

2022 ANNUAL SUMMARY REPORT

Newborn Screening Quality Assurance Program

Centers for Disease Control and Prevention National Center for Environmental Health

Newborn Screening Quality Assurance Program 2022 Annual Summary Report, Volume 40

U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Center for Environmental Health **Division of Laboratory Sciences**

Contents

Acronym Glossary	ii
Introduction	1
William Harry Hannon—A Life Well Lived	2
About NSQAP	4
Countries Participating in NSQAP	5
Filter Paper	7
Proficiency Testing	8
Proficiency Testing Analytes	8
Proficiency Testing Materials and Methods	9
Proficiency Testing Data Handling	9
Proficiency Testing Errors and Challenges	
Proficiency Testing Cutoff Values	15
Proficiency Testing Bias Plots	
Appendix for Accessibility Descriptions	
References	45
Acknowledgments	46

Acronym Glossary

Notation	Description	Notation	Description
170HP	17 α-hydroxyprogesterone	HORM	hormone + total galactose
A2LA	American Association for Laboratory Accreditation	IEC	International Electrotechnical Commission
ALD	X-linked adrenoleukodystrophy	IRT	immunoreactive trypsinogen
AP	Astoria Pacific	IS	Interscientifica
BIOT	biotinidase	ISO	International Organization for Standardization
BMSL	Biochemical Mass Spectrometry Laboratory	Labsys	Labsystems
CAH	second-tier congenital adrenal hyperplasia	LC	liquid chromatography
CDC	Centers for Disease Control and Prevention	LSD	lysosomal storage disorder
CFDNA	cystic fibrosis DNA	MAN	manual
Chromsys	Chromsystems	MAP	Molecular Assessment Program
CLSI	Clinical Laboratory Standards Institute	MQIP	Molecular Quality Improvement Program
Color	colormetric	MS/MS	tandem mass spectrometry
CRE	creatine	MSMS1	tandem MS 1
DBS	dried blood spot	NBS	Newborn Screening
DER	derivatized tandem mass spectrometry method	NDER	non-derivatized tandem mass spectrometry method
EBV	Epstein-Barr virus	NSQAP	Newborn Screening Quality Assurance Program
ELISA	enzyme linked immunosorbent assay	PE	PerkinElmer
ENZ	enzymatic	PT	proficiency testing
EV	expected value	QA	quality assurance
FDA	Food and Drug Administration	QC	quality control
FEIA	fluorescence enzyme immunoassay	RBC	red blood cells
FLUOR	floremetric	RUSP	Recommended Uniform Screening Panel
G6PD	glucose-6-phosphate dehydrogenase	SMA	Spinal Muscular Atrophy
GALT	galactose-1-phosphate uridyltransferase	T4	thyroxine
GAMT	guanidinoacetate methyltransferase deficiency	TGAL	total galactose
GUAC	guanidinoacetic acid	тохо	anti-Toxoplasma Antibody
Hb	sickle cell and other hemoglobinopathies	TREC	T-cell receptor excision circle
HIV	anti-human immunodeficiency virus-1 Antibody	TSH	thyroid stimulating hormone

Newborn screening is one of the most successful preventive health programs in the United States.

Introduction

Newborn screening is one of the most successful preventive health programs in the United States. Healthcare professionals collect dried blood spot (DBS) specimens from more than 98% of all U.S. newborns shortly after birth. Newborn screening laboratories analyze the DBS for certain genetic, metabolic, and endocrine disorders. The Newborn Screening Quality Assurance Program (NSQAP) at the Centers for Disease Control and Prevention (CDC) helps with these testing processes.

NSQAP produces certified DBS materials for proficiency testing (PT) and quality control (QC) analysis, works to improve the quality and scope of laboratory services, and provides consultation to laboratories. Every day, stateoperated and private newborn screening laboratories process thousands of DBS specimens. NSQAP helps newborn screening laboratories ensure that testing accurately detects disorders, does not delay diagnoses, minimizes false-positive reports, and sustains high-quality performance.

CDC's Newborn Screening and Molecular Biology Branch (NSMBB) is accredited by the American Association for Laboratory Accreditation (A2LA) for the ISO/IEC 17043. Accreditation is renewed every four years after a thorough review of NSMBB's quality management system for the ability to develop and administer specific PT protocols. A2LA's Scope of Accreditation covers most biochemical PT analytes. The accreditation does not include testing for glucose-6-phosphate dehydrogenase (G6PD) and NSQAP's disease specific PT programs. Consult <u>A2LA</u> <u>Certificate#4190.01</u> for a complete list of the accredited NSMBB PT programs.

William Harry Hannon—A Life Well Lived

Reprinted with permission from authors (Bradford L. Therrell, Robert F. Vogt, and Joanne V. Mei), with revisions.

Photo provided by family friend.

Dr. William Harry Hannon (Harry), Buford, Georgia found eternal peace on Friday, 6 May 2022, at Northeast Georgia Medical Center in Braselton, Georgia, USA.

Born 9 June 1941, in Covington, Georgia, USA, Hannon lived an outstanding life that included many significant and lasting contributions to the advancement in public health laboratory science. Hannon graduated from Tucker High School in 1959, received his BS in chemistry from Georgia State University in 1965, and his PhD in biochemistry from the University of Tennessee in 1972. He completed his formal education in 1974 with post- doctoral training at the Oak Ridge National Laboratories where he used novel methods that gave rise to the field of proteomics. His areas of expertise included immunochemistry, DBS technologies, newborn screening (NBS) for metabolic disorders, and laboratory quality assurance systems.

In 2009, Hannon retired from the CDC with 41 years of federal service, having spent more than 25 years as the chief of what is now known as the Newborn Screening and Molecular Biology Branch at CDC. In retirement, Hannon enjoyed spending time with his children and grandchildren. He continued his work in the field of public health, NBS, intiating, expanding, and improving NBS worldwide.

It would be difficult to overstate the impact of Hannon's work on public health newborn screening (NBS). He authored or co-authored more than 250 scientific publications and served on at least 30 national and international committees addressing various newborn laboratory issues. Hannon was careful not to overstep his knowledge or experience in answering requests for help and often included others with more relevant experiences as co-authors or co- committee members when addressing such requests. Examples of his inclusionary efforts include such items as

- guideline booklets prepared for the World Health Organization defining procedures useful in developing countries for implementing screening for phenylketonuria (1990) and congenital hypothyroidism (1991),
- 14 book chapters on topics such as laboratory methods for detecting congenital hypothyroidism (1993) and congenital hypothyroidism (2000), and
 - an overview of the history and applications of dried-blood samples (2014).

Of particular importance were improvements in harmonizing and standardizing NBS methods. Chief among his accomplishments was his response to a request from Dr. Robert Guthrie in early 1979, to create a national NBS QC program at CDC. Under Hannon's direction, CDC's NSQAP became an integral part of the NBS systems in the United States and globally. By providing proficiency testing, training, reference materials, and consultative services, NSQAP serves as a center of expertise for all state NBS laboratories and approximately 670 NBS laboratories throughout the United States and 87 other countries. These activities have included working with commercial kit manufacturers and professional organizations with similar interests.

In 1981, in collaboration with the Texas Newborn Screening Laboratory, Hannon helped in founding the first U.S. National NBS Symposium (today, the Association of Public Health Laboratories APHL-sponsored Newborn Screening and Genetic Testing Symposium). Because he was interested in international quality assurance (QA) issues in NBS, he attended the first international NBS QA meeting in Japan in 1987. The International Society for Neonatal Screening (ISNS) was organized at this meeting. Over the following years, Hannon would become an active ISNS member serving on the ISNS International QA Committee, the ISNS Council (1999–2002), as ISNS Vice-President (2002–2009), and as a member of the Editorial Committee of the journal Screening (the ISNS journal at the time). He received the ISNS-Robert Guthrie Award in 1999 in "Worldwide recognition of outstanding contributions to newborn screening" and was elected as an ISNS Honorary Member in 2009. Additionally, in 1987, the U.S. Health Resources and Services Administration organized a National NBS Review Team to review and improve U.S. NBS programs (34 reviews completed). He was also active as a proposal reviewer for the CDC Foundation's NBS Translational Research Initiative.

Hannon had an outstanding 41-year career at CDC that included receipt of more than 35 special recognition and service awards. He was awarded CDC's highest honor for scientific excellence, the Charles C. Shepard Science Award in 1992 and again in 2005. In 2006, he was awarded the CDC Sigma Xi's Walter Dowdle Award for "Achievements in Public Health Laboratory Science" in 2008, the APHL presented him with their Lifetime Achievement Award for "Leadership in the field of public health laboratory science and influencing public health policy on a national and global level." Additionally, the APHL created a global NBS award, The Harry Hannon Laboratory Quality Improvement Award, to be presented at each U.S. national NBS meeting. Harry was also involved with parent support activities serving as a board member of several such groups. In April 2009, he received the Jeffrey Modell Foundation's Dream Makers Award as a "Pioneer in Newborn Screening" for contributions to the early detection of severe combined immunodeficiency disorders (SCIDs) by NBS.

His committee work with the Clinical Laboratory Standards Institute (CLSI) was instrumental in setting CLSI standards and guidelines for national and international health laboratory practice. Hannon chaired the working groups on the first seven approved editions of the only "standard" specifically targeted at NBS, *NBS 01: Blood Collection on Filter Paper for Newborn Screening.* Hannon's vision for laboratory quality in NBS seeded the development of 13 CLSI standards and guidelines that have proven to be invaluable for NBS professionals worldwide. In 2008, CLSI awarded Harry its *Russell J.* *Eilers Award* (CLSI's highest award) for outstanding contributions in developing clinical laboratory standards. His contributions to NBS and public health will not soon be forgotten, and his accomplishments will stand for many years in testimony of a life well lived!

Harry was preceded in death by his parents James Henry and Jeanette Bentley Hannon of Covington, Georgia. He is survived by his daughter, Terri Fain; son, John Hannon; brother and sister-in-law, James H. (Jimmy) and Lynn Hannon, Jr.; sisters and brothers-in-law, Sandra and Gerald Yates, and Margaret and Mike Burgess; sister, Starr Strickland; grandchildren, Spencer Cape, Zachary Thomas, Shelby Opperman, Joseph Hannon, Austin Fain, and Katherine Fain; and three great-grandchildren. He was preceded in death by his beloved wife, Barbara Cheryl Hannon (Cherry).

