State Injury Indicators Report
Instructions for Preparing 2011 Data
State Injury Indicators Report:
Instructions for Preparing 2011 Data

U.S. Department of Health and Human Services
Centers for Disease Control and Prevention
National Center for Injury Prevention and Control
Division of Analysis, Research and Practice Integration

Atlanta, Georgia
March 2013
Acknowledgements

The editors thank the Safe States Alliance, the Council of State and Territorial Epidemiologists, and their respective members. These partnerships have facilitated the ongoing advancement and success of the development of the injury indicators. The editors also thank Angela Marr, Kevin Webb, and Bob Thomas, Division of Analysis, Research and Practice Integration, and Kelly Sarmiento, Division of Unintentional Injury Prevention, all with the National Center for Injury Prevention and Control, for their consultation and guidance.
FOREWORD AND UPDATES

The Centers for Disease Control and Prevention’s (CDC) National Center for Injury Prevention and Control (NCIPC) is pleased to provide this document to guide you in preparing the 2011 state injury indicators.

Under Funding Opportunity Announcement CE11-1101, 20 states have been funded to collect and submit state injury indicator data; however, all states and U.S. territories are eligible to voluntarily submit data for inclusion in the multistate State Injury Indicators Report. As more states and U.S. territories voluntarily participate in this surveillance effort, a broader picture of the burden of injuries can be presented and priorities for prevention can be targeted. During the 2009 data collection cycle, 33 states participated by submitting data for inclusion in the multistate report. We look forward to continuing our work together to advance and improve injury surveillance.

The methods outlined in this document are consistent with those used in previous cycles of injury indicator data collection. These methods are based on recommendations presented in the “Consensus Recommendations for Using Hospital Discharge Data for Injury Surveillance” and in the National Public Health Surveillance System (NPHSS) indicators developed by the State and Territorial Injury Prevention Directors Association (STIPDA; now known as the Safe States Alliance) and the Council of State and Territorial Epidemiologists (CSTE). With partner feedback, CDC continuously modifies and updates the instructions and methodologies outlined in this document.

Changes for the 2011 data collection cycles include:

- The addition of an acute drug overdose fatality indicator based on the work of the Injury Surveillance Workgroup 7 (page 47).
ABBREVIATIONS

BAC Blood alcohol concentration
BRFSS Behavioral Risk Factor Surveillance System
CDC Centers for Disease Control and Prevention
CSTE Council of State and Territorial Epidemiologists
FARS Fatality Analysis Reporting System
HDD Hospital discharge data
ICD-10 International Classification of Diseases—Tenth Revision
ICD-9-CM International Classification of Diseases—Ninth Revision—Clinical Modification
MVC Motor vehicle crash
NCCDPHP National Center for Chronic Disease Prevention and Health Promotion
NCHS National Center for Health Statistics
NCIPC National Center for Injury Prevention and Control
NHTSA National Highway Traffic Safety Administration
NPHSS National Public Health Surveillance System
OSELS Office of Surveillance, Epidemiology, and Laboratory Services
SAVIR Society for Advancement of Violence and Injury Research
STIPDA State and Territorial Injury Prevention Directors Association (currently Safe States Alliance)
TBI Traumatic brain injury
VA Veterans Affairs
WHO World Health Organization
WISQARS Web-based Injury Statistics Query and Reporting System
YRBS Youth Risk Behavior Survey
CONTENTS

Foreword and Updates .. iv
Abbreviations ... v
Introduction .. 1
Background and Purpose 3
Preparing the Data Sets .. 5
Additional Resources ... 11
Injury Indicators ... 13
 All-Injury Indicator 1: Injury Fatalities 15
 All-Injury Indicator 2: Hospitalizations for All Injuries . 16
 All-Injury Indicator 3: Emergency Department Visits for All Injuries 17
 Drowning Indicator 1: Unintentional Drowning Fatalities ... 18
 Drowning Indicator 2: Drowning-Related Hospitalizations ... 19
 Drowning Indicator 3: Drowning-Related Emergency Department Visits 20
 Fall Indicator 1: Unintentional Fall-Related Fatalities .. 21
 Fall Indicator 2: Unintentional Fall-Related Hospitalizations 22
 Fall Indicator 3: Unintentional Fall-Related Emergency Department Visits 23
 Fall Indicator 4: Hip Fracture Hospitalizations in Persons Aged 65 Years and Older 24
 Fall Indicator 5: Hip Fracture Emergency Department Visits in Persons Aged 65 Years and Older 25
 Fire-Related Indicator 1: Unintentional Fire-Related Fatalities 26
 Fire-Related Indicator 2: Unintentional Fire-Related Hospitalizations 27
 Fire-Related Indicator 3: Unintentional Fire-Related Emergency Department Visits 28
 Firearm-Related Indicator 1: Firearm-Related Fatalities ... 29
 Firearm-Related Indicator 2: Firearm-Related Hospitalizations 30
 Firearm-Related Indicator 3: Firearm-Related Emergency Department Visits 31
 Homicide/Assault Indicator 1: Homicides .. 32
 Homicide/Assault Indicator 2: Assault-Related Hospitalizations 33
 Homicide/Assault Indicator 3: Assault-Related Emergency Department Visits 34
 Homicide/Assault Indicator 4: High School Students Who Were in a Physical Fight 35
Homicide/Assault Indicator 5: High School Students Who Were in a Physical Fight That Required Medical Attention .. 36
Motor Vehicle Indicator 1: Motor Vehicle Traffic Fatalities. .. 37
Motor Vehicle Indicator 2: Motor Vehicle Traffic Hospitalizations 38
Motor Vehicle Indicator 3: Motor Vehicle Traffic Emergency Department Visits 39
Motor Vehicle Indicator 4: Seat Belt Use ... 40
Motor Vehicle Indicator 5: Drinking and Driving in High School Students. 41
Motor Vehicle Indicator 6: High School Students Riding with Someone Drinking and Driving ... 42
Motor Vehicle Indicator 7: Alcohol-Related Crash Deaths .. 43
Poisoning Indicator 1: Poisoning Fatalities ... 44
Poisoning Indicator 2: Poisoning Hospitalizations. ... 45
Poisoning Indicator 3: Poisoning Emergency Department Visits 46
Poisoning Indicator 4: Acute Drug Overdose Fatalities .. 47
Suicide/Suicide Attempt Indicator 1: Suicides .. 48
Suicide/Suicide Attempt Indicator 2: Suicide Attempt Hospitalizations 49
Suicide/Suicide Attempt Indicator 3: Suicide Attempt Emergency Department Visits 50
Suicide/Suicide Attempt Indicator 4: Suicide Attempts in High School Students 51
Suicide/Suicide Attempt Indicator 5: Suicide Attempts in High School Students That Required Medical Attention .. 52
Traumatic Brain Injury Indicator 1: Traumatic Brain Injury Fatalities 53
Traumatic Brain Injury Indicator 2: Traumatic Brain Injury Hospitalizations 54
Traumatic Brain Injury Indicator 3: Traumatic Brain Injury Emergency Department Visits 55
Traumatic Brain Injury Indicator 4: Bicycle Helmet Use Among High School Students 56
Calculating and Submitting Rates ... 57
References ... 59
What is an Injury Indicator?

An injury indicator describes a health outcome of an injury, such as hospitalization or death, or a factor known to be associated with an injury, such as a risk or protective factor among a specified population.

INTRODUCTION

Injury surveillance is one of the most important and basic elements of injury prevention and control. It helps determine the magnitude of injury morbidity and mortality, the leading causes of injury, and the population groups and behaviors associated with the greatest risk of injury. Surveillance data are also fundamental to determining program and prevention priorities. Furthermore, these data are crucial for evaluating the effectiveness of program activities and for identifying problems that need further investigation.

Injury continues to be the leading cause of death and disability among children and young adults. In 2010, more than 183,000 people died from injuries in the U.S. Among them: 21% died from suicide; 18% died from motor-vehicle crashes; 18% died from unintentional poisonings; and 9% died from homicide. Additionally, in 2010, more than 31 million people were treated for injuries in U.S. emergency departments. The economic cost of injuries is also significant. The total cost of the 50 million medically treated injuries sustained in 2000 is estimated to be $406 billion in medical expenses and productivity losses.

The mission of public health includes prevention, mitigation, assurance that the injured have access to treatment, and the reduction of injury-related disability and death. The scope of public health encompasses injuries involving any mechanism (e.g., firearm, motor vehicle, or burn) and includes both violence and unintentional injuries. An important part of the public health mission is to emphasize that injuries are preventable and to dispel the misconception that injuries are unavoidable.

Recognizing the need for more comprehensive injury surveillance data, the State and Territorial Injury Prevention Directors Association (STIPDA) produced Consensus Recommendations for Injury Surveillance in State Health Departments in 1999. These recommendations were developed by a working group representing STIPDA; the Council of State and Territorial Epidemiologists (CSTE); the Centers for Disease Control and Prevention (CDC) and its National Center for Injury Prevention and Control (NCIPC); the Society for Advancement of Violence and Injury Research (SAVIR); and individual state partners. While these recommendations were updated in 2007, they remain a foundational building block for injury surveillance.

The State Health Department Consensus Recommendations identifies specific injuries and injury risk factors to be placed under surveillance by all states and data sets to monitor these injuries and risk factors. The goal is to improve state-based injury surveillance to better support injury prevention programs and policies. By enhancing and standardizing injury surveillance at the state level, its integration with overall public health surveillance as part of the National Public Health Surveillance System (NPHSS) will be much easier. In tandem with the State Health Department Consensus Recommendations, CSTE and STIPDA developed injury indicators that were formally adopted for inclusion in NPHSS. The NPHSS injury indicators add to other indicators developed by CSTE for chronic diseases and other areas.
The *Consensus Recommendations for Using Hospital Discharge Data for Injury Surveillance*, published in 2003, provides clear and specific recommendations about the evaluation and use of hospital discharge data. It presents important considerations for the evaluation of data quality and outlines the methodology for developing an injury hospitalization data set.

