National Center for Emerging and Zoonotic Infectious Diseases

CDC ME/CFS SEC Call

"Exercise Testing in the MCAM Study" Dane B. Cook, PhD

May 13, 2021

3:00 PM ET

AGENDA

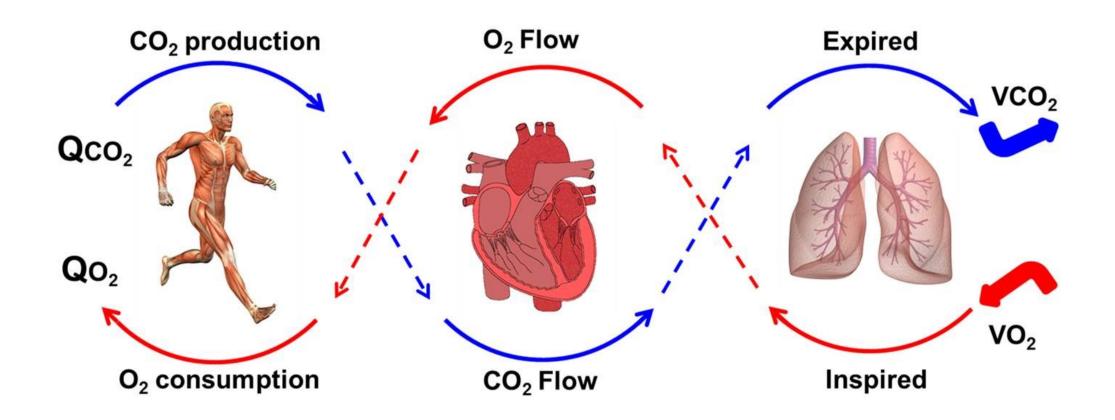
- Welcome—Christine Pearson
- CDC Program Overview—Dr. Beth Unger
- Guest Speaker—Dr. Dane B. Cook
- Questions and Answers

Federal Relay Event ID: 4780203 For closed captioning, please visit <u>https://www.captionedtext.com/client/event.aspx?EventID=4780203&C</u> <u>ustomerID=321</u>

The findings and conclusions in these presentations are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

National Center for Emerging and Zoonotic Infectious Diseases

Disclosure

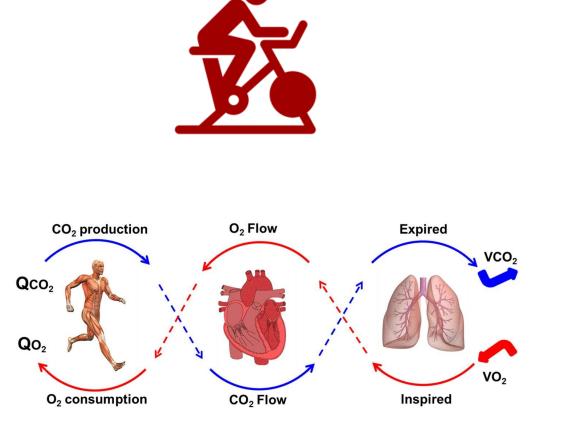

Dr. Dane Cook received funding from CDC for the analysis of the MCAM study.

Exercise Testing in the MCAM Study

Dane B. Cook, PhD University of Wisconsin-Madison

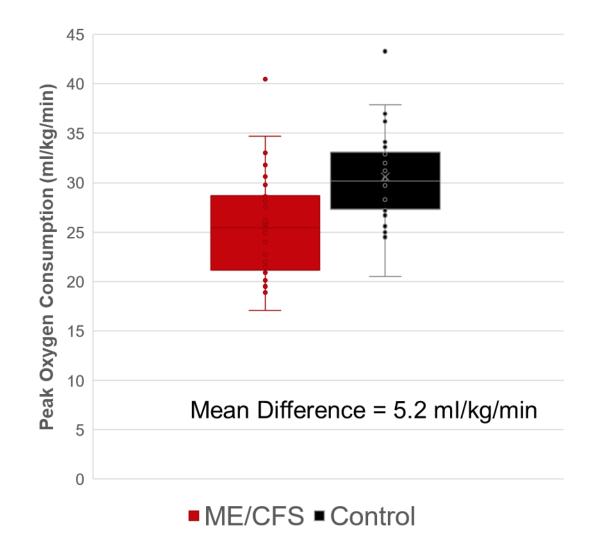
Rationale for Cardiopulmonary Exercise Testing (CPET)