Acknowledgments: The authors graciously acknowledge this opportunity to recognize the superb career of Dr. Hannon and our individual opportunities for participation in his accomplishments. Bradford L. Therrell was a trusted friend and colleague whose career in state government both paralleled and complemented that of Dr. Hannon. Robert F. Vogt and Joanne V Mei were longtime friends and colleagues at the CDC who supported and assisted his work.

Disclaimer: The views expressed here do not necessarily reflect the official policies of the Department of Health and Human Services nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

Source: Int. J. Neonatal Screen. 2022, 8(2), 37; https://doi.org/10.3390/ijns8020037

About NSQAP

For more than 40 years, NSQAP and its cosponsor, the Association of Public Health Laboratories, have researched the development of quality assurance materials for newborn DBS screening tests and have assisted laboratories with DBS-related testing issues. NSQAP primarily supports U.S. newborn screening laboratories; however, private and international laboratories can enroll in the program. Participation is voluntary. NSQAP provides quality assurance services for the core (primary) and secondary conditions listed in the U.S. Recommended Uniform Screening Panel (RUSP) [1].

NSQAP continues to grow each year. In 2022, 680 newborn screening laboratories in 86 countries participated in the program (Figure 1). Of these laboratories, 489 participated in PT (Table 1) and 363 in QC (Table 2). NSQAP distributed DBS materials for 78 newborn screening analytes to the participating laboratories (Tables 1 and 2).

The NSQAP Laboratory provides quality assurance materials for the thyroxine (T4), thyroid stimulating hormone (TSH), 17 α-hydroxyprogesterone (17OHP), immunoreactive trypsinogen (IRT), sickle cell and other hemoglobinopathies (Hb), anti-human immunodeficiency virus-1 antibody (HIV), anti-Toxoplasma antibody (TOXO), and the second-tier congenital adrenal hyperplasia (CAH) programs.

NSQAP works with the Biochemical Mass Spectrometry Laboratory (BMSL) and the Molecular Quality Improvement Program (MQIP) to produce and distribute more specialized DBS materials. BMSL and MQIP are part of the Newborn Screening and Molecular Biology Branch.

BMSL offers tandem mass spectrometry (MS/ MS) quality assurance, education, and research opportunities for newborn screening. It also oversees the amino acids, acylcarnitines, X-linked adrenoleukodystrophy (ALD), biotinidase (BIOT), total galactose (TGAL), galactose-1-phosphate uridyltransferase (GALT), G6PD, lysosomal storage disorder (LSD), and filter paper evaluation programs. BMSL provides second-tier QC programs for maple syrup urine disease/phenylketonuria and homocystinuria. BMSL conducted a successful guanidinoacetate methyltransferase deficiency (GAMT) pilot event adding guanidinoacetic acid, creatine, and GAMT ratio to the amino acid PT program.

MQIP oversees the cystic fibrosis DNA (CFDNA), T-cell receptor excision circle (TREC), and spinal muscular atrophy (SMA) PT programs and provides molecular assay technical assistance to NSQAP participants. MQIP offers the Molecular Assessment Program (MAP) to U.S. newborn screening laboratories. A MAP visit is used to assess components of molecular testing. MAP includes guidance for laboratoryspecific needs and assists with evaluating ongoing and future molecular testing procedures. For more information, contact Christopher Greene at CGreene@cdc.gov. Figure 1. Countries participating in the Newborn Screening Quality Assurance Program.

NSQAP Participants (N=680 labs)

Argentina Armenia Australia Austria Bahrain Belgium Belgium Bolivia Brazil Bulgaria Canada Chile China Colombia Costa Rica Croatia Cuba Czech Republic Denmark Ecuador Egypt El Salvador Estonia Finland France Georgia Germany Greece Guatemala Honduras Hungary

Iceland India Indonesia Iraq Ireland Israel Italy Japan Jordan Kazakhstan Kuwait Latvia Lebanon Lithuania Luxembourg Macedonia Malaysia Malta Mexico Mongolia Morocco Netherlands New Zealand Nigeria Norway Oman Pakistan Panama Paraguay Peru

Philippines Poland Portugal Qatar Romania Saudi Arabia Singapore Slovak Republic Slovenia Slovenia South Africa South Korea Spain Sri Lanka Sweden Switzerland Taiwan Tanzania Thailand Tunisia Turkey Ukraine United Arab Emirates United Kingdom United States Uruguay Vietnam

Table 1. Number of participants reporting proficiency
 testing (PT) analytes. (N = 489)

Note: A "2" after an analyte indicates second tier

321

309

399

185

327

291

310

239

310

95

149

291

T4

CIT

LEU

MET

PHE

SUAC

TYR

VAL

CO(L)

C2(L)

C3DC

C3DC+C40H

C3

C4

Total PT Participation Total PT Participation Analyte Analyte in 2022 in 2022 170HP C40H 285 86 68 **C**5 317 TSH 342 C5:1 280 177 C5DC 300 TGal BIOT 219 C50H 271 GALT 148 **C**6 294 IRT 237 **C**8 323 G6PD 95 **C10** 311 71 C10:1 270 **CFDNA** HGB 80 C10:2 193 17 **C1**4 293 Anti-HIV-79 SMA C14:1 299 11 TOXO **C16** 301 TREC 101 C160H 301 ARG 268 **C1**8 285 296 C18:1 272

C180H

4AD2

11D2

21D2

GALC

GAA

IDUA

24-LPC

26-LPC

CORT2

170HP2

249

27

26

26

18

16

13

29

29

26

53

Table 2. Number of participants reporting quality

control (QC) analytes (N = 363)

Note: A "2" after an analyte indicates second tier

Analyte	Total QC participation in 2022	Analyte	Total QC participati in 2022
170HP	202	C 16	216
T4	56	C160H	216
TSH	271	C18	210
TGAL	128	C180H	181
GALT	82	170HP2	32
IRT	169	4AD2	30
ALA	189	CORT2	31
ARG	197	11D2	24
CIT	211	21D2	25
GLY	157	GALC	25
LEU	222	GAA	51
MET	216	IDUA	55
ORN	160	GLA	37
PHE	286	ABG	33
SUAC	126	ASM	24
TYR	226	C20-LPC	30
VAL	211	C22-LPC	31
C0	226	C24-LPC	41
C2	214	C26-LPC	56
C3	222	GUAC	13
C3DC	71	ALE2	20
C3DC+C4OH	124	CRE2	9
C4	210	CRN2	6
С40Н	66	ILE2	21
C5	223	LEU2	23
C5:1	197	PHE2	23
C5DC	209	TYR2	20
С50Н	190	VAL2	24
C6	211	MMA2	33
C8	229	EMA2	12
C10	226	MCA2	23
C12	204	MA2	1
C14	216	tHCY2	34
C14·1	206		

Filter Paper

NSQAP evaluates absorption characteristics of all filter paper lots approved by the U.S. Food and Drug Administration (FDA) as a newborn screening collection device [2]. Filter paper manufacturers must establish their own equivalent evaluation. NSQAP's evaluations are an impartial and voluntary service offered as a function of our QC program. The evaluations do not constitute endorsement of any product and are not required for lot release by the manufacturer.

For there to be meaningful comparability in analyte concentration results among NBS specimens, the collection matrix must be highly uniform—both among and within production lots. NSQAP uses an isotopic method developed at CDC to evaluate and compare filter paper lots. Briefly, the method consists of adding radioisotope-labeled T4 to a pool of blood with washed, intact red cells and uses this radioactive blood to create DBS. To calculate serum absorption volumes, radiation emitted by 3.2 mm disks punched from the DBS is compared to the radioactivity in a known volume of liquid blood from the same pool. The latest version of CLSI Standard NBS01-Ed7, "Blood Collection on Filter Paper for Newborn Screening Programs", describes the isotopic method for filter paper evaluation.

Revvity (previously PerkinElmer) and Cytiva Life Sciences are FDA-approved, newborn screening filter paper manufacturers. They provided NSQAP with statistically valid sample sets of unprinted filter paper from each production lot. Tables 3 and 4 show serum absorption volumes from the 10 most recent lots from both manufacturers. Using blood with washed intact red blood cells (RBCs), the published, standardized acceptable serum absorption volume per 3.2 mm disk (mean value and 95% confidence interval) is $1.44 \pm 0.20 \mu$ L. [2] The testing results in Tables 3 and 4 are informational only. Each mean value is within the acceptable range for the matrix used. All lots are homogenous (i.e., the measured within-spot, within-sheet, and among-sheet variances were within acceptable limits). CDC used 903™ filter paper lots W181, W191, and W201 to produce PT specimens distributed in 2022.

Filter Paper Lot No.	Date of Evaluation Month/Year	Serum Volume (µL) per 3.2 mm Punch Average (StDev)	Absorption Time (sec) Average (StDev)	Spot Diameter (mm) Average (StDev)
115541	Aug 2022	1.40 (0.07)	13.9 (2.2)	15.8 (0.6)
114691	Aug 2021	1.46 (0.09)	12.3 (2.0)	15.8 (0.7)
114068	Aug 2020	1.44 (0.09)	13.2 (3.8)	16.1 (0.4)
112911	June 2019	1.49 (0.16)	8.4 (1.1)	15.8 (0.7)
112147	Sept 2018	1.49 (0.11)	7.9 (0.9)	15.8 (0.6)
111064	July 2017	1.47 (0.20)	8.2 (1.0)	15.7 (0.5)
110092	July 2016	1.45 (0.09)	9.0 (1.2)	16.0 (0.7)
105617	May 2016	1.46 (0.08)	8.3 (1.8)	15.8 (0.5)
105616	Jan 2016	1.56 (0.11)	10.6 (2.0)	15.6 (0.5)
105178	Aug 2015	1.46 (0.09)	7.8 (1.1)	15.9 (0.6)

Table 3. Revvity 226 specimen collection filter paper absorption characteristics by lot number—intact red cells

Table 4. Cytiva Life Sciences 903[™] specimen collection filter paper absorption characteristics by lot number—intact red cells

Filter Paper Lot No.	Date of Evaluation Month/Year	Serum Volume (µL) per 3.2 mm Punch Average (StDev)	Absorption Time (sec) Average (StDev)	Spot Diameter (mm) Average (StDev)
W221	Nov 2022	1.40 (0.10)	10.8 (2.3)	16.0 (0.8)
W211	Jan 2022	1.48 (0.12)	18.3 (2.8)	16.0 (0.6)
W201	Aug 2020	1.40 (0.09)	14.6 (2.8)	16.1 (0.6)
W191	Oct 2019	1.43 (0.18)	12.2 (2.2)	16.0 (0.7)
W181	Sept 2018	1.42 (0.12)	16.1 (3.3)	16.2 (0.6)
W171	April 2017	1.39 (0.10)	19.7 (4.7)	16.0 (0.7)
W162	Jan 2017	1.43 (0.08)	12.9 (2.7)	16.0 (0.7)
W161	May 2016	1.41 (0.08)	14.8 (3.7)	16.2 (0.8)
W152	Aug 2015	1.37 (0.09)	15.8 (2.4)	16.2 (0.6)
W151	Aug 2015	1.39 (0.08)	15.2 (2.6)	16.2 (0.8)

Proficiency Testing

In 2023, NSQAP conducted three PT events. PT panels consisted of five blind-coded specimens. Instructions for analysis and reporting data can be found online in the NSQAP Participant Portal at https://nbs.