Collection and dissemination of injury indicators is built upon the foundation laid by the publication of these Safe States Alliance (formerly known as STIPDA) and CSTE documents.
BACKGROUND AND PURPOSE

This manual was created to guide states and U.S. territories in collecting, preparing, and submitting injury surveillance data. All states and U.S. territories are eligible to voluntarily submit data for this report.

Information obtained from participants will be reviewed and assembled for inclusion in the State Injury Indicators Report. This process provides state and U.S. territory injury programs with a standardized method for evaluating injury data and for producing an injury indicator data product that is comparable across states and U.S. territories.

This manual provides straightforward information to encourage participation of all states and U.S. territories regardless of their epidemiologic infrastructure and capabilities. Participation in this report should not be seen as limiting by states of higher capacity, but rather as a place of commonality and a starting point for developing more sophisticated analysis.

The process of preparing indicators is simplified in that it doesn’t include the merging and unduplicating of cases found in multiple data sets. It is important to keep in mind that the quality of the injury indicators is dependent on the completeness and accuracy of external-cause-of-injury coding found within individual state and U.S. territory data sets.

Statewide, centralized electronic vital statistics, hospital discharge, and emergency department data are used to calculate the indicators prepared and submitted by states and U.S. territories. Injuries resulting in or occurring from the following are currently included in the State Injury Indicators: all injury, drowning, fall-related injury, fire-related injury, firearm-related injury, homicide/assault, motor vehicle-related injury, poisoning, suicide/suicide attempt, and traumatic brain injury (TBI). Overlap exists among these indicators. For example, a firearm-related homicide would be included in both the firearm-related death indicator and the homicide indicator.
PREPARING THE DATA SETS

Background on State Vital Records

Death registration is the responsibility of individual states. The funeral director and the physician who certify the cause of death are usually responsible for the personal and medical information recorded on the death certificate. The cause-of-death section on the certificate is generally the same in all states and is organized according to World Health Organization (WHO) guidelines and coded with ICD-10. Local registrars assure that deaths in their jurisdictions are registered and that required information is on death certificates before submitting to the state registrar. State registrars number and file the death certificates; certificates of nonresidents are sent to their states of residence. All states send death certificate data to the National Vital Statistics System, managed by CDC’s National Center for Health Statistics (NCHS).

Data are limited to information reported on death certificates. The degree of detail in reporting varies among jurisdictions. In general, death certificate data provide limited information about circumstances of injury incidents or contributing factors. The number and type of cause-of-death fields to which states have access also vary, and deaths associated with some injuries, especially suicide, may be underreported. States without access to multiple contributing cause-of-death fields cannot calculate fatality rates for TBI because the diagnostic codes that make up that case definition reside in the contributing cause-of-death fields.

Instructions for Using Vital Statistics Data

Vital statistics data do not require specific preparation for analysis. Include all records with a date of death between January 1, 2011 and December 31, 2011. With the exception of the fatal TBI indicator, all fatal indicators should be calculated by searching the underlying-cause-of-death field only. For the fatal TBI indicator, first limit the dataset to only deaths with an injury underlying cause of death (V01–Y36, Y85–Y87, Y89, *U01–*U03), and then search all fields in the multiple cause of death file. Specific code ranges are identified in the individual indicator pages (see pages 15–56).

Background on State Hospital Discharge Data

At least 90% of all states maintain statewide, centralized, electronic databases of hospital discharge records for nonfederal, acute care hospitals located within their borders. The information collected varies from state to state. Many states use the standard uniform billing form (UB-04) as the basis for their hospital discharge database. Others use only a subset of variables from the UB-04 for their databases, and a few collect additional variables.

The UB-04, developed by the National Uniform Billing Committee, includes the following data elements:

- patient’s age,
- sex,
- zip code,
- admission date,
- length of stay,
- total charges,
- principal diagnosis, and
- up to seventeen additional diagnoses.
For diagnoses resulting from injuries, an external cause of injury is also coded. External-cause-of-injury codes, listed in ICD-9-CM, describe several aspects of an injury: intentionality; mechanism; location of occurrence; external cause status (e.g., civilian activity done for pay, military activity); and activity.\(^{14}\) Completeness of external-cause-of-injury coding varies by state.

Instructions for Creating and Using the Injury Hospitalizations Subset of a State Hospital Discharge Data Set

To calculate Injury Hospitalization Indicators, first you need to create an injury subset of hospital discharge records. Create this subset using the following specifications:

- Include only nonfederal, acute care, or inpatient facilities in your hospital discharge data (HDD) injury subset. This excludes Veterans Affairs (VA) and other federal hospitals, rehabilitation centers, and psychiatric hospitals.
- Include readmissions, transfers, and deaths occurring in the hospital.
- Include hospitalizations of state residents only.
- If the data are available, out-of-state hospitalizations of state residents should be included.
- Include records that have a date of discharge between January 1, 2011 and December 31, 2011.
- Based on the principal diagnosis field, create the injury hospitalization subset as follows:
 - Select injury cases by searching only the principal diagnostic code field for the included diagnosis codes. Exclude all other records from the injury hospitalization subset, as shown in the chart below:\(^9\)

<table>
<thead>
<tr>
<th>INCLUDE</th>
<th>EXCLUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>800–909.2, 909.4, 909.9</td>
<td>< 800</td>
</tr>
<tr>
<td>910–994.9</td>
<td>909.3, 909.5</td>
</tr>
<tr>
<td>995.5–995.59</td>
<td>995.0–995.4</td>
</tr>
<tr>
<td>995.80–995.85</td>
<td>995.6–995.7</td>
</tr>
<tr>
<td>995.86, 995.89</td>
<td>995.86, 995.89</td>
</tr>
<tr>
<td>995.90–995.94</td>
<td>996–999</td>
</tr>
</tbody>
</table>

Once the injury hospitalization subset has been created, calculate the injury indicators case counts as defined on the individual indicator pages (see pages 15–56). Search for external-cause-of-injury codes in the following manner:

- Search all diagnosis fields.
- If a designated external-cause-of-injury field is in the data set, start with that field.
- Count the first-listed external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury fields and all diagnostic fields.
and use the next listed valid external-cause-of-injury code. If a case has multiple valid external-cause-of-injury codes, then only the first one should be used in the analysis. If no other external-cause-of-injury code is present, report E967, E869.4, E870-E879, or E930-E949, but not E000-E030 or E849.

- Hospitalizations (except for hip fracture hospitalizations in persons aged 65 years and older) should be age-adjusted to the 2000 standard using the NCHS population distribution (Table 1, page 58).

Assess the completeness and quality measures of the HDD for the following components:

- Percentage of HDD injury records with external-cause-of-injury coding (Figure 1, below).
- Completeness of hospitals participating in the HDD system.
- Inclusion of readmissions and transfers within the data set used for analysis.
- A subjective assessment by health department staff if a substantial proportion of state residents injured in-state are actually hospitalized in a neighboring state.

FIGURE 1

Background on State Emergency Department Data

The availability of statewide, centralized, electronic department (ED) datasets is increasing. In 2009 about two-thirds of states reported having access to ED data. Many of these datasets are standardized around administrative or billing data. Since many injuries are seen only in the emergency department this is a dataset of emerging importance for injury surveillance.

The Injury Surveillance Workgroup 5 convened by STIPDA recommended that the ICD-9-CM code-based definition to be used with administrative ED data to identify an injury visit be broadened from the definition that is used to identify cases from HDD. For ED data, the injury subset should include any initial visit where the first-listed diagnosis reflects an injury based on the Barell matrix definition of an injury, regardless of any mention
of an external-cause-of-injury code, or any initial visit with a valid external-cause-of-injury code based on the recommended framework for external causes of injury. Similar to the current HDD methodology, complications of care and adverse effects should be excluded from both the diagnosis and external-cause-of-injury codes. For the rationale behind this recommendation, please refer to pages 23–4 of the ISW5 Report.

Instructions for Creating and Using the Injury Subset of a State Emergency Department Data Set

To calculate State Emergency Department Indicators, first you need to create an injury subset of emergency department records. The creation of this subset varies from the creation of the HD subset in that ED injury cases may be identified not only by an injury primary diagnosis code but also by the presence of a valid external-cause-of-injury code. Create the ED subset using the following specifications:

- Include only data from nonfederal, acute care-affiliated facilities in your ED injury subset. This excludes Veterans Affairs (VA) and other federal hospitals, rehabilitation centers, and psychiatric hospitals.
- Include ED visits for state residents only.
- If the data are available, out-of-state ED visits of state residents should be included.
- Include records that have a date of visit between January 1, 2011 and December 31, 2011.
- If necessary, exclude records of patients that are seen in the ED and then admitted to the hospital. For most states, these records are not included in their ED data.
- Create the ED injury subset by searching the principal diagnosis field for injury diagnostic codes and all fields for valid external-cause-of-injury codes.
 - Select injury cases by searching the principal diagnosis field for the included ICD-9-CM diagnosis codes.

<table>
<thead>
<tr>
<th>INCLUDE</th>
<th>EXCLUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>800–909.2, 909.4, 909.9</td>
<td>< 800</td>
</tr>
<tr>
<td>910–994.9</td>
<td>909.3, 909.5</td>
</tr>
<tr>
<td>995.5–995.59</td>
<td>995.0–995.4</td>
</tr>
<tr>
<td>995.80–995.85</td>
<td>995.6–995.7</td>
</tr>
<tr>
<td></td>
<td>995.86, 995.89</td>
</tr>
<tr>
<td></td>
<td>995.90–995.94</td>
</tr>
<tr>
<td></td>
<td>996–999</td>
</tr>
</tbody>
</table>

- Select additional cases by searching all fields for the included external-cause-of-injury codes.
Exclude all other records from the injury ED subset.