Determine the Integrative response to physical effort


CPET Measures & Indications

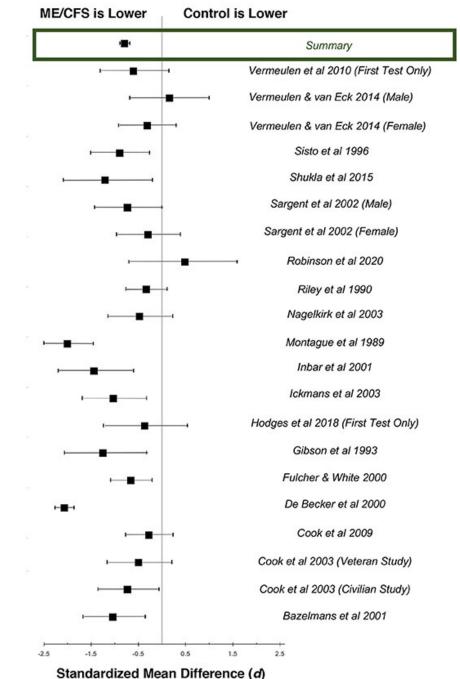
DIRECT MEASURES INDIRECT MEASURES		INDICATIONS/EVALUATION
Oxygen Consumption (VO ₂)	ŸE/ŸO ₂ & ŸE/ŸCO ₂	Exercise Tolerance
Carbon Doxide Production (VCO ₂)	Oxygen Pulse (VO ₂ /HR)	Heart and Lung Disease/Symptoms
Ventilation [VE: (Bf & T _v)]	ΫO ₂ /WR	Impairment/Disability
Heart Rate (HR)		Safety/Prescription for Rehabilitation
Work Rate (WR)		
Oxygen Saturation		

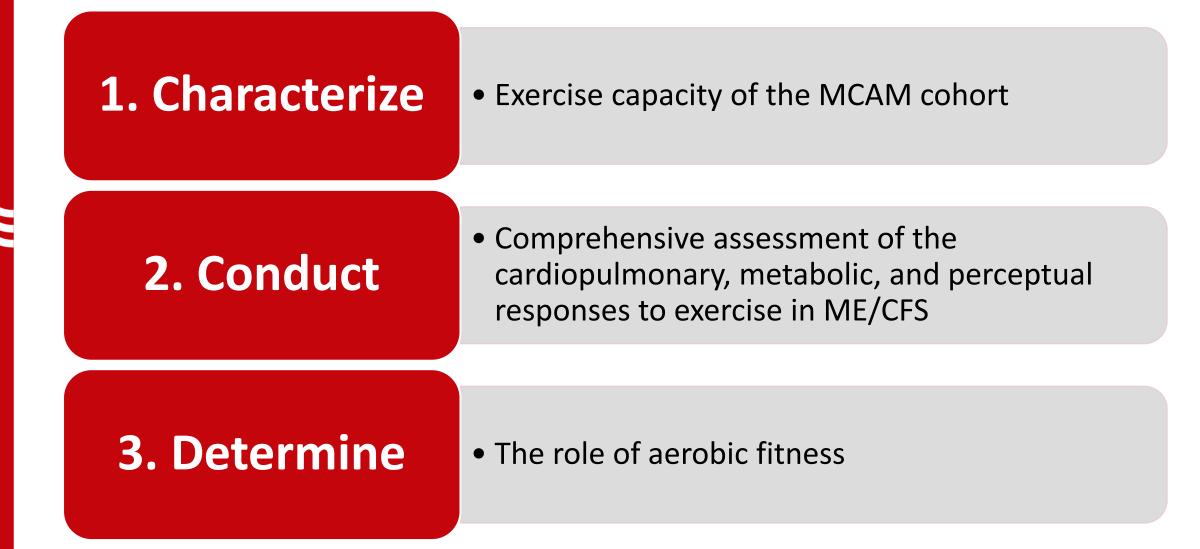
Exercise Testing in ME/CFS


Valuable method and clinical tool:

- Test cardiopulmonary system
- Determine exercise tolerance
- Guide exercise prescription
- Challenge physiological systems

Phenomenon or Epi-phenomenon


- Critical for interpretation
- Recent meta-analysis found clinically meaningful differences in peak oxygen capacity
- We know little beyond threshold and peak responses


Chronotropic incompetence

- Cardiac responses to exercise have been the focus of several studies
- Meta-analysis showed large effect size differences between ME/CFS and controls at peak exercise
 - *Effect size d* = 1.37
 - Controls = 94% age-predicted
 - ME/CFS = 82.2% age-predicted

Davenport et al., 2019. Chronotropic intolerance: an overlooked determinant of symptoms and activity limitation in myalgic encephalomyelitis/chronic fatigue syndrome?. Frontiers in Pediatrics, 7, p.82.

