2%	0.2%	< 0.1%	0.2%	0.1%	0.1%	0.3%	0.2%
resistant	2	1	4	5	1	4	2	2	6	5
At least nalidixic acid and azithromycin	Not	0.1%	0.0%	0.1%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	2	0	3
At least ceftriaxone and azithromycin	Not	< 0.1%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	1	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

¶ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

Table 11. Broad-Spectrum β-lactam resistance among all ceftriaxone or ceftiofur resistant nontyphoidal
Salmonella isolates, 2011 (N=58), 2012 (N=64), and 2013 (N=55)

	-	Year (# of isolates)	Percenta							Per	centag	ge of a	ll isola	tes wi	th MIC	(µg/m	L) ^{††}					
Rank*	Class	Agent	fear (# of isolates)	% I [‡] (or S-DD [§])	%R [¶]	[95% CI]**	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	β-lactam / β-lactamase inhibitor combinations	Piperacillin- tazobactam	2011 (58)	15.5	10.3	[3.9 - 21.2]							1.7	5.2	15.5	39.7	12.1	5.2	10.3	3.4	6.9	
			2012 (64)	9.4	6.3	[1.7 - 15.2]								3.1	12.5	56.3	12.5	7.8	1.6	3.1	3.1	
			2013 (55)	10.9	1.8	[0.0 - 9.7]								5.5	25.5	40.0	16.4	3.6	7.3	1.8		
	Cephems	Cefepime§	2011 (58)	(1.7 [§])	1.7	[0.0 - 9.2]				3.4	32.8	41.4	13.8	5.2		1.7 [§]			1.7			
			2012 (64)	(4.7 [§])	0.0	[0.0 - 5.6]				1.6	12.5	56.3	17.2	7.8	1.6 [§]	3.1 [§]						
			2013 (55)	(3.6 [§])	1.8	[0.0 - 9.7]				3.6	16.4	58.2	10.9	5.5	1.8 [§]	1.8 [§]	1.8					
		Cefotaxime	2011 (58)	0.0	100	[93.8 - 100]									1.7	10.3	37.9	34.5	10.3	3.4	1.7	
			2012 (64)	0.0	100	[94.4 - 100]									3.1	4.7	50.0	34.4	4.7	1.6	1.6	
			2013 (55)	0.0	100	[93.5 - 100]									1.8	10.9	43.6	36.4	5.5	1.8		
'		Ceftazidime	2011 (58)	3.4	96.6	[88.1 - 99.6]										3.4	22.4	53.4	12.1	6.9	1.7	
			2012 (64)	4.7	90.6	[80.7 - 96.5]									4.7	4.7	40.6	37.5	9.4	3.1		
			2013 (55)	5.5	89.1	[77.8 - 95.9]								3.6	1.8	5.5	25.5	47.3	16.4			
	Monobactams	Aztreonam	2011 (58)	43.1	41.4	[28.6 - 55.1]								6.9	8.6	43.1	27.6	8.6	5.2			
			2012 (64)	56.3	28.1	[17.6 - 40.8]						1.6		1.6	12.5	56.3	18.8	7.8	1.6			
			2013 (55)	43.6	32.7	[20.7 - 46.7]							3.6		20.0	43.6	21.8	9.1	1.8			
	Penems	Imipenem	2011 (58)	0.0	1.7	[0.0 - 9.2]				1.7	77.6	19.0			1.7							
			2012 (64)	0.0	0.0	[0.0 - 5.6]				3.1	56.3	40.6										
			2013 (55)	0.0	0.0	[0.0 - 6.5]			1.8	7.3	87.3	3.6										

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important
 † C.St: Clinical and Laboratory Standards Institute
 * Percentage of isolates with intermediate susceptibility
 § Percentage of isolates with intermediate susceptibile-dose dependent (S-DD). Cefepime MICs above the susceptible range but below the resistant range are now designated by CLSI to be S-DD. Corresponding dilution ranges are shaded in orange.
 ¶ Percentage of isolates that were resistant
 * The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Clopper-Pearson exact method
 * The unshaded and orange-shaded areas indicate the dilution range of the Sensitire@ plates used to test isolates. Orange-shaded areas also indicate the dilution range for susceptibile-dose dependent (S-DD). Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistant (%R) were used on concentrations on the Sensititre@ plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

A. Salmonella ser. Enteritidis

Table 12. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2013 (N=382)

Den let	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates					1	Percent	age of a	all isola	tes wit	h MIC (µ	ıg/m L)*	•				
Rank	CLOI [®] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.0]					38.0	59.4	2.4		0.3							
		Kanamycin	0.0	0.0	[0.0 - 1.0]										100.0						
		Streptomycin	N/A	2.6	[1.3 - 4.8]												97.4	1.0	1.6		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.8	0.0	[0.0 - 1.0]							89.0	2.9	1.3	6.0	0.8		-			
	Cephems	Ceftiofur	0.0	0.3	[0.0 - 1.4]						1.8	94.8	3.1			0.3	-				
		Ceftriaxone	0.0	0.3	[0.0 - 1.4]					99.7									0.3		
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.0]							0.3	2.1	90.8	6.3	0.5					
	Penicillins	Ampicillin	0.0	5.8	[3.6 - 8.6]							75.4	16.8	1.6	0.5			5.8			
	Quinolones	Ciprofloxacin	5.8	0.0	[0.0 - 1.0]	47.6	46.6		2.6	2.9	0.3						-				
		Nalidixic acid	N/A	5.8	[3.6 - 8.6]								11.3	80.6	2.1	0.3	0.3	5.5			
	Cephems	Cefoxitin	0.3	0.0	[0.0 - 1.0]							1.8	84.6	11.8	1.6	0.3					
	Folate pathway inhibitors	Sulfisoxazole	N/A	1.6	[0.6 - 3.4]											6.8	73.8	17.0	0.8		1.6
н		Trimethoprim-sulfamethoxazole	N/A	0.5	[0.1 - 1.9]				98.2	0.8	0.5			0.3	0.3						
	Phenicols	Chloramphenicol	0.8	0.3	[0.0 - 1.4]								1.0	41.9	56.0	0.8		0.3			
	Tetracyclines	Tetracycline	0.5	4.5	[2.6 - 7.0]									95.0	0.5		1.0	3.4			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

Percentage or isolates with intermediate susceptionity; INA if no Nic range or intermediate susceptionity exists
 Percentage or isolates with were resistant
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 4. Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Year	solates		2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
			271	384	412	385	442	410	513	391	364	382
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	Tested	Tested	Testec
		Gentamicin	0.4%	0.8%	0.2%	0.0%	0.2%	0.0%	0.2%	0.5%	0.0%	0.0%
		(MIC ≥ 16)	1	3	1	0	1	0	1	2	0	0
		Kanamycin	0.7%	0.3%	0.2%	0.5%	0.0%	0.2%	0.2%	0.3%	0.0%	0.0%
		(MIC ≥ 64)	2	1	1	2	0	1	1	1	0	0
		Streptomycin	2.2%	1.0%	1.2%	0.5%	0.7%	1.2%	0.6%	1.8%	1.9%	2.6%
		(MIC ≥ 64)	6	4	5	2	3	5	3	7	7	10
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.8%	0.5%	0.5%	0.0%	0.0%	0.4%	0.3%	0.5%	0.0%
	combinations	(MIC ≥ 32/16)	0	3	2	2	0	0	2	1	2	0
1	Cephems	Ceftiofur	0.0%	0.3%	0.5%	0.3%	0.2%	0.0%	0.0%	0.3%	0.5%	0.3%
•		(MIC ≥ 8)	0	1	2	1	1	0	0	1	2	1
		Ceftriaxone	0.0%	0.3%	0.5%	0.3%	0.2%	0.0%	0.0%	0.3%	0.5%	0.3%
		(MIC ≥ 4)	0	1	2	1	1	0	0	1	2	1
	Macrolides	Azithromycin	Not	0.0%	0.0%	0.0%						
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
	Penicillins	Ampicillin	4.1%	2.6%	4.1%	2.1%	4.1%	3.9%	2.3%	5.1%	4.1%	5.8%
		(MIC ≥ 32)	11	10	17	8	18	16	12	20	15	22
	Quinolones	Ciprofloxacin	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%
		(MIC ≥ 1)	1	0	0	0	0	0	1	0	0	0
		Nalidixic Acid	6.6%	4.7%	7.0%	5.7%	7.2%	3.7%	5.3%	7.2%	7.7%	5.8%
		(MIC ≥ 32)	18	18	29	22	32	15	27	28	28	22
	Cephems	Cefoxitin	0.0%	1.0%	0.5%	0.3%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%
		(MIC ≥ 32)	0	4	2	1	0	0	0	1	2	0
	Folate pathway inhibitors	Sulfisoxazole	1.8%	1.6%	1.5%	1.6%	1.4%	1.7%	1.9%	2.0%	2.7%	1.6%
		(MIC ≥ 512)	5	6	6	6	6	7	10	8	10	6
Ш		Trimethoprim-sulfamethoxazole	0.0%	0.5%	0.5%	1.0%	0.9%	0.7%	1.0%	0.5%	1.1%	0.5%
		(MIC ≥ 4/76)	0	2	2	4	4	3	5	2	4	2
	Phenicols	Chloramphenicol	0.4%	0.5%	0.0%	0.5%	0.5%	0.0%	0.6%	0.0%	0.5%	0.3%
		(MIC ≥ 32)	1	2	0	2	2	0	3	0	2	1
	Tetracyclines	Tetracycline	3.3%	2.3%	1.7%	3.9%	1.8%	1.2%	2.1%	1.8%	3.6%	4.5%
		(MIC ≥ 16)	9	9	7	15	8	5	11	7	13	17

Table 13. Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 2004-2013

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 14. Resistance patterns of Salmonella ser. Enteritidis isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	271	384	412	385	442	410	513	391	364	382
Resistance Pattern										
No resistance detected	86.7%	91.4%	88.8%	90.4%	87.3%	92.0%	92.0%	88.0%	88.2%	87.4%
	235	351	366	348	386	377	472	344	321	334
Resistance ≥ 1 CLSI* class	13.3%	8.6%	11.2%	9.6%	12.7%	8.0%	8.0%	12.0%	11.8%	12.6%
	36	33	46	37	56	33	41	47	43	48
Resistance ≥ 2 CLSI* classes	3.0%	3.4%	2.9%	3.4%	2.3%	2.4%	2.9%	2.6%	4.9%	4.5%
	8	13	12	13	10	10	15	10	18	17
Resistance ≥ 3 CLSI* classes	1.1%	1.3%	1.7%	1.0%	0.7%	1.0%	2.1%	2.3%	2.7%	1.6%
	3	5	7	4	3	4	11	9	10	6
Resistance ≥ 4 CLSI classes	0.7%	1.0%	0.7%	0.3%	0.2%	0.5%	0.4%	1.3%	1.6%	1.6%
	2	4	3	1	1	2	2	5	6	6
Resistance ≥ 5 CLSI* classes	0.7%	0.5%	0.2%	0.3%	0.0%	0.2%	0.0%	0.5%	0.5%	0.3%
	2	2	1	1	0	1	0	2	2	1
At least ACSSuT [†]	0.4%	0.5%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%
	1	2	0	1	0	0	0	0	0	1
At least ASSuT [‡] and not resistant to	0.4%	0.0%	0.2%	0.0%	0.0%	0.2%	0.4%	1.3%	1.1%	0.8%
chloramphenicol	1	0	1	0	0	1	2	5	4	3
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ACSSuTAuCx [¶]	0.0%	0.3%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	1	0	1	0	0	0	0	0	0
At least AAuCx**	0.0%	0.3%	0.5%	0.3%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%
	0	1	2	1	0	0	0	1	2	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.3%	0.2%	0.0%	0.0%	0.0%	0.0%	0.3%
resistant	0	0	0	1	1	0	0	0	0	1
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

 $\ddagger \mathsf{ASSuT:}\ \mathsf{resistance}\ \mathsf{to}\ \mathsf{ampicillin}, \mathsf{streptomycin}, \mathsf{sulfamethox} \mathsf{azole/sulfisox} \mathsf{azole}, \mathsf{tetracycline}$

§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[#] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

B. Salmonella ser. Typhimurium

Table 15. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2013 (N=325)

	CLSI [†] Antimicrobial Class		Perc	entage	of isolates					1	Percent	entage of all isolates with MIC (μg/mL)** 0 1 2 4 8 16 32									
Rank	CESI [®] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.2	[0.3 - 3.1]					4.0	83.7	10.5	0.6			0.3	0.9				
		Kanamycin	0.0	0.3	[0.0 - 1.7]										99.1	0.6			0.3		
		Streptomycin	N/A	20.6	[16.3 - 25.4]												79.4	6.5	14.2		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	10.8	3.4	[1.7 - 6.0]							77.5	4.0	1.5	2.8	10.8		3.4			
	Cephems	Ceftiofur	0.0	3.4	[1.7 - 6.0]				0.6	0.6	8.0	86.5	0.9		0.3	3.1	-				
		Ceftriaxone	0.0	3.4	[1.7 - 6.0]					96.6					1.2	1.5	0.6				
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.1]					0.3	0.3		1.8	92.3	5.2						
	Penicillins	Ampicillin	0.0	16.6	[12.7 - 21.1]				_			76.0	6.5	0.9				16.6			
	Quinolones	Ciprofloxacin	2.5	0.0	[0.0 - 1.1]	93.8	3.1	0.6	0.9	0.6	0.9						-				
		Nalidixic acid	N/A	1.5	[0.5 - 3.6]						0.3	0.6	29.5	67.1	0.3	0.6		1.5			
	Cephems	Cefoxitin	0.0	3.4	[1.7 - 6.0]							5.2	82.2	7.7	1.5		1.8	1.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	20.9	[16.6 - 25.8]											8.0	62.2	8.0		0.9	20.9
н		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.3 - 3.1]				92.9	5.5			0.3	0.3	0.9		_			•	
	Phenicols	Chloramphenicol	0.0	13.5	[10.0 - 17.7]								1.2	31.7	53.5		0.3	13.2			
	Tetracyclines	Tetracycline	1.2	21.2	[16.9 - 26.1]									77.5	1.2	0.9	8.6	11.7			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Percentage of isolates with intermediate susceptibility; NA if no MC range of intermediate susceptibility exists
 § Percentage of isolates with we reresistant
 ¶ The 95% confidence intervals (C) for percent resistant (%R) we re calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 ** The unshaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs greater used w hen available.

Figure 5. Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2013

Susceptible, Intermediate, and Resistant Proportion

Year Total I	solates		2004 382	2005 438	2006 408	2007 405	2008 396	2009 370	2010 359	2011 323	2012 296	2013 325
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested	Not Tested						
		Gentamicin (MIC ≥ 16)	2.1% 8	1.8% 8	2.7% 11	2.5% 10	1.5% 6	1.9% 7	0.8% 3	1.9% 6	3.0% 9	1.2% 4
		Kanamycin (MIC ≥ 64)	5.8% 22	5.7% 25	5.1% 21	5.9% 24	2.5% 10	4.9% 18	7.2% 26	4.0% 13	2.0% 6	0.3%
		Streptomycin (MIC ≥ 64)	31.9% 122	28.1% 123	29.4% 120	32.3% 131	28.5% 113	25.9% 96	25.6% 92	25.7% 83	24.0% 71	20.6% 67
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	4.7% 18	3.2% 14	4.4% 18	6.7% 27	3.5% 14	6.2% 23	4.2% 15	7.1% 23	5.7% 17	3.4% 11
Т	Cephems	Ceftiofur (MIC ≥ 8)	4.5% 17	2.5% 11	4.2% 17	6.4% 26	3.5% 14	6.5% 24	4.7% 17	6.8% 22	5.7% 17	3.4% 11
		Ceftriaxone (MIC ≥ 4)	4.5% 17	2.5% 11	4.2% 17	6.4% 26	3.5% 14	6.5% 24	4.7% 17	6.8% 22	5.7% 17	3.4% 11
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0% 0	0.0% 0	0.0% 0
	Penicillins	Ampicillin (MIC ≥ 32)	32.2% 123	29.0% 127	28.2% 115	31.6% 128	26.3% 104	28.1% 104	26.2% 94	26.0% 84	23.6% 70	16.6% 54
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.2% 1	0.2% 1	0.0% 0	0.0% 0	0.8% 3	0.0% 0	0.0% 0	0.3% 1	0.0% 0
		Nalidixic Acid (MIC ≥ 32)	0.5% 2	0.9% 4	0.7% 3	1.5% 6	1.0% 4	2.2% 8	1.4% 5	0.3% 1	1.7% 5	1.5% 5
	Cephems	Cefoxitin (MIC ≥ 32)	4.7% 18	2.5% 11	3.9% 16	5.7% 23	3.5% 14	5.4% 20	3.3% 12	6.8% 22	5.4% 16	3.4% 11
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	36.1% 138	32.0% 140	33.3% 136	37.3% 151	30.3% 120	30.0% 111	28.7% 103	27.2% 88	27.0% 80	20.9% 68
Ш		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	2.6% 10	2.7% 12	2.2% 9	2.5% 10	1.8% 7	3.0% 11	1.9% 7	1.9% 6	1.7% 5	1.2% 4
	Phenicols	Chloramphenicol (MIC \geq 32)	24.3% 93	24.4% 107	22.1% 90	25.4% 103	23.5% 93	20.5% 76	20.3% 73	19.8% 64	18.2% 54	13.5% 44
	Tetracyclines	Tetracycline (MIC ≥ 16)	30.4% 116	30.4% 133	31.6% 129	36.8% 149	27.8% 110	28.9% 107	29.0% 104	27.2% 88	27.0% 80	21.2% 69