Once the injury ED subset has been created, calculate the injury indicators case counts as defined on the individual indicator pages. Search for external-cause-of-injury codes in the following manner:

- Search all diagnosis fields.
- If a designated external-cause-of-injury field is in the data set, start with that field.
- Count the first-listed external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury fields and all diagnostic fields and use the next listed valid external-cause-of-injury code. If a case has multiple valid external-cause-of-injury codes, then only the first one should be used in the analysis. If no other external-cause-of-injury code is present, report E967, E869.4, E870-E879, or E930-E949, but not E000-E030 or E849.
- ED visits (except for hip fracture ED visits in persons aged 65 years and older) should be age-adjusted to the 2000 standard using the NCHS population distribution (Table 1, page 58).

Assess the completeness and quality measures of the ED data for the following components:

- Percentage of ED injury records with external-cause-of-injury coding (Figure 2, below).
- Completeness of hospitals participating in the ED system.
- Inclusion of follow up visits and transfers from other EDs.
- A subjective assessment by health department staff if a substantial proportion of state residents injured in-state are actually treated in EDs in a neighboring state.

FIGURE 2

<table>
<thead>
<tr>
<th>INCLUDE E-CODES</th>
<th>EXCLUDE E-CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>E800-E869</td>
<td>E870-E879</td>
</tr>
<tr>
<td>E880-E929</td>
<td>E930-E949</td>
</tr>
<tr>
<td>E950-E999</td>
<td></td>
</tr>
</tbody>
</table>

Percentage of ED Injury Visits with External Cause Coding

\[
\text{Percentage of ED Injury Visits with Valid External Cause of Injury code} = \frac{\text{All ED Injury Visit Records with a Valid External Cause of Injury code}}{\text{All ED Records with an Injury Principal Diagnosis or a Valid Injury External Cause of Injury code}} \times 100
\]

Number of ED visit records identified using the criteria in the previous tables that have a valid external-cause-of-injury code other than E000-E030, E849, E967, E869.4, E870-E879, or E930-E949

Number of ED visit records identified using the criteria in the previous tables
ADDITIONAL RESOURCES

Other Recommended Data Systems

Indicators based on the Behavioral Risk Factor Surveillance System (BRFSS), the Youth Risk Behavior Survey (YRBS), and the Fatality Analysis Reporting System (FARS) will be calculated at CDC. The data available from YRBS and BRFSS will be examined annually to determine which survey questions should be included.

Behavioral Risk Factor Surveillance System (BRFSS)

CDC’s Office of Surveillance, Epidemiology, and Laboratory Services (OSELS) currently manages the BRFSS. (It was previously housed in the National Center for Chronic Disease Prevention and Health Promotion.) This is a broad ongoing survey that is a state-based, random-digit-dialed telephone survey of the noninstitutionalized U.S. population over age 17. BRFSS monitors risk behaviors associated with the leading causes of disease, injury, and death.\(^{18}\)

Because BRFSS is telephone-based, population subgroups less likely to have telephones, such as persons of low socioeconomic status, may be underrepresented. However, beginning in 2011, BRFSS began to include data from cell phone users to better represent the U.S. population.\(^{19}\) Additionally, data are self-reported and may be biased. For risk-reduction factors such as self-reported use or testing of smoke alarms, these data may not uniformly represent safe and effective use.\(^{18}\)

Not all BRFSS questions are asked every year. Questions asked during the year for which a current Injury Indicator Report is being prepared will be reviewed and appropriate questions included in the report. Results will be reported as a percentage of respondents. For 2011, there is one injury-related BRFSS question that will be reported.

Youth Risk Behavior Survey (YRBS)

The Youth Risk Behavior Survey (YRBS) is managed by the National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP) at CDC. The YRBS monitors risk behaviors associated with the leading causes of injury and death among teenagers.\(^{20}\) State and local departments of education and health conduct the survey biennially in many locations throughout the country. The school-based survey is administered to 9th through 12th graders and the data is analyzed by CDC. YRBS data apply only to youth who attend school. The extent of underreporting or overreporting of behaviors cannot be determined, although the survey questions demonstrate good test–retest reliability. Interstate comparisons must be interpreted cautiously because the methods used to collect YRBS data may vary.\(^{20}\)

In 2011, 43 states conducted YRBS with overall participation rates of at least 60%.\(^{21}\) CDC requires a minimum overall participation rate of 60% to generalize the results to the state’s population. States with YRBS data meeting this criterion will be included. Results will be reported as a percentage of respondents. No age adjustment will be applied. For 2011, there are eight injury-related YRBS questions that will be reported.
Fatality Analysis Reporting System (FARS)

FARS, coordinated by the National Highway Traffic Safety Administration (NHTSA), contains data on all fatal traffic crashes that occur in the 50 states, the District of Columbia, and Puerto Rico. For inclusion in FARS, a crash must involve a motor vehicle traveling on a public roadway and result in the death of a person (either a vehicle occupant or a non-motorist) within 30 days of the crash. The FARS file contains a description of each fatal crash reported. More than 100 coded data elements characterize each crash, the vehicles, and the people involved.22

FARS does not include non-traffic crashes such as those occurring on driveways and other private property. It also does not include deaths occurring more than 30 days after the motor vehicle crash.22
INJURY INDICATORS

The following pages contain specific case definitions for each of the individual injury indicators. These case definitions should be applied when determining case counts. Once the case counts are determined, they should be entered into the provided spreadsheets for rate calculation and submission to CDC.
ALL-INJURY INDICATOR 1:
Injury Fatalities

DEMOGRAPHIC GROUP All residents.

NUMERATOR Deaths with any of the following ICD-10 codes as an underlying cause of death.

Injury Fatality ICD-10 Codes

V01–Y36, Y85–Y87, Y89, *U01–*U03 Injury and poisoning

DENOMINATOR Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION Calendar year based on date of death.

BACKGROUND Injuries are the leading cause of death for people 1 to 44 years of age and the third leading cause of death overall. Over 180,000 people died from injuries in 2010.

LIMITATIONS OF INDICATOR Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that all cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES IVP-1.1: Reduce fatal injuries IVP-11: Reduce unintentional injury deaths
ALL-INJURY INDICATOR 2: Hospitalizations for All Injuries

DEMOGRAPHIC GROUP: All residents.

NUMERATOR: Hospitalizations with any of the following ICD-9-CM diagnostic codes. These should be identified by searching for diagnosis codes only in the principal diagnostic field of the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset). The case count for injury hospitalizations should equal the number of records in your injury hospitalization subset.

<table>
<thead>
<tr>
<th>Diagnosis codes</th>
<th>Injury and poisoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>800–909.2, 909.4, 909.9–994.9</td>
<td></td>
</tr>
<tr>
<td>995.5–995.59, 995.80–995.85</td>
<td></td>
</tr>
</tbody>
</table>

DENOMINATOR: Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY: Annual number of hospitalizations. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES: State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION: Calendar year based on date of discharge.

BACKGROUND: Injury is the leading cause of death and disability among children and young adults in the United States. Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF INDICATOR: The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding.

LIMITATIONS OF DATA RESOURCES: IVP-1.2: Reduce hospitalization for nonfatal injuries

HEALTHY PEOPLE 2020 OBJECTIVES: IVP-12: Reduce nonfatal unintentional injuries
ALL-INJURY INDICATOR 3: Emergency Department Visits for All Injuries

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
ED visits with any of the following ICD-9-CM diagnostic or cause of injury codes. These should be identified by searching for diagnosis codes only in the principal diagnostic field of the ED data set or searching all fields for the first valid external cause of injury code (see methods on page 8 for developing the injury emergency department visit subset). The case count for injury ED visits should equal the number of records in your injury ED visit subset.

Emergency Department Visits for All Injuries ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Diagnosis codes and/or</th>
<th>External-cause-of-injury codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>800–909.2, 909.4, 909.9–994.9, 995.5–995.59, 995.80–995.85</td>
<td>E800-E869, E880-E929, E950-E999</td>
</tr>
</tbody>
</table>

Injury and poisoning

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010, over 31 million people were treated in U.S. emergency departments for injuries with 2.5 million of them hospitalized or transferred to another facility.¹

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-1.3: Reduce emergency department visits for nonfatal injuries
IVP-12: Reduce nonfatal unintentional injuries
DROWNING INDICATOR 1:
Unintentional Drowning Fatalities

DEMOGRAPHIC GROUP All residents.

NUMERATOR Deaths with any of the following ICD-10 codes as an underlying cause of death.

Unintentional Drowning Fatality ICD-10 Codes

- W65–W74 Accidental drowning and submersion
- V90 Accident to watercraft causing drowning and submersion
- V92 Water-transport-related drowning and submersion without accident to watercraft

DENOMINATOR Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION Calendar year based on date of death.

BACKGROUND Drowning is one of the 10 leading causes of injury death for persons under age 55 years. In the United States, drowning rates are highest among children under five years of age. Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF INDICATOR The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that all cases of injury death must contain an injury code in the underlying-cause-of-death field.

