[image:]

[image:]

Bioinformatics Pipeline Documentation Standardization – Technical Best Practices
1.0 Purpose
This document provides guidance on methods to strengthen and standardize presentation of metadata. Greater standardization should enhance understanding and transparency of bioinformatics publications. Thus, promoting reproducible analytics and results, providing standardized documentation and capture of Bioinformatics analysis.
2.0 Scope
This document applies to Bioinformatics and NGS analytics personnel that are responsible for the handling of NGS data, analysis and any resulting outputs derived through these processes. This document covers mapping of sample information to analytics/run metadata, capture of bioinformatics workflow/pipeline specific metadata as well as tools and methods (manual and automated) for implementation of existing standards and frameworks.
3.0 Related Documents
	Title
	Document Control Number

	Bioinformatics Pipeline Documentation Standardization – Laboratory Management Briefing
	

4.0 Definitions
	Term
	Definition

	
	

5.0 Part 1 – Sample to Run Relationship Mapping
Enhanced clarity on samples being examined and details of processing and analytic assessments should add transparency and enhance usability. For this reason, it is advised that any important sample identifiers are associated with a Bioinformatics Pipeline and relevant pipeline specific metadata (i.e. version, run date) and documented in a standard format of your choosing such that this information can be easily accessed and queried from a single view, object or file. An implementation of this could be accomplished in either an automated or manual fashion and captured within a LIMS workflow (e.g. Clarity). The information in the table below should be recorded. See Appendix A for an example template to record the information.
	Information
	Description

	Analysis Run Date
	The date on which analysis was performed

	Analysis Point of Contact
	The personnel who executed the analysis

	Analysis Run Output Path
	Path/network location of outputted files from analysis

	Computing environment
	HPC Aspen and/or Biolinux, Cloud infrastructure (e.g., AWS, Azure, Google, Bluemix), 3rd party vendor software (e.g., CLC genomics, Geneious, One Codex), open source tools, external collaborator (e.g., University infrastructure)

	Sequencing Run Date
	The date on which the sequencing was performed

	Sample(s) ID(s)
	Sample IDs for samples included in the analysis

	Analysis Run Notes
	Relevant notes or instructions that document decisions made or key items to understand the analysis

	Software / Pipeline Used
	The software or pipeline utilized for the analysis

	Software / Pipeline Version
	The version of the software or pipeline utilized for the analysis

6.0 Part 2 – Important Metadata to Be Captured
Documenting more specific metadata associated with each run and the steps involved is also advised for more detailed review and quality control. This will require the capture of standard comprehensive metadata that should allow for a complete reproduction of the analysis and results at each step of the pipeline. This information could be auto-generated in a log file by a pipeline, such that a unique file exists for each run or sample of a given workflow.

These metadata would be ideal to allow for a complete snapshot of the analysis. However, if much of this data would remain the same across each analytical run, please utilize best judgment to reduce redundancy in capture of data. At the minimum, it is recommended to document variable metadata from the Inputs, Steps and Parameters categories below and provide a link to documentation of general workflow information that would remain consistent across runs.

See the compendium of appendices for examples of how this metadata is captured in a variety of frameworks and approaches.

See below tables for a platform agnostic list of metadata that should be captured:
	Metadata: General workflow information

	Information
	Description

	Workflow / Pipeline name
	Name of the pipeline or software utilized

	Description
	Description of the pipeline at a high level

	Documentation URI
	Location of associated manuals, documents and/or guidance

	Pipeline Version
	Version control through git, subversion or CVS

	Run Identifier
	Unique Run/Job ID or version number of the code executed

	Username
	User who executed the pipeline or software

	Output Path / Location
	Path at which output files are stored

	Date / Time of Execution
	Time stamp for the execution of the pipeline or software

	Inputs

	Information
	Description

	Name (including file extension)
	Full name of the file or source data

	Description
	Description of the input file, specification or reference files

	Input Path / Location
	Path at which input files are stored

	Steps

	Information
	Description

	Name
	Name of step

	Number
	The point in the overall pipeline or workflow at which the step is executed

	Tool / Software Name
	The name(s) of the software or scripts executed in this step