Proficiency Testing Analytes

AMINO ACIDS

- arginine (Arg)
- citrulline (Cit)
- leucine (Leu)
- methionine (Met)
- phenylalanine (Phe)
- succinylacetone (SUAC)
- tyrosine (Tyr)
- valine (Val)

ACYLCARNITINES

- Iow free carnitine (CO(L))
- Iow acetylcarnitine (C2(L))
- propionylcarnitine (C3)
- malonylcarnitine [derivatized] (C3DC)
- C3DC+C4OH [non-derivatized]
- butyrylcarnitine (C4)
- hydroxybutyrylcarnitine [derivatized] (C4OH)
- isovalerylcarnitine (C5)

- tiglylcarnitine (C5:1)
- glutarylcarnitine (C5DC) hydroxyisovalerylcarnitine
- (C50H) hexanoylcarnitine (C6)
- octanoylcarnitine (C8)
- decanoylcarnitine (C10)
- decenoylcarnitine (C10:1) decadiency/carnitine (C10:2)
- myristoylcarnitine (C14)
- tetradecenoylcarnitine (C14:1)
- palmitoylcarnitine (C16)
- hydroxypalmitoylcarnitine
- (C160H)
- stearoylcarnitine (C18)
- oleoylcarnitine (C18:1) hydroxystearoylcarnitine
- (C180H)

OTHER ANALYTES

of each laboratory's performance.

- 17 a-hydroxyprogesterone (170HP)
- 24:0-lysophosphatidylcholine (C24-LPC)
- 26:0-lysophosphatidylcholine (C26-LPC)
- acid α-glucosidase (GAA)
- a-L-iduronidase (IDUA)
- anti-HIV-1 antibodies (HIV)
- (TOXO)
- cystic fibrosis DNA variant detection (CFDNA)
- galactoceramidase (GALC)
- galactose-1-phosphate uridyltransferase (GALT)
- glucose-6-phosphate dehydrogenase (G6PD)

immunoreactive trypsinogen (IRT)

dynamics365portals.us/. Specimen sets were packaged in

a zip-closed, metalized plastic bag with desiccant. These

specimens provided an independent, external assessment

- second-tier 11-deoxycortisol (11D2)
- second-tier 17 a-hydroxyprogesterone (170HP2)
- second-tier 21-deoxycortisol (21D2)
- second-tier 4-androstenedione (4AD2)
- second-tier cortisol (CORT2)
- sickle cell disease and other hemoglobinopathies (Hb)
- Spinal Muscular Atrophy (SMA)
- T-cell receptor excision circle (TREC)
- thyroid-stimulating hormone (TSH)
- thyroxine (T4)
- total galactose (TGAL)

- anti-toxoplasma antibodies
- biotinidase (BIOT)

Proficiency Testing Materials and Methods

For each PT event, NSQAP certified that specimens were homogenous, accurate, stable, and suitable for newborn screening assays. PT materials were produced from unaltered donor blood, enriched or depleted single blood units, or pooled blood units. Most PT specimens were prepared from whole blood of 50% hematocrit.

Purified analytes were used for PT enrichments. Enrichments were based on weight and made with commercially available or custom-synthesized analytes. Small variances in enrichments and recoveries might have resulted from impurities in the purchased (synthesized) materials and endogenous analyte concentrations.

CO(L) and C2(L) PT specimens were produced by washing fresh RBCs at least six times then combining with charcoal-stripped serum.

CFDNA PT specimens were prepared using blood from anonymous cystic fibrosis patients, CFDNA carriers, or individuals unaffected by cystic fibrosis without hematocrit adjustment.

Congenital hypothyroid PT specimens were enriched with measured amounts of T4 and TSH after reconstituting washed RBCs with purchased T4-depleted charcoal-stripped serum.

BIOT deficient PT specimens were made using heat-treated serum combined with compatible donor RBCs.

TGal PT specimens were enriched with galactose and galactose-1-phosphate, allowing measurement of free galactose (galactose alone) and total galactose (free galactose plus galactose-1-phosphate).

GALT and G6PD deficient PT specimens were made using a 50/50 saline/serum solution combined with compatible washed RBCs. Mixing was followed by heat treatment.

Hb PT specimens were made from hematocrit-adjusted individual umbilical cord blood units.

HIV PT DBS specimens were prepared by mixing purchased donor serum reactive for HIV-1 antibodies and washed RBCs to achieve the desired reactivity.

IRT PT specimens were made from washed, hematocrit-adjusted blood that was treated with a protease inhibitor then enriched with commercially purchased IRT.

LSD PT specimens were prepared from human blood, including cord blood from unaffected persons and leukodepleted adult blood restored with lymphoblast cell lines derived from patients with LSD.

SMA PT specimens were prepared from human blood, including leukocyte-depleted blood, and leukocyte-depleted blood containing Epstein-Barr virus (EBV) transduced lymphocytes from anonymous SMA patients, carriers, or unaffected individuals.

TREC PT specimens were prepared from human blood, including leukocyte-depleted blood, cord blood from unaffected persons, and leukocyte-depleted blood containing EBV transduced lymphocytes that do not contain TRECs.

TOXO PT specimens were prepared by combining human serum samples collected from patients exposed to *Toxoplasma gondii* with compatible washed RBCs.

Proficiency Testing Data Handling

Participants submitted PT data and clinical assessments using the <u>NSQAP Participant Portal</u>. Laboratories that submitted results before the data reporting deadline received an individual laboratory evaluation and their data were included in the data summary report.

Proficiency Testing Errors and Challenges

Specimens were evaluated as "acceptable" or "unacceptable." For each analyte and specimen to achieve an "acceptable" evaluation, the participating laboratory's presumptive clinical assessment must match the CDC-certified clinical assessment. When clinical assessments differ, the evaluation is "unacceptable." NSQAP did not identify "unacceptable" results as "false negative" or "false positive." Instead, the participating laboratory must categorize "unacceptable" according to their protocols and policies.

If fewer than 10 U.S. laboratories reported results for any one specimen, all submitted results were evaluated. If 10 or more U.S. laboratories reported results, a consensus of 80% of the U.S. laboratories must be reached for a specimen to be evaluated. NSQAP occasionally challenges cutoff levels by enriching specimens in the cutoff range. Specimens in the cutoff range are closely reviewed by the NSQAP PT committee. Specimens that were not evaluated were considered educational.

Tables 5–8 show the 2022 analyte and disorder assessments that were reported as "unacceptable" by domestic and international laboratories. The rates for unacceptable assessments were based on the total number of specimens tested. Specimens that were not evaluated were not included in the error calculations.

The CFDNA PT program provided evaluations based on allele identification and clinical assessment. Allele identification depended on the method used. Table 9 summarizes the CFDNA variant challenges distributed in 2022.

Table 10 shows the challenges distributed in 2022 for sickle cell disease and other hemoglobinopathies. Participants were evaluated on reported hemoglobin phenotypes and their ability to provide correct clinical assessments.

Analyte/ Disorder	Specimens Assayed (N)	Unacceptable Assessments (%)
24:0 Lysophosphatidylcholine	110	1.8%
26:0 Lysophosphatidylcholine	421	0.5%
anti- <i>Toxoplama</i> antibodies	15	0.0%
Biotinidase deficiency	605	0.8%
Congenital adrenal hyperplasia	615	0.0%
Congenital hypothyroidism	605	0.0%
Cystic Fibrosis DNA variant clinical assessment errors	495	0.0%
G6PD deficiency	30	0.0%
GALT deficiency	610	0.3%
Total galactose screen	290	0.0%
Human immunodeficiency virus	85	0.0%
Immunoreactive trypsinogen	625	0.3%
Lysosomal storage disorder Krabbe	185	0.0%
Lysosomal storage disorder Pompe	415	0.0%
Lysosomal storage disorder Mucopolysaccharidosis type 1	415	1.9%
T-cell receptor excision circle	625	1.3%
Second-tier congenital adrenal hyperplasia	101	6.9%
Sickle cell and other hemoglobinopathies phenotype errors	625	1.0%
Sickle cell and other hemoglobinopathies clinical assessment errors	625	2.1%
Spinal muscular atrophy	450	1.3%

Table 5. Summary of disease specific and non-MSMS proficiency testing errors by domestic laboratories

Table 6. Summary of disease specific and non-MSMS proficiency testing errors by international laboratories

Analyte/ Disorders	Specimens Assayed (N)	Unacceptable Assessments (%)
24:0 Lysophosphatidylcholine	210	6.2%
26:0 Lysophosphatidylcholine	260	2.75
anti- <i>Toxoplama</i> antibodies	115	6.1%
Biotinidase deficiency	2380	16.8%
Congenital adrenal hyperplasia	3185	3.8%
Congenital hypothyroidism	3910	1.8%
Cystic fibrosis DNA variant clinical assessment errors	500	2.6%
G6PD deficiency	1260	4.0%
GALT deficiency	1460	2.1%
Total galactose screen	2155	5.8%
Immunoreactive trypsinogen	2550	4.9%
Human immunodeficiency virus	135	0.0%
T-cell receptor excision circle	760	8.0%
Second-tier congenital adrenal hyperplasia	271	9.6%
Sickle cell and other hemoglobinopathies phenotype errors	490	5.5%
Sickle cell and other hemoglobinopathies clinical assessment errors	490	5.1%
Spinal muscular atrophy	665	11.1%