Purpose

Methods

Procedures

Participants

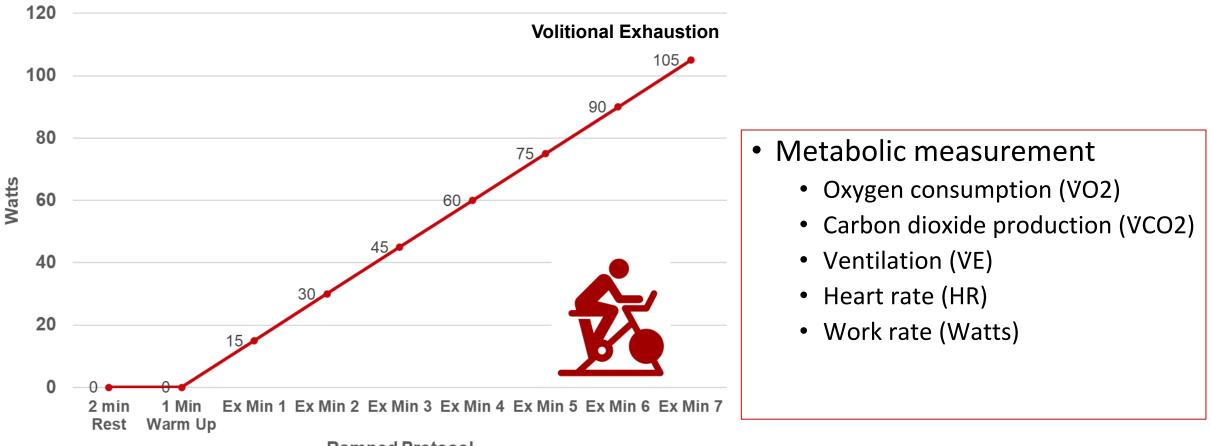
፝ዂ፟ዹ፝ዂ፟ ዹ፝ዂ፟ዹ፝ዂ፟ዹ፝

ME/CFS (n=179; 65% Female)

፝ኯ፟፟ቚ፟ኯ፟ ፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟

Controls (n=169; 68% Female)

20–24°C 40–60% relative humidity


No smoking 2 hrs No caffeine or food 4 hrs No exercise 24 hrs

<u>12-lead ECG</u> Exercise Safety Resting HR

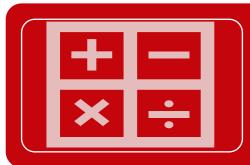
Exercise Testing (Ramped Cycle Ergometry)

Sample Max Test

Ramped Protocol

Metabolic Exercise Testing Analyses **CPET** Threshold Work Rate Efficiency Ventilation Capacity VE/VCO₂ VT V_T and f_R Watts VE/VO₂ $\Delta VO_2 / \Delta WR$ Peak VO₂ **OUES** VO₂/HR

Data Processing (Independent & blind to clinical status)



Protocol check

- Systems Calibrated
- Obvious data artifacts

Peak Criteria check

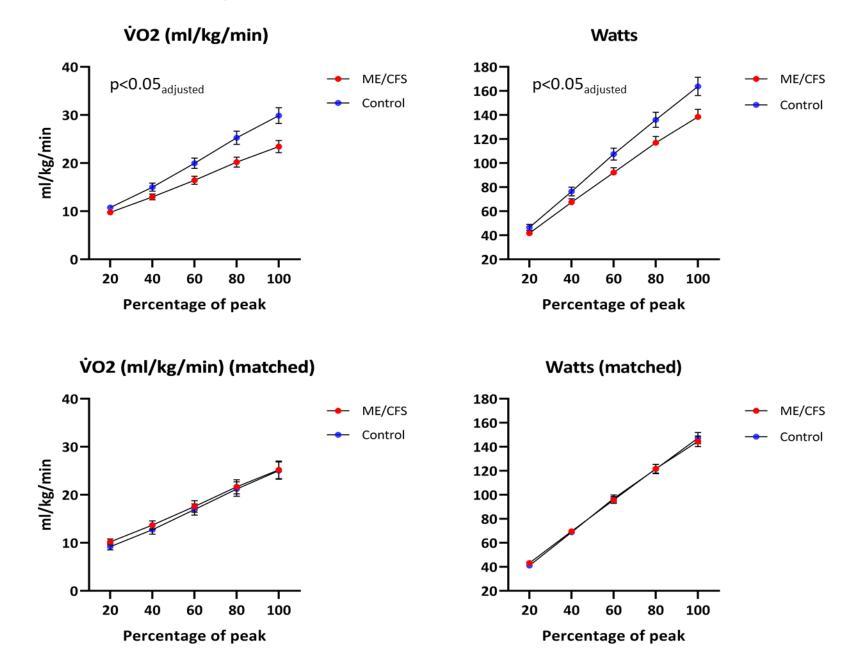
- RER ≥ 1.1
- Reaching ≥ 85% age-predicted peak HR
- RPE ≥ 17

Calculation of Relative Exercise Intensities (0-100%)