Table 16. Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 17. Resistance patterns of Salmonella ser. Typhimurium isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	382	438	408	405	396	370	359	323	296	325
Resistance Pattern										
No resistance detected	60.5%	65.1%	62.5%	57.5%	67.9%	63.5%	66.9%	69.0%	68.6%	69.5%
	231	285	255	233	269	235	240	223	203	226
Resistance ≥ 1 CLSI* class	39.5%	34.9%	37.5%	42.5%	32.1%	36.5%	33.1%	31.0%	31.4%	30.5%
	151	153	153	172	127	135	119	100	93	99
Resistance ≥ 2 CLSI* classes	37.2%	33.3%	34.1%	39.3%	31.3%	33.2%	30.4%	28.8%	29.4%	22.8%
	142	146	139	159	124	123	109	93	87	74
Resistance ≥ 3 CLSI* classes	31.7%	30.1%	30.4%	34.3%	27.8%	28.1%	27.3%	26.3%	24.7%	16.9%
	121	132	124	139	110	104	98	85	73	55
Resistance ≥ 4 CLSI classes	27.7%	27.4%	27.0%	29.9%	24.7%	24.1%	24.2%	22.0%	20.9%	14.8%
	106	120	110	121	98	89	87	71	62	48
Resistance ≥ 5 CLSI* classes	24.3%	22.8%	20.8%	24.9%	24.0%	22.2%	20.9%	21.1%	18.6%	12.3%
	93	100	85	101	95	82	75	68	55	40
At least ACSSuT [†]	23.6%	22.4%	19.6%	22.7%	23.2%	19.5%	18.7%	19.8%	17.2%	12.0%
	90	98	80	92	92	72	67	64	51	39
At least ASSuT [‡] and not resistant to	2.4%	2.3%	3.2%	3.7%	0.3%	1.6%	3.6%	1.2%	1.7%	1.2%
chloramphenicol	9	10	13	15	1	6	13	4	5	4
At least ACT/S§	1.6%	2.1%	0.7%	2.0%	0.5%	2.2%	1.1%	0.6%	0.7%	0.0%
	6	9	3	8	2	8	4	2	2	0
At least ACSSuTAuCx ¹	2.6%	1.8%	2.9%	3.7%	2.3%	1.6%	1.7%	5.3%	4.1%	2.2%
	10	8	12	15	9	6	6	17	12	7
At least AAuCx**	4.5%	2.5%	4.2%	6.2%	3.5%	6.2%	3.6%	6.8%	5.7%	3.4%
	17	11	17	25	14	23	13	22	17	11
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.2%	0.0%	0.5%	0.3%	0.0%	0.7%	0.0%
resistant	0	0	0	1	0	2	1	0	2	0
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

ACSUT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 \$ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
 ¶ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
 ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

C. Salmonella ser. Newport

Table 18. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2013 (N=209)

Device	CLSI [†] Antimicrobial Class		Perc	entage	ofisolates					I	Percent	tage of	all isola	tes wit	h MIC (µ	ıg/m L)*'	•				
Rank	CLSI' Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.5	[0.0 - 2.6]					4.3	86.1	8.6	0.5				0.5				
		Kanamycin	0.0	0.5	[0.0 - 2.6]										99.0	0.5			0.5		
		Streptomycin	N/A	5.7	[3.0 - 9.8]												94.3	1.0	4.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	5.3	[2.7 - 9.2]							88.5	3.3	1.9	1.0		0.5	4.8			
Ι.	Cephems	Ceftiofur	0.0	5.3	[2.7 - 9.2]						6.2	88.0	0.5			5.3					
·		Ceftriaxone	0.0	5.3	[2.7 - 9.2]					94.7						1.9	3.3				
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.7]								2.9	92.8	3.8	0.5					
	Penicillins	Ampicillin	0.0	6.2	[3.4 - 10.4]							90.0	3.8				0.5	5.7			
	Quinolones	Ciprofloxacin	1.9	0.0	[0.0 - 1.7]	98.1			0.5		1.4						-				
		Nalidixic acid	N/A	0.0	[0.0 - 1.7]							-	29.7	67.0	0.5	2.9					
	Cephems	Cefoxitin	0.5	5.3	[2.7 - 9.2]							5.3	83.3	4.3	1.4	0.5	1.0	4.3		_	
	Folate pathway inhibitors	Sulfisoxazole	N/A	4.8	[2.3 - 8.6]									_		3.8	38.8	52.2	0.5		4.8
н		Trimethoprim-sulfamethoxazole	N/A	0.5	[0.0 - 2.6]				97.1	2.4					0.5					_	
	Phenicols	Chloramphenicol	0.0	4.8	[2.3 - 8.6]								0.5	70.8	23.9			4.8			
	Tetracyclines	Tetracycline	1.0	6.2	[3.4 - 10.4]									92.8	1.0		1.0	5.3			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

Percentage of isolates with intermediate susceptionity (with in ownor targe of intermediate susceptionity exists
 Percentage of isolates with were resistant
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Prat approximation to the Copper-Pearson exact method
 The unshaded areas indicate the idlution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for resistant concentrations on the Sensititre® plate. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 6. Antimicrobial resistance pattern for Salmonella ser. Newport, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

	1 –2013											
Year			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	solates		192	207	219	222	258	239	306	285	258	209
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										1
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	Tested	Tested	Tested
		Gentamicin	0.5%	1.0%	0.9%	0.9%	0.4%	0.4%	0.3%	0.7%	0.0%	0.5%
		(MIC ≥ 16)	1	2	2	2	1	1	1	2	0	1
		Kanamycin	2.6%	1.9%	2.7%	0.9%	3.5%	1.7%	0.7%	0.4%	0.0%	0.5%
		(MIC ≥ 64)	5	4	6	2	9	4	2	1	0	1
		Streptomycin	16.1%	14.0%	14.2%	10.4%	13.6%	8.4%	8.5%	4.2%	3.9%	5.7%
		(MIC ≥ 64)	31	29	31	23	35	20	26	12	10	12
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	15.6%	12.6%	12.8%	8.1%	12.4%	7.5%	7.8%	3.9%	6.2%	5.3%
	combinations	(MIC ≥ 32/16)	30	26	28	18	32	18	24	11	16	11
	Cephems	Ceftiofur	15.6%	12.6%	12.8%	8.1%	12.4%	7.1%	7.5%	3.9%	6.2%	5.3%
		(MIC ≥ 8)	30	26	28	18	32	17	23	11	16	11
		Ceftriaxone	15.1%	12.6%	13.2%	8.1%	12.4%	7.1%	7.5%	3.9%	6.2%	5.3%
		(MIC ≥ 4)	29	26	29	18	32	17	23	11	16	11
	Macrolides	Azithromycin	Not	0.0%	0.0%	0.0%						
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
	Penicillins	Ampicillin	16.1%	14.0%	15.5%	9.9%	14.3%	8.4%	7.8%	3.9%	7.0%	6.2%
		(MIC ≥ 32)	31	29	34	22	37	20	24	11	18	13
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 1)	0	0	0	0	0	0	0	0	0	0
		Nalidixic Acid	0.5%	0.0%	0.9%	0.0%	0.4%	0.0%	0.3%	0.4%	0.0%	0.0%
		(MIC ≥ 32)	1	0	2	0	1	0	1	1	0	0
	Cephems	Cefoxitin	15.6%	12.6%	13.2%	8.1%	12.4%	6.7%	7.5%	3.9%	6.2%	5.3%
		(MIC ≥ 32)	30	26	29	18	32	16	23	11	16	11
	Folate pathway inhibitors	Sulfisoxazole	17.2%	15.5%	15.5%	10.4%	13.2%	8.8%	7.8%	4.6%	3.9%	4.8%
		(MIC ≥ 512)	33	32	34	23	34	21	24	13	10	10
		Trimethoprim-sulfamethoxazole	2.1%	1.9%	3.7%	1.8%	3.1%	1.3%	1.3%	0.0%	0.4%	0.5%
Ш		(MIC ≥ 4/76)	4	4	8	4	8	3	4	0	1	1
	Phenicols	Chloramphenicol	15.6%	13.5%	12.8%	9.5%	12.0%	7.5%	7.5%	3.5%	3.9%	4.8%
		(MIC ≥ 32)	30	28	28	21	31	18	23	10	10	10
	Tetracyclines	Tetracycline	17.2%	14.5%	14.6%	9.9%	14.0%	8.8%	8.5%	4.6%	4.3%	6.2%
		(MIC ≥ 16)	33	30	32	22	36	21	26	13	11	13

Table 19. Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents, 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 20. Resistance patterns of Salmonella ser. Newport isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	192	207	219	222	258	239	306	285	258	209
Resistance Pattern										
No resistance detected	81.8%	84.1%	82.2%	89.2%	85.3%	89.1%	90.5%	94.4%	93.0%	91.9%
	157	174	180	198	220	213	277	269	240	192
Resistance ≥ 1 CLSI* class	18.2%	15.9%	17.8%	10.8%	14.7%	10.9%	9.5%	5.6%	7.0%	8.1%
	35	33	39	24	38	26	29	16	18	17
Resistance ≥ 2 CLSI* classes	17.7%	15.0%	16.9%	10.8%	13.6%	9.2%	8.2%	4.6%	6.6%	5.7%
	34	31	37	24	35	22	25	13	17	12
Resistance ≥ 3 CLSI* classes	16.7%	14.5%	15.5%	10.8%	13.6%	8.4%	7.8%	3.9%	6.2%	5.7%
	32	30	34	24	35	20	24	11	16	12
Resistance ≥ 4 CLSI classes	16.1%	14.0%	13.7%	9.5%	13.6%	7.5%	7.8%	3.9%	3.9%	4.8%
	31	29	30	21	35	18	24	11	10	10
Resistance ≥ 5 CLSI* classes	15.1%	12.6%	13.2%	8.6%	12.8%	7.1%	7.5%	3.5%	3.9%	4.8%
	29	26	29	19	33	17	23	10	10	10
At least ACSSuT [†]	15.1%	12.6%	12.3%	8.6%	11.6%	7.1%	7.5%	3.5%	3.9%	4.8%
	29	26	27	19	30	17	23	10	10	10
At least ASSuT [‡] and not resistant to	0.0%	0.5%	1.4%	0.5%	1.6%	0.0%	0.3%	0.0%	0.0%	0.0%
chloramphenicol	0	1	3	1	4	0	1	0	0	0
At least ACT/S§	1.0%	1.9%	2.7%	0.5%	2.7%	1.3%	1.3%	0.0%	0.4%	0.5%
	2	4	6	1	7	3	4	0	1	1
At least ACSSuTAuCx [¶]	15.1%	12.6%	11.0%	8.1%	11.6%	7.1%	7.5%	3.5%	3.9%	4.8%
	29	26	24	18	30	17	23	10	10	10
At least AAuCx**	15.1%	12.6%	12.3%	8.1%	12.4%	7.1%	7.5%	3.9%	6.2%	5.3%
	29	26	27	18	32	17	23	11	16	11
At least ceftriaxone and nalidixic acid	0.5%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%
resistant	1	0	1	0	0	0	0	1	0	0
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

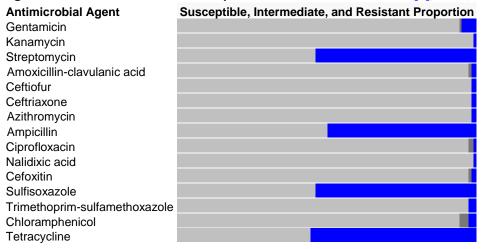
¹ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

D. Salmonella ser. I 4,[5],12:i:-

Table 21. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:isolates to antimicrobial agents, 2013 (N=127)

Baulat		terimination agente, <u>a</u>			ofisolates					I	Percent	tage of a	all isola	teswit	h MIC (µ	ıg/m L)*	•				
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.8	4.7	[1.7 - 10.0]					3.9	78.0	11.8	0.8		0.8	1.6	3.1				
		Kanamycin	0.0	0.8	[0.0 - 4.3]										98.4	0.8			0.8		
		Streptomycin	N/A	53.5	[44.5 - 62.4]												46.5	2.4	51.2		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.8	1.6	[0.2 - 5.6]							45.7	4.7	3.9	43.3	0.8		1.6			
	Cephems	Ceftiofur	0.0	1.6	[0.2 - 5.6]						8.7	84.3	5.5			1.6					
•		Ceftriaxone	0.0	1.6	[0.2 - 5.6]					97.6	0.8				-	0.8	0.8				
	Macrolide	Azithromycin	N/A	1.6	[0.2 - 5.6]								4.7	88.2	2.4	3.1	1.6				
	Penicillins	Ampicillin	0.0	49.6	[40.6 - 58.6]							45.7	2.4	2.4				49.6			
	Quinolones	Ciprofloxacin	1.6	0.8	[0.0 - 4.3]	81.1	15.0	1.6		0.8	0.8		0.8			•					
		Nalidixic acid	N/A	0.8	[0.0 - 4.3]				•			-	18.1	76.4	2.4	2.4	0.8				
	Cephems	Cefoxitin	0.8	1.6	[0.2 - 5.6]							5.5	75.6	14.2	2.4	0.8		1.6			
	Folate pathway inhibitors	Sulfisoxazole	N/A	53.5	[44.5 - 62.4]									_		2.4	30.7	12.6		0.8	53.5
н		Trimethoprim-sulfamethoxazole	N/A	2.4	[0.5 - 6.7]				95.3	2.4					2.4	_					
	Phenicols	Chloramphenicol	3.1	2.4	[0.5 - 6.7]								0.8	29.9	63.8	3.1		2.4			
	Tetracyclines	Tetracycline	0.0	55.1	[46.0 - 64.0]									44.9				55.1			

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important


+ CLSI: Clinical and Laboratory Standards Institute

Fercentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists Percentage of isolates that were resistant

1 The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The unshaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 7. Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2013

Year	solates		2004 36	2005 33	2006 105	2007 73	2008 84	2009 72	2010 78	2011 82	2012 117	2013 127
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested	Not Tested						
		Gentamicin (MIC ≥ 16)	5.6% 2	0.0% 0	4.8% 5	1.4% 1	3.6% 3	2.8% 2	1.3% 1	2.4% 2	2.6% 3	4.7% 6
		Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	1.4% 1	1.2% 1	0.0% 0	1.3% 1	0.0% 0	0.0% 0	0.8% 1
		Streptomycin (MIC ≥ 64)	5.6% 2	3.0% 1	3.8% 4	8.2% 6	10.7% 9	12.5% 9	19.2% 15	24.4% 20	29.1% 34	53.5% 68
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	2.8% 1	3.0% 1	3.8% 4	1.4% 1	4.8% 4	4.2% 3	3.8% 3	3.7% 3	1.7% 2	1.6% 2
Т	Cephems	Ceftiofur (MIC ≥ 8)	2.8% 1	3.0% 1	3.8% 4	2.7% 2	4.8% 4	2.8% 2	2.6% 2	3.7% 3	0.9% 1	1.6% 2
		Ceftriaxone (MIC ≥ 4)	2.8% 1	3.0% 1	3.8% 4	2.7% 2	4.8% 4	2.8% 2	2.6% 2	3.7% 3	0.9% 1	1.6% 2
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0% 0	0.0% 0	1.6% 2
	Penicillins	Ampicillin (MIC ≥ 32)	5.6% 2	6.1% 2	6.7% 7	5.5% 4	9.5% 8	11.1% 8	21.8% 17	25.6% 21	29.1% 34	49.6% 63
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.3% 1	0.0% 0	0.0% 0	0.8% 1
		Nalidixic Acid (MIC ≥ 32)	2.8% 1	0.0% 0	1.0% 1	1.4% 1	1.2% 1	0.0% 0	2.6% 2	0.0% 0	0.0% 0	0.8% 1
	Cephems	Cefoxitin (MIC ≥ 32)	2.8% 1	3.0% 1	3.8% 4	1.4% 1	4.8% 4	2.8% 2	2.6% 2	4.9% 4	0.9% 1	1.6% 2
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	11.1% 4	0.0% 0	8.6% 9	4.1% 3	13.1% 11	13.9% 10	19.2% 15	23.2% 19	29.1% 34	53.5% 68
Ш		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	2.8% 1	0.0% 0	0.0% 0	1.4% 1	4.8% 4	1.4% 1	1.3% 1	1.2% 1	0.0% 0	2.4% 3
	Phenicols	Chloramphenicol (MIC ≥ 32)	2.8% 1	0.0% 0	1.9% 2	1.4% 1	6.0% 5	8.3% 6	1.3% 1	1.2% 1	0.0% 0	2.4% 3
	Tetracyclines	Tetracycline (MIC ≥ 16)	11.1% 4	3.0% 1	8.6% 9	9.6% 7	16.7% 14	16.7% 12	28.2% 22	25.6% 21	33.3% 39	55.1% 70

Table 22. Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 23. Resistance patterns of Salmonella ser. 4,[5],12:i:- isola	able 23. Resista	ce patterns of	f Salmonella ser.	. I 4.[5].12:i	:- isolates. 2004-201	3
---	------------------	----------------	-------------------	----------------	-----------------------	---