 Table 7. Summary of amino acid and acylcarnitine proficiency testing errors by domestic laboratories

Analyte Screen	Specimens Assayed (N)	Unacceptable Assessments (%)
Arginine	540	1.5%
Citrulline	635	1.1%
Leucine	635	0.5%
Methionine	625	0.2%
Phenylalanine	735	0.0%
Succinylacetone	605	0.2%
Tyrosine	700	1.1%
Valine	435	0.0%
C0(L)	655	0.5%
C2(L)	290	0.0%
G	660	0.2%
C3DC	145	0.0%
C3DC+C40H	420	0.0%
(4	620	0.0%
С40Н	120	0.0%
C5	660	0.0%
C5:1	640	0.9%
CSDC	635	0.0%
сзон	635	1.6%
C6	575	0.0%
C8	660	0.0%
C10	585	0.0%
C10:1	535	0.0%
C10:2	370	0.0%
C14	575	0.7%
C14:1	660	0.3%
C16	640	0.2%
С160Н	660	0.2%
C18	535	0.0%
C18:1	570	1.1%
С180Н	510	0.6%

Table 8. Summary of amino acid and acylcarnitine proficiency testing errors by international laboratories

Analyte Screen	Specimens Assayed (N)	Unacceptable Assessments (%)
Arginine	2880	3.8%
Citrulline	3175	17.5%
Leucine	3520	4.4%
Methionine	3370	4.5%
Phenylalanine	4445	6.0%
Succinylacetone	1795	6.7%
Tyrosine	3505	2.7%
Valine	3310	3.3%
C0(L)	3360	13.2%
C2(L)	2725	19.4%
G	3355	5.4%
C3DC	1005	5.5%
C3DC+C40H	1440	6.6%
C4	3140	3.7%
С40Н	925	15.1%
C5	3450	3.3%
C5:1	3000	5.3%
C5DC	3250	6.5%
С5ОН	2870	31.4%
C6	3200	4.4%
C8	3530	3.0%
C10	3430	2.6%
C10:1	2975	2.2%
C10:2	2110	2.4%
C14	3220	5.0%
C14:1	3230	3.1%
C16	3245	5.5%
С160Н	3240	2.5%
C18	3145	3.7%
C18:1	2975	3.7%
С180Н	2685	3.0%

Table 9. 2022 Cystic Fibrosis DNA variant (CTFR gene) PT challenges distributed

Variant (Legacy Name)	Variant (HGVS Nomenclature)	Variants Sent
F508del	p.Phe508del	8
2055del9>A	p.Ser641ArgfsX5	1
2183AA>G	p.Lys684SerfsX38	1
3905insT	p.Leu1258PhefsX7	1
935delA	p.Asn268llefsX17	1
G542X	p.Gly542X	1
G551D	p.Gly551Asp	1
Q890X	p.Gln890X	1
R75X	p.Arg75X	1
W1282X	p.Trp1282X	1
Y1092X	p.Tyr1092X	1

 Table 10. 2022 Hemoglobinopathies accepted presumptive phenotype PT challenges distributed

Quarter	Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5
1	FS	FAC	FAC	FA	FAS
3	FAS	Bart's	FAC	FA	FAS
4	FAC	FAS	FA	FAS	G-Philadelphia

Proficiency Testing Cutoff Values

Because CDC does not test newborns, establishing a population cutoff value is not possible. Therefore, CDC cutoff values are determined by using the mean of all domestic laboratory cutoff values. CDC recommends that each laboratory establish its own cutoff values rather than using the CDC-reported cutoff values. Participants reported the decision level for sorting test results based on their established cutoff value. Results were reported as either outside normal limits (presumptive positive) or results reported as within normal limits (negative).

Tables 11–15 summarize the reported cutoff values for domestic and international laboratories. The tables show summary statistics for each analyte. Tables 16–18 summarize domestic cutoff statistics by method.

Analyte	N	Mean	Median	Mode	Minimum	Maximum
170HP (ng/mL serum)	40	34.7	33.0	30.0	20.0	75.0
IRT (ng/mL blood)	38	60.7	58.0	71.0	42.7	100.0
T4 (μg/dL serum)	17	6.3	6.0	5.0	5.0	8.0
TGal (mg/dL blood)	19	11.6	10.0	10.0	6.0	20.0
TSH (μIV/mL serum)	35	28.4	25	20.0	18.0	60.0

Table 11. Summary of non-MS/MS cutoff values for domestic laboratories

Table 12. Summary of non-MS/MS cutoff values for international laboratories

Analyte	N	Mean	Median	Mode	Minimum	Maximum
170HP (ng/mL serum)	209	23.1	19.8	20.0	6.0	80.0
IRT (ng/mL blood)	163	65.5	65.0	70.0	25.0	150.0
T4 (μg/dL serum)	37	6.6	6.0	6.0	3.0	15.6
TGal (mg/dL blood)	136	12.2	10.0	10.0	2.7	30.0
TSH (μIV/mL serum)	256	21.4	20.0	20.0	7.0	49.8
Phe (µmol/L blood)	42	151.3	130.2	121.2	103.0	242.2

Table 13. Summary of Cutoff Values for Domestic Laboratories (µmol/L blood) (Analytes N<3 not shown)

Analyte	N	Mean	Median	Mode	Minimum	Maximum
Arginine	35	73.9	63.0	63.0	27.0	120.0
Citrulline	41	52.4	50.0	49.0	31.0	75.0
Leucine	42	290.7	274.0	230.0	145.0	425.0
Methionine	41	73.3	74.0	100.0	35.0	130.0
Phenylalanine	48	140.7	140.0	130.0	74.0	182.0
Succinylacetone	40	2.5	2.0	1.0	0.4	6.1
Tyrosine	46	389.9	367.5	350.0	91.0	680.0
Valine	28	285.2	277.5	300.0	180.0	530.0

Analyte	N	Mean	Median	Mode	Minimum	Maximum
C0(L)	42	7.22	7.00	6.40	5.00	10.00
C2(L)	18	6.85	7.00	5.00	2.00	9.50
G	44	6.17	6.27	5.00	3.10	9.69
C3DC	9	0.20	0.20	0.20	0.10	0.43
C3DC+ C40H	28	0.57	0.48	0.48	0.25	3.03
C4	41	1.28	1.30	1.20	0.49	1.90
C40H	7	0.64	0.75	0.75	0.20	0.80
(5	44	0.71	0.68	0.60	0.34	1.20
C5:1	43	0.18	0.10	0.10	0.03	0.50
C5DC	43	0.37	0.38	0.38	0.05	0.80
С50Н	43	0.93	0.91	0.80	0.36	1.70
C6	37	0.38	0.26	0.95	0.15	0.95
C8	44	0.42	0.44	0.45	0.15	0.70
C10	39	0.45	0.41	0.40	0.22	0.70
C10:1	35	0.27	0.25	0.20	0.12	0.45
C10:2	26	0.14	0.10	0.10	0.04	0.38
C14	38	0.73	0.70	0.70	0.27	1.20
C14:1	44	0.63	0.62	0.60	0.17	0.90
C16	42	8.28	8.00	12.00	2.14	12.00
С160Н	44	0.12	0.10	0.10	0.07	0.25
C18	34	2.47	2.30	3.50	1.31	3.50
C18:1	38	3.61	3.00	3.00	2.00	7.00
C180H	34	0.09	0.10	0.10	0.04	0.18
24:0-LPC - 1st tier	8	0.81	0.79	n/a	0.40	1.60
24:0-LPC - 2nd tier	n/a	n/a	n/a	n/a	n/a	n/a
26:0-LPC - 1st tier	31	0.43	0.45	0.53	0.13	0.80
26:0-LPC - 2nd tier	13	0.19	0.16	0.15	0.13	0.31

Table 13. Continued

Table 1	4. Summary of	MS/MS Cutoff	Values for Interr	national Labora ⁻	tories (µmol/L	blood) (Anal	ytes N<3 not	shown)

Analyte	N	Mean	Median	Mode	Minimum	Maximum
Arginine	188	55.6	52.3	70.0	9.3	160.0
Citrulline	203	49.0	45.5	55.0	20.0	92.0
Leucine	227	305.3	297.0	300.0	15.9	601.7
Methionine	218	53.2	48.8	75.0	23.0	100.0
Phenylalanine	246	130.2	120.0	120.0	13.1	266.6
Succinylacetone	112	2.3	1.8	2.0	0.4	8.0
Tyrosine	223	298.5	290.0	350.0	91.0	600.0
Valine	213	270.7	270.0	300.0	129.6	465.0
CO(L)	216	13.5	8.1	8.0	4.0	99.7
C2(L)	167	16.58	7.00	7.00	0.00	96.00
G	217	5.45	5.20	5.00	0.81	11.00
C3DC	57	0.25	0.25	0.25	0.04	0.70
C3DC+ C40H	99	0.47	0.45	0.45	0.01	2.53
C4	202	0.93	0.92	1.30	0.16	2.50
С40Н	54	0.56	0.54	0.50	0.05	1.00
C5	223	0.67	0.60	1.00	0.06	2.00
C5:1	197	0.13	0.10	0.25	0.01	0.66
C5DC	209	0.34	0.30	0.35	0.04	1.06
С50Н	186	0.72	0.69	1.00	0.18	1.60
C6	204	0.26	0.20	0.20	0.04	1.30
C8	225	0.33	0.30	0.30	0.05	0.80
C10	214	0.36	0.34	0.45	0.07	0.91
C10:1	191	0.22	0.20	0.30	0.05	0.70
C10:2	139	0.12	0.10	0.15	0.01	1.00
C14	205	0.61	0.55	0.75	0.08	1.30
C14:1	209	0.46	0.40	0.40	0.04	2.50
C16	205	6.93	7.00	7.50	0.97	12.00
С160Н	213	0.11	0.10	0.10	0.02	0.75
C18	199	2.12	2.07	2.30	0.56	4.00
C18:1	190	3.13	3.01	3.50	1.10	5.80
С180Н	174	0.08	0.06	0.10	0.01	0.50
24:0-LPC - 1st tier	14	1.05	0.845	0.8	0.09	4.44
24:0-LPC - 2nd tier	n/a	n/a	n/a	n/a	n/a	n/a
26:0-LPC - 1st tier	16	0.6	0.5	0.5	0.14	1.97
26:0-LPC - 2nd tier	n/a	n/a	n/a	n/a	n/a	n/a