LIMITATIONS OF DATA RESOURCES IVP-25: Reduce drowning deaths
DROWNING INDICATOR 2:
Drowning-Related Hospitalizations

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Hospitalizations with any of the following ICD-9-CM diagnostic or external-cause-of-injury codes identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset). These should be identified by searching for diagnosis codes in all diagnostic fields and by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Drowning-Related Hospitalization ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Diagnosis code and/or</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>994.1</td>
<td>Drowning and nonfatal submersion</td>
</tr>
</tbody>
</table>

External-cause-of-injury codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E830</td>
<td>Accident to watercraft causing submersion</td>
</tr>
<tr>
<td>E832</td>
<td>Other accidental submersion or drowning in water transport accident</td>
</tr>
<tr>
<td>E910</td>
<td>Accidental drowning or submersion</td>
</tr>
<tr>
<td>E954</td>
<td>Suicide and self-inflicted injury by submersion (drowning)</td>
</tr>
<tr>
<td>E964</td>
<td>Assault by submersion (drowning)</td>
</tr>
<tr>
<td>E984</td>
<td>Submersion (drowning), undetermined whether accidentally or purposefully inflicted</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of hospitalizations. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of discharge.

BACKGROUND
Drowning-related hospitalizations can result in lifelong disability. Among adolescents and adults, risk factors for drowning include drinking alcohol, swimming alone, and not wearing a personal flotation device while engaged in water sports or recreation. For children under age 5, unexpected access to water or brief lapses in adult supervision are implicated in most drowning incidents.

LIMITATIONS OF INDICATOR
Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury is of particular concern and should be reviewed in conjunction with the indicator.
DROWNING INDICATOR 3:
Drowning-Related Emergency Department Visits

Demographic Group
All residents.

Numerator
Emergency department visits with any of the following ICD-9-CM diagnostic or external-cause-of-injury codes identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset). These should be identified by searching for diagnosis codes in all diagnostic fields and by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Drowning-Related Emergency Department Visit ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Diagnosis code and/or</th>
<th>External-cause-of-injury codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>994.1 Drowning and nonfatal submersion</td>
<td>E830 Accident to watercraft causing submersion</td>
</tr>
<tr>
<td></td>
<td>E832 Other accidental submersion or drowning in water transport accident</td>
</tr>
<tr>
<td></td>
<td>E910 Accidental drowning or submersion</td>
</tr>
<tr>
<td></td>
<td>E954 Suicide and self-inflicted injury by submersion (drowning)</td>
</tr>
<tr>
<td></td>
<td>E964 Assault by submersion (drowning)</td>
</tr>
<tr>
<td></td>
<td>E984 Submersion (drowning), undetermined whether accidentally or purposefully inflicted</td>
</tr>
</tbody>
</table>

Denominator
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

Measures of Frequency
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

Data Resources
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

Period for Case Definition
Calendar year based on date of ED visit.

Background
In 2010, there were an estimated 7,300 emergency department visits for unintentional nonfatal drowning-related injuries

Limitations of Indicator
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

Limitations of Data Resources
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.
FALL INDICATOR 1:
Unintentional Fall-Related Fatalities

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Deaths with any of the following ICD-10 codes as an underlying cause of death.

Unintentional Fall-Related Fatality ICD-10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W00–W19</td>
<td>Falls</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death.

BACKGROUND
Unintentional falls are the third leading cause of injury death overall and the leading cause of injury death in people 65 years and older. In 2010, there were 26,009 unintentional fall-related deaths.

LIMITATIONS OF INDICATOR
Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that all cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-23: Prevent an increase in the rate of fall-related deaths
FALL INDICATOR 2:
Unintentional Fall-Related Hospitalizations

DEMOGRAPHIC GROUP All residents.

NUMERATOR Hospitalizations identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Unintentional Fall-Related Hospitalization ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E880–E886, E888</td>
<td>Accidental falls</td>
</tr>
</tbody>
</table>

DENOMINATOR Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY Annual number of hospitalizations. Annual incidence— crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION Calendar year based on date of discharge

BACKGROUND More than one third of adults 65 and older fall each year.25, 26 Of those who fall, 20% to 30% suffer moderate to severe injuries that make it hard to get around or live alone and increase the chance of early death.27 The total direct cost of nonfatal fall injuries for people 65 and older in 2000 was $19 billion.28

LIMITATIONS OF INDICATOR Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES No objective
FALL INDICATOR 3:
Unintentional Fall-Related Emergency Department Visits

DEMOGRAPHIC GROUP
Resident persons aged 65 years or older

NUMERATOR
Emergency department visits identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000–E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Unintentional Fall-Related Emergency Department Visit ICD-9-CM Codes
E880–E886, E888 Accidental falls

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010, there were over 9.1 million emergency department visits for unintentional fall-related injuries, with over 992,000 resulting in hospitalization or transfer for additional care.1

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
No objective
FALL INDICATOR 4:
Hip Fracture Hospitalizations in Persons Aged 65 Years and Older

DEMOGRAPHIC GROUP
Resident persons aged 65 years or older

NUMERATOR
Hospitalizations with the following ICD-9-CM diagnostic code. These should be identified by searching all diagnostic fields of the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset).

<table>
<thead>
<tr>
<th>Hip Fracture Hospitalization ICD-9-CM Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis code</td>
</tr>
<tr>
<td>820</td>
</tr>
<tr>
<td>Fracture of neck of femur</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population of those 65 years and older for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of hospitalizations. Annual incidence—crude. Rates should be calculated for age and sex.

DATA RESOURCES
State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of discharge.

BACKGROUND
In 2004, there were an estimated 289,000 hospital admissions for hip fractures in people 65 years and older. Up to 25% of adults who lived independently before their hip fracture have to stay in a nursing home for at least a year after their injury and as many as 20% of hip fracture patients die within a year of their injury.

LIMITATIONS OF INDICATOR
Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding.

HEALTHY PEOPLE 2020 OBJECTIVES
No objective.
FALL INDICATOR 5:
Hip Fracture Emergency Department Visits in Persons Aged 65 Years and Older

DEMOGRAPHIC GROUP
Resident persons aged 65 years or older

NUMERATOR
Emergency department visits with the following ICD-9-CM diagnostic code. These should be identified by searching all diagnostic fields of the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset).

<table>
<thead>
<tr>
<th>Hip Fracture Emergency Department Visit ICD-9-CM Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis code</td>
</tr>
<tr>
<td>820</td>
</tr>
<tr>
<td>Fracture of neck of femur</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population of those 65 years and older for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude. Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2004, there were an estimated 289,000 hospital admissions for hip fractures in people 65 years and older.29 Up to 25% of adults who lived independently before their hip fracture have to stay in a nursing home for at least a year after their injury30 and as many as 20% of hip fracture patients die within a year of their injury.31

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding.

HEALTHY PEOPLE 2020 OBJECTIVES
OA-11: Reduce the rate of emergency department visits due to falls among older adults
FIRE-RELATED INDICATOR 1:
Unintentional Fire-Related Fatalities

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Deaths with any of the following ICD-10 codes as an underlying cause of death.

Unintentional Fire-Related Fatality ICD-10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X00–X09</td>
<td>Exposure to smoke, fire, and flames</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death

BACKGROUND
The United States mortality rate from fires ranks sixth among the 25 developed countries for which statistics are available. Four out of five deaths in 2005 occurred in homes and approximately half of home fire deaths occurred in homes without fire alarms.

LIMITATIONS OF INDICATOR
Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-28: Reduce residential fire deaths
FIRE-RELATED INDICATOR 2: Unintentional Fire-Related Hospitalizations

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Hospitalizations identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000–E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Unintentional Fire-Related Hospitalization ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E890–E899</td>
<td>Accident caused by fire and flames</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of hospitalizations. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of discharge.

BACKGROUND
In 2005, fire departments responded to 396,000 home fires in the U.S., which claimed the lives of 3,030 people (not including firefighters) and injured another 13,825 (not including firefighters). Residential fires disproportionately affect young children, older adults, African Americans, and Native Americans. Working smoke alarms reduce the chance of dying in a house fire by 40% to 50%; however, about 25% of U.S. households lack working smoke alarms.

LIMITATIONS OF INDICATOR
Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
No objective
FIRE-RELATED INDICATOR 3:
Unintentional Fire-Related Emergency Department Visits

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Emergency department visits identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000–E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Unintentional Fire-Related Emergency Department Visit ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E890–E899</td>
<td>Accident caused by fire and flames</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010, there were over 400,000 emergency department visits for unintentional fire-related injuries, with over 24,000 resulting in hospitalization or transfer for additional care.

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
No objective
FIREARM-RELATED INDICATOR 1:

Firearm-Related Fatalities

DEMOGRAPHIC GROUP

All residents.

NUMERATOR

Deaths with any of the following ICD-10 codes as an underlying cause of death.

Firearm-Related Fatality ICD-10 Codes

- W32–W34 Exposure to inanimate mechanical forces—firearm discharge
- X72–X74 Intentional self-harm by firearm discharge
- X93–X95 Assault by firearm discharge
- Y22–Y24 Firearm discharge of undetermined intent
- Y35.0 Legal intervention involving firearm discharge
- *U01.4 Terrorism involving firearms

DENOMINATOR

Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY

Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES

Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION

Calendar year based on date of death.

BACKGROUND

Firearm-related injuries were the third leading cause of injury-related death in the United States, accounting for over 31,000 deaths in 2010. Nationally, the firearm-related death rate for males is almost seven times higher than that of females.

LIMITATIONS OF INDICATOR

Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES

The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that all cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES

IVP-30: Reduce firearm-related deaths
FIREARM-RELATED INDICATOR 2:
Firearm-Related Hospitalizations

DEMOGRAPHIC GROUP All residents.