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	36	33	105	73	84	72	78	82	117	127
Resistance Pattern										
No resistance detected	80.6%	87.9%	85.7%	82.2%	76.2%	76.4%	66.7%	65.9%	62.4%	39.4%
	29	29	90	60	64	55	52	54	73	50
Resistance ≥ 1 CLSI* class	19.4%	12.1%	14.3%	17.8%	23.8%	23.6%	33.3%	34.1%	37.6%	60.6%
	7	4	15	13	20	17	26	28	44	77
Resistance ≥ 2 CLSI* classes	13.9%	3.0%	11.4%	6.8%	17.9%	16.7%	21.8%	28.0%	31.6%	54.3%
	5	1	12	5	15	12	17	23	37	69
Resistance ≥ 3 CLSI* classes	8.3%	3.0%	9.5%	5.5%	10.7%	12.5%	21.8%	26.8%	28.2%	51.2%
	3	1	10	4	9	9	17	22	33	65
Resistance ≥ 4 CLSI classes	2.8%	0.0%	3.8%	2.7%	7.1%	9.7%	19.2%	19.5%	26.5%	48.8%
	1	0	4	2	6	7	15	16	31	62
Resistance ≥ 5 CLSI* classes	2.8%	0.0%	2.9%	1.4%	4.8%	6.9%	3.8%	0.0%	0.9%	2.4%
	1	0	3	1	4	5	3	0	1	3
At least ACSSuT [†]	2.8%	0.0%	1.9%	1.4%	3.6%	6.9%	1.3%	0.0%	0.0%	0.8%
	1	0	2	1	3	5	1	0	0	1
At least ASSuT [‡] and not resistant to	0.0%	0.0%	1.0%	0.0%	1.2%	1.4%	16.7%	18.3%	26.5%	46.5%
chloramphenicol	0	0	1	0	1	1	13	15	31	59
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%
	0	0	0	0	0	0	0	0	0	1
At least ACSSuTAuCx [®]	0.0%	0.0%	0.0%	0.0%	2.4%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	2	0	0	0	0	0
At least AAuCx**	2.8%	3.0%	3.8%	1.4%	4.8%	2.8%	2.6%	3.7%	0.9%	1.6%
	1	1	4	1	4	2	2	3	1	2
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.8%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	1
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

ACTS: resistance to ampicillin, subportion, subanteritoxazola, etailis, ACTS: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
 ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
 ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

E. Salmonella ser. Infantis

Table 24. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Infantis isolates to antimicrobial agents, 2013 (N=76)

Denkt	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	ofisolates					I	Percent	age of	all isola	tes wit	h MIC (µ	ıg/m L)*	•				
Nalik	CESI" Antimici Obiai Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	3.9	[0.8 - 11.1]					17.1	69.7	6.6		2.6		2.6	1.3				
		Kanamycin	0.0	3.9	[0.8 - 11.1]										96.1	-			3.9		
		Streptomycin	N/A	3.9	[0.8 - 11.1]												96.1		3.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.3	3.9	[0.8 - 11.1]							88.2	5.3		1.3	1.3	1.3	2.6			
l .	Cephems	Ceftiofur	0.0	6.6	[2.2 - 14.7]						2.6	86.8	3.9			6.6	-				
'		Ceftriaxone	0.0	6.6	[2.2 - 14.7]					93.4					-	1.3	2.6	2.6			
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 4.7]								-	78.9	21.1						
	Penicillins	Ampicillin	0.0	9.2	[3.8 - 18.1]							90.8						9.2			
	Quinolones	Ciprofloxacin	3.9	0.0	[0.0 - 4.7]	85.5	9.2	1.3	2.6	1.3						•	-				
		Nalidixic acid	N/A	5.3	[1.4 - 12.9]				•			-	55.3	39.5			1.3	3.9			
	Cephems	Cefoxitin	0.0	3.9	[0.8 - 11.1]								9.2	86.8				3.9			
	Folate pathway inhibitors	Sulfisoxazole	N/A	9.2	[3.8 - 18.1]											9.2	50.0	31.6			9.2
п		Trimethoprim-sulfamethoxazole	N/A	3.9	[0.8 - 11.1]				94.7	1.3					3.9	_	_				
	Phenicols	Chloramphenicol	0.0	3.9	[0.8 - 11.1]									14.5	81.6			3.9			
	Tetracyclines	Tetracycline	0.0	13.2	[6.5 - 22.9]									86.8				13.2			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Percentage of isolates with intermediate susceptibility; NA if no MC range of intermediate susceptibility exists
 § Percentage of isolates that we ere resistant
 ¶ The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 * The unshaded areas indicate the percentages of isolates twith MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs greater used when available.

Figure 8. Antimicrobial resistance pattern for Salmonella ser. Infantis, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Year			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Fotal I	solates		29	30	22	26	51	44	53	63	90	76
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	Tested	Tested	Tested
		Gentamicin (MIC ≥ 16)	0.0% 0	0.0% 0	4.5% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.6% 1	0.0% 0	3.9% 3
		Kanamycin (MIC ≥ 64)	0.0%	0.0% 0	0.0% 0	0.0%	0.0%	6.8% 3	0.0% 0	0.0%	2.2% 2	3.9% 3
		Streptomycin (MIC \geq 64)	0.0%	3.3%	4.5%	3.8%	2.0%	6.8% 3	1.9%	4.8% 3	0.0%	3.9% 3
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC \geq 32/16)	0.0%	0.0%	0.0%	0.0%	0.0%	9.1% 4	3.8%	1.6%	1.1%	3.9% 3
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	3.8%	0.0%	4	2 3.8%	1.6%	2.2%	6.6%
I.	Cephenis	(MIC ≥ 8)	0.0%	0.0%	0.0%	3.6%	0.0%	5	3.8%	1.6%	2.2%	6.6% 5
		Ceftriaxone (MIC ≥ 4)	0.0%	0.0% 0	0.0%	3.8% 1	0.0%	11.4% 5	3.8% 2	1.6% 1	2.2% 2	6.6% 5
	Macrolides	Azithromycin	Not	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
	Penicillins	Ampicillin (MIC \geq 32)	0.0% 0	0.0% 0	0.0% 0	3.8% 1	2.0% 1	13.6% 6	5.7% 3	1.6% 1	2.2% 2	9.2% 7
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Nalidixic Acid (MIC ≥ 32)	3.4%	3.3%	0.0%	0.0%	2.0%	2.3%	0.0%	1.6%	4.4%	5.3%
	Cephems	Cefoxitin (MIC ≥ 32)	0.0%	0.0%	0.0%	0.0%	0.0%	11.4% 5	3.8%	1.6%	1.1%	3.9%
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	3.4%	6.7% 2	9.1% 2	3.8%	3.9% 2	6.8% 3	7.5%	4.8% 3	3.3% 3	9.2% 7
Ш		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	3.4%	0.0%	0.0%	0.0%	2.0%	2.3% 1	1.9% 1	1.6% 1	4.4%	3.9% 3
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.0%	0.0%	0.0%	0.0%	2.0% 1	4.5% 2	3.8% 2	1.6% 1	1.1% 1	3.9% 3
	Tetracyclines	Tetracycline (MIC ≥ 16)	0.0%	3.3% 1	4.5%	7.7% 2	3.9% 2	11.4% 5	3.8% 2	4.8% 3	4.4% 4	13.2% 10

Table 25. Percentage and number of Salmonella ser. Infantis isolates resistant to antimicrobial agents, 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 26. Resistance patterns of Salmonella ser. Infantis isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	29	30	22	26	51	44	53	63	90	76
Resistance Pattern										
No resistance detected	93.1%	90.0%	90.9%	92.3%	96.1%	84.1%	88.7%	93.7%	92.2%	81.6%
	27	27	20	24	49	37	47	59	83	62
Resistance ≥ 1 CLSI* class	6.9%	10.0%	9.1%	7.7%	3.9%	15.9%	11.3%	6.3%	7.8%	18.4%
	2	3	2	2	2	7	6	4	7	14
Resistance \geq 2 CLSI* classes	0.0%	3.3%	9.1%	7.7%	3.9%	15.9%	7.5%	6.3%	4.4%	11.8%
	0	1	2	2	2	7	4	4	4	9
Resistance ≥ 3 CLSI* classes	0.0%	3.3%	4.5%	7.7%	3.9%	15.9%	3.8%	6.3%	4.4%	10.5%
	0	1	1	2	2	7	2	4	4	8
Resistance ≥ 4 CLSI classes	0.0%	0.0%	0.0%	0.0%	2.0%	9.1%	1.9%	3.2%	2.2%	5.3%
	0	0	0	0	1	4	1	2	2	4
Resistance ≥ 5 CLSI* classes	0.0%	0.0%	0.0%	0.0%	2.0%	4.5%	1.9%	0.0%	2.2%	5.3%
	0	0	0	0	1	2	1	0	2	4
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	2.0%	4.5%	1.9%	0.0%	0.0%	1.3%
	0	0	0	0	1	2	1	0	0	1
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%
chloramphenicol	0	0	0	0	0	0	0	0	0	1
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%
	0	0	0	0	0	0	0	0	0	1
At least ACSSuTAuCx ¹	0.0%	0.0%	0.0%	0.0%	0.0%	4.5%	1.9%	0.0%	0.0%	1.3%
	0	0	0	0	0	2	1	0	0	1
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	9.1%	3.8%	1.6%	1.1%	3.9%
	0	0	0	0	0	4	2	1	1	3
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	2.6%
resistant	0	0	0	0	0	0	0	0	1	2
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0.070	0.070	0.070

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

F. Salmonella ser. Heidelberg

Table 27. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2013 (N=60)

De la te	CLSI [†] Antimicrobial Class		Perc	entage	ofisolates					I	Percent	tage of	all isola	tes wit	h MIC (µ	ıg/m L)*	•				
Rank-	CLSI' Antimicrobial Class	Antimicrobial Agent	% i ‡	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	21.7	[12.1 - 34.2]					1.7	66.7	10.0				5.0	16.7				
		Kanamycin	3.3	26.7	[16.1 - 39.7]										70.0	-	3.3	5.0	21.7		
		Streptomycin	N/A	40.0	[27.6 - 53.5]												60.0	11.7	28.3		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	8.3	13.3	[5.9 - 24.6]							65.0		1.7	11.7	8.3		13.3			
	Cephems	Ceftiofur	0.0	15.0	[7.1 - 26.6]						5.0	78.3	1.7			15.0					
'		Ceftriaxone	0.0	15.0	[7.1 - 26.6]					85.0					1.7	8.3	5.0				
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 6.0]									83.3	16.7						
	Penicillins	Ampicillin	0.0	33.3	[21.7 - 46.7]							65.0	1.7					33.3			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 6.0]	96.7	3.3										-				
		Nalidixic acid	N/A	0.0	[0.0 - 6.0]							-	20.0	80.0							
	Cephems	Cefoxitin	0.0	15.0	[7.1 - 26.6]							18.3	58.3	8.3			5.0	10.0			
	Folate pathway inhibitors	Sulfisoxazole	N/A	15.0	[7.1 - 26.6]											16.7	65.0	3.3			15.0
п		Trimethoprim-sulfamethoxazole	N/A	1.7	[0.0 - 8.9]				96.7	1.7					1.7						
	Phenicols	Chloramphenicol	1.7	6.7	[1.8 - 16.2]									23.3	68.3	1.7		6.7			
	Tetracyclines	Tetracycline	0.0	33.3	[21.7 - 46.7]									66.7			1.7	31.7			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

A class of more relation of the set of more relation of the state of more relation of the state of more relation of the state of more relation of the state of more relation of the state of more relation of the state of more relation of the state of more relation of the state of more relation of the state of more relation of the state of

Figure 9. Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Year Total I	solates		2004 92	2005 125	2006 102	2007 98	2008 75	2009 86	2010 62	2011 70	2012 41	2013 60
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	Tested	Tested	Tested
		Gentamicin	4.3%	6.4%	4.9%	16.3%	14.7%	2.3%	8.1%	20.0%	7.3%	21.7%
		(MIC ≥ 16)	4	8	5	16	11	2	5	14	3	13
		Kanamycin	8.7%	12.8%	8.8%	11.2%	26.7%	20.9%	21.0%	21.4%	9.8%	26.7%
		(MIC ≥ 64)	8	16	9	11	20	18	13	15	4	16
		Streptomycin	15.2%	13.6%	11.8%	12.2%	30.7%	23.3%	25.8%	37.1%	17.1%	40.0%
		(MIC ≥ 64)	14	17	12	12	23	20	16	26	7	24
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	9.8%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	10.0%	22.0%	13.3%
	combinations	(MIC ≥ 32/16)	9	11	10	7	6	18	15	7	9	8
	Cephems	Ceftiofur	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	8.6%	22.0%	15.0%
		(MIC ≥ 8)	8	11	10	7	6	18	15	6	9	9
		Ceftriaxone	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	8.6%	22.0%	15.0%
		(MIC ≥ 4)	8	11	10	7	6	18	15	6	9	9
	Macrolides	Azithromycin	Not	Not	Not	Not	Not	Not	Not	0.0%	0.0%	0.0%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
	Penicillins	Ampicillin	25.0%	20.0%	18.6%	18.4%	28.0%	27.9%	38.7%	30.0%	26.8%	33.3%
		(MIC ≥ 32)	23	25	19	18	21	24	24	21	11	20
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 1)	0	0	0	0	0	0	0	0	0	0
		Nalidixic Acid	0.0%	0.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	0	1	0	0	0	0	0	0	0	0
	Cephems	Cefoxitin	7.6%	8.8%	8.8%	7.1%	8.0%	19.8%	24.2%	8.6%	22.0%	15.0%
	-	(MIC ≥ 32)	7	11	9	7	6	17	15	6	9	9
	Folate pathway inhibitors	Sulfisoxazole	7.6%	8.0%	4.9%	18.4%	12.0%	7.0%	11.3%	7.1%	2.4%	15.0%
		(MIC ≥ 512)	7	10	5	18	9	6	7	5	1	9
		Trimethoprim-sulfamethoxazole	0.0%	0.8%	0.0%	0.0%	2.7%	3.5%	0.0%	1.4%	0.0%	1.7%
Ш		(MIC ≥ 4/76)	0	1	0	0	2	3	0	1	0	1
	Phenicols	Chloramphenicol	1.1%	0.8%	0.0%	3.1%	1.3%	4.7%	1.6%	4.3%	0.0%	6.7%
		(MIC ≥ 32)	1	1	0	3	1	4	1	3	0	4
	Tetracyclines	Tetracycline	19.6%	18.4%	13.7%	22.4%	36.0%	27.9%	22.6%	34.3%	14.6%	33.3%
		(MIC ≥ 16)	18	23	14	22	27	24	14	24	6	20

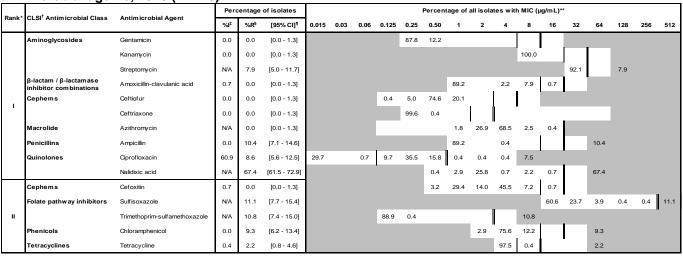
Table 28. Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 29. Resistance patterns of Salmonella ser, Heidelberg isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	92	125	102	98	75	86	62	70	41	60
Resistance Pattern										
No resistance detected	56.5%	62.4%	67.6%	58.2%	57.3%	60.5%	53.2%	55.7%	61.0%	46.7%
	52	78	69	57	43	52	33	39	25	28
Resistance ≥ 1 CLSI* class	43.5%	37.6%	32.4%	41.8%	42.7%	39.5%	46.8%	44.3%	39.0%	53.3%
	40	47	33	41	32	34	29	31	16	32
Resistance ≥ 2 CLSI* classes	22.8%	24.8%	23.5%	28.6%	40.0%	34.9%	41.9%	44.3%	39.0%	51.7%
	21	31	24	28	30	30	26	31	16	31
Resistance ≥ 3 CLSI* classes	13.0%	15.2%	12.7%	17.3%	28.0%	25.6%	33.9%	30.0%	26.8%	33.3%
	12	19	13	17	21	22	21	21	11	20
Resistance ≥ 4 CLSI classes	4.3%	4.8%	2.0%	5.1%	13.3%	17.4%	11.3%	4.3%	2.4%	8.3%
	4	6	2	5	10	15	7	3	1	5
Resistance ≥ 5 CLSI* classes	3.3%	1.6%	2.0%	4.1%	6.7%	15.1%	9.7%	4.3%	0.0%	6.7%
	3	2	2	4	5	13	6	3	0	4
At least ACSSuT [†]	1.1%	0.0%	0.0%	3.1%	1.3%	3.5%	1.6%	1.4%	0.0%	6.7%
	1	0	0	3	1	3	1	1	0	4
At least ASSuT [‡] and not resistant to	3.3%	0.8%	0.0%	0.0%	6.7%	2.3%	6.5%	0.0%	0.0%	0.0%
chloramphenicol	3	1	0	0	5	2	4	0	0	0
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	3.5%	0.0%	1.4%	0.0%	1.7%
	0	0	0	0	0	3	0	1	0	1
At least ACSSuTAuCx ¹	0.0%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%	1.4%	0.0%	1.7%
	0	0	0	0	0	1	0	1	0	1
At least AAuCx**	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	8.6%	22.0%	13.3%
	8	11	10	7	6	18	15	6	9	8
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline


§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[¶] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

2. Typhoidal Salmonella

A. Salmonella ser. Typhi

Table 30. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2013 (N=279)

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 Percentage of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the preakpoints of solates with MICs equal to or less than the low est tested concentrations. CLSI breakpoints were used when available.