Table 15. Summary of cutoff values by analyte and method for domestic laboratories—hormones, enzymes, total galactose, immunoreactive trypsinogen (methods N<3 not shown)</td>

17 OHP ng/mL serum

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	40	34.7	33.0	30.0	20.0	75.0
AutoDELFIA® Neonatal 170HP PerkinElmer	11	35.3	33.0	33.0	25.0	60.0
GSP [®] 170HP Neonatal PerkinElmer	28	34.9	31.0	30.0	20.0	75.0

TSH µIU/mL serum

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	35	28.4	25	20.0	18.0	60.0
AutoDELFIA® Neonatal hTSH PerkinElmer	6	31.8	32.8	n/a	20.0	58.0
GSP® hTSH Neonatal PerkinElmer	29	27.2	25.0	20.0	18.0	60.0

T4 µg/dL serum

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	17	6.3	6.0	5.0	5.0	8.0
GSP® T4 Neonatal PerkinElmer	15	6.3	6.0	5.0	5.0	8.0

TGal mg/dL blood

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	19	11.6	10.0	10.0	6.0	20.0
50hr Reagent Kit Spotcheck® TGal Astoria-Pacific	3	12.0	11.0	n/a	10.0	15.0
GSP® TGal Neonatal PerkinElmer	12	11.0	10.0	10.0	6.0	18.0

IRT ng/mL blood

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	38	60.7	58.0	71.0	42.7	100.0
AutoDELFIA® Neonatal IRT PerkinElmer	13	67.5	71.0	71.0	51.0	90.0
GSP® IRT Neonatal PerkinElmer, ng/mL blood	25	57.1	55.0	55.0	42.7	100.0

Table 16. Summary of cutoff values by analyte and method for domestic laboratories—lysosomal storage disorders (methods N<3 not shown)</td>

Galactoceramidase (GALC)

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	11	0.51	0.49	n/a	0.14	0.83
LC-MS/MS non-kit	3	0.34	0.43	n/a	0.14	0.44
NeoLSD™ MSMS Kit PerkinElmer	5	0.61	0.64	n/a	0.30	0.83

Acid α-glucosidase (GAA)

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	25	3.35	2.00	1.88	0.61	10.00
Digital Microfluidic Fluorescence	6	8.40	8.85	n/a	6.60	10.00
Flow Injection Analysis (FIA)-MS/MS multiplexed enzyme reaction	6	1.83	1.96	n/a	1.10	2.10
LC-MS/MS non-kit	4	1.37	1.50	n/a	0.61	1.88
NeoLSD™ MSMS Kit PerkinElmer	9	1.89	1.98	n/a	1.46	2.50

α-L-iduronidase (IDUA)

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	26	2.33	1.73	1.80	0.49	6.00
Digital Microfluidic Fluorescence	6	4.94	4.95	n/a	3.94	6.00
Flow Injection Analysis (FIA)-MS/MS multiplexed enzyme reaction	6	1.27	1.30	n/a	0.65	1.80
LC-MS/MS non-kit	4	2.73	2.24	n/a	1.65	4.79
NeoLSD™ MSMS Kit PerkinElmer	9	1.19	1.19	n/a	0.49	2.25

Table 17. Summary of cutoff values by analyte and method for domestic laboratories — amino acids (µmol/L blood) (Methods N<3 not shown)

Arginine

Method	N	Mean	Median	Mode	Min	Мах
ALL MS/MS METHODS	35	73.9	63.0	63.0	27.0	120.0
Derivatized - MS/MS non-kit	5	46.4	50.0	50.0	27.0	60.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	8	94.8	100.0	100.0	48.0	120.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	19	74.6	63.0	63.0	50.0	120.0

Citrulline

Method	N	Mean	Median	Mode	Min	Max
ALL MS/MS METHODS	41	52.4	50.0	49.0	31.0	75.0
Derivatized - MS/MS non-kit	6	53.2	55.0	55.0	34.0	70.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	59.2	60.0	60.0	40.0	75.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	50.3	49.0	49.0	40.0	75.0
Non-derivatized - MS/MS non-kit	3	49.7	49.0	n/a	45.0	55.0

Table 17. Continued

Leucine

Method	N	Mean	Median	Mode	Min	Мах
ALL MS/MS METHODS*	42	290.7	274.0	230.0	145.0	425.0
Derivatized - MS/MS non-kit	6	285.7	278.0	n/a	250.0	345.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	313.7	320.5	270.0	225.0	400.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	289.9	270.0	230.0	145.0	425.0
Non-derivatized - MS/MS non-kit	3	285.0	300.0	n/a	250.0	305.0

Methionine

Method	N	Mean	Median	Mode	Min	Мах
ALL MS/MS METHODS	41	73.3	74.0	100.0	35.0	130.0
Derivatized - MS/MS non-kit	6	56.3	57.9	n/a	35.0	70.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	75.1	80.0	80.0	50.0	100.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	81.7	85.0	100.0	45.0	130.0
Non-derivatized - MS/MS non-kit	3	53.3	60.0	60.0	40.0	60.0

Phenylalanine

Method	N	Mean	Median	Mode	Min	Max
ALL MS/MS METHODS	48	140.7	140.0	130.0	74.0	182.0
Derivatized - MS/MS non-kit	7	150.7	150.0	n/a	130.0	182.0
LC-MS/MS non-kit	3	115.1	120.0	n/a	104.3	121.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	141.5	130.0	130.0	120.0	180.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	146.9	150.0	175.0	100.0	175.0
Non-derivatized - MS/MS non-kit	5	116.8	130.0	130.0	74.0	150.0

Succinylacetone

Method	N	Mean	Median	Mode	Min	Max
ALL MS/MS METHODS	40	2.5	2.0	1.0	0.4	6.1
Derivatized - MS/MS non-kit	6	2.9	2.6	2.0	2.0	5.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	1.6	1.6	1.0	1.0	3.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	2.6	1.3	6.1	0.4	6.1
Non-derivatized - MS/MS non-kit	3	3.2	2.5	n/a	1.8	5.4

Tyrosine

Method	N	Mean	Median	Mode	Min	Max
ALL MS/MS METHODS	46	389.9	367.5	350.0	91.0	680.0
Derivatized - MS/MS non-kit	7	360.6	414.0	414.0	99.0	500.0
LC-MS/MS non-kit	3	244.2	204.2	n/a	128.5	400.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	375.1	363.0	300.0	300.0	480.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	20	468.4	434.5	680.0	243.0	680.0
Non-derivatized - MS/MS non-kit	5	242.2	290.0	n/a	91.0	360.0

Table 17. Continued

Valine

Method	N	Mean	Median	Mode	Min	Max
ALL MS/MS METHODS	28	285.2	277.5	300.0	180.0	530.0
Derivatized - MS/MS non-kit	4	281.3	240.0	240.0	225.0	420.0
Non-derivatized - MS/MS NeoBase™ PerkinElmer	8	332.1	300.0	300.0	250.0	530.0
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	11	273.4	280.0	180.0	180.0	360.0
Non-derivatized - MS/MS non-kit	3	220.0	210.0	n/a	200.0	250.0

24:0-lysophosphatidylcholine 1st Tier

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	8	0.81	0.79	n/a	0.40	1.60
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	5	1.02	0.90	n/a	0.78	1.60

24:0-lysophosphatidylcholine 2nd Tier

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	n/a	n/a	n/a	n/a	n/a	n/a

26:0-lysophosphatidylcholine 1st Tier

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	31	0.43	0.45	0.53	0.13	0.80
Flow Injection Analysis (FIA) - MS/MS non-derivitized non-kit	5	0.51	0.50	0.50	0.36	0.80
LC-MS/MS negative ion mode	8	0.19	0.19	0.18	0.13	0.28
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	18	0.51	0.53	0.53	0.40	0.70

26:0-lysophosphatidylcholine 2nd Tier

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	13	0.19	0.16	0.15	0.13	0.31
LC-MS/MS negative ion mode	9	0.17	0.15	0.15	0.13	0.30
LC-MS/MS positive ion mode	4	0.24	0.23	n/a	0.20	0.31

Table 18. Summary of cutoff values by analyte and method for domestic laboratories — acylcarnitines (µmol/L blood) (Methods N<3 not shown)

C0(L)

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	42	7.22	7.00	6.40	5.00	10.00
Derivatized - MS/MS non-kit	8	8.00	8.25	10.00	5.00	10.00
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	7.42	7.00	7.00	5.74	10.00
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	6.84	6.40	6.40	5.30	9.00
Non-derivatized - MS/MS non-kit	3	7.20	7.00	n/a	6.00	8.60

C2(L)

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	18	6.85	7.00	5.00	2.00	9.50
Derivatized - MS/MS non-kit	4	6.20	6.66	n/a	2.00	9.50
Non-derivatized - MS/MS NeoBase™ PerkinElmer	5	7.36	8.00	n/a	4.00	9.00
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	6	7.17	7.50	5.00	5.00	9.00
Non-derivatized - MS/MS non-kit	3	6.23	6.70	n/a	5.00	7.00

C3

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	44	6.17	6.27	5.00	3.10	9.69
Derivatized - MS/MS non-kit	10	5.14	4.88	n/a	3.10	7.70
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	5.60	5.40	5.00	4.00	8.00
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	6.83	6.85	7.90	4.00	9.69
Non-derivatized - MS/MS non-kit	3	6.81	6.92	n/a	6.00	7.50

C3DC

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	9	0.20	0.20	0.20	0.10	0.43
Derivatized - MS/MS non-kit	9	0.20	0.20	0.20	0.10	0.43

C3DC + C4OH

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	28	0.57	0.48	0.48	0.25	3.03
Non-derivatized - MS/MS NeoBase™ PerkinElmer	7	0.39	0.40	n/a	0.25	0.60
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	18	0.49	0.48	0.48	0.30	0.60
Non-derivatized - MS/MS non-kit	3	1.52	1.20	n/a	0.33	3.03