	Version
	The version number(s) of the aforementioned tools/software

	Parameters

	Information
	Description

	Name
	Name of the parameter/information

	Step
	The step of the pipeline or run at which the parameter is used

	Value
	The value to be fed into this parameter

7.0 Part 3 – Tools and Formats for Implementation
There are existing standards and formats for the capture of these types of metadata, some example implementations are BioComputeObjects, GeneFlow, Snakemake, Bionumerics and custom log files. Appendices B-F provide examples of the associated files including JSON (used with BioComputeObjects), YAML (used with GeneFlow workflow) and others. These files can be generated through both manual and automated means. While automation is the recommended approach, feasibility to implement will vary based on a lab’s available technical resources. With regards to automated approaches to generate these files, there are several libraries available offering support for the generation of JSON and YAML files. For example, the Python has the built-in json package and the PyYAML package for YAML parsing and emitting. To assist with the understanding of what an implementation could look like, please see the appendices B-F for sample pipelines and screenshots from example metadata files.

8.0 References
8.1 BioComputeObjects. (2018). Retrieved October 2, 2019, from https://biocomputeobject.org/about.html.
8.2 Johannes Köster, Sven Rahmann, Snakemake—a scalable bioinformatics workflow engine, Bioinformatics, Volume 28, Issue 19, 1 October 2012, Pages 2520–2522, https://doi.org/10.1093/bioinformatics/bts480
8.3 OAMD Scientific Computing and Bioinformatics Support Team. (2019, July). GeneFlow: A Framework for Building, Running, and Sharing Bioinformatics Workflows.

9.0 Revision History
	Rev #
	DCR #
	Change Summary
	Date

	
	
	
	

10.0 Approval

Approved Signature:

Appendix A – Sample to Run Relationship Mapping Example Template
	Analysis
Run Date

	Run ID
	Run Output Path
	Run Notes
	Sample ID(s)

	Sample Notes

	Software / Pipeline

	
	
	
	
	
	
	

Appendix – B – BioComputeObjects
BioCompute Objects Example Pipeline
Please see below for a simple example pipeline and metadata capture through BioComputeObjects:
[image:]
Provenance Domain – used to provide information regarding origin and status of the pipeline object including: created and modified dates, license, contributors and reviewers, and obsolescence and embargo.
[image:]
Description Domain – used to provide information descripting the steps of the pipeline including: Platform, keywords and step details (software name and version, description, inputs and outputs, order number).
[image:]
Parametric Domain – used to indicate parameters for each step. This domain only includes parameters that can affect the output of the calculations. Fields include: Parameter Name, Value and Step Number.
[image:]
Input / Output Domain – Used to identify the global inputs and outputs of the entire pipeline, excluding intermediate steps. Fields include: URI (can reference local or public data sources), Mediatype (MIME type), Access Time (time stamp of access).
[image:]

Appendix C - GeneFlow
GeneFlow Workflow Metadata Example
[image:]
Metadata: General workflow information
Workflow / Pipeline Name
Description
Documentation URI
Version
Username
Final Output

Inputs: File or folder inputs required by the workflow
[image:]
Inputs
· File
· Label
· Description
· Type
· Default
· Enable
· Visible
· Reference
· Label
· Description
· Type
· Default
· Enable
· Visible
Parameters: Other data (not files of folders required by the workflow)
[image:]
Parameters
· Threads
· Label
· Description
· Type
· Default
· Enable
· Visible

Steps: List of analytical tasks to be performed by the workflow
[image:]
Steps
· Index
· App
· Depend
· Template
· Reference
· Output
· Align
· App
· Depend
· Template
· Input
· Pair
· Reference
· Threads
· Output

Appendix D – Snakemake Example (Snakefile and DAG – Directed Acyclic Graph for execution)
Workflows are defined in “Snakefiles” through domain-specific language that is close to standard Python syntax as shown below. These files are made up of rules that describe how output files are generated from input file in the associated pipeline. Each rule definition specifies a name, any number of input and output files and either a shell command or python code that creates the specified output from given inputs.
print("example snakemake workflow v.2019.12.10")