Figure 10. Antimicrobial resistance pattern for Salmonella ser. Typhi, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Year			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	solates		2004	318	323	400	2008	363	446	383	327	2013
Rank*	CLSI [†] Antimicrobial	Antibiotic	304	310	323	400	407	303	440	303	321	219
Nalik	CLSI' Antimicrobial Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	Tested	Tested	Tested
		Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	0	0	0	0	0	0	0
		Kanamycin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	1	0	0	0
		Streptomycin	11.8%	13.2%	18.9%	15.8%	11.5%	10.7%	10.1%	10.7%	9.2%	7.9%
		(MIC ≥ 64)	36	42	61	63	47	39	45	41	30	22
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.0%	0.3%	0.3%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%
	combinations	(MIC ≥ 32/16)	0	0	1	1	0	1	0	0	0	0
1	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
•		(MIC ≥ 8)	0	0	0	0	0	0	0	0	0	0
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
	Macrolides	Azithromycin	Not	0.0%	0.0%	0.0%						
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
	Penicillins	Ampicillin	11.8%	13.2%	20.4%	17.0%	13.0%	12.7%	12.3%	11.2%	10.1%	10.4%
		(MIC ≥ 32)	36	42	66	68	53	46	55	43	33	29
	Quinolones	Ciprofloxacin	0.0%	0.3%	0.9%	2.0%	0.7%	3.9%	4.3%	7.3%	6.7%	8.6%
		(MIC ≥ 1)	0	1	3	8	3	14	19	28	22	24
		Nalidixic Acid	41.8%	48.4%	54.5%	62.0%	59.0%	59.8%	69.3%	70.8%	68.5%	67.4%
		(MIC ≥ 32)	127	154	176	248	240	217	309	271	224	188
	Cephems	Cefoxitin	0.0%	0.0%	0.3%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	0	0	1	2	0	0	0	0	0	0
	Folate pathway inhibitors	Sulfisoxazole	11.8%	14.2%	20.7%	17.5%	13.0%	13.8%	12.3%	12.0%	10.4%	11.1%
		(MIC ≥ 512)	36	45	67	70	53	50	55	46	34	31
Ш		Trimethoprim-sulfamethoxazole	13.2%	14.5%	20.7%	16.3%	12.5%	12.7%	11.9%	11.7%	10.1%	10.8%
		(MIC ≥ 4/76)	40	46	67	65	51	46	53	45	33	30
	Phenicols	Chloramphenicol	13.2%	13.2%	19.5%	15.8%	12.8%	11.8%	11.7%	10.7%	10.1%	9.3%
		(MIC ≥ 32)	40	42	63	63	52	43	52	41	33	26
	Tetracyclines	Tetracycline	8.9%	10.1%	8.4%	6.3%	4.4%	6.1%	3.6%	4.4%	1.5%	2.2%
		(MIC ≥ 16)	27	32	27	25	18	22	16	17	5	6

Table 31. Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important, Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 32. Resistance patterns of Salmonella ser. Typhi isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	304	318	323	400	407	363	446	383	327	279
Resistance Pattern										
No resistance detected	56.6%	48.1%	40.2%	35.5%	38.3%	37.5%	29.4%	27.9%	30.6%	29.4%
	172	153	130	142	156	136	131	107	100	82
Resistance ≥ 1 CLSI* class	43.4%	51.9%	59.8%	64.5%	61.7%	62.5%	70.6%	72.1%	69.4%	70.6%
	132	165	193	258	251	227	315	276	227	197
Resistance ≥ 2 CLSI* classes	13.2%	14.5%	21.7%	18.0%	14.3%	14.6%	13.7%	12.5%	11.0%	11.5%
	40	46	70	72	58	53	61	48	36	32
Resistance ≥ 3 CLSI* classes	12.8%	13.8%	20.7%	17.5%	13.3%	13.2%	13.7%	12.3%	10.4%	10.4%
	39	44	67	70	54	48	61	47	34	29
Resistance ≥ 4 CLSI classes	12.5%	12.9%	19.2%	17.0%	12.8%	12.7%	11.7%	11.2%	9.5%	9.0%
	38	41	62	68	52	46	52	43	31	25
Resistance ≥ 5 CLSI* classes	11.8%	11.9%	16.7%	14.8%	10.8%	10.2%	9.6%	9.9%	8.9%	7.2%
	36	38	54	59	44	37	43	38	29	20
At least ACSSuT [†]	7.9%	9.1%	5.9%	3.8%	2.5%	2.8%	1.6%	2.3%	0.9%	0.4%
	24	29	19	15	10	10	7	9	3	1
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.6%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%
chloramphenicol	0	0	2	1	0	0	0	0	0	1
At least ACT/S [§]	11.8%	12.9%	18.6%	15.2%	12.0%	11.0%	10.5%	10.4%	9.2%	8.2%
	36	41	60	61	49	40	47	40	30	23
At least ACSSuTAuCx ¹	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

¶ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

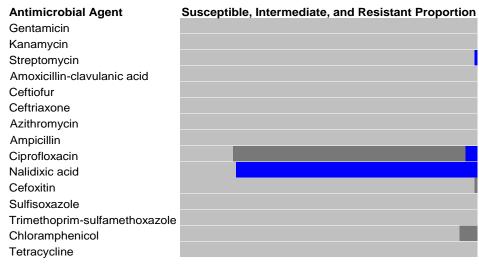
B. Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C

Table 33. Frequency* of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C, 2013

Serotype*	20	13
	n	(%)
Paratyphi A	100	(99.0)
Paratyphi B	1	(1.0)
Paratyphi C	0	(0)
Total	101	(100)

*See Methods for varying sampling method by serotype

Table 34. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2013 (N=100)


Denkt	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	ofisolates					I	Percent	tage of	all isola	teswit	h MIC (µ	ıg/mL)*	•				
Rank	CLSP Antimicrobial class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 3.6]					93.0	6.0	1.0									
		Kanamycin	0.0	0.0	[0.0 - 3.6]										99.0	1.0					
		Streptomycin	N/A	1.0	[0.0 - 5.4]												99.0	1.0			
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.0	[0.0 - 3.6]							30.0	67.0	3.0				-			
	Cephems	Ceftiofur	0.0	0.0	[0.0 - 3.6]					1.0	2.0	91.0	6.0				-				
'		Ceftriaxone	0.0	0.0	[0.0 - 3.6]					100.0					-						
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 3.6]								2.0	19.0	72.0	7.0					
	Penicillins	Ampicillin	0.0	0.0	[0.0 - 3.6]							5.0	88.0	7.0							
	Quinolones	Ciprofloxacin	78.0	4.0	[1.1 - 9.9]	9.0	9.0		3.0	1.0	74.0	4.0				•	-				
		Nalidixic acid	N/A	81.0	[71.9 - 88.2]				•			-	2.0	17.0				81.0			
	Cephems	Cefoxitin	1.0	0.0	[0.0 - 3.6]								6.0	69.0	24.0	1.0					
	Folate pathway inhibitors	Sulfisoxazole	N/A	0.0	[0.0 - 3.6]											13.0	84.0	3.0			
н		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 3.6]				97.0	3.0										-	
	Phenicols	Chloramphenicol	6.0	0.0	[0.0 - 3.6]									6.0	88.0	6.0					
	Tetracyclines	Tetracycline	0.0	0.0	[0.0 - 3.6]									100.0			-				

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates that were resistant

3 Procentage of isolates into were resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
** The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints we used when available.

Figure 11. Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, 2013

Year			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total I	solates		8	12	10	16	116	99	145	152	111	100
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%
		(MIC ≥ 16) Kanamycin (MIC ≥ 64)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%
		Streptomycin (MIC \geq 64)	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	2.1%	0.0%	0.0%	1.0%
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
I.	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0									
		Ceftriaxone (MIC ≥ 4)	0.0%	0.0% 0								
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0%	0.0%	0.0%
	Penicillins	Ampicillin (MIC ≥ 32)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0% 0	0.0% 0	0.0% 0
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.9% 1	0.0% 0	2.8% 4	2.0% 3	2.7% 3	4.0% 4
		Nalidixic Acid (MIC ≥ 32)	100.0% 8	91.7% 11	80.0% 8	93.8% 15	88.8% 103	86.9% 86	92.4% 134	96.7% 147	94.6% 105	81.0% 81
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0									
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0% 0	0.0% 0	0.0% 0
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	2.1% 3	0.0% 0	0.0% 0	0.0% 0
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0% 0	0.9% 1	0.0% 0
	Tetracyclines	Tetracycline (MIC ≥ 16)	0.0%	0.0% 0	0.0% 0	0.0% 0	0.9% 1	1.0% 1	1.4% 2	0.0% 0	0.9% 1	0.0% 0

Table 35. Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial agents 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 36. Resistance patterns of Salmonella ser. Paratyphi A isolates, 2004–2013

Table 36. Resistance patterns of Salmonella Ser. Paratyphi A Isolates, 2004–2013 Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013													
Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013			
Total Isolates	8	12	10	16	116	99	145	152	111	100			
Resistance Pattern													
No resistance detected	0.0%	8.3%	20.0%	6.3%	10.3%	12.1%	5.5%	3.3%	5.4%	19.0%			
	0	1	2	1	12	12	8	5	6	19			
Resistance ≥ 1 CLSI* class	100.0%	91.7%	80.0%	93.8%	89.7%	87.9%	94.5%	96.7%	94.6%	81.0%			
	8	11	8	15	104	87	137	147	105	81			
Resistance ≥ 2 CLSI* classes	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	2.8%	0.0%	0.9%	1.0%			
	0	0	0	0	0	1	4	0	1	1			
Resistance ≥ 3 CLSI* classes	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%	0.9%	0.0%			
	0	0	0	0	0	1	2	0	1	0			
Resistance ≥ 4 CLSI classes	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%	0.0%	0.0%			
	0	0	0	0	0	1	2	0	0	0			
Resistance ≥ 5 CLSI* classes	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%	0.0%			
	0	0	0	0	0	1	1	0	0	0			
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%	0.0%			
	0	0	0	0	0	1	1	0	0	0			
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%			
chloramphenicol	0	0	0	0	0	0	1	0	0	0			
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%	0.0%			
	0	0	0	0	0	1	1	0	0	0			
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
	0	0	0	0	0	0	0	0	0	0			
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
	0	0	0	0	0	0	0	0	0	0			
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
resistant	0	0	0	0	0	0	0	0	0	0			
At least nalidixic acid and azithromycin	Not	0.0%	0.0%	0.0%									
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0			
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%									
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0			

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

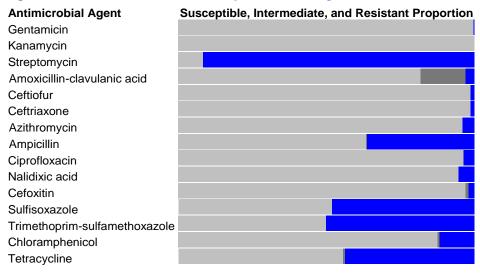
§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

⁴ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

3. Shigella

Table 37. Frequency of Shigella species, 2013

Species	20	13
	n	(%)
Shigella sonnei	275	(79.9)
Shigella flexneri	64	(18.6)
Shigella dysenteriae	4	(1.2)
Shigella boydii	1	(0.3)
Total	344	(100)


Table 38. Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2013 (N=344)

Denist	CLSI [†] Antimicrobial Class Antimicrobial Agent			centage	of isolates						Percent	tage of	all isola	teswit	h MIC (µ	ıg/m L)*'					
Rank	CLSI Antimicrobial class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.3	[0.0 - 1.6]					0.6	8.4	85.5	4.7	0.6			0.3				
		Kanamycin	0.0	0.0	[0.0 - 1.1]										100.0						
		Streptomycin	N/A	91.6	[88.1 - 94.3]												8.4	36.6	54.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	15.1	2.9	[1.4 - 5.3]							1.7	3.5	53.8	23.0	15.1	1.2	1.7			
Ι.	Cephems	Ceftiofur	0.0	1.2	[0.3 - 3.0]				6.4	64.0	21.8	6.7				1.2	-				
'		Ceftriaxone	0.0	1.2	[0.3 - 3.0]					96.5	2.3				-	0.3		0.3	0.6		
	Macrolide	Azithromycin	N/A	3.8	[2.0 - 6.4]					0.6	2.6	4.1	9.3	62.5	16.6	0.6	3.8				
	Penicillins	Ampicillin	0.3	36.0	[31.0 - 41.4]							5.2	42.2	15.7	0.6	0.3	1.2	34.9			
	Quinolones	Ciprofloxacin	0.0	3.5	[1.8 - 6.0]	93.9	0.3		1.2	1.2				2.0	1.5						
		Nalidixic acid	N/A	5.2	[3.1 - 8.1]						2.6	71.2	17.7	2.9	0.3		0.3	4.9			
	Cephems	Cefoxitin	1.2	1.7	[0.6 - 3.8]						0.6	1.5	63.4	29.7	2.0	1.2	1.7				
	Folate pathway inhibitors	Sulfisoxazole	N/A	48.0	[42.6 - 53.4]											48.5	2.9	0.3		0.3	48.0
н		Trimethoprim-sulfamethoxazole	N/A	49.7	[44.3 - 55.1]				6.4	2.3	11.3	17.7	12.5	1.7	48.0						
	Phenicols	Chloramphenicol	0.6	11.6	[8.4 - 15.5]								9.0	71.5	7.3	0.6	3.8	7.8			
	Tetracyclines	Tetracycline	0.6	43.6	[38.3 - 49.0]									55.8	0.6		5.5	38.1			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

 Proteinage of isolates that were resistant
 Proceedings of isolates that were resistant
 The 95% confidence intervals (Q) for percent resistant (%R) were calculated using the Paulson-Camp-Prat approximation to the Copper-Pearson exact method
 The unshade areas indicate the dilution transport of the solates. Single vertical bars indicate the breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to the MCs equal to the MCs equal to the MCs equal to the formation of the shaded areas indicate the percentages of isolates with MCs equal to the MCs equal or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 12. Antimicrobial resistance pattern for Shigella, 2013

Table 39. Percentage and n	umber of <u>Shigella</u> isolates	s resistant to antimicrobial	agents, 2004–2013

/ear			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
otal	Isolates		316	396	402	480	551	475	411	293	353	344
ank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0% 0	0.0% 0	0.0%	0.0%	0.0%	0.0% 0	Not Tested	Not Tested	Not Tested
		Gentamicin (MIC ≥ 16)	0.0%	1.0% 4	0.2%	0.8% 4	0.4%	0.6% 3	0.5% 2	0.7% 2	0.0% 0	0.3%
		Kanamycin	0.0%	0.8%	0.0%	0.2%	0.5%	0.4%	0.0%	0.0%	0.3%	0.0%
		(MIC ≥ 64) Streptomycin	0 59.8%	3 68.7%	0 60.7%	1 73.3%	3 80.6%	2 89.1%	0 91.0%	0 87.7%	1 83.0%	0 91.6%
		(MIC ≥ 64)	189	272	244	352	444	423	374	257	293	315
	β-lactam/β-lactamase inhibitor Amoxicillin-clavulanic acid combinations (MIC ≥ 32/16)		1.6% 5	1.0% 4	1.5% 6	0.4% 2	3.3% 18	2.1% 10	0.0% 0	2.0% 6	1.7% 6	2.9% 10
I	Cephems	Ceftiofur (MIC ≥ 8)	0.3%	0.5% 2	0.2%	0.0%	0.0%	0.6% 3	0.2%	1.7% 5	1.1% 4	1.2% 4
		Ceftriaxone (MIC ≥ 4)	0.3%	0.5%	0.2%	0.0%	0.0%	0.6%	0.2%	1.7% 5	1.1% 4	1.2%
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	3.4% 10	4.0% 14	3.8% 13						
	Penicillins	Ampicillin (MIC ≥ 32)	77.5% 245	70.7% 280	62.4% 251	63.8% 306	62.4% 344	46.3% 220	40.9% 168	33.8% 99	25.5% 90	36.0% 124
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0%	0.0%	0.2%	0.2%	0.7%	0.6%	1.7%	2.4%	2.0%	3.5%
		Nalidixic Acid (MIC \ge 32)	1.6%	1.5%	3.5% 14	1.7%	1.6%	2.1% 10	4.4%	6.1% 18	4.5% 16	5.2% 18
	Cephems	Cefoxitin	5 0.3%	6 0.5%	0.0%	8	9 0.0%	0.6%	0.0%	1.0%	0.6%	1.7%
	Folate pathway inhibitors	(MIC ≥ 32) Sulfisoxazole	1 52.5%	2 57.6%	0 40.3%	0 25.8%	0 28.5%	3 30.5%	0 29.9%	44.7%	2 34.8%	6 48.0%
Ш		(MIC ≥ 512) Trimethoprim-sulfamethoxazole (MIC ≥ $4/76$)	166 46.8% 148	228 53.3% 211	162 46.0% 185	124 25.8% 124	157 31.2% 172	145 40.4% 192	123 47.7% 196	131 66.9% 196	123 43.3% 153	165 49.79 171
	Phenicols	Chloramphenicol (MIC \geq 32)	15.2% 48	10.9% 43	10.9% 44	8.3% 40	6.9% 38	9.3% 44	10.0% 41	12.3% 36	11.3% 40	11.6%
	Tetracyclines	Tetracycline (MIC ≥ 16)	49.4%	38.4% 152	34.6% 139	25.6% 123	24.3% 134	29.5% 140	31.4% 129	40.6% 119	37.1% 131	43.6% 150