C4

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	41	1.28	1.30	1.20	0.49	1.90
Derivatized - MS/MS non-kit	9	1.19	1.20	1.20	0.49	1.90
Non-derivatized - MS/MS NeoBase™ PerkinElmer	9	1.22	1.20	1.10	1.00	1.40
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	20	1.35	1.31	1.70	0.60	1.80
Non-derivatized - MS/MS non-kit	3	1.27	1.20	n/a	1.10	1.50

Table 18. Continued

C40H

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	7	0.64	0.75	0.75	0.20	0.80
Derivatized - MS/MS non-kit	7	0.64	0.75	0.75	0.20	0.80

C5

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	44	0.71	0.68	0.60	0.34	1.20
Derivatized - MS/MS non-kit	10	0.69	0.64	n/a	0.34	1.20
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	0.63	0.60	0.60	0.45	1.00
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	0.76	0.75	0.95	0.43	0.95
Non-derivatized - MS/MS non-kit	3	0.60	0.60	n/a	0.50	0.70

C5:1

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	43	0.18	0.10	0.10	0.03	0.50
Derivatized - MS/MS non-kit	10	0.19	0.13	n/a	0.05	0.50
Non-derivatized - MS/MS NeoBase™ PerkinElmer	9	0.13	0.10	0.10	0.03	0.20
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	0.22	0.10	0.50	0.04	0.50
Non-derivatized - MS/MS non-kit	3	0.11	0.10	n/a	0.04	0.19

C5DC

Method	N	Mean	Median	Mode	Min	Мах
ALL METHODS	43	0.37	0.38	0.38	0.05	0.80
Derivatized - MS/MS non-kit	10	0.17	0.17	0.13	0.05	0.30
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	0.52	0.50	0.50	0.30	0.80
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	20	0.37	0.38	0.38	0.24	0.51
Non-derivatized - MS/MS non-kit	3	0.48	0.50	n/a	0.35	0.60

C50H

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	43	0.93	0.91	0.80	0.36	1.70
Derivatized - MS/MS non-kit	10	0.78	0.76	n/a	0.36	1.25
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	0.82	0.80	0.80	0.60	1.05
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	20	1.05	0.98	1.15	0.60	1.70
Non-derivatized - MS/MS non-kit	3	1.06	1.08	n/a	0.90	1.20

C6

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	37	0.38	0.26	0.95	0.15	0.95
Derivatized - MS/MS non-kit	8	0.34	0.31	n/a	0.24	0.59
Non-derivatized - MS/MS NeoBase™ PerkinElmer	8	0.25	0.22	0.20	0.16	0.50
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	18	0.48	0.26	0.95	0.16	0.95
Non-derivatized - MS/MS non-kit	3	0.20	0.15	0.15	0.15	0.30

C8

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	44	0.42	0.44	0.45	0.15	0.70
Derivatized - MS/MS non-kit	10	0.39	0.42	0.50	0.15	0.50
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	0.46	0.42	0.40	0.32	0.70
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	0.43	0.45	0.45	0.24	0.60
Non-derivatized - MS/MS non-kit	3	0.38	0.40	n/a	0.23	0.50

C10

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	39	0.45	0.41	0.40	0.22	0.70
Derivatized - MS/MS non-kit	9	0.38	0.40	0.30	0.22	0.55
Non-derivatized - MS/MS NeoBase™ PerkinElmer	9	0.41	0.40	0.30	0.30	0.70
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	18	0.51	0.53	0.65	0.25	0.65
Non-derivatized - MS/MS non-kit	3	0.43	0.45	n/a	0.34	0.50

C10:1

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	35	0.27	0.25	0.20	0.12	0.45
Derivatized - MS/MS non-kit	8	0.26	0.25	0.25	0.17	0.37
Non-derivatized - MS/MS NeoBase™ PerkinElmer	8	0.23	0.23	0.20	0.15	0.30
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	16	0.30	0.27	0.45	0.12	0.45
Non-derivatized - MS/MS non-kit	3	0.28	0.30	n/a	0.15	0.40

C10:2

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	26	0.14	0.10	0.10	0.04	0.38
Derivatized - MS/MS non-kit	7	0.20	0.15	n/a	0.06	0.38
Non-derivatized - MS/MS NeoBase™ PerkinElmer	7	0.11	0.10	0.10	0.10	0.15
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	10	0.12	0.10	0.10	0.05	0.20

C14

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	38	0.73	0.70	0.70	0.27	1.20
Derivatized - MS/MS non-kit	9	0.60	0.70	0.70	0.27	0.80
Non-derivatized - MS/MS NeoBase™ PerkinElmer	9	0.67	0.70	0.70	0.46	0.79
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	17	0.85	0.75	1.20	0.55	1.20
Non-derivatized - MS/MS non-kit	3	0.63	0.60	n/a	0.50	0.80

C14:1

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	44	0.63	0.62	0.60	0.17	0.90
Derivatized - MS/MS non-kit	9	0.50	0.60	0.60	0.17	0.70
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	0.63	0.63	0.60	0.50	0.80
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	0.69	0.65	0.90	0.47	0.90
Non-derivatized - MS/MS non-kit	3	0.54	0.56	n/a	0.45	0.60

Table 18. Continued

C16

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	42	8.28	8.00	12.00	2.14	12.00
Derivatized - MS/MS non-kit	10	6.95	7.00	7.00	2.14	10.00
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	7.73	7.95	8.00	5.00	9.50
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	19	9.40	9.50	12.00	3.50	12.00
Non-derivatized - MS/MS non-kit	3	7.47	7.20	n/a	6.50	8.70

C160H

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	44	0.12	0.10	0.10	0.07	0.25
Derivatized - MS/MS non-kit	10	0.14	0.12	0.10	0.10	0.25
Non-derivatized - MS/MS NeoBase™ PerkinElmer	10	0.10	0.09	0.08	0.07	0.15
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	21	0.11	0.10	0.10	0.08	0.16
Non-derivatized - MS/MS non-kit	3	0.19	0.20	n/a	0.11	0.25

C18

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	34	2.47	2.30	3.50	1.31	3.50
Derivatized - MS/MS non-kit	6	2.11	2.03	n/a	1.31	3.00
Non-derivatized - MS/MS NeoBase™ PerkinElmer	9	2.20	2.20	2.50	1.55	3.00
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	16	2.82	2.77	3.50	2.00	3.50
Non-derivatized - MS/MS non-kit	3	2.16	2.00	2.00	2.00	2.47

C18:1

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	38	3.61	3.00	3.00	2.00	7.00
Derivatized - MS/MS non-kit	9	2.73	2.60	2.50	2.00	3.50
Non-derivatized - MS/MS NeoBase™ PerkinElmer	9	3.24	3.00	3.00	2.00	4.50
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	17	4.30	3.00	7.00	2.50	7.00
Non-derivatized - MS/MS non-kit	3	3.44	3.53	n/a	2.80	4.00

C180H

Method	N	Mean	Median	Mode	Min	Max
ALL METHODS	34	0.09	0.10	0.10	0.04	0.18
Derivatized - MS/MS non-kit	6	0.11	0.10	0.10	0.07	0.18
Non-derivatized - MS/MS NeoBase™ PerkinElmer	8	0.09	0.09	0.05	0.05	0.16
Non-derivatized - MS/MS NeoBase™2 PerkinElmer	17	0.08	0.10	0.10	0.04	0.13
Non-derivatized - MS/MS non-kit	3	0.09	0.10	n/a	0.04	0.12

2022 Bias Plots

Proficiency Testing Bias Plots

Figures 2–37 were created for PT analytes reported during 2022. For each analyte, bias plots were selected to compare PT results for different methods. The NSQAP expected value of each specimen equals the sum of the enriched value and the endogenous (non-enriched) value. For IRT PT specimens, the CDC-assayed value is reported.

Non-derivatized MS/MS methods for amino acids and acylcarnitines analysis cannot distinguish between analytes C3DC and C4OH (i.e., they are isobaric). Laboratories that use a derivatized MS/MS method can identify C3DC and C4OH as individual analytes. Laboratories that use a non-derivatized MS/MS method report combined C3DC+C4OH. The bias plots show the laboratory reported value minus the expected value (EV) or assayed value. To illustrate method-related differences in analyte recoveries, the PT quantitative results are grouped by kit or method. For each plot, note the scale-changes of the y-axis. A reported value matching the EV falls on the plot's "0" line. For each figure, a summary of the specimen data for the selected PT challenge is tabulated in the left margin. A reasonable bias is less than 20% of the EV.

The bias plots show the 95% confidence interval for the participant mean. A tight scatter within this interval indicates good performance for a method or a group of methods. In general, the quantitative comparisons for PT challenges are reasonable within a method but might vary between methods. Because some of the pools in a routine PT survey represent a unique donor specimen, differences in endogenous concentrations in the donor specimens might influence method-related differences.

Note for accessibility: For Figures 2–37, the bias plot's explanation follows each figure title.

Figure 2. Bias Plot of 17 α-Hydroxyprogesterone (170HP) Values by Method Quarter 1, Specimen 20221001005 Expected Value (EV) = 85.6 mg/mL serum

Specimen: 20221001005

Enriched: 85.0 CDC Characterized Value: 79.9 Participant Mean: 92.4

Participant Bias: 6.8

The 170HP bias plot shows units of measure on the y-axis ranging from 100.0 mg/mL serum to -100.0 ng/mL serum. The bias for this plot is 6.8 ng/mL serum. The data on this plot shows an even scatter among all participants.

The T4 bias plot shows units of measure on the y-axis ranging from 3.0 µg/dL serum to -3.0 µg/dL serum. The bias for this plot is 0.3. The data on this plot show an even scatter with some outliers.

T4

Specimen: 20221001003

Enriched: 1.5 CDC Characterized Value: 1.4 Participant Mean: 1.8 Participant Bias: 0.3

Figure 4. Bias Plot of Thyroid-Stimulating Hormone (TSH) Values by Method Quarter 1 , Specimen 20221001003 Expected Value (EV) = 80.1 µIU/mL serum

TSH

Specimen: 20221001003

Enriched: 80.0

CDC Characterized Value: 94.2

Participant Mean: 77.3

Participant Bias: -2.8

The TSH bias plot shows units of measure on the y-axis ranging from 100.0 µlU/mL serum to -100.0 µlU/mL serum. The bias for this plot is -2.8. The data show an even bias scatter across methods.

