[bookmark: _GoBack][image:]

[image:]
	Insert Laboratory Specific Name Here

	Bioinformatic Pipeline Containerization Purpose and Approaches

1.0 Purpose
This document provides an overview of containerization in bioinformatics. The use of containers is rapidly growing, as are the number of tools available for container creation and execution. Deciding which tool to use depends on a researcher’s immediate bioinformatic environment, as well as the environments of colleagues with whom the container will be shared. In addition, researchers need to consider the long-term uses of containerized workflows and whether they meet standards of reproducibility, data preservation, and privacy protection.
2.0 Scope
Here we discuss the advantages, disadvantages, and basic functioning of Docker and Singularity, two commonly employed container programs.
3.0 Related Documents
	Title
	Document Control Number

	Docker Requirements, Installation, and Execution
	

4.0 Definitions
	Term
	Definition

	cgroup
	Control group; an isolated hierarchy of tasks (processes) on Linux

	container
	A standardized unit of software that packages code and all its dependencies

	daemon
	A program that runs in the background and is not directly controlled by the user

	dependency
	Situation in which an object or program uses the function, output, or data of another object or program

	filesystem
	The internal structure of a computer system that determines how data are stored and retrieved

	GPU
	Graphics processing unit; a specialized co-processor (circuit) that assists with the rapid creation of images

	HPC
	High performance computing; the execution of analyses that are too large or would take too long to complete on local machines, split into multiple jobs that run on different hardware and are coordinated through special communication, storage, and scheduling programs

	image
	A virtual replica of a computer device, such as a disk drive or CD

	kernel
	A program at the core of an operating system that controls other programs on the computer

	namespace
	A hierarchical set of unique names used to identify files and other objects, in particular computer environment or container

	OS
	Operating system; the program that manages the operation of a computer, orchestrates its other programs, organizes its directories and files, and ensures a seamless working environment for the user

	root
	The top-level directory, or starting point, of a computer’s file system

	SUID
	Set-user Identification; temporary permission given to a file on Unix and Linux systems such that it can be run as the file owner and not as the logged-in user

	UserNS
	Username space, referring to resources utilized by code run outside of the system kernel and associated with a given user / username.

	VM
	Virtual machine; a virtual environment that operates like a completely separate computer and operating system