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 40. Resistance patterns of Shigella isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	316	396	402	480	551	475	411	293	353	344
Resistance Pattern										
No resistance detected	4.7%	4.5%	6.5%	7.1%	4.5%	4.0%	3.6%	4.4%	7.4%	4.1%
	15	18	26	34	25	19	15	13	26	14
Resistance ≥ 1 CLSI* class	95.3%	95.5%	93.5%	92.9%	95.5%	96.0%	96.4%	95.6%	92.6%	95.9%
	301	378	376	446	526	456	396	280	327	330
Resistance ≥ 2 CLSI* classes	64.2%	72.0%	64.7%	65.4%	68.2%	68.0%	69.8%	74.4%	53.8%	61.0%
	203	285	260	314	376	323	287	218	190	210
Resistance ≥ 3 CLSI* classes	59.5%	58.6%	43.8%	27.7%	35.2%	36.4%	39.7%	51.2%	37.4%	53.5%
	188	232	176	133	194	173	163	150	132	184
Resistance ≥ 4 CLSI classes	32.9%	19.4%	15.4%	11.7%	10.3%	13.3%	14.1%	22.2%	19.3%	23.8%
	104	77	62	56	57	63	58	65	68	82
Resistance \geq 5 CLSI* classes	7.0%	4.8%	5.2%	4.6%	2.7%	6.5%	4.6%	9.9%	7.6%	9.9%
	22	19	21	22	15	31	19	29	27	34
At least ACSSuT [†]	6.0%	4.0%	5.0%	3.8%	2.2%	5.9%	4.4%	6.1%	5.7%	7.3%
	19	16	20	18	12	28	18	18	20	25
At least ACT/S [‡]	6.6%	6.3%	6.0%	4.0%	2.9%	6.7%	4.9%	7.8%	7.4%	8.1%
	21	25	24	19	16	32	20	23	26	28
At least AT/S [§]	34.5%	35.6%	26.6%	12.9%	16.0%	17.5%	17.8%	25.9%	15.6%	25.6%
	109	141	107	62	88	83	73	76	55	88
At least ANT/S [¶]	0.6%	0.5%	0.5%	0.8%	0.0%	0.2%	1.2%	2.4%	0.8%	1.2%
	2	2	2	4	0	1	5	7	3	4
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.3%	0.3%	0.2%	0.0%	0.0%	0.0%	0.2%	1.4%	0.8%	0.3%
resistant	1	1	1	0	0	0	1	4	3	1
At least nalidixic acid and azithromycin	Not	Not	Not	Not	Not	Not	Not	0.3%	0.3%	0.3%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	1	1	1
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

ANT/S: resistance to AT/S, nalidixic acid
 ** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

Table 41. Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2013 (N=275)

Bank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates					I	Percent	age of	all isola	teswit	h MIC (µ	ıg/m L)*'	•				
Rank	CLSP Antimicrobial class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.3]						4.7	89.1	5.5	0.7							
		Kanamycin	0.0	0.0	[0.0 - 1.3]										100.0	-					
		Streptomycin	N/A	97.8	[95.3 - 99.2]												2.2	44.0	53.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	6.5	3.6	[1.8 - 6.6]							0.4		64.7	24.7	6.5	1.5	2.2			
	Cephems	Ceftiofur	0.0	0.7	[0.1 - 2.6]				1.5	67.6	23.3	6.9				0.7					
'		Ceftriaxone	0.0	0.7	[0.1 - 2.6]					96.4	2.9				-	0.4			0.4		
	Macrolide	Azithromycin	N/A	1.1	[0.2 - 3.2]							0.4	3.3	74.2	20.4	0.7	1.1				
	Penicillins	Ampicillin	0.4	28.0	[22.8 - 33.7]							0.7	50.9	19.3	0.7	0.4	1.1	26.9			
	Quinolones	Ciprofloxacin	0.0	2.9	[1.3 - 5.7]	96.0	0.4		0.4	0.4				1.8	1.1		_				
		Nalidixic acid	N/A	3.3	[1.5 - 6.1]						2.9	76.0	14.9	2.9				3.3			
	Cephems	Cefoxitin	1.5	2.2	[0.8 - 4.7]						0.4	0.7	73.5	21.8		1.5	2.2				
	Folate pathway inhibitors	Sulfisoxazole	N/A	45.1	[39.1 - 51.2]											51.3	2.9	0.4		0.4	45.1
н		Trimethoprim-sulfamethoxazole	N/A	47.6	[41.6 - 53.7]				0.7	1.1	12.7	22.2	15.6	2.2	45.5		_				
	Phenicols	Chloramphenicol	0.7	0.7	[0.1 - 2.6]								3.3	87.3	8.0	0.7		0.7			
	Tetracyclines	Tetracycline	0.4	34.9	[29.3 - 40.9]									64.7	0.4		4.4	30.5			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Forcinage of isolates that membrane states with more allowed in the formation of the for or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 13. Antimicrobial resistance pattern for Shigella sonnei, 2013

Antimicrobial Agent Susceptible, Intermediate, and Resistant Proportion Gentamicin Kanamycin Streptomycin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Azithromycin Ampicillin Ciprofloxacin Nalidixic acid Cefoxitin Sulfisoxazole Trimethoprim-sulfamethoxazole Chloramphenicol Tetracycline

Table 42. Percentage and number of	f Shigella sonnei isolates resistant to	antimicrobial agents, 2004–2013

Year	io azi i oroontago a	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	
Fotal I	solates		241	340	321	414	494	410	337	225	287	275
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested	Not Tested						
		Gentamicin (MIC ≥ 16)	0.0% 0	1.2% 4	0.0% 0	1.0% 4	0.4% 2	0.7% 3	0.0% 0	0.9% 2	0.0% 0	0.0% 0
		Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.2% 1	0.6% 3	0.2% 1	0.0% 0	0.0% 0	0.3% 1	0.0% 0
		Streptomycin (MIC ≥ 64)	56.8% 137	70.3% 239	61.7% 198	76.8% 318	82.4% 407	91.5% 375	96.1% 324	95.6% 215	89.2% 256	97.8% 269
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	1.7% 4	1.2% 4	1.9% 6	0.5% 2	3.2% 16	2.0% 8	0.0% 0	2.7% 6	1.7% 5	3.6% 10
Т	Cephems	Ceftiofur (MIC ≥ 8)	0.4% 1	0.6% 2	0.0% 0	0.0% 0	0.0% 0	0.5% 2	0.3% 1	1.8% 4	1.0% 3	0.7% 2
		Ceftriaxone (MIC ≥ 4)	0.4% 1	0.6% 2	0.0% 0	0.0% 0	0.0% 0	0.5% 2	0.3% 1	1.8% 4	1.0% 3	0.7% 2
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.9% 2	2.1% 6	1.1% 3
	Penicillins	Ampicillin (MIC ≥ 32)	79.3% 191	70.6% 240	62.6% 201	64.0% 265	61.3% 303	43.2% 177	36.8% 124	27.6% 62	18.1% 52	28.0% 77
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.6% 3	0.0% 0	1.5% 5	1.3% 3	2.1% 6	2.9% 8
		Nalidixic Acid (MIC ≥ 32)	1.7% 4	1.2% 4	2.8% 9	1.2% 5	1.6% 8	1.7% 7	3.3% 11	3.6% 8	4.2% 12	3.3% 9
	Cephems	Cefoxitin (MIC ≥ 32)	0.4% 1	0.6% 2	0.0% 0	0.0% 0	0.0% 0	0.7% 3	0.0% 0	1.3% 3	0.7% 2	2.2% 6
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	49.0% 118	57.9% 197	33.3% 107	20.0% 83	24.5% 121	23.9% 98	25.2% 85	39.6% 89	30.0% 86	45.1% 124
Ш		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	46.9% 113	55.0% 187	42.7% 137	22.0% 91	29.1% 144	36.1% 148	46.9% 158	68.9% 155	41.8% 120	47.6% 131
	Phenicols	Chloramphenicol (MIC ≥ 32)	2.5% 6	2.4% 8	0.9% 3	1.2% 5	0.8% 4	1.2% 5	1.5% 5	2.7% 6	3.1% 9	0.7% 2
	Tetracyclines	Tetracycline (MIC ≥ 16)	36.1% 87	29.4% 100	22.7% 73	16.2% 67	16.8% 83	20.7% 85	21.4% 72	29.8% 67	27.5% 79	34.9% 96

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 43. Resistance patterns of Shigella sonnei isolates, 2004–2013

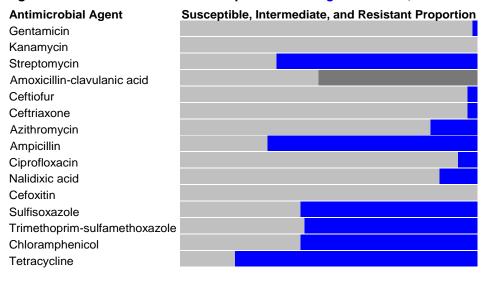
Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	241	340	321	414	494	410	337	225	287	275
Resistance Pattern										
No resistance detected	5.4%	4.4%	6.2%	6.8%	4.7%	3.7%	1.5%	0.9%	5.9%	0.7%
	13	15	20	28	23	15	5	2	17	2
Resistance ≥ 1 CLSI* class	94.6%	95.6%	93.8%	93.2%	95.3%	96.3%	98.5%	99.1%	94.1%	99.3%
	228	325	301	386	471	395	332	223	270	273
Resistance ≥ 2 CLSI* classes	56.4%	70.6%	59.8%	63.0%	65.4%	65.4%	68.0%	73.8%	49.1%	56.4%
	136	240	192	261	323	268	229	166	141	155
Resistance ≥ 3 CLSI* classes	51.0%	55.3%	35.8%	21.3%	29.4%	29.8%	32.6%	44.9%	31.0%	48.0%
	123	188	115	88	145	122	110	101	89	132
Resistance ≥ 4 CLSI classes	25.7%	12.4%	8.1%	5.1%	5.3%	5.9%	6.5%	13.3%	11.5%	14.5%
	62	42	26	21	26	24	22	30	33	40
Resistance ≥ 5 CLSI* classes	0.8%	0.9%	0.0%	1.2%	0.4%	0.5%	0.6%	3.6%	2.8%	1.8%
	2	3	0	5	2	2	2	8	8	5
At least ACSSuT [†]	0.0%	0.3%	0.0%	0.5%	0.2%	0.0%	0.6%	0.4%	1.0%	0.4%
	0	1	0	2	1	0	2	1	3	1
At least ACT/S [‡]	1.7%	2.4%	0.9%	0.5%	0.8%	1.0%	0.9%	2.2%	2.8%	0.7%
	4	8	3	2	4	4	3	5	8	2
At least AT/S§	35.3%	35.6%	22.7%	9.4%	14.2%	12.2%	14.2%	22.2%	10.8%	19.3%
	85	121	73	39	70	50	48	50	31	53
At least ANT/S ¹	0.8%	0.3%	0.0%	0.7%	0.0%	0.0%	0.0%	1.3%	1.0%	0.0%
	2	1	0	3	0	0	0	3	3	0
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.3%	1.3%	0.7%	0.0%
resistant	1	1	0	0	0	0	1	3	2	0
At least nalidixic acid and azithromycin	Not	Not	Not	Not	Not	Not	Not	0.0%	0.3%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	1	0
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

ACSSUT resistance to ampicilin, chloramphenicol, streptomycin, sufametrioazo ACT/S: resistance to ampicilin, chloramphenicol, trimethoprim-sulfamethoxazole § AT/S: resistance to ampicilin, trimethoprim-sulfamethoxazole ¶ ANT/S: resistance to AT/S, nalidixic acid ** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

Table 44. Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2013 (N=64)


Denkt	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates					I	Percen	tage of	all isola	tes witl	hMIC (ıg/m L)*	•				
Rank	CLSI Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.6	[0.0 - 8.4]					3.1	21.9	71.9	1.6				1.6				
		Kanamycin	0.0	0.0	[0.0 - 5.6]										100.0	-					
		Streptomycin	N/A	67.2	[54.3 - 78.4]												32.8	7.8	59.4		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	53.1	0.0	[0.0 - 5.6]							6.3	17.2	9.4	14.1	53.1					
Ι.	Cephems	Ceftiofur	0.0	3.1	[0.4 - 10.8]				25.0	51.6	14.1	6.3				3.1	-				
1		Ceftriaxone	0.0	3.1	[0.4 - 10.8]					96.9								1.6	1.6		
	Macrolide	Azithromycin	N/A	15.6	[7.7 - 26.9]					3.1	14.1	20.3	31.3	15.6		_	15.6				
	Penicillins	Ampicillin	0.0	70.3	[57.6 - 81.1]							21.9	7.8				1.6	68.8			
	Quinolones	Ciprofloxacin	0.0	6.3	[1.7 - 15.2]	85.9			3.1	4.7				3.1	3.1						
		Nalidixic acid	N/A	12.5	[5.5 - 23.2]						1.6	51.6	31.3	1.6	1.6	_		12.5			
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 5.6]						1.6	1.6	21.9	64.1	10.9						
	Folate pathway inhibitors	Sulfisoxazole	N/A	59.4	[46.4 - 71.5]											37.5	3.1				59.4
н		Trimethoprim-sulfamethoxazole	N/A	57.8	[44.8 - 70.1]				28.1	7.8	6.3				57.8						
	Phenicols	Chloramphenicol	0.0	59.4	[46.4 - 71.5]								31.3	6.3	3.1		20.3	39.1			
	Tetracyclines	Tetracycline	0.0	81.3	[69.5 - 89.9]									18.8			9.4	71.9			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; IVA if no MIC range of intermediate susceptibility exists

§ Percentage of isolates that were resistant

3 Proteinage of isolates that we de lesstaint The 55% confidence interval (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method ** The unshaded areas indicate the dilution range of the Sensittire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensittire® plate. Numbers listed for the low est tested concentrations. CLS breakpoints we used when available.

Figure 14. Antimicrobial resistance pattern for Shigella flexneri, 2013

201:	,											
Year Total I	solates		2004 62	2005 52	2006 74	2007 61	2008 49	2009 57	2010 61	2011 58	2012 59	2013 64
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)	02	52	74	01	43	51	01	- 30	- 39	04
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0.0%	0	Tested	Tested	Tested
		Gentamicin (MIC ≥ 16)	0.0% 0	0.0%	1.4% 1	0.0% 0	0.0% 0	0.0%	3.3%	0.0% 0	0.0% 0	1.6% 1
		Kanamycin (MIC ≥ 64)	0.0% 0	3.8% 2	0.0% 0	0.0% 0	0.0% 0	1.8% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0
		Streptomycin (MIC ≥ 64)	71.0% 44	57.7% 30	58.1% 43	52.5% 32	63.3% 31	73.7% 42	68.9% 42	58.6% 34	55.9% 33	67.2% 43
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	1.6%	0.0%	0.0%	0.0%	4.1% 2	3.5% 2	0.0% 0	0.0%	1.7%	0.0%
	Cephems	Ceftiofur	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%	0.0%	1.7%	1.7%	3.1%
1	Coprising	$(MIC \ge 8)$	0.070	0.070	1.470	0.070	0.070	1.070	0.070	1.170	1.170	2
		Ceftriaxone	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%	0.0%	1.7%	1.7%	3.1%
		(MIC ≥ 4)	0	0	1	0	0	1	0	1	1	2
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	12.1% 7	13.6% 8	15.6% 10
	Penicillins	Ampicillin (MIC ≥ 32)	80.6% 50	75.0% 39	63.5% 47	63.9% 39	75.5% 37	70.2% 40	67.2% 41	60.3% 35	61.0% 36	70.3% 45
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0% 0	0.0% 0	1.4% 1	1.6% 1	2.0% 1	3.5% 2	3.3% 2	6.9% 4	1.7% 1	6.3% 4
		Nalidixic Acid (MIC ≥ 32)	1.6% 1	3.8% 2	5.4% 4	4.9% 3	2.0% 1	3.5% 2	11.5% 7	12.1% 7	5.1% 3	12.5% 8
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0	0.0%	0.0%	0.0%
	Folate pathway inhibitors	Sulfisoxazole (MIC ≥ 512)	66.1% 41	55.8% 29	68.9% 51	62.3% 38	63.3% 31	73.7% 42	55.7% 34	60.3% 35	55.9% 33	59.4% 38
П		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	46.8% 29	44.2% 23	59.5% 44	49.2% 30	49.0% 24	68.4% 39	55.7% 34	58.6% 34	50.8% 30	57.8% 37
	Phenicols	Chloramphenicol (MIC \geq 32)	61.3% 38	65.4% 34	54.1% 40	55.7% 34	65.3% 32	66.7% 38	55.7% 34	50.0% 29	52.5% 31	59.4% 38
	Tetracyclines	Tetracycline (MIC ≥ 16)	95.2% 59	94.2% 49	83.8% 62	83.6% 51	87.8% 43	87.7% 50	86.9% 53	79.3% 46	84.7% 50	81.3% 52

Table 45. Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 46. Resistance patterns of Shigella flexneri isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	62	52	74	61	49	57	61	58	59	64
Resistance Pattern										
No resistance detected	0.0%	5.8%	5.4%	9.8%	4.1%	5.3%	9.8%	17.2%	11.9%	15.6%
	0	3	4	6	2	3	6	10	7	10
Resistance ≥ 1 CLSI* class	100.0%	94.2%	94.6%	90.2%	95.9%	94.7%	90.2%	82.8%	88.1%	84.4%
	62	49	70	55	47	54	55	48	52	54
Resistance ≥ 2 CLSI* classes	93.5%	80.8%	85.1%	80.3%	93.9%	86.0%	83.6%	77.6%	76.3%	81.3%
	58	42	63	49	46	49	51	45	45	52
Resistance ≥ 3 CLSI* classes	90.3%	78.8%	75.7%	68.9%	85.7%	82.5%	80.3%	72.4%	67.8%	76.6%
	56	41	56	42	42	47	49	42	40	49
Resistance ≥ 4 CLSI classes	64.5%	65.4%	47.3%	55.7%	57.1%	63.2%	57.4%	56.9%	57.6%	62.5%
	40	34	35	34	28	36	35	33	34	40
Resistance ≥ 5 CLSI* classes	29.0%	30.8%	28.4%	27.9%	26.5%	49.1%	27.9%	32.8%	32.2%	45.3%
	18	16	21	17	13	28	17	19	19	29
At least ACSSuT [†]	27.4%	28.8%	27.0%	26.2%	22.4%	47.4%	26.2%	27.6%	28.8%	37.5%
	17	15	20	16	11	27	16	16	17	24
At least ACT/S [‡]	24.2%	32.7%	28.4%	26.2%	24.5%	47.4%	27.9%	29.3%	30.5%	40.6%
	15	17	21	16	12	27	17	17	18	26
At least AT/S§	35.5%	38.5%	43.2%	36.1%	32.7%	52.6%	41.0%	41.4%	37.3%	51.6%
	22	20	32	22	16	30	25	24	22	33
At least ANT/S [¶]	0.0%	1.9%	2.7%	1.6%	0.0%	1.8%	8.2%	5.2%	0.0%	6.2%
	0	1	2	1	0	1	5	3	0	4
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	1.7%	1.7%	1.6%
resistant	0	0	1	0	0	0	0	1	1	1
At least nalidixic acid and azithromycin	Not	Not	Not	Not	Not	Not	Not	0.0%	0.0%	1.6%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	1
At least ceftriaxone and azithromycin	Not	0.0%	0.0%	0.0%						
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

