Introduction

This is a summary of data reported within the specified data-reporting period for Quarter 1, 2018, for the detection of X-ALD by analysis of the biomarkers 24:0-Lysophosphatidylcholine (24LPC) and 26:0-Lysophosphatidylcholine (26LPC) in dried blood spots (DBS). It is distributed to all participants, state laboratory directors, and program colleagues by request. The tables within this report provide certification profiles for the distributed specimens, statistical analysis of participant quantitative data, and frequency of clinical assessments. An evaluation of your laboratory’s data is attached to this summary.

Certification of PT Specimens

This panel of DBS specimens was prepared from Type A+ human whole blood, which was adjusted to a hematocrit of 50 ± 1% and subsequently enriched with the biomarkers 24LPC and 26LPC. Expected values for each were determined by LC-MS/MS in units of µmol/L blood. Clinical assessments were based on the NSQAP cut-offs of 0.47 µmol/L blood (24LPC) and 0.39 µmol/L blood (26LPC). Table 1 shows the NSQAP expected values and clinical assessments for each specimen.

Table 1. Specimen Certification – 24LPC and 26LPC (µmol/L blood)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Expected 24LPC</th>
<th>24LPC Assessment Code*</th>
<th>Expected 26LPC</th>
<th>26LPC Assessment Code*</th>
</tr>
</thead>
<tbody>
<tr>
<td>11821</td>
<td>1.07</td>
<td>2</td>
<td>1.04</td>
<td>2</td>
</tr>
<tr>
<td>11822</td>
<td>0.07</td>
<td>1</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>11823</td>
<td>0.07</td>
<td>1</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>11824</td>
<td>0.07</td>
<td>1</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>11825</td>
<td>0.07</td>
<td>1</td>
<td>0.04</td>
<td>1</td>
</tr>
</tbody>
</table>

*1 = Within Normal Limits
2 = Outside Normal Limits
Distribution of PT Specimens

On January 9, 2018 a PT panel of five unknown DBS specimens was distributed to 11 domestic laboratories and 13 foreign laboratories.

Participant Results

♦ Quantitative Data

We processed data from 16 participants, with one participant submitting two method assessments. Laboratories were asked to report concentrations of 24LPC and 26LPC results in µmol/L blood. In order to expedite the issuance of this report, data that are not submitted in the requested units are not accepted. The conversion factor from µg/mL to µmol/L blood is provided on the XALDPT Data Report Form. Participants may contact us for guidance on conversion factors if needed.

Overall statistics from MS/MS methods were combined so as to not identify an individual laboratory. We also did not include data that were outside the 99% confidence interval. The statistical summary analysis for all methods is provided in Table 2.

Six participants reported using Flow Injection Analysis (FIA) MS/MS non-kit, ten reported using LC-MS/MS and one reported a two-tier assessment scheme utilizing both FIA— and LC-MS/MS. There were four submissions of quantitative results for 24LPC, two without reporting a clinical assessment. There were also 17 submissions of quantitative results and clinical assessments for 26LPC. One participant reported cutoffs for 24LPC using multivariate analysis by a post-analytic tool and 2nd tier testing when indicated. Table 2b shows the reported cutoffs for 24LPC and 26LPC by reported method.

Table 2. Screening Results for 24LPC and 26LPC — All MS/MS methods

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Specimen</th>
<th>N</th>
<th>Mean (µmol/L)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>24LPC</td>
<td>11821</td>
<td>16</td>
<td>1.17</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>11822</td>
<td>16</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>11823</td>
<td>16</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>11824</td>
<td>16</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>11825</td>
<td>16</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>26LPC</td>
<td>11821</td>
<td>17</td>
<td>1.23</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>11822</td>
<td>17</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>11823</td>
<td>17</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>11824</td>
<td>17</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>11825</td>
<td>17</td>
<td>0.11</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Clinical Assessments

Laboratories were asked to report qualitative results as “Within Normal Limits” or “Outside Normal Limits”. Qualitative assessments may differ because of specific assessment practices. The frequency distribution of participants’ clinical assessments is shown in Table 3.