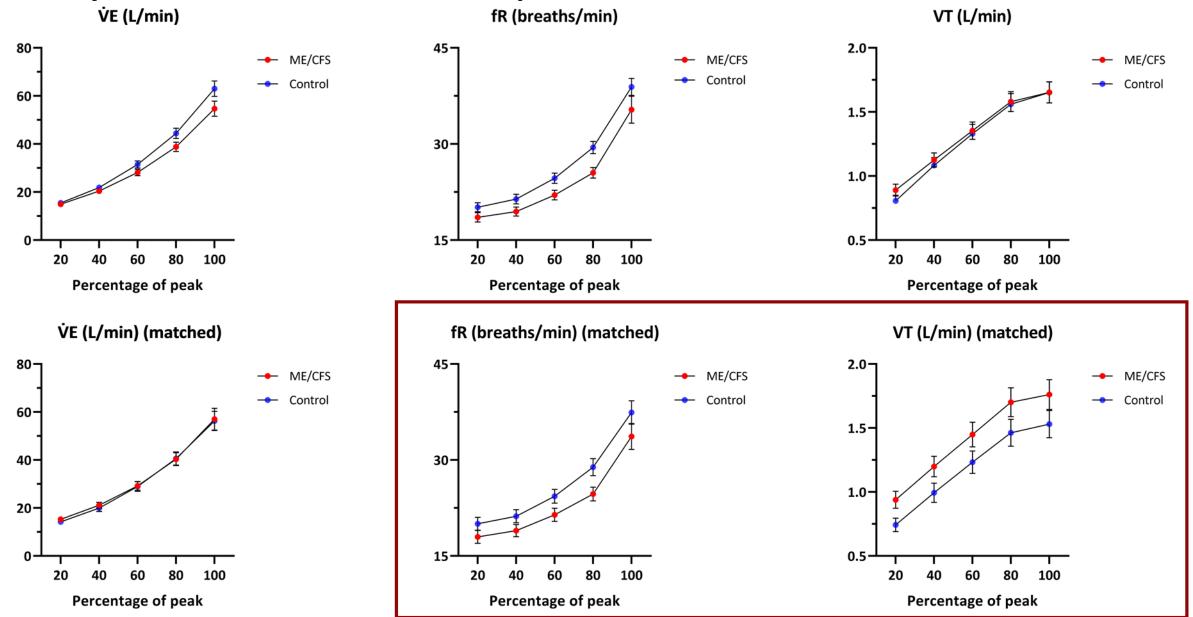
- 20-sec intervlas (backward from peak VO2 timepoint)
- Linear model to determine the relative percent of peak VO2 for each variable

Results

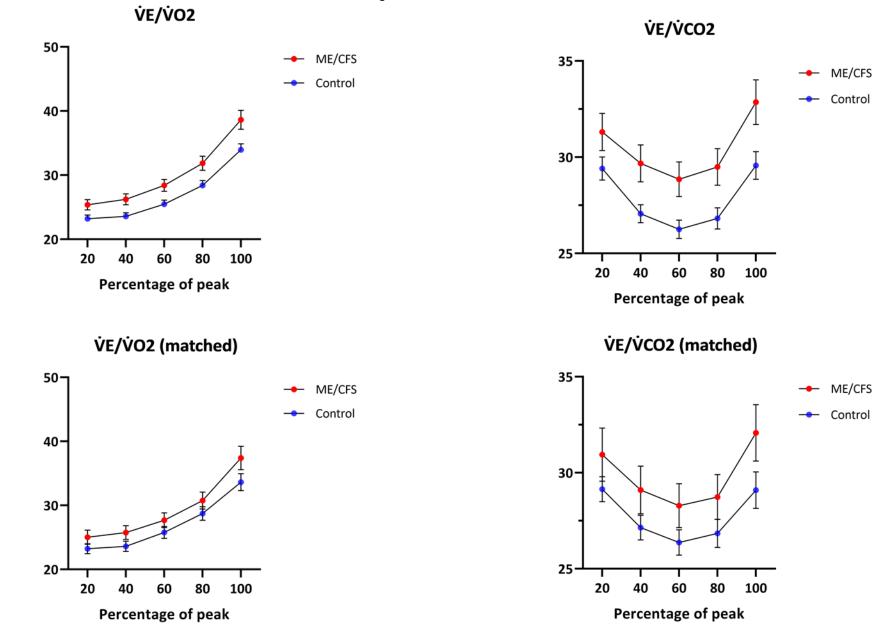
Entire Sample and Fitness-Matched Subset


Demographic Data

	Entire Sample			Fitness – Matched			
	ME/CFS	Controls	ES	ME/CFS	Controls	ES	
	(n=179)	(n=169)	(CI)	(n=99)	(n=99)	(CI)	
% Female	65	68	na	61	70	na	
Age (yrs)	49.4 (13.2)	42.5 (14.0)	0.51** (.29 – .72)	47.3 (13.2)	47.1 (12.7)	0.02 (-0.38 – 0.41)	
Height (m)	1.7	1.7	0.0	1.7	1.7	0.35	
	(0.1)	(0.09)	(-0.21 – 0.21)	(0.09)	(0.08)	(05 – 0.75)	
Weight (kgs)	78.5	73.0	0.32**	77.4	76.0	0.08	
	(18.7)	(16.0)	(0.10-0.53)	(16.5)	(16.6)	(31 – 0.48)	
BMI (kg/m²)	27.3	26.0	0.21**	26.7	27.2	09	
	(6.9)	(5.1)	(0.00-0.42)	(5.6)	(5.2)	(-0.49 – 0.30)	