ANT/S: resistance to AT/S, nalidixic acid
 ** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

4. Escherichia coli O157

Table 47. Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2013 (N=177)

Denkt	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	ofisolates						Percent	tage of	all isola	tes wit	h MIC (I	µg/m L)*	•				
Rank	CLSP Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.6	0.6	[0.0 - 3.1]					5.6	79.1	11.3	2.8		0.6	0.6					
		Kanamycin	0.0	0.0	[0.0 - 2.1]										100.0						
		Streptomycin	N/A	6.8	[3.5 - 11.5]												93.2	1.1	5.6		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6	1.1	[0.1 - 4.0]							2.3	5.1	85.9	5.1	0.6	0.6	0.6			
	Cephems	Ceftiofur	0.0	0.6	[0.0 - 3.1]				1.1	7.9	80.2	9.6	0.6			0.6					
'		Ceftriaxone	0.0	0.6	[0.0 - 3.1]					99.4					-		0.6				
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 2.1]							5.1	62.7	30.5	0.6	1.1					
	Penicillins	Ampicillin	0.0	4.5	[2.0 - 8.7]							4.5	63.8	26.6	0.6		1.1	3.4			
	Quinolones	Ciprofloxacin	0.0	0.6	[0.0 - 3.1]	94.9	1.7			2.3		0.6		0.6							
		Nalidixic acid	N/A	2.8	[0.9 - 6.5]							1.7	80.2	14.1	0.6	0.6		2.8			
	Cephems	Cefoxitin	2.3	1.1	[0.1 - 4.0]							0.6	6.2	68.9	20.9	2.3		1.1			
	Folate pathway inhibitors	Sulfisoxazole	N/A	5.6	[2.7 - 10.1]									_		80.2	9.6	3.4		1.1	5.6
н		Trimethoprim-sulfamethoxazole	N/A	1.7	[0.3 - 4.9]				94.4	2.3		1.7			1.7		_				
	Phenicols	Chloramphenicol	0.6	2.8	[0.9 - 6.5]								1.1	14.1	81.4	0.6		2.8			
	Tetracyclines	Tetracycline	1.7	8.5	[4.8 - 13.6]									89.8	1.7		1.1	7.3			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

§ Percentage of isolates that were resistant

3 Procentage or isolates induces in

Figure 15. Antimicrobial resistance pattern for Escherichia coli O157, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Year			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	solates		169	194	233	189	161	187	170	162	166	177
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	Tested	Tested	Tested
		Gentamicin	0.6%	0.5%	0.0%	0.0%	1.2%	0.5%	0.6%	0.6%	0.6%	0.6%
		(MIC ≥ 16)	1	1	0	0	2	1	1	1	1	1
		Kanamycin	0.0%	0.5%	0.4%	0.0%	0.0%	0.5%	1.2%	1.9%	0.0%	0.0%
		(MIC ≥ 64)	0	1	1	0	0	1	2	3	0	0
		Streptomycin (MIC ≥ 64)	1.8% 3	2.1% 4	2.6% 6	2.1% 4	1.9% 3	4.8% 9	2.4% 4	4.3% 7	2.4% 4	6.8% 12
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.0%	1.3%	0.0%	0.6%	0.5%	0.0%	0.0%	0.6%	1.1%
	combinations	(MIC ≥ 32/16)	0	0	3	0	1	1	0	0	1	2
	Cephems	Ceftiofur	0.0%	0.0%	1.3%	0.0%	0.6%	0.0%	0.0%	0.0%	0.6%	0.6%
		(MIC ≥ 8)	0	0	3	0	1	0	0	0	1	1
		Ceftriaxone	0.0%	0.0%	1.3%	0.0%	0.6%	0.0%	0.0%	0.0%	0.6%	0.6%
		(MIC ≥ 4)	0	0	3	0	1	0	0	0	1	1
	Macrolides	Azithromycin	Not	0.0%	0.6%	0.0%						
		(MIC ≥ 32)	Tested	0	1	0						
	Penicillins	Ampicillin	1.2%	4.1%	2.6%	2.1%	3.7%	4.3%	1.8%	3.7%	1.8%	4.5%
		(MIC ≥ 32)	2	8	6	4	6	8	3	6	3	8
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.4%	0.5%	0.0%	0.5%	0.0%	0.6%	0.0%	0.6%
		(MIC ≥ 4)	0	0	1	1	0	1	0	1	0	1
		Nalidixic Acid	1.8%	1.5%	2.1%	2.1%	1.2%	2.1%	1.2%	1.2%	2.4%	2.8%
		(MIC ≥ 32)	3	3	5	4	2	4	2	2	4	5
	Cephems	Cefoxitin	0.6%	0.0%	1.3%	0.0%	1.2%	0.5%	0.0%	0.0%	0.6%	1.1%
		(MIC ≥ 32)	1	0	3	0	2	1	0	0	1	2
	Folate pathway inhibitors	Sulfisoxazole	1.8%	6.7%	3.0%	2.6%	3.1%	6.4%	4.7%	4.9%	3.6%	5.6%
		(MIC ≥ 512)	3	13	7	5	5	12	8	8	6	10
Ш		Trimethoprim-sulfamethoxazole	0.0%	0.5%	0.4%	1.1%	1.2%	4.3%	1.2%	2.5%	1.2%	1.7%
		(MIC ≥ 4/76)	0	1	1	2	2	8	2	4	2	3
	Phenicols	Chloramphenicol	0.6%	1.0%	1.3%	0.5%	0.6%	1.1%	0.6%	1.2%	1.8%	2.8%
		(MIC ≥ 32)	1	2	3	1	1	2	1	2	3	5
	Tetracyclines	Tetracycline	1.8%	8.8%	4.7%	4.2%	1.9%	7.5%	4.7%	4.9%	5.4%	8.5%
		(MIC ≥ 16)	3	17	11	8	3	14	8	8	9	15

Table 48. Percentage and number of Escherichia coli O157 isolates resistant to antimicrobial agents, 2004-2013

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 49. Resistance patterns of Escherichia coli O157 isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	169	194	233	189	161	187	170	162	166	177
Resistance Pattern										
No resistance detected	94.7%	87.6%	91.8%	92.6%	91.9%	89.8%	93.5%	92.6%	92.2%	84.7%
	160	170	214	175	148	168	159	150	153	150
Resistance ≥ 1 CLSI* class	5.3%	12.4%	8.2%	7.4%	8.1%	10.2%	6.5%	7.4%	7.8%	15.3%
	9	24	19	14	13	19	11	12	13	27
Resistance ≥ 2 CLSI* classes	2.4%	6.7%	4.7%	2.6%	3.1%	7.5%	4.7%	4.9%	4.2%	7.9%
	4	13	11	5	5	14	8	8	7	14
Resistance ≥ 3 CLSI* classes	1.2%	5.2%	3.4%	2.1%	2.5%	5.9%	4.1%	4.3%	3.0%	6.2%
	2	10	8	4	4	11	7	7	5	11
Resistance ≥ 4 CLSI classes	0.6%	1.0%	2.1%	1.1%	1.2%	4.3%	1.8%	2.5%	1.8%	2.3%
	1	2	5	2	2	8	3	4	3	4
Resistance ≥ 5 CLSI* classes	0.0%	0.0%	0.9%	0.5%	0.0%	0.5%	0.0%	0.6%	1.2%	1.1%
	0	0	2	1	0	1	0	1	2	2
At least ACSSuT [†]	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	0.6%	1.2%	1.1%
	0	0	2	0	0	0	0	1	2	2
At least ACT/S [‡]	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	1.2%	0.6%	1.1%
	0	0	0	0	1	0	0	2	1	2
At least ACSSuTAuCx [§]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	1	0	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
 ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

5. Campylobacter

Table 50.	Frequenc	y of	Camp	ylobacter	species,	2013
-----------	----------	------	------	-----------	----------	------

Species	20	13
	n	(%)
Campylobacter jejuni	1182	(86.2)
Campylobacter coli	142	(10.3)
Other	48	(3.5)
Total	1372	(100)

Table 51. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2013 (N=1182)

		A	Perc	entage	ofisolates						Percent	age of a	all isola	tes witl	n MIC (µ	ıg/m L)*	•				
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	N/A	1.6	[1.0 - 2.5]					0.1	45.8	51.9	0.6		0.1		0.1	1.4			
	Ketolide	Telithromycin	N/A	2.0	[1.3 - 3.0]					3.6	22.4	41.7	27.8	2.4	0.3	1.8					
	Macrolides	Azithromycin	N/A	2.2	[1.4 - 3.2]		12.5	45.4	34.3	5.6				-	-			0.1	2.1		
· ·		Erythromycin	N/A	2.2	[1.4 - 3.2]				0.4	21.2	42.6	29.9	3.4	0.3			0.2	0.1	1.9		
	Quinolones	Ciprofloxacin	N/A	22.3	[19.9 - 24.7]		0.3	19.7	47.0	9.5	1.2	0.1		0.1	8.5	8.1	3.0	1.8	0.6		
		Nalidixic acid	N/A	22.2	[19.8 - 24.6]									63.1	13.9	0.8		0.3	21.9		
	Lincosamides	Clindamycin	N/A	3.2	[2.3 - 4.4]		0.1	5.7	54.0	29.9	7.2	1.0	0.3	0.1	0.9	0.5	0.4				
н	Phenicols	Florfenicol	N/A	1.2	[0.6 - 2.0]						1.4	76.1	19.5	1.9	1.0	0.2					
	Tetracyclines	Tetracycline	N/A	49.1	[46.2 - 52.0]			1.4	23.9	20.1	4.1	1.4	0.7	0.1	•	0.3	0.7	5.3	42.0		

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

Percentage or isolates with intermediate susceptionity: VA if no NuC range or intermediate susceptionity exists
 Percentage or isolates that were resistant
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method
 The ushaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. ECOFFs were used when available.

Figure 16. Antimicrobial resistance pattern for Campylobacter jejuni, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Telithromycin	
Azithromycin	
Erythromycin	
Ciprofloxacin	
Nalidixic acid	
Clindamycin	
Florfenicol	
Tetracycline	

Table 52. Percentage and number of *Campylobacter jejuni* isolates resistant to antimicrobial agents,2004–2013

Year Total I	solates		2004 320	2005 788	2006 709	2007 992	2008 1033	2009 1350	2010 1159	2011 1275	2012 1191	2013 1182
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin (MIC ≥ 4)	2.2% 7	0.1% 1	0.0% 0	0.8% 8	1.1% 11	0.6% 8	0.6% 7	1.0% 13	1.0% 12	1.6% 19
	Ketolides	Telithromycin (MIC ≥ 8)	Not Tested	0.8% 6	1.0% 7	1.3% 13	2.2% 23	1.9% 25	2.4% 28	2.6% 33	1.4% 17	2.0% 24
Ι.	Macrolides	Azithromycin (MIC ≥ 0.5)	9.4% 30	2.7% 21	1.3% 9	1.8% 18	2.6% 27	1.9% 26	2.7% 31	4.9% 63	1.8% 21	2.2% 26
'		Erythromycin (MIC ≥ 8)	0.9% 3	1.5% 12	0.8% 6	1.6% 16	2.2% 23	1.5% 20	1.2% 14	1.8% 23	1.5% 18	2.2% 26
	Quinolones	Ciprofloxacin (MIC ≥ 1)	18.1% 58	21.6% 170	19.6% 139	26.0% 258	22.6% 233	23.1% 312	22.0% 255	24.1% 307	25.3% 301	22.3% 263
		Nalidixic Acid (MIC ≥ 32)	19.1% 61	22.5% 177	19.5% 138	26.5% 263	22.8% 236	23.1% 312	22.1% 256	24.1% 307	25.5% 304	22.2% 262
	Lincosamides	Clindamycin (MIC ≥ 1)	5.6% 18	3.2% 25	2.4% 17	3.5% 35	3.8% 39	2.9% 39	14.1% 163	21.5% 274	10.8% 129	3.2% 38
	Phenicols	Chloramphenicol $(MIC \ge 32)$	1.6% 5	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested
		Florfenicol $(MIC \ge 8)$	Not Tested	0.4% 3	0.0% 0	0.0% 0	0.6% 6	0.6% 8	1.5% 17	2.1% 27	1.4% 17	1.2% 14
	Tetracyclines	Tetracycline (MIC ≥ 2)	47.5% 152	43.7% 344	48.7% 345	45.7% 453	45.3% 468	44.1% 595	44.2% 512	48.3% 616	47.8% 569	49.1% 580

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important, Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 53. Resistance patterns of *Campylobacter jejuni* isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	320	788	709	992	1033	1350	1159	1275	1191	1182
Resistance Pattern										
No resistance detected	41.9%	46.3%	42.5%	44.3%	45.2%	45.9%	39.5%	33.0%	38.6%	44.6%
	134	365	301	439	467	620	458	421	460	527
Resistance ≥ 1 CLSI* class	58.1%	53.7%	57.5%	55.7%	54.8%	54.1%	60.5%	67.0%	61.4%	55.4%
	186	423	408	553	566	730	701	854	731	655
Resistance ≥ 2 CLSI* classes	19.7%	16.2%	13.1%	18.9%	15.8%	15.1%	19.0%	23.5%	20.0%	17.3%
	63	128	93	187	163	204	220	300	238	204
Resistance ≥ 3 CLSI* classes	5.3%	2.4%	1.3%	2.0%	3.5%	2.7%	4.2%	7.5%	4.8%	3.1%
	17	19	9	20	36	37	49	96	57	37
Resistance ≥ 4 CLSI classes	1.9%	1.0%	0.7%	1.3%	1.9%	1.6%	1.9%	3.6%	1.8%	2.2%
	6	8	5	13	20	21	22	46	21	26
Resistance ≥ 5 CLSI* classes	0.3%	0.0%	0.3%	1.1%	1.5%	1.0%	1.0%	1.9%	0.9%	1.8%
	1	0	2	11	16	13	12	24	11	21
At least quinolone and macrolide resistant	2.2%	1.4%	0.7%	1.4%	1.5%	1.2%	1.3%	3.0%	1.3%	1.9%
	7	11	5	14	15	16	15	38	16	22

* CLSI: Clinical and Laboratory Standards Institute

Table 54. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2013 (N=142)

	Ŭ l	· •	Perc	entage	of isolates						Percent	age of	all isola	tes witl	n MIC (µ	ıg/mL)*'					
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	N/A	2.1	[0.4 - 6.0]						14.8	72.5	10.6					2.1			
	Ketolide	Telithromycin	N/A	21.8	[15.3 - 29.5]				0.7	10.6	19.7	5.6	25.4	16.2	7.7	14.1					
Ι.	Macrolides	Azithromycin	N/A	16.9	[11.1 - 24.1]		0.7	12.0	38.7	29.6	2.1								16.9		
1		Erythromycin	N/A	17.6	[11.7 - 24.9]					5.6	21.1	24.6	16.9	13.4	0.7	0.7		0.7	16.2		
	Quinolones	Ciprofloxacin	N/A	34.5	[26.7 - 42.9]			4.2	26.1	28.2	7.0			0.7	7.0	13.4	10.6	2.1	0.7		
		Nalidixic acid	N/A	35.2	[27.4 - 43.7]									19.0	38.7	7.0	0.7	3.5	31.0		
	Lincosamides	Clindamycin	N/A	21.1	[14.7 - 28.8]				4.9	30.3	28.2	15.5	3.5	1.4	4.9	9.2	2.1				
н	Phenicols	Florfenicol	N/A	0.7	[0.0 - 3.9]						1.4	35.9	49.3	12.7	0.7						
	Tetracyclines	Tetracycline	N/A	51.4	[42.9 - 59.9]				4.2	21.8	16.9	5.6		•	•	0.7			50.7		

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important
 CLSt: Clinical and Laboratory Standards Institute
 Percentage of isolates with Intermediate susceptibility; INA if no MC range of intermediate susceptibility exists
 Percentage of isolates with were resistant
 The unshaded areas indicate the dilution range of the Sensititire® plates used to test isolates. Sindicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates that the highest concentrations concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. ECOFFs were used when available.