Table 2b. Reported Cutoffs by Reported Method (µmol/L)

<table>
<thead>
<tr>
<th></th>
<th>53– LC-MS/MS</th>
<th>67 FIA-MS/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24LPC 26LPC</td>
<td>24LPC 26LPC</td>
</tr>
<tr>
<td>N</td>
<td>8 11</td>
<td>2 4</td>
</tr>
<tr>
<td>Mean</td>
<td>0.39 0.34</td>
<td>0.48 0.49</td>
</tr>
<tr>
<td>Max</td>
<td>0.55 0.75</td>
<td>0.62 0.65</td>
</tr>
<tr>
<td>Min</td>
<td>0.16 0.10</td>
<td>0.33 0.40</td>
</tr>
<tr>
<td>Median</td>
<td>0.44 0.30</td>
<td>0.48 0.45</td>
</tr>
<tr>
<td>Mode</td>
<td>0.50 0.40</td>
<td>NA NA</td>
</tr>
</tbody>
</table>

Table 3. Frequency Distribution of reported Clinical Assessments

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Specimen</th>
<th>Within Normal Limits</th>
<th>Outside Normal Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>24LPC</td>
<td>11821</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>11822</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11823</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11824</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11825</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>26LPC*</td>
<td>11821</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>11822</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11823</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11824</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11825</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

*One participant submitted clinical assessments for two methods (First- and Second-tier).

Evaluations

No False-negatives and no False-positives were reported for 24LPC or 26LPC.
Future Shipments

The Newborn Screening Quality Assurance Program will ship next quarter’s XALDPT specimens on July 10, 2018.

Direct Inquiries

If you have any comments or questions about XALDPT MS/MS analysis, contact Dr. Christopher A. Haynes at 770-488-7019 or by e-mail at cph7@cdc.gov

For data reporting questions, contact Irene Williams at nsqapdmt@cdc.gov

The content of this report may also be located on our website at: http://www.cdc.gov/labstandards/nsqap_reports.html

The identity of participants in any NSQAP proficiency testing scheme are considered confidential and known only to persons involved in the operation of the NSQAP proficiency testing scheme. Confidentiality may be waived by the participant upon written request only.

This program is co-sponsored by the Centers for Disease Control and Prevention (CDC) and The Association of Public Health Laboratories (APHL)

NEWBORN SCREENING QUALITY ASSURANCE PROGRAM

Direct inquiries to:

Centers for Disease Control and Prevention
4770 Buford Highway NE, MS/F19
Atlanta, GA 30341-3724
Phone: 404-488-7945 Email: cph7@cdc.gov

Editors

Chris Haynes
Irene Williams
This **NEWBORN SCREENING QUALITY ASSURANCE PROGRAM** report is an internal publication distributed to program participants and selected program colleagues. The laboratory quality assurance program is a project cosponsored by the Centers for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories.

CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC) ATLANTA, GA 30341

Acting Director
Anne Schuchat, M.D. (RADM, USPHS)

Director
National Center for Environmental Health
Patrick Breysse, Ph.D.

Director
Division of Laboratory Sciences
James L. Pirkle, M.D., Ph.D.

Chief
Newborn Screening and Molecular Biology Branch
Carla Cuthbert, Ph.D.

Contributors:
- Carter Asef
- John Bernstein
- Quan Bui
- Preston Carter
- Paul Dantonio
- Sharon Flores
- Elizabeth M. Hall
- Christopher Haynes, Ph.D.
- Brandon Kenwood
- Francis Lee, Ph.D.
- Lixia Li, Ph.D.
- Timothy Lim, Ph.D.
- Daniel Mandel, Ph.D.
- Joanne Mei, Ph.D.
- Kristina Mercer, Ph.D.
- Gyliañn Peña
- Konstantinos Petritis, Ph.D.
- Austin Pickens, Ph.D.
- Robert Vogt, Ph.D.
- Irene Williams
- Sophia Winchester
- Golriz Yazdanpanah
- Sherri Zobel

Production:
- Sarah Brown
- Kimberly Coulter
- Kizzy Stewart

ASSOCIATION OF PUBLIC HEALTH LABORATORIES SILVER SPRING, MD 20910

President
Ewa King, PhD

Chairman, Newborn Screening and Genetics in Public Health Committee
Michele Caggana, Sc.D., FACMG

Chairman, Newborn Screening Quality Assurance Quality Control Subcommittee
Patricia R. Hunt, B.A. and Joseph Orsini, Ph.D.

Chairman, Newborn Screening Molecular Subcommittee
Rachel Lee, Ph.D.

INQUIRIES TO:
Irene Williams, Editor • Centers for Disease Control and Prevention (CDC) • Newborn Screening Quality Assurance Program
Mailstop F-24 • 4770 Buford Highway, N.E. • Atlanta, GA 30341-3724
Phone (770) 488-4582 • NSQAPDMDT@cdc.gov
E-mail: IWilliams1@cdc.gov