TGAL

Specimen: 20224001005

Enriched: 25.0 CDC Characterized Value: 20.7 Participant Mean: 23.5 Participant Bias: -1.5

The TGal bias plot shows units of measure on the y-axis ranging from 30.0 mg/dL blood to -30.0 mg/dL blood. The bias for this plot is -1.5. One method demonstrates slightly lower bias than others.

Figure 6. Bias Plot of Immunoreactive Trypsinogen (IRT) Values by Method Quarter 4, Specimen 20224008001 Assayed Value (AV) = 142.9 ng/mL blood

IRT

Specimen: 20224008001

Enriched: 250.0

CDC Characterized Value: 142.9

Participant Mean: 142.6

Participant Bias: -0.3

The IRT bias plot shows units of measure on the y-axis ranging from 200.0 ng/mL blood to -200.0 ng/mL blood. The bias for this plot is -0.3. A few methods show a moderately lower bias than others while one method shows a high bias.

Specimen: 20223005001

Enriched: 180.0

CDC Characterized Value: 192.5

Participant Mean: 145.1

Participant Bias: -70.6

The ARG bias plot shows units of measure on the y-axis ranging from 250.0 µmol/L blood to -250.0 µmol/L blood. The bias for this plot is -70.6. This plot shows all methods demonstrated a low bias.

Figure 8. Bias Plot of Citrulline (CIT) Values by Method Quarter 1, Specimen 20221005001 Expected Value (EV) = 223.5 µmol/L blood

CIT

Specimen: 20221005001

Enriched: 180.0

CDC Characterized Value: 211.5

Participant Mean: 190.8

Participant Bias: -32.7

The CIT bias plot shows units of measure on the y-axis ranging from 200.0 µmol/L blood to -200.0 µmol/L blood. The bias for this plot is -32.7. This plot shows a moderately negative bias across methods.

LEU

Specimen: 20223005004

Enriched: 475.0 CDC Characterized Value: 597.2 Participant Mean: 593.6 Participant Bias: -68.2

The LEU bias plot shows units of measure on the y-axis ranging from 450.0 µmol/L blood to -450.0 µmol/L blood. The bias for this plot is -68.2 This plot shows an even scatter across methods.

Figure 10. Bias Plot of Methionine (MET) Values by Method Quarter 4, Specimen 20224005002 Expected Value (EV) = 175.4 µmol/L blood

MET

Specimen: 20224005002

Enriched: 150.0

CDC Characterized Value: 140.7

Participant Mean: 134.8

Participant Bias: -40.6

The MET bias plot shows units of measure on the y-axis ranging from 180.0 µmol/L blood to -180.0 µmol/L blood. The bias for this plot is -40.6. This plot shows a moderately negative bias across methods.

PHE

Specimen: 20224005005

Participant Bias: -33.6

Enriched: 250.0 CDC Characterized Value: 284.5 Participant Mean: 279.4 200.0

The PHE bias plot shows units of measure on the y-axis ranging from 200.0 µmol/L blood to -200.0 µmol/L blood. The bias for this plot is -33.6. This plot shows an even scatter across across the expected value for most methods.

Figure 12. Bias Plot of Succinylacetone (SUAC) Values by Method Quarter 4, Specimen 20224005001 Expected Value (EV) = 50.2 µmol/L blood

SUAC

Specimen: 20224005001

Enriched: 50.0 CDC Characterized Value: 31.5 Participant Mean: 23.4 Participant Bias: -26.6

The SUAC bias plot shows units of measure on the y-axis ranging from 60.0 µmol/L blood to -60.0 µmol/L blood. The bias for this plot is -26.6. This plot shows a strongly negative bias across methods, which is historical for this analyte.

600.0 400.0 200.0 95% UL ΕV 0.0 x Bias -200.0 95% LL -400.0 Der, Der, Marsuchton, Chionass -600.0 DER ASIAS NOT 417 ^{IC, MS, MS, NON-KIT} NUER MS AS NEORESE NOFR MS AS NOT 41 NUER LABSIS NEORIRES ANAC PILS NOER NS MS MR

The TYR bias plot shows units of measure on the y-axis ranging from 600.0 µmol/L blood to -600.0 µmol/L blood. The bias for this plot is -108.4. This plot shows a slightly negative bias across methods.

TYR

Specimen: 20221005005

Enriched: 750.0 CDC Characterized Value: 752.4 Participant Mean: 689.5

Participant Bias: -108.4

Figure 14. Bias Plot of Valine (VAL) Values by Method Quarter 3, Specimen 20223005004 Expected Value (EV) = 677.3 µmol/L blood

VAL

Specimen: 20223005004

Enriched: 470.0

CDC Characterized Value: 592.4

Participant Mean: 545.0

Participant Bias: -132.3

The VAL bias plot shows units of measure on the y-axis ranging from 700.0 µmol/L blood to -700.0 µmol/L blood. The bias for this plot is -132.3 This plot shows a moderately negative bias across methods.

Figure 15. Bias Plot of Low Free Carnitine (C0(L)) Values by Method Quarter 1, Specimen 20221006003 Expected Value (EV) = 5.35 µmol/L blood

CO(L)

Specimen: 20221006003

Enriched: 0.00 CDC Characterized Value: 5.44 Participant Mean: 4.08 Participant Bias: -0.56

The CO(L) bias plot shows units of measure on the y-axis ranging from 6.00 µmol/L blood to -6.00 µmol/L blood. The bias for this plot is -0.56. This plot shows a slightly negative bias across methods.

Figure 16. Bias Plot of Low Acetylcarnitine (C2(L)) Values by Method Quarter 1, Specimen 20221006003 Expected Value (EV) = 4.59 µmol/L blood

C2 (L)

Specimen: 20221006003

Enriched: 0.00

CDC Characterized Value: 5.54

Participant Mean: 3.85

Participant Bias: -0.74

The C2(L) bias plot shows units of measure on the y-axis ranging from 8.00 µmol/L blood to -8.00 µmol/L blood. The bias for this plot is -0.74. This plot shows three methods with a slightly more negative bias than the others.

C3

Specimen: 20223006004

Enriched: 12.00 CDC Characterized Value: 13.69 Participant Mean: 12.79 Participant Bias: -0.37

The C3 bias plot shows units of measure on the y-axis ranging from 8.00 µmol/L blood to -8.00 µmol/L blood. The bias for this plot is -0.37. This plot shows an even scatter across methods.

C3DC

Specimen: 20224006001

Enriched: 13.00

CDC Characterized Value: 11.17

Participant Mean: 8.12

Participant Bias: -4.90

The C3DC bias plot shows units of measure on the y-axis ranging from 20.0 µmol/L blood to -30.0 µmol/L blood. The bias for this plot is -4.90. This plot shows a slightly negative bias across methods.

7.00 5.00 3.00 95% UL 1.00 ΕV -1.00 x Bias -3.00 95% LL -5.00 NDER . MS ASS MEESCHON . CHONS -7.00 C.MS.MS. NO. North NDER, MS ANS NOT HIE NOTR LEBUS NEODINGS ASAC PILS NOFR MS AS NEOBESC II NDER MS AS NE OF

C3DC+C4OH

Specimen: 20221006005

Enriched C3DC: 0.00 Enriched C40H: 4.00 CDC Characterized Value: 1.74 Participant Mean: 2.52 Participant Bias: -1.51

The C3DC+C4OH bias plot shows units of measure on the y-axis ranging from 7.00 µmol/L blood to -7.00 µmol/L blood. The bias for this plot is -1.51. This plot shows a negative bias across methods as historically observed.

Figure 20. Bias Plot of Butyrylcarnitine (C4) Values by Method Quarter 1, Specimen 20221006005 Expected Value (EV) = 3.07 µmol/L blood

C4

Specimen: 20221006005

Enriched: 3.00 CDC Characterized Value: 2.81 Participant Mean: 2.66 Participant Bias: -0.41

The C4 bias plot shows units of measure on the y-axis ranging from 1.50 µmol/L blood to -1.50 µmol/L blood. The bias for this plot is -0.41. This plot shows a moderately negative bias across methods.

Specimen: 20221006005

Enriched: 4.00 CDC Characterized Value: 3.34 Participant Mean: 2.61 Participant Bias: -1.43

The C40H bias plot shows units of measure on the y-axis ranging from 4.00 µmol/L blood to -4.00 µmol/L blood. The bias for this plot is -1.43. This plot shows a moderately negative bias across methods.

C5

Specimen: 20221006005

Enriched: 3.00 CDC Characterized Value: 3.25 Participant Mean: 2.64

Participant Bias: -0.41

The C5 bias plot shows units of measure on the y-axis ranging from 3.50 µmol/L blood to -3.50 µmol/L blood. The bias for this plot is -0.41. This plot shows a slight negative bias across methods.

Specimen: 20221006004

Enriched: 1.00 CDC Characterized Value: 0.69 Participant Mean: 0.56 Participant Bias: -0.45

The C5:1 bias plot shows units of measure on the y-axis ranging from 1.50 µmol/L blood to -1.50 µmol/L blood. The bias for this plot is -0.45. This plot shows a slightly negative bias across all methods.

C5DC

Specimen: 20223006001

Enriched: 1.50 CDC Characterized Value: 1.55 Participant Mean: 1.33 Participant Bias: -0.19

The C50H bias plot shows units of measure on the y-axis ranging from 2.00 µmol/L blood to -2.00 µmol/L blood. The bias for this plot is -0.19. Two methods show moderate positive bias while the rest show slight negative bias.

C50H

The C5OH bias plot shows units of measure on the y-axis ranging from 4.00 µmol/L blood to -4.00 µmol/L blood. The bias for this plot is -0.84. This plot shows a moderately negative bias across methods.

Figure 26. Bias Plot of Hexanoylcarnitine (C6) Values by Method Quarter 3, Specimen 20223006003 Expected Value (EV) = 1.41 µmol/L blood

C6

Specimen: 20223006003

Enriched: 1.40 CDC Characterized Value: 1.31 Participant Mean: 1.22 Participant Bias: -0.19

The C6 bias plot shows units of measure on the y-axis ranging from 1.50 µmol/L blood to -1.50 µmol/L blood. The bias for this plot is -0.19. This plot shows a moderately negative bias across all methods.