5.0 Introduction
Reproducibility
Containerization is the complete encapsulation of a computational environment, tools, pipeline, and data such that it can be saved, shared, and rerun on different platforms by different users. Except for analyses that involve heuristics and other random processes, containerized projects should produce the same results regardless of when or where they are run. Containerization fulfills Sandve’s “Ten Simple Rules for Reproducible Computational Research” [9], and it does so more efficiently and reliably than other attempts at ensuring reproducibility in bioinformatics.
Reproducibility is not only a fundamental requirement of scientific research and clinical testing, but it also allows researchers and testing personnel to share workflows for the purpose of discussion and collaboration. It was previously done by independently recreating computational environments on different machines and then sharing data and workflows. However, software reported in the methods of computational papers often cannot be installed on other machines [2,3], even when using the same platforms and operating systems, due to coding language ambiguities, floating point arithmetic, and other low-level dependencies. In addition, software settings and workflows are often not described with enough detail to ensure replication, and software updates change the computational environment between subsequent runs. In short, barriers to reproducibility have been significant and have only grown with the size and complexity of analyses.
Containerization vs. Virtual Machines
The previous solutions to computational research reproducibility problems were the use of workflow software and virtual machines (VMs), but both of these had limitations that prevented their widespread adoption. Workflow software has been described as too intrusive into the typical operations and incentives of research and clinical testing programs, and commercial versions use proprietary formats and interfaces. [2] VMs, which resemble containerization except that they include the entire environment down to the operating system (OS), have been found by most researchers and testing personnel to be too difficult to understand, alter, scale up, and standardize findings for differing tools across studies. [1,6]
Containers are not, however, incompatible with workflow software or VMs. They can be run inside of VMs and act as nodes within larger workflows. The isolated processes, user, and filesystem of a container run on top of the OS Kernel (usually Linux), [10] which makes it small enough that multiple containers can be used on a desktop system. They can also be packaged together into larger containers and run on high-performance computing systems (HPCs), such as shared computing clusters and cloud computing services.
Docker vs. Singularity
Docker and Singularity are open source, and Singularity is fully compatible with Docker images. However, they do have important differences, which are summarized in the table in Section 9. The critical differences between them mostly stem from their deployment on HPC infrastructure, which is usually cluster-based, off-site, and shared. Moreover, jobs needing HPC are typically scaled-up, often with multiple programs, multiple workflows, large data sets, and requiring scheduling and processor distribution coordination. Singularity was designed with HPC and large-scale computing jobs in mind.
Practitioner Communities
Online communities have recently arisen to help generate and distribute container-based workflows, and participants can find tools and answers there to facilitate their work. These include the State Public Health-Bioinformatics (StaPH-B) Toolkit (https://github.com/StaPH-B/staphb_toolkit), BioContainers (github.com/BioContainers), and the Reproducible Bioinformatics Project (reproducible-bioinformatics.org) [4,6]. The StaPH-B Toolkit is a Python library (a combination of Python script and modules) that facilitates the use of Docker containers made by the StaPH-B practitioner community. It requires prior installation of Python, Java, and Docker or Singularity, and it can then help users navigate the Docker images stored by the StaPH-B community on GitHub (https://github.com/StaPH-B/docker-builds). In addition, the StaPH-B Toolkit includes a User Guide for Docker (https://staph-b.github.io/docker-builds/).
6.0 Docker
Docker has become the most widespread container program in use today, but its shortcomings with HPC led to the development of Singularity. Docker is popular for a variety of reasons: its early entry into the containerization space, ease of use, robust support system, and versions for Windows, Mac, and Linux. It is so dominant at this stage, an important function of other containerization programs is their compatibility with Docker containers. However, because each Docker image uses a daemon with root privileges, Docker presents a security risk to other users on shared HPC resources. [7,10] In addition, the distribution and scheduling of large workflows and jobs with Docker on cluster computing systems requires additional programs. However, because many practitioners work on local machines with a variety of OS systems, Docker is still popular, and their containers are easily ingested by Singularity if needed later.
The creation of a Docker container is done via the writing of a 4- to 5-line text file called a “dockerfile,” which gives a sequence of commands needed to build an image. The image file lacks a file extension and can easily be uploaded to the user’s account on Docker Hub for sharing with others. [2] Because Docker images may include data sets, issues of security and privacy protection still apply, and Docker images with data should be shared using channels with appropriate levels of security. Alternatively, only programs and scripts could be containerized and shared via a personal Docker Hub account, and the data to be utilized with these programs, transferred separately.
The execution of multiple Docker images, especially on HPC systems, can be orchestrated using the programs Kubernetes or Docker Swarm. [1,4] In addition, several workflow programs–e.g., Nextflow, Toil, Pachyderm, Luigi, and Rabix–can incorporate Docker images, and thus it is not necessary to containerize entire pipelines.
7.0 Singularity
Singularity was released in 2017 by Lawrence Berkeley National Laboratory with the aim of creating a containerization tool that could move seamlessly between local and HPC environments, and do so without security issues. [7] It was developed in collaboration with HPC administrators, and Singularity images are subject to all standard UNIX file permissions, executable with various libraries for the C programming language, and compatible with different kernel configurations.
Singularity is fully compatible with Docker images, reading and converting them on command. However, unlike Docker, Singularity is more amenable to packaging entire workflows and data sets instead of individual programs and data files. Singularity files can also be run on Docker, although the process is not as straightforward as the reverse.
Installing Singularity on local workstations has not been trivial, as it requires a Linux environment, but there is a beta version of a desktop version of Singularity now available for Mac OS. On Windows, installing Singularity first requires a Linux VM, and then the further installation of VirtualBox, Vagrant, and Vagrant Manager.
8.0 Other Container Programs
Two other solutions to containerization on HPC environments have been developed: Shifter by the National Energy Research Scientific Computing Center (NERSC) [5] and Charliecloud by Los Alamos National Lab. [8] They are worth mentioning here in case they are encountered. Like Singularity, Shifter and Charliecloud run Docker images in HPC environments without root privileges. However, unlike Singularity they are dependent on Docker images, meaning they cannot create their own container images. The main contrast between Shifter and Charliecloud is simplicity, with the latter being constructed from only 800 lines of code, less than a tenth of that required for Singularity.
9.0 Containerization Comparison
	