NUMERATOR Hospitalizations identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949, in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

<table>
<thead>
<tr>
<th>Firearm-Related Hospitalization ICD-9-CM Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E922.0–E922.3, E922.8, E922.9 Accident caused by firearm missile</td>
</tr>
<tr>
<td>E955.0–E955.4 Suicide and self-inflicted injury by firearms</td>
</tr>
<tr>
<td>E965.0–E965.4 Assault by firearms</td>
</tr>
<tr>
<td>E985.0–E985.4 Injury by firearms, undetermined whether accidentally, or purposely inflicted</td>
</tr>
<tr>
<td>E970 Injury due to legal intervention by firearms</td>
</tr>
<tr>
<td>E979.4 Terrorism involving firearms</td>
</tr>
</tbody>
</table>

DENOMINATOR Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY Annual number of hospitalizations. Annual incidence rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION Calendar year based on date of discharge.

BACKGROUND Nonfatal firearm-related injury rates are highest among persons ages 15 to 24 years. About one fifth of nonfatal firearm-related injuries treated in U.S. hospital emergency departments are unintentional.

LIMITATIONS OF INDICATOR Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES IVP-31: Reduce nonfatal firearm-related injuries
FIREARM-RELATED INDICATOR 3: Firearm-Related Emergency Department Visits

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Emergency department visits identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949, in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

<table>
<thead>
<tr>
<th>ICD-9-CM Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E922.0–E922.3, E922.8, E922.9</td>
<td>Accident caused by firearm missile</td>
</tr>
<tr>
<td>E955.0–E955.4</td>
<td>Suicide and self-inflicted injury by firearms</td>
</tr>
<tr>
<td>E965.0–E965.4</td>
<td>Assault by firearms</td>
</tr>
<tr>
<td>E985.0–E985.4</td>
<td>Injury by firearms, undetermined whether</td>
</tr>
<tr>
<td></td>
<td>accidentally, or purposely inflicted</td>
</tr>
<tr>
<td>E970</td>
<td>Injury due to legal intervention by firearms</td>
</tr>
<tr>
<td>E979.4</td>
<td>Terrorism involving firearms</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010, there were over 73,000 emergency department visits for nonfatal firearm-related injuries. Males comprised 90% of these visits.¹

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-31: Reduce nonfatal firearm-related injuries
HOMICIDE/ASSAULT INDICATOR 1: Homicides

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Deaths with any of the following ICD-10 codes as an underlying cause of death.

Homicide ICD-10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X85–Y09</td>
<td>Assault</td>
</tr>
<tr>
<td>Y87.1</td>
<td>Sequelae of assault</td>
</tr>
<tr>
<td>*U01</td>
<td>Terrorism-assault</td>
</tr>
<tr>
<td>*U02</td>
<td>Sequelae of terrorism-assault</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death.

BACKGROUND
Homicide is the sixteenth leading cause of death in the United States; it is the second most common cause of death among persons ages 15 to 24 years.1

LIMITATIONS OF INDICATOR
Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that all cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-29: Reduce homicides
HOMICIDE/ASSAULT INDICATOR 2: Assault-Related Hospitalizations

DEMographic GROUP
All residents.

NUMERATOR
Hospitalizations identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

<table>
<thead>
<tr>
<th>Assault-Related Hospitalization ICD-9-CM Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E960–E969 Injury purposely inflicted by other persons</td>
</tr>
<tr>
<td>E979 Terrorism</td>
</tr>
<tr>
<td>E999.1 Late effect of injury due to terrorism</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of persons hospitalized. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of discharge.

BACKGROUND
In 2010, over 1.7 million people were treated in U.S. emergency departments for assault-related injuries with over 140,000 of them hospitalized or transferred for additional care.1

LIMITATIONS OF INDICATOR
Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-32: Reduce nonfatal physical assault injuries
HOMICIDE/ASSAULT INDICATOR 3:
Assault-Related Emergency Department Visits

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Emergency department visits identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Assault-Related Emergency Department Visit ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E960–E969</td>
<td>Injury purposely inflicted by other persons</td>
</tr>
<tr>
<td>E979</td>
<td>Terrorism</td>
</tr>
<tr>
<td>E999.1</td>
<td>Late effect of injury due to terrorism</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010, over 1.7 million people were treated in U.S. emergency departments for assault-related injuries with over 140,000 of them hospitalized or transferred for additional care.1

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-32: Reduce nonfatal physical assault injuries
HOMICIDE/ASSAULT INDICATOR 4: High School Students Who Were in a Physical Fight

This indicator will be calculated at CDC.

<table>
<thead>
<tr>
<th>DEMOGRAPHIC GROUP</th>
<th>Respondents in grades 9–12 who reported being in a physical fight one or more times in the past 12 months.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERATOR</td>
<td>Total respondents in grades 9–12.</td>
</tr>
<tr>
<td>DENOMINATOR</td>
<td>Annual prevalence— crude.</td>
</tr>
<tr>
<td>MEASURES OF FREQUENCY</td>
<td>Data from the Youth Risk Behavior Survey (YRBS).²⁰</td>
</tr>
<tr>
<td>DATA RESOURCES</td>
<td>State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).</td>
</tr>
<tr>
<td>PERIOD FOR CASE DEFINITION</td>
<td>Previous 12 months.</td>
</tr>
</tbody>
</table>

BACKGROUND

Homicide is the second leading cause of death in young adults aged 15–19, with 1,832 deaths in 2010.¹ Additionally, there were an estimated 284,000 nonfatal assault-related injuries treated in U.S. emergency departments for 15–19 year olds, over 18,000 of which required hospitalization or transfer to another facility.¹

LIMITATIONS OF INDICATOR

Self-reported data only represents a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries.

LIMITATIONS OF DATA RESOURCES

As with all self-reported sample surveys, YRBS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias).

HEALTHY PEOPLE 2020 OBJECTIVES

- IVP-33: Reduce physical assaults
- IVP-34: Reduce physical fighting among adolescents
HOMICIDE/ASSAULT INDICATOR 5:
High School Students Who Were in a Physical Fight That Required Medical Attention

This indicator will be calculated at CDC.

<table>
<thead>
<tr>
<th>DEMOGRAPHIC GROUP</th>
<th>Students in grades 9–12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERATOR</td>
<td>Respondents in grades 9–12 who reported being in a physical fight in the past 12 months in which they were injured and had to be treated by a doctor or nurse.</td>
</tr>
<tr>
<td>DENOMINATOR</td>
<td>Total respondents in grades 9–12.</td>
</tr>
<tr>
<td>MEASURES OF FREQUENCY</td>
<td>Annual prevalence— crude.</td>
</tr>
<tr>
<td>DATA RESOURCES</td>
<td>Data from the Youth Risk Behavior Survey (YRBS).²⁰</td>
</tr>
<tr>
<td>PERIOD FOR CASE DEFINITION</td>
<td>Previous 12 months.</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>In 2010, there were an estimated 284,000 nonfatal assault-related injuries treated in U.S. emergency departments for 15–19 year olds, over 18,000 of which required hospitalization or transfer to another facility.¹</td>
</tr>
<tr>
<td>LIMITATIONS OF INDICATOR</td>
<td>Self-reported data only represents a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries.</td>
</tr>
<tr>
<td>LIMITATIONS OF DATA RESOURCES</td>
<td>As with all self-reported sample surveys, YRBS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias).</td>
</tr>
<tr>
<td>HEALTHY PEOPLE 2020 OBJECTIVES</td>
<td>IVP-32: Reduce nonfatal physical assault injuries</td>
</tr>
<tr>
<td></td>
<td>IVP-34: Reduce physical fighting among adolescents</td>
</tr>
</tbody>
</table>
MOTOR VEHICLE INDICATOR 1:
Motor Vehicle Traffic Fatalities

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Deaths with any of the following ICD-10 codes as an underlying cause of death.

Motor Vehicle Traffic Fatality ICD-10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V02–V04 (.1–.9), V09.2</td>
<td>Pedestrian injured in transport accident</td>
</tr>
<tr>
<td>V12–V14 (.3–.9), V19 (.4–.6)</td>
<td>Pedal cyclist injured in transport accident</td>
</tr>
<tr>
<td>V20–V28 (.3–.9), V29 (.4–.9)</td>
<td>Motorcycle rider injured in transport accident</td>
</tr>
<tr>
<td>V30–V39 (.4–.9)</td>
<td>Occupant of three-wheeled motor vehicle injured in transport accident</td>
</tr>
<tr>
<td>V40–V49 (.4–.9)</td>
<td>Car occupant injured in transport accident</td>
</tr>
<tr>
<td>V50–V59 (.4–.9)</td>
<td>Occupant of pick-up truck or van injured in transport accident</td>
</tr>
<tr>
<td>V60–V69 (.4–.9)</td>
<td>Occupant of heavy transport vehicle injured in transport accident</td>
</tr>
<tr>
<td>V70–V79 (.4–.9)</td>
<td>Bus occupant injured in transport accident</td>
</tr>
<tr>
<td>V80 (.3–.5), V81.1, V82.1, V83–V86 (.0–.3), V87 (.0–.8), V89.2</td>
<td>Other land transport accidents</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death.

BACKGROUND
Motor vehicle crashes are the leading cause of injury death in the United States. They are also the leading injury cause for years of potential life lost.

LIMITATIONS OF INDICATOR
Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that all cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-13: Reduce motor vehicle crash-related deaths
IVP-18: Reduce pedestrian deaths on public roads
IVP-20 Reduce pedalcyclist deaths on public roads
MOTOR VEHICLE INDICATOR 2: Motor Vehicle Traffic Hospitalizations

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Hospitalizations identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Motor Vehicle Traffic Hospitalization ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E810–E819</td>
<td>Motor vehicle traffic accidents</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of hospitalizations. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of discharge.

BACKGROUND
In 2010, motor vehicle crashes were the cause of over 4.3 million emergency department visits in the United States. Seat belts dramatically reduce risk of death and serious injury. Among drivers and front-seat passengers, seat belts reduce the risk of death by 45%, and cut the risk of serious injury by 50%.