1.50 1.00 0.50 95% UL 0.00 ΕV x Bias -0. 95% LL -1 00 -1.50 OFR Masschrom. NDER, MS AS NOT HE VDER Labors Neoline's Add Citys MS MS NEOBASE Chron

The C8 bias plot shows units of measure on the y-axis ranging from 1.50 µmol/L blood to -1.50 µmol/L blood. The bias for this plot is -0.43. This plot shows a negative bias across all methods.

C8

Specimen: 20223006003

Enriched: 1.60 CDC Characterized Value: 1.32 Participant Mean: 1.18 Participant Bias: -0.43

Figure 28. Bias Plot of Decanoylcarnitine (C10) Values by Method Quarter 3, Specimen 20223006003 Expected Value (EV) = 1.22 μmol/L blood

Specimen: 20223006003

Enriched: 1.20 CDC Characterized Value: 1.24 Participant Mean: 1.03 Participant Bias: -0.19

The C10 bias plot shows units of measure on the y-axis ranging from 1.50 µmol/L blood to -1.50 µmol/L blood. The bias for this plot is -0.19. This plot shows a slightly negative bias across all methods.

1.20 0.80 0.40 95% UL 0.00 FV Bias -0.4 95%11 -0.80 -1.20 NOER MS MS NO TO ORA NassChrome Chro Labsis Neorrass Asac Plus NSINS NEOBES JS MS NEOBO

The C10:1 bias plot shows units of measure on the y-axis ranging from 1.20 µmol/L blood to -1.20 µmol/L blood. The bias for this plot is -0.30. This plot shows the derivitized MassChrom kit as having a slightly more negative bias than other reported methods

C10:1

Specimen: 20223006003

Enriched: 1.00 CDC Characterized Value: 0.94 Participant Mean: 0.71 Participant Bias: -0.30

Figure 30. Bias Plot of Decadienoylcarnitine (C10:2) Values by Method Quarter 1, Specimen 20221006005 Expected Value (EV) = 1.00 µmol/L blood

C10:2

Specimen: 20221006005

Enriched: 1.00 CDC Characterized Value: 0.87 Participant Mean: 0.54

Participant Bias: -0.46

The C10:2 bias plot shows units of measure on the y-axis ranging from 1.20 µmol/L blood to -1.20 µmol/L blood. The bias for this plot is -0.46. This plot shows a moderately negative bias for all methods.

Figure 31. Bias Plot of Myristoylcarnitine (C14) Values by Method Quarter 3, Specimen 20223006005 Expected Value (EV) = 1.46 µmol/L blood

1.50 1.00 0.50 95% UL 0.00 FV x Bias -0.50 95% LL -1.00 -1.50 DER Nasschonne Chro ADER LEIFISS REDARES AUCCILS NSER MS MS NON NOER MS NS Nectores and a second MS/MS/MS/A

C14

Specimen: 20223006005

Enriched: 1.40 CDC Characterized Value: 1.30 Participant Mean: 1.19 Participant Bias: -0.27

The C14 bias plot shows units of measure on the y-axis ranging from 1.50 µmol/L blood to -1.50 µmol/L blood. The bias for this plot is -0.27. This plot shows a moderately negative bias across methods.

Figure 32. Bias Plot of Tetradecenoylcarnitine (C14:1) Values by Method Quarter 1, Specimen 20221006001 Expected Value (EV) = 1.82 µmol/L blood

C14:1

Specimen: 20221006001

Enriched: 1.80 CDC Characterized Value: 1.40 Participant Mean: 1.23 Participant Bias: -0.59

The C14:1 bias plot shows units of measure on the y-axis ranging from 2.00 µmol/L blood to 2.00 µmol/L blood. The bias for this plot is -0.59. This plot shows a moderately negative bias across methods.

Figure 33. Bias Plot of Palmitoylcarnitine (C16) Values by Method Quarter 1, Specimen 20221006005 Expected Value (EV) = 20.42 µmol/L blood

The C16 bias plot shows units of measure on the y-axis ranging from 12.00 µmol/L blood to -12.00 µmol/L blood. The bias for this plot is -2.94. This plot shows a moderately negative bias across methods.

C16

- Specimen: 20221006005
- Enriched: 20.00 CDC Characterized Value: 18.74 Participant Mean: 17.48 Participant Bias: -2.94

Figure 34. Bias Plot of Hydroxypalmitoylcarnitine (C16OH) Values by Method Quarter 3, Specimen 20223006005 Expected Value (EV) = 1.01 µmol/L bloodd

C160H

Specimen: 20223006005

Enriched: 1.00 CDC Characterized Value: 0.90 Participant Mean: 0.65 Participant Bias: -0.36

The C160H bias plot shows units of measure on the y-axis ranging from 1.20 µmol/L blood to -1.20 µmol/L blood. The bias for this plot is -0.36. This plot shows a negative bias and tight scatter across methods.

Figure 35. Bias Plot of Stearoylcarnitine (C18) Values by Method Quarter 1, Specimen 20221006005 Expected Value (EV) = 5.34 µmol/L blood

The C18 bias plot shows units of measure on the y-axis ranging from 2.50 µmol/L blood to -2.50 µmol/L blood. The bias for this plot is -0.61 This plot shows even scatter across methods.

Specimen: 20221006005

C18

Enriched: 5.00 CDC Characterized Value: 5.02 Participant Mean: 4.73 Participant Bias: -0.61

Figure 36. Bias Plot of Oleoylcarnitine (C18:1) Values by Method Quarter 1, Specimen 20221006005 Expected Value (EV) = 8.58 µmol/L blood

C18:1

Specimen: 20221006005

Enriched: 8.00 CDC Characterized Value: 7.20 Participant Mean: 6.59

Participant Bias: -1.99

The C18:1 bias plot shows units of measure on the y-axis ranging from 5.50 µmol/L blood to -5.50 µmol/L blood. The bias for this plot is -1.99. This plot shows low bias across all methods.

The C180H bias plot shows units of measure on the y-axis ranging from 1.20 µmol/L blood to -1.20 µmol/L blood. The bias for this plot is -0.41. The plot shows a slightly negative bias across methods.

C180H

Specimen: 20223006005

Enriched: 0.80

CDC Characterized Value: 0.43

Participant Mean: 0.40

Participant Bias: -0.41

Appendix for Accessibility Descriptions

Figures 2–37, Bias Plots: Bias plots have been created to show a wide range of PT challenge specimens. Bias plots compare two measurements of the same variable. The bias is calculated by subtracting the participant mean value from the CDC expected value. The bias is represented by a broken line. The EV is the sum of the endogenous plus the enrichment values. The solid line represents perfect agreement with the EV or zero bias. When comparing data scatter among figures, the scale (y-axis) might differ. We included the 95% confidence interval for the mean participant bias. A tight scatter within this interval indicates good performance for a method or a group of methods. To illustrate method-related differences in analyte recoveries, we grouped the PT quantitative results by kit or method. Because some of the pools in a routine PT survey represent a unique donor specimen, differences in endogenous materials in the donor specimens might influence method-related differences. We showed representative bias plots for all analytes distributed in PT challenges that required a quantitative measurement to determine the presumptive clinical assessments

References

[1] Watson MS, Lloyd-Puryear MA, Mann MY, Rinaldo P, Howell RR, eds. Newborn screening: towards a uniform screening panel and system. Genet Med 2006;8(5) Suppl: 12S–252S. <u>https://www.acmg.net/PDFLibrary/NBS-Uniform-Screening-Panel.pdf</u>.

[2] Clinical and Laboratory Standards Institute. Dried blood spot specimen collection for newborn screening. 7th ed. CLSI Standard NBS01. Malvern, PA: Clinical and Laboratory Standards Institute; 2021.

Acknowledgments

This NEWBORN SCREENING QUALITY ASSURANCE PROGRAM report is an internal publication distributed to program participants and selected program colleagues. The laboratory quality assurance program is a project cosponsored by the Centers for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories.

CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC) ATLANTA, GA 30341

Director

Rochelle P. Walensky, MD, MPH

Director

National Center for Environmental Health Robin M. Ikeda, MD. MPH (acting)

Director

Division of Laboratory Sciences James L. Pirkle, M.D., Ph.D.

Chief

Newborn Screening and Molecular Biology Branch Carla Cuthbert, Ph.D.

Contributors

John Bernstein, MS Francis Lee, PhD Christofer Brown, BS LiXia Li, PhD Anthony Cervalli, BS Timothy Lim, PhD Michelle Chaney, BS Elizabeth McCown, BS David Cobb, PhD Joanne Mei, PhD Alora Colvin, BS Auriel Moseley, MS Elya Courtney, MPH Stanimila Nikolova, PhD Suzanne Cordovado, PhD Ivy Onyechi, MS Katherine Duneman, MS Gyliann Peña, MS Ernesto Gonzales Reyes, PhD Kostas Petritis, PhD Christopher Greene, PhD Daquille Peppers, MS Rosemary Hage, PhD C. Austin Pickens, PhD Laura Hancock, MS Blanche Temate, PhD Miyono Hendrix, MS Robert Vogt, PhD Omar Aboul Houda, BS Irene Sofikitis Williams, MS Samantha Isenberg, PhD Golriz Yazdanpanah, MS Jihyun Kim, MS Sherri Zobel, BS

Production

Vinay Anumula, MS Se'Von Mills, MS Kizzy Stewart

ASSOCIATION OF PUBLIC HEALTH LABORATORIES SILVER SPRING, MD 20910 President

Denise Toney, PhD, HCLD(ABB) **Chairman, Newborn Screening and Genetics in Public Health Committee** Michele Caggana, Sc.D., FACMG and Joseph Orsini, Ph.D. **Chairman, Newborn Screening Quality Assurance Quality Control Subcommittee** Patrice Held, PhD **Chairman, Newborn Screening Molecular Subcommittee** Denise Kay, Ph.D and Richard Olney, MD, MPH

INQUIRIES TO:

Sherri Zobel, Editor Centers for Disease Control and Prevention (CDC), Newborn Screening Quality Assurance Program—Mailstop S110-3 4770 Buford Highway, N.E., Atlanta, GA 30341-3724 E-mail: <u>NSQAPDMT@cdc.gov</u>

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 33029-4027 Telephone: 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 E-mail: <u>NSQAPDMT@cdc.gov</u> Web: <u>https://www.cdc.gov/labstandards/nsqap.html</u> Publication date: October 2023