SAMPLE,READ = glob_wildcards('Sequencing_reads/Raw/{sample}_{read}.fastq')
DATABASE = ['ncbi', 'serotypefinder', 'vfdb']

rule all:
 input:
 # running FastQC
 "fastqc/fastqc.complete",
 # abricate results
 expand("abricate_results/summary/{database}.abricate_summary.txt", database=DATABASE),
 output:
 log="logs/all/all.log"
 singularity:
 "docker://staphb/multiqc:1.8"
 shell:
 """
 date | tee -a {output.log}
 multiqc --version >> {output.log}
 multiqc -f --outdir ./logs 2>> {output.log} | tee -a {output.log}
 """

rule seqyclean:
 input:
 read1='Sequencing_reads/Raw/{sample}_1.fastq',
 read2='Sequencing_reads/Raw/{sample}_2.fastq'
 output:
 read1="Sequencing_reads/QCed/{sample}_clean_PE1.fastq",
 read2="Sequencing_reads/QCed/{sample}_clean_PE2.fastq",
 log="logs/seqyclean/{sample}"
 singularity:
 "docker://staphb/seqyclean:1.10.09"
 shell:
 """
 date | tee -a {output.log}
 echo "seqyclean version: $(seqyclean -h | grep Version)" >> {output.log}
 seqyclean -minlen 25 \
 -qual -c /Adapters_plus_PhiX_174.fasta \
 -1 {input.read1} \
 -2 {input.read2} \
 -o Sequencing_reads/QCed/{wildcards.sample}_clean 2>> {output.log} | tee -a {output.log}
 """

rule fastqc:
 input:
 expand("Sequencing_reads/QCed/{sample}_clean_PE1.fastq", sample=SAMPLE),
 expand("Sequencing_reads/QCed/{sample}_clean_PE2.fastq", sample=SAMPLE),
 output:
 file="fastqc/fastqc.complete",
 log="logs/fastqc/fastqc"
 threads:
 1
 singularity:
 "docker://staphb/fastqc:0.11.8"
 shell:
 """
 date | tee -a {output.log}
 fastqc --version >> {output.log}
 fastqc --outdir fastqc --threads {threads} Sequencing_reads/*/*.fastq* 2>> {output.log} | tee -a {output.log}
 touch fastqc/fastqc.complete
 """

rule shovill:
 input:
 read1=rules.seqyclean.output.read1,
 read2=rules.seqyclean.output.read2
 threads:
 48
 output:
 file="shovill_result/{sample}/contigs.fa",
 log="logs/shovill/{sample}"
 singularity:
 "docker://staphb/shovill:1.0.4"
 shell:
 """
 date | tee -a {output.log}
 shovill --version >> {output.log}
 RAM=$(free -m --giga | grep "Mem:" | awk '{{ print ($2*0.8) }}' | cut -f 1 -d ".")
 echo "Using $RAM RAM and {threads} cpu for shovill" | tee -a {output.log}
 shovill --cpu {threads} \
 --ram $RAM \
 --outdir shovill_result/{wildcards.sample} \
 --R1 {input.read1} \
 --R2 {input.read2} \
 --force 2>> {output.log} | tee -a {output.log}
 """

rule abricate:
 input:
 rules.shovill.output.file
 output:
 file="abricate_results/{database}/{database}.{sample}.out.tab",
 log="logs/abricate/{sample}.{database}"
 threads:
 5
 singularity:
 "docker://staphb/abricate:0.8.13s"
 shell:
 """
 date | tee -a {output.log} {output.log}
 abricate --version >> {output.log}
 abricate --list >> {output.log}
 abricate --db {wildcards.database} --threads {threads} --minid 80 --mincov 80 {input} > {output.file} 2>> {output.log}
 """

rule abricate_summary:
 input:
 expand("abricate_results/{database}/{database}.{sample}.out.tab", sample=SAMPLE, database=DATABASE),
 output:
 file="abricate_results/summary/{database}.abricate_summary.txt",
 log="logs/abricate/{database}_summary"
 threads:
 1
 singularity:
 "docker://staphb/abricate:0.8.13s"
 shell:
 """
 date | tee -a {output.log}
 abricate --version >> {output.log}
 abricate --summary abricate_results*/{wildcards.database}/{wildcards.database}*tab > {output.file} 2>> {output.log}
 """

Execution Example Snakemake DAG (directed acyclic graph)
Snakemake can produce DAG’s in which the nodes are jobs (i.e. execution of a defined rule). Directed lines indicated that the node being directed to requires the inputs pointing to it. For example, in the diagram below (i. fastqc and shovill each require output from seqyclean).
Simple DAG (High-level Example Workflow)
[image:]
Advanced DAG (Detailed Example Workflow)
[bookmark: _GoBack][image:]