Ventilatory and cardiac performance during exercise

Ventilatory &	Entire Sample			Fitness – Matched			
Cardiac	ME/CFS	Controls	ES	ME/CFS	Controls	ES	
Performance	(n=179)	(n=169)	(CI)	(n=99)	(n=99)	(CI)	
VE/VCO _{2nadir}	27.8	25.3	0.51**	27.1	25.4	0.39**	
	(5.9)	(3.1)	(0.29 – 0.72)	(5.4)	(3.1)	(0.10 – 0.67)	
OUES	1.87	2.16	-0.42**	1.98	1.91	0.09	
	(0.67)	(0.78)	(-0.63 – -0.21)	(0.67)	(0.74)	(-0.19 – 0.36)	
OUES _{BSA}	0.97	1.18	-0.61**	1.03	1.02	0.04	
	(0.30)	(0.39)	(-0.82 – -0.39)	(0.31)	(0.35)	(-0.24 – 0.32)	
% HRR _{adjusted}	83.5	89.8	-0.44**	83.7	88.3	-0.30**	
	(15.7)	(12.1)	(-0.66 – -0.23)	(14.7)	(13.6)	(-0.58 – -0.02)	
% Predicted	90.0	93.3	-0.39**	90.0	92.3	-0.22	
Max HR	(9.8)	(7.8)	(-0.60 – -0.18)	(9.1)	(8.7)	(-0.50 – 0.06)	


Dynamic Exercise Responses—Fitness

Dynamic Exercise Responses #1

Dynamic Exercise Responses #2

Discussion

Summary & Conclusions

Entire Sample

- \downarrow reduced oxygen uptake
- \downarrow cardiac performance
- Inefficient pulmonary ventilation (个 VE/VCO2 & VE/VO2)
- \uparrow perception of effort

Fitness-Matched Sample

- Inefficient pulmonary ventilation:
 - \uparrow VE/VCO2 & VE/VO2; \downarrow breathing frequency & \uparrow volume)
 - \uparrow perception of effort

Summary & Conclusions #2

Gas Exchange

- VE/VCO2 = poor perfusion
- VE/VO2 = poor extraction from skeletal

Unique breathing pattern

- Improve alveolar ventilation (make-up for dead-space)
- Respiratory muscle fatigue and subsequent metaboreflex (vasoconstriction of exercising muscle) – aka Robin Hood for the lungs

Summary & Conclusions #3

Little evidence for overt chronotropic incompetence

• Fitness matching appears critical

Future Directions

- Relationships between cardiopulmonary inefficiencies
 - Symptoms
 - Cognition
 - Sleep

Take Home Message

We observed clinically relevant indications of a compromised cardiopulmonary response in ME/CFS

• Inefficient exercise ventilation even when accounting for fitness

ME/CFS is not a disease of low aerobic fitness

- False narrative
 - Damaging to ME/CFS community & research
 - Understanding how the cardiopulmonary system interacts with the disease is important

Acknowledgements

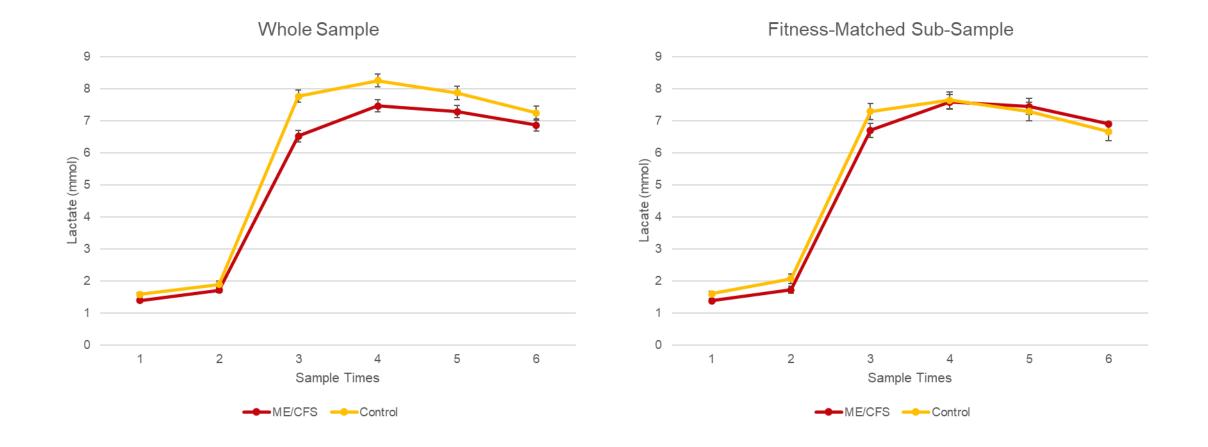
- Dane Cook, PhD
- Aaron Stegner, PhD
- Jake Lindheimer, PhD
- Nick Gretzon
- Jake Ninneman
- Neda Almassi
- Susan Schroeder
- Stephanie Van Riper, MS
- Mike Falvo, PhD