LIMITATIONS OF INDICATOR
Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-14: Reduce nonfatal motor vehicle crash-related injuries
IVP-19: Reduce nonfatal pedestrian injuries on public roads
MOTOR VEHICLE INDICATOR 3:
Motor Vehicle Traffic Emergency Department Visits

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Emergency department visits identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Motor Vehicle Traffic Emergency Department Visit ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E810–E819</td>
<td>Motor vehicle traffic accidents</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010, motor vehicle crashes were the cause of over 4.3 million emergency department visits in the United States. Seat belts dramatically reduce risk of death and serious injury. Among drivers and front-seat passengers, seat belts reduce the risk of death by 45%, and cut the risk of serious injury by 50%

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-14: Reduce nonfatal motor vehicle crash-related injuries
IVP-19: Reduce nonfatal pedestrian injuries on public roads
MOTOR VEHICLE INDICATOR 4: Seat Belt Use

This indicator will be calculated at CDC.

<table>
<thead>
<tr>
<th>DEMOGRAPHIC GROUP</th>
<th>Resident persons aged 18 years or older.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERATOR</td>
<td>Those respondents reporting wearing their seatbelt “always” or “almost always” when driving or riding in a car.</td>
</tr>
<tr>
<td>DENOMINATOR</td>
<td>Respondents aged 18 years or older.</td>
</tr>
<tr>
<td>MEASURES OF FREQUENCY</td>
<td>Annual prevalence—crude.</td>
</tr>
<tr>
<td>DATA RESOURCES</td>
<td>Data from the Behavioral Risk Factor Surveillance System (BRFSS).</td>
</tr>
<tr>
<td>PERIOD FOR CASE DEFINITION</td>
<td>No time frame.</td>
</tr>
</tbody>
</table>

BACKGROUND
Seat belts dramatically reduce risk of death and serious injury. Among drivers and front-seat passengers, seat belts reduce the risk of death by 45%, and cut the risk of serious injury by 50%.39

LIMITATIONS OF INDICATOR
Self-reported data only represent a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries.

LIMITATIONS OF DATA RESOURCES
As with all self-reported sample surveys, BRFSS data might be subject to systematic error resulting from noncoverage (e.g., lower telephone coverage among populations of low socioeconomic status), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias).

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-15: Increase use of safety belts
MOTOR VEHICLE INDICATOR 5:
Drinking and Driving in High School Students

This indicator will be calculated at CDC.

<table>
<thead>
<tr>
<th>DEMOGRAPHIC GROUP</th>
<th>Students in grades 9–12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERATOR</td>
<td>Respondents in grades 9–12 who reported driving a car or other vehicle when drinking alcohol in the past 30 days.</td>
</tr>
<tr>
<td>DENOMINATOR</td>
<td>Total respondents in grades 9–12.</td>
</tr>
<tr>
<td>MEASURES OF FREQUENCY</td>
<td>Annual prevalence—crude.</td>
</tr>
<tr>
<td>DATA RESOURCES</td>
<td>Data from the Youth Risk Behavior Survey (YRBS).20</td>
</tr>
<tr>
<td>PERIOD FOR CASE DEFINITION</td>
<td>Previous 30 days.</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>At all levels of blood alcohol concentration, the risk of being involved in a crash is greater for young people than for older people.40 In 2005, 16% of drivers ages 16 to 20 who died in motor vehicle crashes had been drinking alcohol.41</td>
</tr>
<tr>
<td>LIMITATIONS OF INDICATOR</td>
<td>Self-reported data only represent a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries.</td>
</tr>
<tr>
<td>LIMITATIONS OF DATA RESOURCES</td>
<td>As with all self-reported sample surveys, YRBS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias).</td>
</tr>
</tbody>
</table>
| HEALTHY PEOPLE 2020 OBJECTIVES | SA-17: Decrease the rate of alcohol-impaired driving (.08+ blood alcohol content [BAC]) fatalities
Sa-20: decrease the number of deaths attributable to alcohol |
MOTOR VEHICLE INDICATOR 6:
High School Students Riding with Someone Drinking and Driving

This indicator will be calculated at CDC.

<table>
<thead>
<tr>
<th>DEMOGRAPHIC GROUP</th>
<th>Students in grades 9–12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERATOR</td>
<td>Respondents in grades 9–12 who reported riding in a car or other vehicle driven by someone who had been drinking alcohol in the past 30 days.</td>
</tr>
<tr>
<td>DENOMINATOR</td>
<td>Total respondents in grades 9–12.</td>
</tr>
<tr>
<td>MEASURES OF FREQUENCY</td>
<td>Annual prevalence—crude.</td>
</tr>
<tr>
<td>DATA RESOURCES</td>
<td>Data from the Youth Risk Behavior Survey (YRBS).²⁰</td>
</tr>
<tr>
<td>PERIOD FOR CASE DEFINITION</td>
<td>Previous 30 days.</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>At all levels of blood alcohol concentration, the risk of being involved in a crash is greater for young people than for older people.⁴⁰ In 2005, 16% of drivers ages 16 to 20 who died in motor vehicle crashes had been drinking alcohol.⁴¹</td>
</tr>
<tr>
<td>LIMITATIONS OF INDICATOR</td>
<td>Self-reported data only represent a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries.</td>
</tr>
<tr>
<td>LIMITATIONS OF DATA RESOURCES</td>
<td>As with all self-reported sample surveys, YRBS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias).</td>
</tr>
<tr>
<td>HEALTHY PEOPLE 2020 OBJECTIVES</td>
<td>SA-1: Reduce the proportion of adolescents who report that they rode, during the previous 30 days, with a driver who had been drinking alcohol SA-17: Decrease the rate of alcohol-impaired driving (.08+ blood alcohol content [BAC]) fatalities SA-20: Decrease the number of deaths attributable to alcohol</td>
</tr>
</tbody>
</table>
MOTOR VEHICLE INDICATOR 7: Alcohol-Related Crash Deaths

This indicator will be calculated at CDC.

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Alcohol-related death of a person involved in crash of a motor vehicle traveling on a public roadway and occurring within 30 days of the crash. Deaths are considered alcohol related if either a driver or nonoccupant (e.g., pedestrian or bicyclist) had a blood alcohol concentration (BAC) greater than or equal to 0.01 g/dL.22

DENOMINATOR
Midyear population for the calendar year under surveillance.

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate— crude.

DATA RESOURCES
Fatality Analysis Reporting System (FARS) coordinated by the National Highway Traffic Safety Administration (NHTSA) (numerator)22 and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on the year of the crash.

BACKGROUND
In 2006, 13,470 people died in alcohol-impaired driving crashes, accounting for nearly one third (32%) of all traffic-related deaths in the United States. Half of the 306 child passengers aged 14 years and younger who died in alcohol-related crashes in 2006 were riding with drivers who had a BAC level of 0.08 g/dL or higher.42

LIMITATIONS OF INDICATOR
Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less severe injuries.

LIMITATIONS OF DATA RESOURCES
FARS does not include nontraffic crashes such as those occurring on driveways and other private property. In addition, it does not include deaths that occur more than 30 days after the motor vehicle crash. Because blood alcohol levels are not available on all fatalities, the estimates are based on a discriminant analysis of information from all cases where BAC data are available.

HEALTHY PEOPLE 2020 OBJECTIVES
SA-17: Decrease the rate of alcohol-impaired driving (.08+ blood alcohol content [BAC]) fatalities
POISONING INDICATOR 1:
Poisoning Fatalities

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Deaths with any of the following ICD-10 codes as an underlying cause of death.

Poisoning Fatality ICD-10 Codes

<table>
<thead>
<tr>
<th>ICD-10 Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X40–X49</td>
<td>Accidental poisoning by and exposure to noxious substances</td>
</tr>
<tr>
<td>X60–X69</td>
<td>Intentional self-poisoning</td>
</tr>
<tr>
<td>X85–X90</td>
<td>Assault by poisoning</td>
</tr>
<tr>
<td>Y10–Y19</td>
<td>Poisoning of undetermined intent</td>
</tr>
<tr>
<td>Y35.2</td>
<td>Legal intervention involving gas</td>
</tr>
<tr>
<td>*U01 (.6–.7)</td>
<td>Terrorism involving biological or chemical weapons</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population).

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death.

BACKGROUND
Poisoning is the result of the damaging effect of exposure to a broad range of chemicals (e.g., gases, pesticides, heavy metals, drugs, and common household substances such as bleach and ammonia). In 2010, over 42,000 people in the United States died from poisoning.

LIMITATIONS OF INDICATOR
Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-9: Prevent an increase in the rate of poisoning deaths
MPS-2.4: (Developmental) Reduce deaths from the use of pain medicines
SA-12: Reduce drug-induced deaths
POISONING INDICATOR 2: Poisoning Hospitalizations

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Hospitalizations identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030. E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Poisoning Hospitalization ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E850–E858</td>
<td>Accidental poisoning by drugs, medicinal substances, and biologicals</td>
</tr>
<tr>
<td>E860–E869</td>
<td>Accidental poisonings by other solid and liquid substances, gases, and vapors</td>
</tr>
<tr>
<td>E950–E952</td>
<td>Suicide and self-inflicted poisoning</td>
</tr>
<tr>
<td>E962</td>
<td>Assault by poisoning</td>
</tr>
<tr>
<td>E972</td>
<td>Injury due to legal intervention by gas</td>
</tr>
<tr>
<td>E980–E982</td>
<td>Poisoning undetermined whether accidentally or purposefully inflicted</td>
</tr>
<tr>
<td>E979 (.6–.7)</td>
<td>Terrorism involving biological or chemical weapons</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of hospitalizations. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2010 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of discharge.