Figure 17. Antimicrobial resistance pattern for Campylobacter coli, 2013

Antimicrobial Agent	Susceptible, Intermediate, and Resistant	Proportion
Gentamicin		
Telithromycin		
Azithromycin		
Erythromycin		
Ciprofloxacin		
Nalidixic acid		
Clindamycin		
Florfenicol		
Tetracycline		

Table 55. Percentage and number of Campylobacter coli isolates resistant to antimicrobial agents, 2004–2013

Year Total I	solates		2004 26	2005 99	2006 97	2007 105	2008 115	2009 142	2010 115	2011 148	2012 134	2013 142
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin (MIC ≥ 4)	3.8% 1	3.0% 3	1.0% 1	0.0% 0	1.7% 2	3.5% 5	12.2% 14	12.2% 18	6.0% 8	2.1% 3
	Ketolides	Telithromycin (MIC \geq 8)	Not Tested	8.1% 8	9.3% 9	9.5% 10	10.4% 12	7.0% 10	13.9% 16	10.8% 16	11.2% 15	21.8% 31
	Macrolides	Azithromycin (MIC ≥ 1)	3.8% 1	4.0% 4	9.3% 9	5.7% 6	10.4% 12	3.5% 5	7.0% 8	5.4% 8	9.0% 12	16.9% 24
'		Erythromycin (MIC ≥ 16)	3.8% 1	4.0% 4	8.2% 8	5.7% 6	10.4% 12	3.5% 5	5.2% 6	2.7% 4	9.0% 12	17.6% 25
	Quinolones	Ciprofloxacin (MIC ≥ 1)	30.8% 8	25.3% 25	21.6% 21	28.6% 30	29.6% 34	23.9% 34	30.4% 35	36.5% 54	33.6% 45	34.5% 49
		Nalidixic Acid (MIC ≥ 32)	34.6% 9	27.3% 27	23.7% 23	30.5% 32	29.6% 34	24.6% 35	30.4% 35	35.8% 53	33.6% 45	35.2% 50
	Lincosamides	Clindamycin (MIC ≥ 2)	11.5% 3	8.1% 8	14.4% 14	9.5% 10	14.8% 17	7.7% 11	17.4% 20	16.9% 25	16.4% 22	21.1% 30
Ш	Phenicols	Chloramphenicol $(MIC \ge 32)$	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested
"		Florfenicol (MIC \geq 8)	Not Tested	1.0% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.7% 1	1.5% 2	0.7% 1
	Tetracyclines	Tetracycline (MIC ≥ 4)	38.5% 10	31.3% 31	39.2% 38	42.9% 45	39.1% 45	45.1% 64	50.4% 58	50.7% 75	45.5% 61	51.4% 73

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute

Table 56. Resistance patterns of Campylobacter coli isolates, 2004–2013

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Total Isolates	26	99	97	105	115	142	115	148	134	142
Resistance Pattern										
No resistance detected	34.6%	49.5%	43.3%	38.1%	43.5%	43.7%	33.9%	31.1%	42.5%	31.7%
	9	49	42	40	50	62	39	46	57	45
Resistance ≥ 1 CLSI* class	65.4%	50.5%	56.7%	61.9%	56.5%	56.3%	66.1%	68.9%	57.5%	68.3%
	17	50	55	65	65	80	76	102	77	97
Resistance ≥ 2 CLSI* classes	26.9%	19.2%	20.6%	21.0%	28.7%	21.1%	38.3%	43.2%	32.8%	35.9%
	7	19	20	22	33	30	44	64	44	51
Resistance ≥ 3 CLSI* classes	0.0%	7.1%	10.3%	8.6%	8.7%	7.0%	13.9%	14.9%	12.7%	21.1%
	0	7	10	9	10	10	16	22	17	30
Resistance ≥ 4 CLSI classes	0.0%	4.0%	6.2%	5.7%	7.0%	4.2%	7.0%	4.7%	9.0%	14.1%
	0	4	6	6	8	6	8	7	12	20
Resistance ≥ 5 CLSI* classes	0.0%	2.0%	2.1%	1.0%	3.5%	2.8%	3.5%	1.4%	6.0%	8.5%
	0	2	2	1	4	4	4	2	8	12
At least quinolone and macrolide resistant	0.0%	2.0%	4.1%	1.9%	4.3%	2.8%	3.5%	3.4%	8.2%	9.2%
•	0	2	4	2	5	4	4	5	11	13

* CLSI: Clinical and Laboratory Standards Institute

6. Vibrio species other than V. cholerae

Species*	20	009	20)10	20)11	20	12	2013*		
	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	
Vibrio parahaemolyticus	149	(53.0)	179	(54.4)	201	(50.5)	370	(61.4)	317	(52.2)	
Vibrio alginolyticus	46	(16.4)	49	(14.9)	103	(25.9)	117	(19.4)	122	(20.1)	
Vibrio vulnificus	50	(17.8)	61	(18.5)	63	(15.8)	65	(10.8)	87	(14.3)	
Vibrio fluvialis	21	(7.5)	24	(7.3)	18	(4.5)	28	(4.6)	40	(6.6)	
Vibrio mimicus	11	(3.9)	9	(2.7)	9	(2.3)	11	(1.8)	27	(4.4)	
Vibrio harveyi	0	(0)	2	(0.6)	4	(1.0)	3	(0.5)	5	(0.8)	
Other	4	(1.4)	5	(1.5)	0	(0)	9	(1.5)	9	(1.5)	

Table 57. Frequency* of Vibrio species other than V. cholerae, 2009-2013

* Frequencies reflect the number of isolates tested, not number of culture-confirmed cases. See Methods for varying sampling method by species.

Table 58. Minimum inhibitory concentrations (MICs) and resistance of isolates of Vibrio species other than V. cholerae to antimicrobial agents, 2013 (N=607)

liia	CLSI [†] Antimicrobial Class				of isolates			,				Perce	ntage	of all is	olates	with M	IC (ua/	mL)**							
Rank*	Antimicrobial Agent	Species (# of isolates)	%l [‡]	%R ⁵	[95% CI] ¹	0.002 0.0	14 0 007	0.015	0.03	0.06	0 125		0.5	1	2	4	8	16	32	64	128	256	512	1024	2048
	Aminoglycosides		701	7013	[33760]	0.002 0.0		0.015	0.05	0.00	0.125	0.25	0.5	<u> </u>	-	-	-	10	52		120	2.50	512	1024	2040
	Gentamicin	All (607)	0.2	0.0	[0.0 - 0.6]							0.5	2.1	27.2	67.2	2.8	0.2								
	Contamon	parahaemolyticus (317)	0.0	0.0	[0.0 - 1.2]							0.0	0.9	18.0	80.1	0.9									
		alginolyticus (122)	0.0	0.0	[0.0 - 3.0]							1.6	0.8	42.6	54.1	0.8									
		vulnificus (87)	1.1	0.0	[0.0 - 4.2]							1.0	1.1	2.3		13.8	1.1								
	Cephems			0.0	[0.0 4.2]									2.0	01.0	10.0									
	Cefotaxime	All (607)	0.7	0.3	[0.0 - 1.2]				5.4	8.4	43.7	36.7	2.8	2.0	0.7		0.2	0.2							
		parahaemolyticus (317)	0.0	0.0	[0.0 - 1.2]				0.6	6.0	38.8	52.7	0.9	0.9											
		alginolyticus (122)	0.0	0.0	[0.0 - 3.0]				0.8	0.8	63.1	33.6	1.6												
		vulnificus (87)	0.0	0.0	[0.0 - 4.2]				2.3	24.1	67.8	4.6	1.1												
	Ceftazidime	All (607)	0.2	0.0	[0.0 - 0.6]						0.7	12.9	37.9	46.1	2.0	0.3	0.2								
		parahaemolyticus (317)	0.0	0.0	[0.0 - 1.2]						0.6	10.4	22.7	63.1	2.5	0.6									
		alginolyticus (122)	0.0	0.0	[0.0 - 3.0]						0.8	34.4	48.4	16.4											
		vulnificus (87)	0.0	0.0	[0.0 - 4.2]								62.1	35.6	2.3										
	Penems																								
	Imipenem	All (607)	0.0	0.0	[0.0 - 0.6]						43.3	43.0	1.8	0.7	8.7	2.5									
ı.		parahaemolyticus (317)	0.0	0.0	[0.0 - 1.2]						60.6	38.8			0.6	-									
		alginolyticus (122)	0.0	0.0	[0.0 - 3.0]						49.2	49.2			1.6										
		vulnificus (87)	0.0	0.0	[0.0 - 4.2]						4.6	79.3	12.6		3.4										
	Penicillins																								
	Ampicillin	All (607)	12.0	46.0	[41.9 - 50.0]			_				0.2	0.2	5.3	8.9	10.0	17.5	12.0	16.5	5.4	2.3	0.8	20.9		
		parahaemolyticus (317)	19.9	40.7	[35.2 - 46.3]							0.3	0.3		0.9	11.4	26.5	19.9	27.1	6.9	2.2	0.6	3.8		
		alginolyticus (122)	1.6	95.9	[90.7 - 98.7]									0.8			1.6	1.6	4.1	4.9	3.3	0.8	82.8		
		vulnificus (87)	0.0	2.3	[0.3 - 8.1]									35.6	57.5	3.4	1.1		1.1				1.1		
	Quinolones																		u						
	Ciprofloxacin	All (607)	0.7	0.0	[0.0 - 0.6]	0.	7 2.8	4.8	2.8	13.5	43.2	30.0	1.6		0.7										
		parahaemolyticus (317)	0.9	0.0	[0.0 - 1.2]			0.6	0.3	0.9	62.5	34.4	0.3		0.9										
		alginolyticus (122)	0.0	0.0	[0.0 - 3.0]				4.1	6.6	36.1	51.6	1.6												
		vulnificus (87)	1.1	0.0	[0.0 - 4.2]		1.1	1.1	8.0	79.3	5.7	1.1	2.3		1.1										
	Nalidixic acid ^{††}	All (607)	N/A	N/A	N/A						0.2	0.5	3.8	23.1	60.0	11.7	0.7						0.2		
		parahaemolyticus (317)	N/A	N/A	N/A						0.3		0.9	15.8	70.3	12.6									
		alginolyticus (122)	N/A	N/A	N/A								3.3	23.8	54.9	15.6	2.5								
		vulnificus (87)	N/A	N/A	N/A								4.6	33.3	55.2	6.9									
	Folate pathway inhibitors																								
	Trimethoprim-sulfamethoxazole	All (607)	N/A	0.0	[0.0 - 0.6]	0.	2	0.3		5.1	54.0	39.4	0.8	0.2											
		parahaemolyticus (317)	N/A	0.0	[0.0 - 1.2]					0.3	29.7	69.4	0.6												
		alginolyticus (122)	N/A	0.0	[0.0 - 3.0]	0.	в	1.6		8.2	79.5	9.0	0.8												
		vulnificus (87)	N/A	0.0	[0.0 - 4.2]					17.2	80.5	1.1		1.1											
	Phenicols														-										
	Chloramphenicol ^{††}	All (607)	N/A	N/A	N/A							0.3	5.6	82.4	11.4		0.2		0.2						
н		parahaemolyticus (317)	N/A	N/A	N/A								0.6	83.3	16.1										
		alginolyticus (122)	N/A	N/A	N/A							1.6	6.6	86.1	4.9		0.8								
		vulnificus (87)	N/A	N/A	N/A								20.7	78.2	1.1										
	Tetracyclines																								
	Tetracycline	All (607)	0.0	0.0	[0.0 - 0.6]							0.5	6.6	68.0	23.7	1.2									
		parahaemolyticus (317)	0.0	0.0	[0.0 - 1.2]							0.3	0.9	71.9	26.8										
		alginolyticus (122)	0.0	0.0	[0.0 - 3.0]								5.7	77.0	17.2										
		vulnificus (87)	0.0	0.0	[0.0 - 4.2]							1.1	26.4	70.1	2.3										

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically Important; Rank II, Highly Important

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table A1): Rank I, Critically important; Rank II, Highly im

 Table 59. Percentage and number of isolates of Vibrio species other than V. cholerae resistant to ampicillin, 2009–2013

Species	2009	2010	2011	2012	2013
Vibrio parahaemolyticus	9.4%	8.4%	40.3%	14.1%	40.7%
VIDITO paramaentolyticus	14	15	81	52	129
Vibrio alginolyticus	82.6%	89.8%	95.1%	98.3%	95.9%
VIDITO alginolyticus	38	44	98	115	117
Vibrio vulnificus	2.0%	0%	4.8%	1.5%	2.3%
VIDITO VUITITICUS	1	0	3	1	2
Vibrio fluvialis	33.3%	12.5%	44.4%	21.4%	50.0%
	7	3	8	6	20
Vibrio mimicus	9.1%	0%	0%	9.1%	7.4%
VIDNO MIMICUS	1	0	0	1	2
Vibrio harvevi	N/A*	50.0%	100%	100%	80.0%
VIDITO Harveyr	0	1	4	3	4
Other	25.0%	0%	N/A*	22.2%	55.6%
Other	1	0	0	2	5
Total	22.1%	19.1%	48.7%	29.9%	46.0%
TOLAI	62	63	194	180	279

 * N/A indicates that no isolates were received and tested

Antimicrobial Resistance: 1996–2013

The following figures display resistance to selected agents and combinations of agents from 1996–2013 for nontyphoidal *Salmonella*, 1999–2013 for *Salmonella* ser. Typhi, 1997–2013 for *Campylobacter*, and 1999–2013 for *Shigella*.

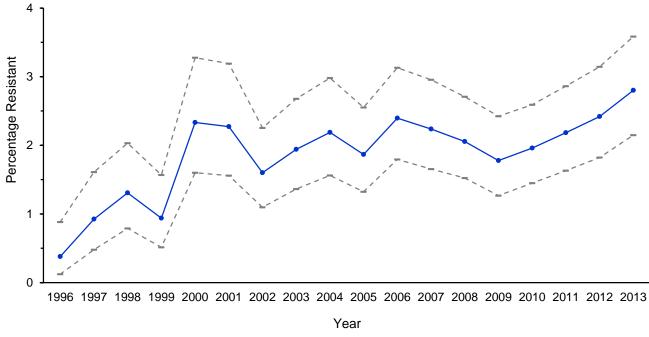
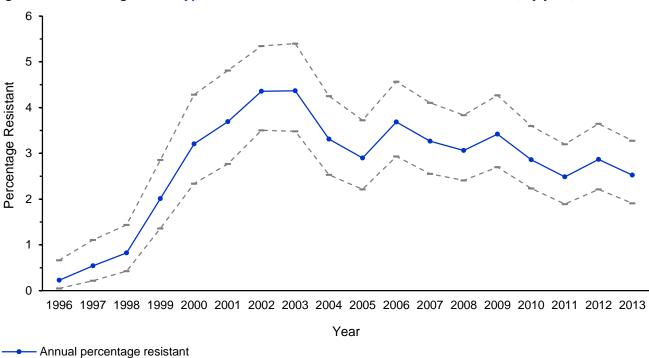
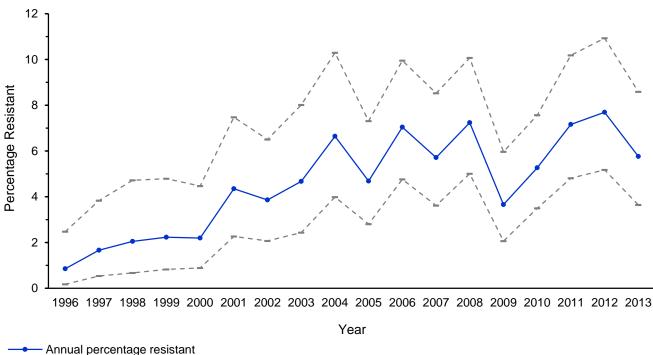



Figure 18. Percentage of nontyphoidal Salmonella isolates resistant to nalidixic acid, by year, 1996–2013


----- Annual percentage resistant

----- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

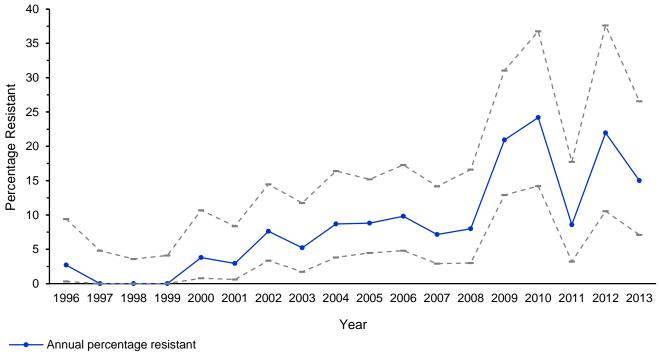


Figure 21. Percentage of Salmonella ser. Heidelberg isolates resistant to ceftriaxone, by year, 1996-2013

----- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Figure 22. Percentage of *Salmonella* ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2013

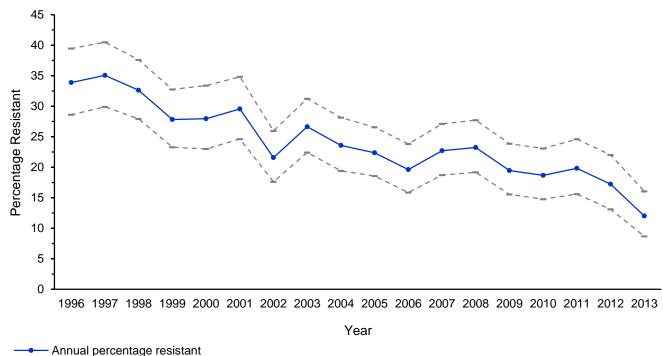
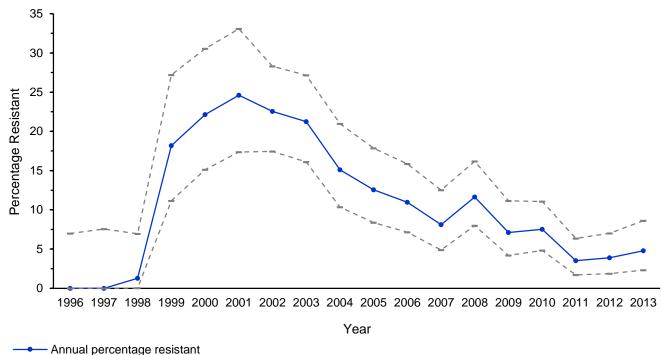
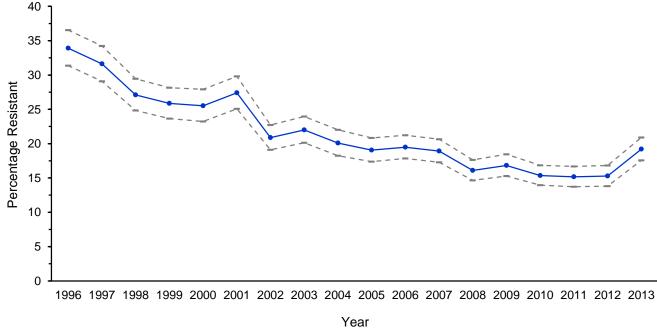