- MCAM Study Participants
- Pain and Fatigue Study Center, NY
- Center for Neuro-Immune Disorders, FL
- Open Medicine Institute (OMI) consortium:
 - Open Medicine Clinic, CA
 - Sierra Internal Medicine Associates, NV
 - Fatigue Consultation Clinic, UT
 - Hunter-Hopkins Center, NC
 - Richard Podell Clinic, NJ
- CDC Chronic Viral Diseases Branch, ME/CFS Program

National Center for Emerging and Zoonotic Infectious Diseases

Questions and Answers

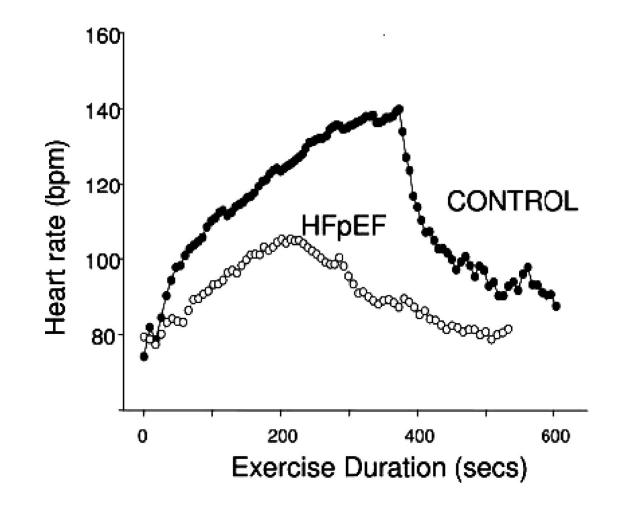
To ask a question within the Zoom webinar platform during the meeting, please:


- Click on the "Q&A" button.
- Type your question in the "Q&A" box.
- Submit your question.

If you have additional questions following the call, please email <u>MECFSSEC@cdc.gov</u>.

Extras

Dynamic Exercise Responses View Two



Chronotropic Incompetence Part One

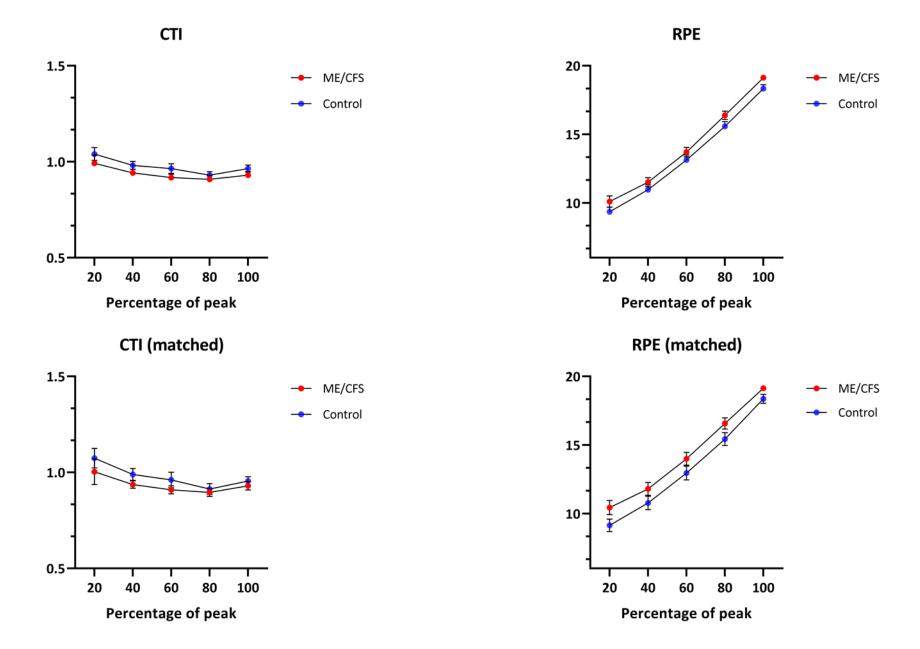
• HRR

- ME/CFS-33% did not meet 80% criteria
- Control—14%
- Peak HR
 - ME/CFS-21% did not meet 85% criteria
 - Controls—9%
- CTI
 - ME/CFS—ranged from 4-17% below slope of 0.8 for a given stage
 - Controls—1-13%
 - 100% for each group achieved a slope of > .8 at some point during exercise

Chronotropic Incompetence Part Two

- ≥ 85% of age-predicted maximal HR (APMHR)
- ≥ 80% of adjusted heart rate reserve (HRR/APMHR HR_{rest})
- Chronotropic index (CTI Wilkoff Model):
 - Based on estimated HR stages
 - measured HR_{stage} / estimated HR_{stage}
 - Ratios ≤ 0.80 are indicative of chronotropic incompetence

Brubaker and Kitzman, 2011-Chronotropic Incompetence Causes, Consequences, and Management. Contemporary Reviews in Cardiovascular Medicine