BACKGROUND
In 1999, 21 states reported that hospitalization rates were 4 to 15 times higher than death rates for poisoning-related injuries.

LIMITATIONS OF INDICATOR
Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of e-coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-10: Prevent an increase in the rate of nonfatal poisonings
MPS-2.3: (Developmental) Reduce serious injuries from the use of pain medicines
POISONING INDICATOR 3:
Poisoning Emergency Department Visits

DEMographic GROUP
All residents.

NUMERATOR
Emergency department visits identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If a designated external-cause-of-injury field is in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and use the next listed valid external-cause-of-injury code.

Poisoning Emergency Department Visit ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E850–E858</td>
<td>Accidental poisoning by drugs, medicinal substances, and biologicals</td>
</tr>
<tr>
<td>E860–E869</td>
<td>Accidental poisonings by other solid and liquid substances, gases, and vapors</td>
</tr>
<tr>
<td>E950–E952</td>
<td>Suicide and self-inflicted poisoning</td>
</tr>
<tr>
<td>E962</td>
<td>Assault by poisoning</td>
</tr>
<tr>
<td>E972</td>
<td>Injury due to legal intervention by gas</td>
</tr>
<tr>
<td>E980–E982</td>
<td>Poisoning undetermined whether accidentally or purposefully inflicted</td>
</tr>
<tr>
<td>E979 (.6–.7)</td>
<td>Terrorism involving biological or chemical weapons</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010 there were over 1 million poisoning-related emergency department visits, of which 406,000 resulted in hospitalization or transfer for additional care.1

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-10: Prevent an increase in the rate of nonfatal poisonings
MPS-2.3: (Developmental) Reduce serious injuries from the use of pain medicines
POISONING INDICATOR 4:
Acute Drug Overdose Fatalities

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Deaths with any of the following ICD-10 codes as an underlying cause of death.

Acute Drug Overdose Fatality ICD-10 Codes
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X40–X44</td>
<td>Accidental poisoning by drugs</td>
</tr>
<tr>
<td>X60–X64</td>
<td>Intentional self-poisoning by drugs</td>
</tr>
<tr>
<td>X85</td>
<td>Assault by drug poisoning</td>
</tr>
<tr>
<td>Y10–Y14</td>
<td>Drug poisoning of undetermined intent</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death.

BACKGROUND
In 2010, drug overdose deaths (38,329), a subcategory of poisoning deaths, exceeded the number of deaths from motor vehicle traffic crashes (33,687), the leading cause of injury death in the United States.

LIMITATIONS OF INDICATOR
Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that cases of injury death must contain an injury code in the underlying-cause-of-death field.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-9: Prevent an increase in the rate of poisoning deaths
MPS-2.4: (Developmental) Reduce deaths from the use of pain medicines
SA-12: Reduce drug-induced deaths
SUICIDE/SUICIDE ATTEMPT INDICATOR 1:
Suicides

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Deaths with any of the following ICD-10 codes as an underlying cause of death.

Suicide ICD-10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X60–X84</td>
<td>Intentional self-harm</td>
</tr>
<tr>
<td>Y87.0</td>
<td>Sequelae of intentional self-harm</td>
</tr>
<tr>
<td>*U03</td>
<td>Terrorism-intentional self-harm</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death.

BACKGROUND
In 2010, suicide was the second leading cause of death among adults ages 25 to 34 years and the third leading cause of death for adolescents and young adults ages 10 to 24 years. Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF INDICATOR
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that cases of injury death must contain an injury code in the underlying-cause-of-death field.
SUICIDE/SUICIDE ATTEMPT INDICATOR 2: Suicide Attempt Hospitalizations

DEMOGRAPHIC GROUP All residents.

NUMERATOR Hospitalizations identified from the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If there is a designated external-cause-of-injury field in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and then use the next listed valid external-cause-of-injury code.

Suicide Attempt Hospitalization ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E950–E959</td>
<td>Suicide and self-inflicted injury</td>
</tr>
</tbody>
</table>

DENOMINATOR Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY Annual number of hospitalizations. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION Calendar year based on date of discharge.

BACKGROUND In 2010, there were an estimated 465,000 hospital emergency department visits for suicide attempts in the United States.1

LIMITATIONS OF INDICATOR Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES IVP-41: Reduce nonfatal intentional self-harm injuries

MHMD-2: Reduce suicide attempts by adolescents
SUICIDE/SUICIDE ATTEMPT INDICATOR 3: Suicide Attempt Emergency Department Visits

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Emergency department visits identified from the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset) by searching for external-cause-of-injury codes in the following manner: Search all diagnosis fields. If there is a designated external-cause-of-injury field in your data set, start with that field. Count the first-listed valid external-cause-of-injury code, unless it is E000-E030, E849, E967, E869.4, E870–E879, or E930–E949; in which case, search additional external-cause-of-injury and diagnostic fields and then use the next listed valid external-cause-of-injury code.

Suicide Attempt Emergency Department Visit ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E950–E959</td>
<td>Suicide and self-inflicted injury</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of ED visit.

BACKGROUND
In 2010, there were an estimated 465,000 hospital emergency department visits for suicide attempts in the United States.1

LIMITATIONS OF INDICATOR
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding. The overall completeness of external-cause-of-injury coding is of particular concern and should be reviewed in conjunction with the indicator.

HEALTHY PEOPLE 2020 OBJECTIVES
- IVP-41: Reduce nonfatal intentional self-harm injuries
- MHMD-2: Reduce suicide attempts by adolescents
SUICIDE/SUICIDE ATTEMPT INDICATOR 4:
Suicide Attempts in High School Students

This indicator will be calculated at CDC.

<table>
<thead>
<tr>
<th>DEMOGRAPHIC GROUP</th>
<th>Students in grades 9–12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERATOR</td>
<td>Respondents in grades 9–12 who reported attempting suicide one or more times in the past 12 months.</td>
</tr>
<tr>
<td>DENOMINATOR</td>
<td>Total respondents in grades 9–12.</td>
</tr>
<tr>
<td>MEASURES OF FREQUENCY</td>
<td>Annual prevalence—crude.</td>
</tr>
<tr>
<td>DATA RESOURCES</td>
<td>Data from the Youth Risk Behavior Survey (YRBS).</td>
</tr>
<tr>
<td>PERIOD FOR CASE DEFINITION</td>
<td>Previous 12 months.</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>Suicide is the third leading cause of death in young adults aged 15–24. For every death in this age group, there are 100–200 suicide attempts.</td>
</tr>
<tr>
<td>LIMITATIONS OF INDICATOR</td>
<td>Self-reported data only represent a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries.</td>
</tr>
<tr>
<td>LIMITATIONS OF DATA RESOURCES</td>
<td>As with all self-reported sample surveys, YRBS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias).</td>
</tr>
<tr>
<td>HEALTHY PEOPLE 2020 OBJECTIVES</td>
<td>MHMD-2: Reduce suicide attempts by adolescents</td>
</tr>
</tbody>
</table>
SUICIDE/SUICIDE ATTEMPT INDICATOR 5:
Suicide Attempts in High School Students
That Required Medical Attention

This indicator will be calculated at CDC.

DEMOGRAPHIC GROUP
Students in grades 9–12.

NUMERATOR
Respondents in grades 9–12 who reported attempting suicide one or more times in the past 12 months.

DENOMINATOR
Total respondents in grades 9–12.

MEASURES OF FREQUENCY
Annual prevalence—crude.

DATA RESOURCES
Data from the Youth Risk Behavior Survey (YRBS).²⁰

PERIOD FOR CASE DEFINITION
Previous 12 months.

BACKGROUND
Suicide is the third leading cause of death in young adults aged 15–24.¹ For every death in this age group, there are 100–200 suicide attempts.⁴⁶

LIMITATIONS OF INDIcATOR
Self-reported data only represent a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries.

LIMITATIONS OF DATA RESOURCES
As with all self-reported sample surveys, YRBS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias).

HEALTHY PEOPLE 2020 OBJECTIVES
MHMD-2: Reduce suicide attempts by adolescents
TRAUMATIC BRAIN INJURY INDICATOR 1:
Traumatic Brain Injury Fatalities

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
First, limit deaths to those with an injury underlying cause of death (V01–Y36, Y85–Y87, Y89, *U01–*U03). Then select deaths with any of the following ICD-10 codes in any field of the multiple cause of death file.

Traumatic Brain Injury Fatality ICD-10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01.0–S01.9</td>
<td>Open wound of head</td>
</tr>
<tr>
<td>S02.0, S02.1, S02.3, S02.7–S02.9</td>
<td>Fracture of skull and facial bones</td>
</tr>
<tr>
<td>S04.0</td>
<td>Injury of optic nerve and pathways</td>
</tr>
<tr>
<td>S06.0–S06.9</td>
<td>Intracranial injury</td>
</tr>
<tr>
<td>S07.0, S07.1, S07.8, S07.9</td>
<td>Crushing injury of head</td>
</tr>
<tr>
<td>S09.7–S09.9</td>
<td>Other and unspecified injuries of head</td>
</tr>
<tr>
<td>T01.0*</td>
<td>Open wounds involving head with neck</td>
</tr>
<tr>
<td>T02.0*</td>
<td>Fractures involving head with neck</td>
</tr>
<tr>
<td>T04.0*</td>
<td>Crushing injuries involving head with neck</td>
</tr>
<tr>
<td>T06.0*</td>
<td>Injuries of brain and cranial nerves with injuries of nerves and spinal cord at neck level</td>
</tr>
<tr>
<td>T90.1, T90.2, T90.4, T90.5, T90.8, T90.9</td>
<td>Sequelae of injuries of head</td>
</tr>
</tbody>
</table>

* These codes are not considered valid in the U.S.