Appendix – E – Metadata Capture Example (Custom Config / Log File)
Example custom JSON file
{
 "workflow": {
 "name": "Tredegar",
 "description": "Bioinformatics pipeline for infectious disease WGS data QC",
 "documentation": "https://staph-b.github.io/staphb_toolkit/tredegar",
 "version": "v2.1",
 "created": "2019-10-10",
 "license": "https://www.apache.org/licenses/LICENSE-2.0",
 "contributors": {
 "contributor_01": {
 "name": "Kevin G. Libuit",
 "affiliation": "Division of Consolidated Laboratory Services Richmond VA",
 "email": "kevin.libuit@dgs.virginia.gov"
 },
 "contributor_02": {
 "name": "Kelsey Florek",
 "affiliation": "Wisconsin State Laboratory of Hygiene Madison WI",
 "email": "Kelsey.Florek@slh.wisc.edu"
 }
 },
 "review": {
 "status": "in-review",
 "reviewer_comment": "",
 "date": "2019-10-10",
 "reviewer": {
 "name": "Rachael St. Jacques",
 "affiliation": "Division of Consolidated Laboratory Services Richmond VA",
 "email": "rachael.stjacques@dgs.virginia.gov"
 }
 }
 },
 "parameters": {
 "mash": {
 "image": "staphb/mash",
 "tag": "2.1",
 "mash_sketch": {
 "sketch_params": ""
 },
 "mash_dist": {
 "dist_params": "",
 "db": "/db/RefSeqSketchesDefaults.msh"
 }
 },
 "seqyclean": {
 "image": "staphb/seqyclean",
 "tag": "1.10.09",
 "params": {
 "minimum_read_length": "25",
 "quality_trimming": "-qual",
 "contaminants": "/Adapters_plus_PhiX_174.fasta",
 "additional_params": ""
 }
 },
 "shovill": {
 "image": "staphb/shovill",
 "tag": "1.0.4",
 "params": ""
 },
 "quast": {
 "image": "staphb/quast",
 "tag": "5.0.2",
 "params": ""
 },
 "cg_pipeline": {
 "image": "staphb/lyveset",
 "tag": "1.1.4f",
 "params": {
 "subsample": "--fast"
 }
 },
 "serotypefinder": {
 "image": "staphb/serotypefinder",
 "tag": "1.1",
 "params": {
 "species": "ecoli",
 "nucleotide_agreement": "95.00",
 "percent_coverage": "0.60",
 "database": "/serotypefinder/database/"
 }
 },
 "seqsero": {
 "image": "staphb/seqsero",
 "tag": "1.0.1",
 "params": ""
 },
 "emm-typing-tool": {
 "image": "staphb/emm-typing-tool",
 "tag": "0.0.1",
 "params": {
 "database": "/db"
 }
 }
 },
 "execution_info": {
 "run_id": "tredegar_run_2019-12-02",
 "user": "user",
 "datetime": "2019-12-02"
 },
 "file_io": {
 "input_files": {
 "19WIARLN001-WI-M3478-190225": [
 "/home/user/tredegar/19WIARLN001-WI-M3478-190225_S11_L001_R1_001.fastq.gz",
 "/home/user/tredegar/19WIARLN001-WI-M3478-190225_S11_L001_R2_001.fastq.gz"
],
 "19WIARLN002-WI-M3478-190225": [
 "/home/user/tredegar/19WIARLN002-WI-M3478-190225_S12_L001_R1_001.fastq.gz",
 "/home/user/tredegar/19WIARLN002-WI-M3478-190225_S12_L001_R2_001.fastq.gz"
]
 },
 "output_files": {
 "tredegar_report": "/home/user/tredegar/tredegar_run_2019-12-02/tredegar_output/tredegar_run_2019-12-02_tredegar_report.tsv",
 "log_file": "/home/user/tredegar/tredegar_run_2019-12-02/tredegar_output/tredegar_run_2019-12-02_tredegar.log"
 }
 }
}

	Document #:
	
	Revision #:
	
	Effective Date:
	
	
	Page 1 of 5

	Document #:
	
	Revision #:
	
	Effective Date:
	
	
	Page 1 of 5

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