Statistical Analyses

- Normality
 - Skewness, kurtosis, Q-Q plots, and the Shapiro-Wilk test
 - Data were normalized using a two-step approach as described by Templeton¹
- Levene's Test
 - Equal variances between groups
- Hedge's *d* effect size with 95% confidence intervals²:
 - Subject characteristics, measures at the VT, OUES, and peak exercise
- Linear Mixed Effects models with repeated measures
 - VE, fR, V_T, VE/VO2, VE/VCO2, HR, O₂ pulse, CTI & RPE
 - α = 0.05; Holm-Bonferroni Sequential Method
- Fitness-matched subset
 - ± 1 ml/kg/min peak VO₂
 - ± 5 years age

¹Templeton GF. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Communications of the Association for Information Systems. 2011;28(1):4.;

²Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. Journal of experimental psychology: General. 2012;141(1):2.

Dynamic Exercise Responses View Three

Demographic	Entire Sample			Fitness –Matched			
& Baseline	ME/CFS (n=179)	Controls (n=169)	ES	ME/CFS	Controls (n=99)	ES	
			(CI)	(n=99)		(CI)	
% Female	65	68	na	61	70	na	
Age (yrs)	49.4	42.5	0.51**	47.3 (13.2)	47.1 (12.7)	0.02	
	(13.2)	(14.0)	(.29 – .72)			(-0.38 – 0.41)	
Height (m)	1.7	1.7	0.0	1.7	1.7	0.35	
	(0.1)	(0.09)	(-0.21 – 0.21)	(0.09)	(0.08)	(05 – 0.75)	
Weight (kgs)	78.5	73.0	0.32**	77.4	76.0	0.08	
	(18.7)	(16.0)	(0.10 – 0.53)	(16.5)	(16.6)	(31 – 0.48)	
BMI (kg/m ²)	27.3	26.0	0.21**	26.7	27.2	09	
	(6.9)	(5.1)	(0.00 – 0.42)	(5.6)	(5.2)	(-0.49 – 0.30)	
HR (bpm)	67.9	62.2	0.53**	68.7	63.5	0.47**	
	(11.6)	(10.0)	(0.31 – 0.74)	(11.3)	(10.6)	(.19 – 0.76)	
SBP (mmHg)	121.8	121.5	0.02	120.5	120.5	0.00	
	(14.0)	(15.8)	(-0.19 – 0.23)	(13.5)	(15.8)	(-0.21 – 0.21)	
DBP (mmHg)	79.6	76.7	0.28**	79.7	76.6	0.32**	
	(9.8)	(10.6)	(0.07 – 0.50)	(9.5)	(9.9)	(0.04 – 0.60)	
Physical	40.7	59.0	-3.10**	41.3	57.6	-2.58**	
Function***	(5.3)	(6.5)	(-3.422.78)	(5.7)	(6.9)	(-2.96 – -2.20)	
IPAQ Total	46.1	106.7	-0.66**	44.8	109.7	-0.67**	
(min/week)	(79.5)	(103.7)	(-0.89 – -0.43)	(78.0)	(113.0)	(-0.98 – -0.36)	
IPAQ Recreation	8.9	26.2	-0.63**	9.6	20.9	-0.40**	
(min/week)	(23.9)	(30.8)	(-0.860.40)	(27.1)	(28.9)	(-0.710.10)	
IPAQ Sitting Total	60.1	54.9	0.15	58.6	55.4	0.10	
(hrs/week)	(25.3)	(42.1)	(-0.08 – 0.38)	24.3	(40.0)	(-0.20 - 0.40)	