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of deaths. Annual mortality rate—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
Death certificate data from vital statistics agencies (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of death.

BACKGROUND
Of the approximately 1.7 million people who sustained a TBI in the United States each year, an estimated 52,000 died; 275,000 were hospitalized; and 1.365 million were treated and released from an emergency department. Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less-severe injuries.

LIMITATIONS OF INDICATOR
The accuracy of indicators based on codes found in vital statistics data is limited by the completeness and quality of coding.

LIMITATIONS OF DATA RESOURCES
IVP-2.1 Reduce fatal traumatic brain injuries
TRAUMATIC BRAIN INJURY INDICATOR 2: Traumatic Brain Injury Hospitalizations

DEMOGRAPHIC GROUP
All residents.

NUMERATOR
Hospitalizations with any of the following ICD-9-CM diagnostic codes. These should be identified by searching all diagnostic fields of the injury hospital discharge subset (see methods on page 6 for developing the injury hospital discharge subset).

<table>
<thead>
<tr>
<th>Diagnosis codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>800.00–801.99</td>
<td>Fracture of the vault or base of the skull</td>
</tr>
<tr>
<td>803.00–804.99</td>
<td>Other and unqualified or multiple fractures of the skull</td>
</tr>
<tr>
<td>850.0–850.9</td>
<td>Concussion</td>
</tr>
<tr>
<td>851.00–854.19</td>
<td>Intracranial injury, including contusion, laceration, and hemorrhage</td>
</tr>
<tr>
<td>950.1–950.3</td>
<td>Injury to the optic chiasm, optic pathways, or visual cortex</td>
</tr>
<tr>
<td>959.01</td>
<td>Head injury, unspecified</td>
</tr>
<tr>
<td>995.55</td>
<td>Shaken infant syndrome</td>
</tr>
</tbody>
</table>

DENOMINATOR
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

MEASURES OF FREQUENCY
Annual number of hospitalizations. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

DATA RESOURCES
State hospital discharge data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

PERIOD FOR CASE DEFINITION
Calendar year based on date of discharge.

BACKGROUND
An estimated 5.3 million Americans live with a TBI-related disability. According to one study, about 40% of those hospitalized with a TBI had at least one unmet need for services one year after their injury.48, 49

LIMITATIONS OF INDICATOR
Injuries that result in a hospital admission represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

LIMITATIONS OF DATA RESOURCES
The accuracy of indicators based on codes found in hospital discharge data is limited by the completeness and quality of coding.

HEALTHY PEOPLE 2020 OBJECTIVES
IVP-2.2 Reduce hospitalization for nonfatal traumatic brain injuries

Traumatic Brain Injury Indicator 3:
Traumatic Brain Injury Emergency Department Visits

Demographic Group
All residents.

Numerator
Emergency department visits with any of the following ICD-9-CM diagnostic codes. These should be identified by searching all diagnostic fields of the injury emergency department visit subset (see methods on page 8 for developing the injury emergency department visit subset).

Traumatic Brain Injury Emergency Department Visit ICD-9-CM Codes

<table>
<thead>
<tr>
<th>Diagnosis codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>800.00–801.99</td>
<td>Fracture of the vault or base of the skull</td>
</tr>
<tr>
<td>803.00–804.99</td>
<td>Other and unqualified or multiple fractures of the skull</td>
</tr>
<tr>
<td>850.0–850.9</td>
<td>Concussion</td>
</tr>
<tr>
<td>851.00–854.19</td>
<td>Intracranial injury, including contusion, laceration, and hemorrhage</td>
</tr>
<tr>
<td>950.1–950.3</td>
<td>Injury to the optic chiasm, optic pathways, or visual cortex</td>
</tr>
<tr>
<td>959.01</td>
<td>Head injury, unspecified</td>
</tr>
<tr>
<td>995.55</td>
<td>Shaken infant syndrome</td>
</tr>
</tbody>
</table>

Denominator
Midyear population for the calendar year under surveillance. To obtain population estimates by age and sex for your state, use U.S. Census Bureau population tables titled “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT” (see instructions on page 57).

Measures of Frequency
Annual number of emergency department visits. Annual incidence—crude and age-adjusted (standardized by the direct method to the year 2000 standard U.S. population). Rates should be calculated for age and sex.

Data Resources
State emergency department data (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator).

Period for Case Definition
Calendar year based on date of ED visit.

Background
Of the 1.365 million emergency department visits for TBI annually, almost half a million (473,947 or 34.7% of all TBI emergency department visits) are by children aged 0 to 14 years.

Limitations of Indicator
Injuries that result in emergency department visits represent only a portion of the overall burden of injury. Evaluations of these injuries should be considered in the context of both less- and more-severe injuries.

Limitations of Data Resources
The accuracy of indicators based on codes found in emergency department data is limited by the completeness and quality of coding.

Healthy People 2020 Objectives
IVP-2.3 Reduce emergency department visits for nonfatal traumatic brain injuries
TRAUMATIC BRAIN INJURY INDICATOR 4:
Bicycle Helmet Use Among High School Students

This indicator will be calculated at CDC.

<table>
<thead>
<tr>
<th>DEMOGRAPHIC GROUP</th>
<th>Students in grades 9–12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERATOR</td>
<td>Respondents in grades 9–12 who reported never or rarely wearing a helmet when riding a bicycle in the past 12 months.</td>
</tr>
<tr>
<td>DENOMINATOR</td>
<td>Respondents in grades 9–12 who reported riding a bicycle in the past 12 months.</td>
</tr>
<tr>
<td>MEASURES OF FREQUENCY</td>
<td>Annual prevalence — crude.</td>
</tr>
</tbody>
</table>
| DATA RESOURCES | Data from the Youth Risk Behavior Survey (YRBS).
20 |
| PERIOD FOR CASE DEFINITION | Previous 12 months. |
| BACKGROUND | Wearing an approved bicycle helmet that fits properly can help reduce the risk of brain injury. |
| LIMITATIONS OF INDICATOR | Self-reported data only represent a small portion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of all injuries. |
| LIMITATIONS OF DATA RESOURCES | As with all self-reported sample surveys, YRBS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias). |
| HEALTHY PEOPLE 2020 OBJECTIVES | IVP-21: Increase the number of States and the District of Columbia with laws requiring bicycle helmets for bicycle riders |
CALCULATING AND SUBMITTING RATES

Calculation Formula and Instructions

Preformatted rate calculation spreadsheets have been prepared for the hospital discharge, emergency department, and vital records-based indicators. These spreadsheets can be obtained from Karen Thomas at KEThomas@cdc.gov. Completion of the spreadsheet requires:

▪ Answering a few data background questions;
▪ Inserting state population data;
▪ Entering case counts for individual indicators; and
▪ Renaming the spreadsheets to reflect state and submission number.

Rate calculations include several types of rates (i.e., age-specific crude rates and age-adjusted rates). The following rate calculation specifications have been preprogrammed into the spreadsheet. If you are preparing these data independent of the spreadsheet, please be sure to follow the same specifications.

▪ Use the estimated population for the year of the data. This information may be obtained from several sources:
 - Scroll to “Downloadable datasets”
 - Find “State Single Year of Age and Sex Population Estimates: April 1, 2010 to July 1, 2011—RESIDENT”
 - Download File layout
 - Download CSV File
 - your state’s demographic center
▪ Compute rates per 100,000 population.
▪ For each indicator, except hip fracture hospitalizations, report age-adjusted rates stratified by sex (female and male), and report the overall age-adjusted rate for the state.
▪ Report age-specific rates for each indicator in the following age categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Age Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 1</td>
<td>0–5</td>
</tr>
<tr>
<td>1–4</td>
<td>5–54</td>
</tr>
<tr>
<td>5–14</td>
<td>55–64</td>
</tr>
<tr>
<td>15–24</td>
<td>65–74</td>
</tr>
<tr>
<td>25–34</td>
<td>75–84</td>
</tr>
<tr>
<td>35–44</td>
<td>85+</td>
</tr>
</tbody>
</table>

It is possible to obtain the anomalous looking overall age-adjusted rate which does not fall between the two gender-specific age-adjusted rates. Such outcomes are mathematically possible and should be included.
Calculate age-adjusted rates using the age-specific U.S. standard population weights from Table 1.

TABLE 1. AGE ADJUSTMENT TABLE: ALL AGES–ELEVEN AGE GROUPS

<table>
<thead>
<tr>
<th>Age</th>
<th>U.S. 2000 Standard Population (1,000's)</th>
<th>Adjustment Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages</td>
<td>274,634</td>
<td>1.000000</td>
</tr>
<tr>
<td>Under 1</td>
<td>3,795</td>
<td>0.013818</td>
</tr>
<tr>
<td>1–4</td>
<td>15,192</td>
<td>0.055317</td>
</tr>
<tr>
<td>5–14</td>
<td>39,977</td>
<td>0.145565</td>
</tr>
<tr>
<td>15–24</td>
<td>38,077</td>
<td>0.138646</td>
</tr>
<tr>
<td>25–34</td>
<td>37,233</td>
<td>0.135573</td>
</tr>
<tr>
<td>35–44</td>
<td>44,659</td>
<td>0.162613</td>
</tr>
<tr>
<td>45–54</td>
<td>37,030</td>
<td>0.134834</td>
</tr>
<tr>
<td>55–64</td>
<td>23,961</td>
<td>0.087247</td>
</tr>
<tr>
<td>65–74</td>
<td>18,136</td>
<td>0.066037</td>
</tr>
<tr>
<td>75–84</td>
<td>12,315</td>
<td>0.044842</td>
</tr>
<tr>
<td>85+</td>
<td>4,259</td>
<td>0.015508</td>
</tr>
</tbody>
</table>
REFERENCES