	Docker
	Singularity
	Shifter
	Charliecloud

	Privilege model
	Root daemon
	SUID/UserNS
	SUID
	UserNS

	Privileged daemons
	Y
	N
	Y*
	N

	Root operations on center resources
	Y
	Y
	Y
	N

	Additional network config
	Y
	N
	N
	N

	Access to host file system
	N
	Y
	Y
	Y

	Guest supervisor process
	Y
	Y
	Y
	N

	Resource manager-specific code
	N
	N
	Y
	N

	Communication framework-specific code
	N
	Y
	N
	N

	Cache, configuration, or other state
	Y
	Y
	Y
	N

	Native GPU support
	N
	Y
	N
	N

	Works with all HPC schedulers
	N
	Y
	N
	Y

	Dependency on Docker
	N/A
	N
	Y
	Y

	Lines of code
	133K
	11K
	19K
	800

*Confirmation of this is still needed, as the presence of this feature from literature review is unclear.
10.0 Native Containerization and Package Managers
The word “containerization” is sometimes used to refer to the native compartmentalization of processes on Linux, which prevent any one of them from monopolizing all of the available resources or encountering confusion over file names. Indeed, separate “namespaces” (object organizational structures) and “cgroups (control groups)” (an independent hierarchy of processes) in Linux form the basis of containerization and a natural environment for Docker and Singularity.
Another issue is the compatibility of container programs with package managers, which are programs that install, configure, and update other programs. Examples include Conda and Spack, which are especially useful for programmers who wish to move effortlessly between Python, R, as well as different computing environments. The relationships between package managers and container programs is an open question. In some cases the use of containers may be preferable for the reliability of a programing environment than a package manager. In other cases, for example with a pipeline controlled by a Python program being run through a package manager, the entire pipeline, including the Python program and its manager, might be containerized. And in yet another case, a pipeline being driven by a program in a package manager may call upon containerized processes. Additionally, it should be noted that container orchestration (deployment, management, scaling and networking) through offerings such as Kubernetes are available as part of many cloud / hybrid services and can serve to improve scalability in cases where dynamic HPC requirements are needed.
11.0 References
1. Bernstein, D., 2014. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Computing, 1(3), pp.81-84.
2. Boettiger, C., 2015. An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems Review, 49(1), pp.71-79.
3. Collberg, C., Proebsting, T., Warren, A., 2014. Measuring Reproducibility in Computer Systems Research. 1st Workshop on Reproducible Research Methodologies and New Publication Models in Computer Engineering, June 12, 2014, Edinburgh, UK.
4. Fjukstad, B. and Bongo, L.A., 2017. A review of scalable bioinformatics pipelines. Data Science and Engineering, 2(3), pp.245-251.
5. Kincade, K. “Shifter Makes Container-based HPC a Breeze,” NERSC News, August 11, 2015. (https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2015/shifter-makes-container-based-hpc-a-breeze/)
6. Kulkarni, N., Alessandrì, L., Panero, R., Arigoni, M., Olivero, M., Ferrero, G., Cordero, F., Beccuti, M. and Calogero, R.A., 2018. Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines. BMC Bioinformatics, 19(10), pp.5-13.
7. Kurtzer, G.M., Sochat, V. and Bauer, M.W., 2017. Singularity: Scientific containers for mobility of compute. PloS One, 12(5), p.e0177459.
8. Priedhorsky, R. and Randles, T., 2017, November. Charliecloud: Unprivileged containers for user-defined software stacks in HPC. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-10).
9. Sandve, G.K., Nekrutenko, A., Taylor, J. and Hovig, E., 2013. Ten simple rules for reproducible computational research. PLoS Comput Biol, 9(10), p.e1003285.
10. Younge, A.J., Pedretti, K., Grant, R.E. and Brightwell, R., 2017. A tale of two systems: Using containers to deploy HPC applications on supercomputers and clouds. In: 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 74-81). IEEE.
12.0 Revision History
	Rev #
	DCR #
	Change Summary
	Date

	
	
	
	

	Document #:
	
	Revision #:
	
	Effective Date:
	
	
	Page 1 of 5

	Document #:
	
	Revision #:
	
	Effective Date:
	
	
	Page 1 of 5

image1.png

image2.png

image3.png