Ventilatory Threshold	Entire Sample			Fitness – Matched			
	ME/CFS	Controls (n=169)	ES	ME/CFS	Controls (n=99)	ES	
	(n=179)		(CI)	(n=99)		(CI)	
%peak VO ₂	52.9	51.2	0.15	52.8	51.3	0.12	
	(0.1)	(0.1)	(06 – 0.36)	(0.1)	(0.09)	(-0.16 – 0.40)	
۷̈O ₂ (ml)	947.1	1089.3	-0.31**	997.5	944.4	0.13	
	(396.7)	(503.6)	(-0.53 – -0.10)	(407.4)	(395.7)	(-0.15 – 0.41)	
VCO ₂ (ml)	801.6	937.2	-0.33**	849.2	816.8	0.09	
	(351.8)	(462.8)	(-0.54 – -0.12)	(360.9)	(352.1)	(-0.19 – 0.37)	
RER	0.84	0.86	-0.25	0.85	0.87	-0.23	
	(0.07)	(0.08)	(-0.46 – 0.04)	(0.07)	(0.08)	(-0.51 – 0.05)	
VE (L/min)	18.8	22.3	-0.42**	19.8	20.1	-0.03	
	(7.1)	(9.5)	(-0.63 – -0.20)	(7.4)	(8.2)	(-0.31 – 0.25)	
fR (breaths/min)	19.9	22.1	-0.45**	19.5	21.6	-0.41**	
	(5.2)	(4.8)	(-0.66 – -0.23)	(4.9)	(5.1)	(-0.69 – -0.13)	
V _T (L/min)	1.02	1.03	02	1.10	0.96	0.34**	
	(0.41)	(0.40)	(-0.24 – 0.19)	(0.46)	(0.35)	(0.06 – 0.62)	
ΫΕ/ΫΟ ₂	25.5	23.5	0.47**	25.0	23.6	0.33**	
	(5.2)	(3.2)	(0.25 – 0.68)	(4.9)	(3.7)	(0.04 – 0.61)	
ΫΕ/ΫCO ₂	30.4	27.7	0.52**	29.7	27.7	0.41**	
	(6.5)	(3.4)	(0.30 – 0.73)	(6.2)	(3.4)	(0.13 – 0.69)	
HR (beats/min)	103.2	108.7	-0.29**	105.2	107.2	-0.10	
	(17.6)	(19.8)	(-0.51 – -0.08)	(17.2)	(20.0)	(-0.38 – 0.17)	
O ₂ pulse (VO ₂ /HR)	9.2	10.0	-0.22	9.5	9.0	0.14	
	(3.5)	(4.1)	(-0.43 – -0.01)	(3.6)	(4.0)	(-0.14 - 0.41)	
СТІ	0.92	0.97	-0.36**	0.94	0.98	-0.25	
	(0.13)	(0.15)	(-0.57 – -0.14)	(0.13)	(0.17)	(-0.67 – -0.11)	
Watts	56.0	73.0	-0.54**	59.2	64.1	-0.17	
	(27.7)	(35.2)	(-0.75 – -0.32	(29.9)	(28.1)	(-0.45 – 0.11)	

Peak		Entire Sample		Fitness –Matched			
Reponses	ME/CFS (n=179)	Controls (n=169)	ES (CI)	ME/CFS (n=99)	Controls (n=99)	ES (CI)	
Peak VO2 (ml/kg/min)	23.4	29.9	-0.66**	25.2	25.1	0.02	
	(8.6)	(10.9)	(-0.88 – -0.45)	(9.2)	(9.0)	(-0.19 – 0.23)	
VO ₂ (ml)	1817.3	2121.2	-0.41**	1915.6	1865.5	0.07	
	(704.9)	(761.8)	(-0.63 – -0.20)	(720.3)	(694.9)	(-0.14 – 0.28)	
VCO ₂ (ml)	2111.0	2423.9	-0.40**	2210.6	2159.2	0.07	
	(766.2)	(787.9)	(-0.62 – -0.19)	(782.7)	(731.0)	(-0.14 – 0.28)	
RER	1.18	1.16	0.21	1.17	1.17	0.00	
	(0.1)	(0.08)	(0.00 – 0.42)	(0.09)	(0.09)	(-0.21 – 0.21)	
VE (L/min)	54.7	63.0	-0.39**	57.0	56.3	0.03	
	(21.3)	(21.2)	(-0.60 – -0.18)	(22.8)	(20.2)	(-0.18 – 0.24)	
fr (breaths/min)	34.7	38.9	-0.43**	33.7	37.5	-0.39**	
	(10.5)	(8.8)	(-0.65 – -0.22)	(10.1)	(9.2)	(-0.60 – -0.18)	
V⊤ (L/min)	1.79	1.74	0.08	1.92	1.63	0.48**	
	(0.59)	(0.59)	(-0.13 – 0.30)	(0.64)	(0.57)	(0.19 – 0.76)	
VE/VO ₂	38.5	34.0	0.57**	37.4	33.6	0.47**	
	(9.5)	(6.2)	(0.35 – 0.78)	(9.1)	(6.7)	(0.26 – 0.68)	
VE/VCO2	32.8	29.6	0.51**	32.1	29.1	0.48**	
	(7.4)	4.7	(0.30 – 0.72)	(7.4)	(4.8)	(0.27 – 0.69)	
HR (beats/min)	156.0	166.5	-0.55**	157.7	161.7	0.22	
	(20.2)	(17.6)	(-0.77 – -0.34)	(19.1)	(17.7)	(-0.50 – 0.06)	
O2 pulse (VO2/HR)	11.6	12.8	-0.26**	12.1	11.5	0.15	
	(4.2)	(4.6)	(-0.47 – -0.05)	(4.2)	(4.4)	(-0.06 – 0.36)	
СТІ	0.93	0.96	-0.25**	0.93	0.95	-0.18	
	(0.12)	(0.12)	(-0.460.04)	(0.11)	(0.11)	(-0.46 – 0.11)	
Watts	138.6	163.3	-0.53**	144.7	146.4	-0.04	
	(42.3)	(50.1)	(-0.75 – -0.32)	(44.6)	(47.3)	(-0.25 – 0.17)	
RPE (6-20)	19.2	18.2	0.63**	19.2	18.1	0.64**	
	(1.0)	(2.0)	(0.42 – 0.85)	(1.0)	(2.2)	(0.43 – 0.86)	