Figure 23. Percentage of *Salmonella* ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx), by year, 1996–2013

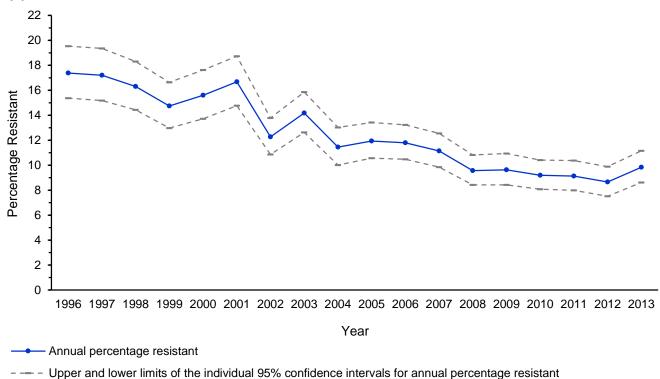

- --- - Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Figure 24. Percentage of nontyphoidal *Salmonella* isolates resistant to 1 or more antimicrobial classes, by year, 1996–2013

----- Annual percentage resistant

Figure 25. Percentage of nontyphoidal *Salmonella* isolates resistant to 3 or more antimicrobial classes, by year, 1996–2013

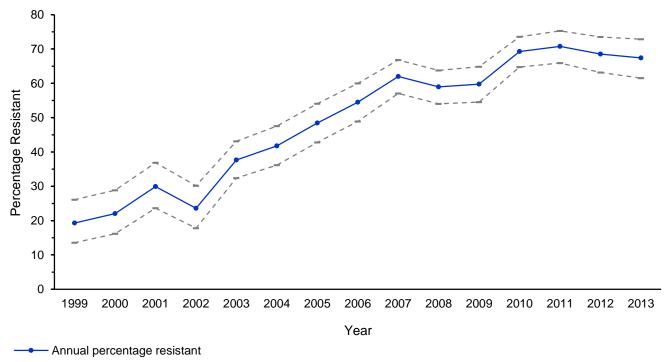


Figure 26. Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999–2013

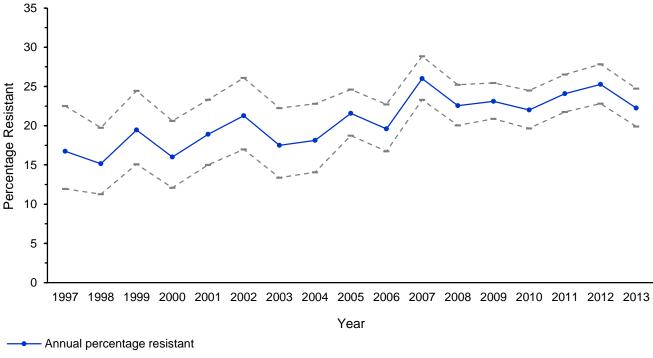


Figure 27. Percentage of Campylobacter jejuni isolates resistant to ciprofloxacin, by year, 1997–2013

- --- - Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

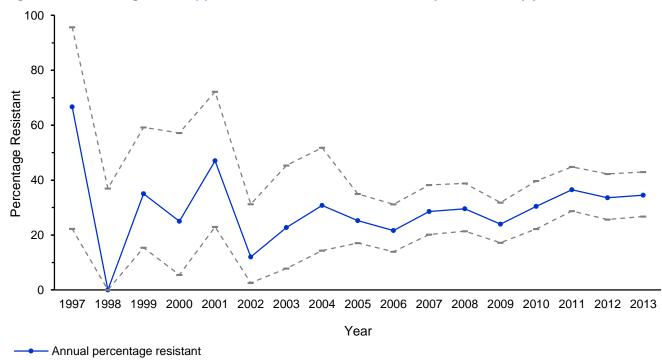


Figure 28. Percentage of Campylobacter coli isolates resistant to ciprofloxacin, by year, 1997–2013

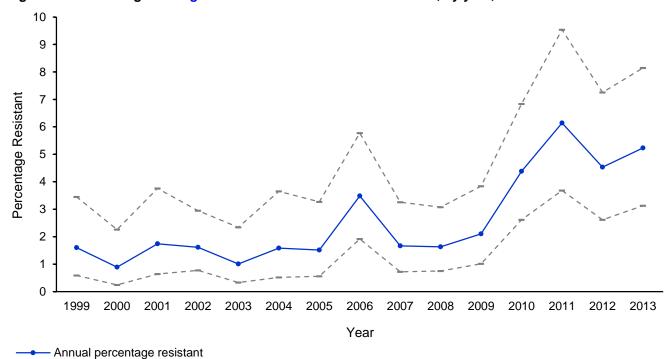


Figure 29. Percentage of Shigella isolates resistant to nalidixic acid, by year, 1999–2013

References

American Academy of Pediatrics. 2012 Shigella infections. In: L.K. Pickering (ed.), Red Book: 2012 Report of the Committee on Infectious Diseases, 29 ed. American Academy of Pediatrics, Elk Frove Village, IL.

CDC. <u>National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2012 human isolates</u> <u>final report</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2014.

CDC. <u>National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2005 human isolates</u> <u>final report</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2007.

CDC. <u>Incidence and trends of infection with pathogens transmitted commonly through food – Foodborne</u> <u>Diseases Active Surveillance Network, 10 U.S. sites, 1996-2013</u>. MMWR Morb Mortal Wkly Rep. 2014 Apr; 63(15):328-332.

CDC. National Surveillance Team: <u>Cholera and Other Vibrio Illness Surveillance (COVIS) Report for 2012 (Final Report)</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2014.

Clinical and Laboratory Standards Institute. <u>Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: approved guideline—Second Edition</u>. CLSI Document M45-A2. CLSI, Wayne, Pennsylvania, 2010.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-Fifth Informational Supplement. CLSI Document M100-S25. CLSI, Wayne, Pennsylvania, 2015.

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard---Ninth Edition. CLSI Document M07-A9. CLSI, Wayne, Pennsylvania, 2012.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved Standard-Fourth Edition. CLSI Document VET01-A4. CLSI, Wayne, Pennsylvania, 2013.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Second Informational Supplement. CLSI Document VET01-S2. CLSI, Wayne, Pennsylvania, 2013.

Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for *Salmonella enterica* serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 2003;37:75–81.

European Society of Clinical Microbiology and Infectious Diseases. The European Committee on Antimicrobial Susceptibility Testing - EUCAST 2015. Sweden. 2013. [Accessed 2015 Jan 16]. Available from: http://www.eucast.org/.

Fleiss JL, Levin B, Paik MC. <u>Statistical methods in for rates and proportions</u>. In: Shewart WA, Wilks SS, eds. <u>Wiley Series in Probability and Statistics</u>. Published Online; 2004:284–308.

Gonzalez, I, Grant KA, Richardson PT, Park SF, Collins MD. <u>Specific identification of the enteropathogens</u> <u>Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative</u> <u>virulence determinant</u>. Journal of Clinical Microbiology 1997;35:759–63.

Howie RL, Folster JP, Bowen A, Barzilay EJ, Whichard JM. Reduced azithromycin susceptibility in Shigella sonnei, United States. Microb Drug Resist. 2010 Dec;16(4):245-8.

Kleinbaum DG, Kupper LL, Nizam A, Muller KE. Applied Regression Analysis and Other Multivariable Methods, 4th ed. Belmont. CA: Duxbury; 2008.

Linton D, Lawson AJ, Owen RJ, Stanley J. <u>PCR detection, identification to species level, and fingerprinting of</u> <u>*Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. Journal of Clinical Microbiology 1997;35:2568–72.</u>

Linton D, Owen RJ, Stanley J. <u>Rapid Identification by PCR of the genus Campylobacter and of five</u> <u>Campylobacter species enteropathogenic for man and animals</u>. Research in Microbiology 1996;147:707–18. Pruckler J et al., Comparison of four real-time PCR methods for the identification of the genus Campylobacter and speciation of *C. jejuni* and *C. coli*. ASM 106th General meeting; Poster C282.

Sjölund-Karlsson M, Joyce K, Blickenstaff K. et al. Antimicrobial Susceptibility to Azithromycin among *Salmonella enterica* isolated in the United States. Antimicrob Agents Chemother. 2011 Jun 20.

U.S. Census Bureau. <u>Annual Estimates of the Population for the United States, Regions, States, and Puerto Rico:</u> <u>April 1, 2010 to July 1, 2013.</u> Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2013.

U.S. Census Bureau. <u>Census Regions and Divisions of the United States</u>. Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2013.

Vandamme P, Van Doorn LJ, al Rashid ST, Quint WG, van der Plas J, Chan VL, On SL. <u>*Campylobacter hyoilei*</u> <u>Alderton et al. 1995 and *Campylobacter coli* Veron and Chatelain 1973 are subjective synonyms</u>. Inter. J. Syst. Bacteriol 1997; 47:1055–60.

World Health Organization (WHO). <u>Critically Important Antimicrobials for Human Medicine. 3rd Revision.</u> Switzerland, 2011.

World Health Organization, Guidelines for the control of shigellosis, including epidemics due to *Shigella dysenteriae* type 1, 2005, World Health Organization: Geneva.

Select NARMS Publications in 2013

CDC. <u>Outbreak of Salmonella Heidelberg infections linked to a single poultry producer –13 states, 2012-2013.</u> MMWR Morb Mortal Wkly Rep. 2013 Jul; 62(27):553-6.

Ge B, Wang F, Sjolund-Karlsson M, McDermott PF. <u>Antimicrobial resistance in Campylobacter: Susceptibility</u> testing methods and resistance trends. J Microbiol Methods. 2013;95(1):57-67.

Glenn LM, Lindsey RL, Folster JP, Pecic G, Boerlin P, Gilmour MW, Harbottle H, Zhao S, McDermott PF, Fedorka-Cray PJ, Frye JG. <u>Antimicrobial resistance genes in multidrug-resistant Salmonella enterica isolated</u> <u>from animals, retail meats, and humans in the United States and Canada.</u> Microb Drug Resist. 2013 Jun;19(3):175-84.

Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, Turnsek MA, Guo Y, Wang S, Paxinos EE, Orata F, Gladney LM, Stroika S, Folster JP, Rowe L, Freeman MM, Knox N, Frace M, Boncy J, Graham M, Hammer BK, Boucher Y, Bashir A, Hanage WP, Van Domselaar G, Tarr CL. <u>Evolutionary dynamics of Vibrio cholerae O1</u> following a single-source introduction to Haiti. MBio. 2013;4(4): e00398-13.

Medalla F, Hoekstra RM, Whichard JM, Barzilay EJ, Chiller TM, Joyce K, Rickert R, Krueger K, Stuart A, Griffin PM. <u>Increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and decrease in multidrug</u> resistance among *Salmonella* strains, United States, 1996–2009. Foodborne Pathog Dis. 2013;10(4):302-309.

Sjölund-Karlsson M, Bowen A, Reporter R, Folster JP, Grass JE, Howie RL, Taylor J, Whichard JM. <u>Outbreak of infections caused by *Shigella sonnei* with reduced susceptibility to azithromycin in the United States</u>. Antimicrob Agents Chemother. 2013;57(3):1559-1560.

Sjölund-Karlsson M, Howie RL, Blickenstaff K, Boerlin P, Ball T, Chalmers G, Duval B, Haro J, Rickert R, Zhao S, Fedorka-Cray PJ, Whichard JM. <u>Occurrence of beta-lactamase genes among non-Typhi Salmonella enterica</u> isolated from humans, food animals, and retail meats in the United States and Canada. Microbial drug resistance. 2013;19(3):191-7.

Appendix A. WHO Categorization of Antimicrobial Agents

In 2011 the World Health Organization (WHO) convened a panel of experts to update a list of antimicrobial agents ranked according to their relative importance to human medicine (<u>WHO, 2011</u>). The participants categorized antimicrobial agents as either Critically Important, Highly Important, or Important based upon two criteria: (1) used as sole therapy or one of the few alternatives to treat serious human disease and (2) used to treat disease caused by either organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources Antimicrobial agents tested in NARMS have been included in the WHO categorization table.

- Antimicrobial agents are critically important if both criteria (1) and (2) are true.
- Antimicrobial agents are highly important if either criterion (1) or (2) is true.
- Antimicrobial agents are important if neither criterion is true.

Table A1. WHO categorization of antimicrobials of critical importance to human medicine

WHO Category Level	Importance	CLSI* Class	Antimicrobial Agent tested in NARMS				
			Amikacin				
			Gentamicin				
		Aminoglycosides	Kanamycin				
			Streptomycin				
		β-lactam / β-lactamase inhibitor	Amoxicillin-clavulanic acid				
		combinations	Piperacillin-tazobactam				
			Cefepime				
		Cephems	Cefotaxime				
1. A.	Critically important	Cephenis	Ceftazidime				
1	Critically important		Ceftriaxone				
		Ketolides	Telithromycin				
		Macrolides	Azithromycin				
		Maciondes	Erythromycin				
		Monobactams	Aztreonam				
		Penems	Imipenem				
		Penicillins	Ampicillin				
		Quinolones	Ciprofloxacin				
		Quilloidiles	Nalidixic acid				
		Conhomo	Cefoxitin				
		Cephems	Cephalothin				
		Foloto pothway inhibitoro	Sulfamethoxazole / Sulfisoxazole				
ll II	Highly important	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole				
		Lincosamides	Clindamycin				
		Phenicols	Chloramphenicol				
		Tetracyclines	Tetracycline				

* CLSI: Clinical and Laboratory Standards Institute

Appendix B. Criteria for Retesting of Isolates

Repeat testing of an isolate must be done when one or more of the following conditions occur:

- No growth on panel
- Growth in all wells
- Multiple skip patterns
- Apparent contamination in wells or isolate preparation
- Unlikely or discordant susceptibility results (Table B1)

If an isolate is retested, data for <u>all</u> antimicrobial agents should be replaced with the new test results. Categorical changes may require a third test (and may indicate a mixed culture).

Uncommon but possible test results (<u>Table B2</u>) may represent emerging resistance phenotypes. Retesting is encouraged.

Organism(s)	Resistance phenotype (MIC values in µg/mL)	Comments				
Salmonella / E. coli 0157 /	ceftiofur ^R (≥8) OR ceftriaxone ^R (≥4) AND ampicillin ^S (≤8)	The presence of an ESBL* or AmpC beta- lactamase should confer resistance to ampicillin				
Shigella	ceftiofur ^R (≥8) AND ceftriaxone ^S (≤1) OR ceftiofur ^S (≤2) AND ceftriaxone ^R (≥4)	Both antimicrobial agents are 3 rd generation β- lactams and should have equal susceptibility interpretations				
	ampicillin ^S (≤8) AND amoxicillin-clavulanic acid ^R (≥32/16)					
Salmonella and E. coli 0157	sulfisoxazole ^s (≤256) AND trimethoprim-sulfamethoxazole ^R (≥4/76)					
Salmonella	nalidixic acid ^s (≤16) AND ciprofloxacin ^R (≥1)	The stepwise selection of mutations in the QRDR [†] does not support this phenotype, although it may occur with plasmid-mediated mechanisms				
<i>E. coli</i> O157 and Shigella	nalidixic acid ^s (≤16) AND ciprofloxacin ^R (≥4)	The stepwise selection of mutations in the $QRDR^\dagger$ does not support this phenotype				
<i>Campylobacter</i> jejuni and coli	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥1)	In <i>Campylobacter</i> , one mutation is sufficient to confer resistance to both nalidixic acid and				
	nalidixic acid ^R (≥32) AND ciprofloxacin ^S (≤0.5)	ciprofloxacin				
Campylobacter jejuni	erythromycin ^s (≤4) AND azithromycin ^R (≥0.5)					
	erythromycin ^R (≥8) AND azithromycin ^S (≤0.25)	Erythromycin is class representative for 14- and				
Campylobacter coli	erythromycin ^S (≤8) AND azithromycin ^R (≥1)	15-membered macrolides (azithromycin, clarithromycin, roxithromycin, and dirithromycin)				
	erythromycin ^R (≥16) AND azithromycin ^S (≤0.5)					

* Extended-spectrum beta-lactamase

†Quinolone resistance-determining regions

Table B2. Uncommon resistance phenotypes for which retesting is encouraged

Organism(s)	Resistance phenotype (MIC values in µg/mL)
Salmonella /	Pan-resistance
E. coli 0157 /	Resistance to azithromycin (>16)
Shigella	ceftriaxone and/or ceftiofur MIC ≥2 AND
	ciprofloxacin MIC ≥0.125 and/or nalidixic acid MIC ≥32
Campylobacter	Pan-resistance
jejuni and coli	Resistance to gentamicin (≥4)
	Resistance to florfenicol (≥8)
Vibrio	Resistance to ciprofloxacin (>2)
	Resistance to tetracycline (>8)
	Resistance to trimethoprim-sulfamethoxazole (>2)