Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

2011 Guidelines for the Prevention of Intravascular Catheter-Related Infections

Download the complete 2011 Guidelines for the Prevention of Intravascular Catheter-Related Infections [PDF - 1.05 MB]

Background Information

Terminology and Estimates of Risk

The terminology used to identify different types of catheters is confusing, because many clinicians and researchers use different aspects of the catheter for informal reference. A catheter can be designated by the type of vessel it occupies (e.g., peripheral venous, central venous, or arterial); its intended life span (e.g., temporary or short-term versus permanent or long-term); its site of insertion (e.g., subclavian, femoral, internal jugular, peripheral, and peripherally inserted central catheter [PICC]); its pathway from skin to vessel (e.g., tunneled versus nontunneled); its physical length (e.g., long versus short); or some special characteristic of the catheter (e.g., presence or absence of a cuff, impregnation with heparin, antibiotics or antiseptics, and the number of lumens). To accurately define a specific type of catheter, all of these aspects should be described (Table 1).

Likewise the terms used to describe intravascular catheter-related infections can also be confusing because catheter-related bloodstream infection (CRBSI) and central line–associated bloodstream infection (CLABSI) are often used interchangeably even though the meanings differ.

CRBSI is a clinical definition, used when diagnosing and treating patients, that requires specific laboratory testing that more thoroughly identifies the catheter as the source of the BSI. It is not typically used for surveillance purposes. It is often problematic to precisely establish if a BSI is a CRBSI due to the clinical needs of the patient (the catheter is not always pulled), limited availability of microbiologic methods (many labs do not use quantitative blood cultures or differential time to positivity), and procedural compliance by direct care personnel (labeling must be accurate). Simpler definitions are often used for surveillance purposes. For example, CLABSI is a term used by CDC’s National Healthcare Safety Network (NHSN) (visit NHSN CLABSI information) [206]. A CLABSI is a primary BSI in a patient that had a central line within the 48-hour period before the development of the BSI and is not bloodstream related to an infection at another site. However, since some BSIs are secondary to other sources other than the central line (e.g., pancreatitis, mucositis) that may not be easily recognized, the CLABSI surveillance definition may overestimate the true incidence of CRBSI.


Epidemiology and Microbiology in Adult and Pediatric Patients

National estimates of CLABSI rates are available through CDC’s NHSN, a surveillance system for healthcare-associated infections, and are available on CDC’s website. A recent report highlights data from 1,545 hospitals in 48 States and the District of Columbia that monitor infections in one or more ICUs and/or non-ICUs (e.g., patient care areas, wards) [207]. Because BSI rates are influenced by patient-related factors, such as severity of illness and type of illness (e.g., third-degree burns versus post-cardiac surgery), by catheter-related factors, (such as the condition under which the catheter was placed and catheter type), and by institutional factors (e.g., bed-size, academic affiliation), these aggregate, risk-adjusted rates can be used as benchmarks against which hospitals can make intra-and inter-facility comparisons.

The most commonly reported causative pathogens remain coagulase-negative staphylococci, Staphylococcus aureus, enterococci, and Candida spp [208]. Gram negative bacilli accounted for 19% and 21% of CLABSIs reported to CDC [209] and the Surveillance and Control of Pathogens of Epidemiological Importance (SCOPE) database, respectively [208].

For all common pathogens causing CLABSIs, antimicrobial resistance is a problem, particularly in ICUs. Although methicillin-resistant Staphylococcus aureus (MRSA) now account for more than 50% of all Staphylococcus aureus isolates obtained in ICUs, the incidence of MRSA CLABSIs has decreased in recent years, perhaps as a result of prevention efforts [210]. For gram negative rods, antimicrobial resistance to third generation cephalosporins among Klebsiella pneumoniae and E. coli has increased significantly as has imipenem and ceftazidine resistance among Pseudomonas aeruginosa [209]. Candida spp. are increasingly noted to be fluconazole resistant.



There are four recognized routes for contamination of catheters: 1) migration of skin organisms at the insertion site into the cutaneous catheter tract and along the surface of the catheter with colonization of the catheter tip; this is the most common route of infection for short-term catheters [37, 211, 212]; 2) direct contamination of the catheter or catheter hub by contact with hands or contaminated fluids or devices [213, 214]; 3) less commonly, catheters might become hematogenously seeded from another focus of infection [215]; and 4) rarely, infusate contamination might lead to CRBSI [216].

Important pathogenic determinants of CRBSI are 1) the material of which the device is made; 2) the host factors consisting of protein adhesions, such as fibrin and fibronectin, that form a sheath around the catheter [217]; and 3) the intrinsic virulence factors of the infecting organism, including the extracellular polymeric substance (EPS) produced by the adherent organisms [218]. Some catheter materials also have surface irregularities that enhance the microbial adherence of certain species (e.g., S. epidermidis and C. albicans) [219, 220]. Catheters made of these materials are especially vulnerable to microbial colonization and subsequent infection. Due to the formation of the fibrin sheath, silastic catheters are associated with higher risk of catheter infections than polyurethane catheters [217]. On the other hand, biofilm formation by C. albicans occurs more readily on silicone elastomer catheter surfaces than polyurethane catheters [219]. Modification of the biomaterial surface properties has been shown to influence the ability of C. albicans to form biofilm [220]. Additionally, certain catheter materials are more thrombogenic than others, a characteristic that also might predispose to catheter colonization and infection [221, 222]. This association has led to emphasis on preventing catheter-related thrombus as an additional mechanism for reducing CRBSI [223, 224].

The adherence properties of a given microorganism in relationship to host factors are also important in the pathogenesis of CRBSI. For example, S. aureus can adhere to host proteins (e.g., fibrinogen, fibronectin) commonly present on catheters by expressing clumping factors (ClfA and ClfB) that bind to the protein adhesins [217, 222, 225, 226]. Furthermore, adherence is enhanced through the production by microbial organisms, such as coagulase negative staphylococci [227, 228], S. aureus [229], Pseudomonas aeruginosa [230], and Candida species [231] of an extracellular polymeric substance (EPS) consisting mostly of an exopolysaccharide that forms a microbial biofilm layer [218, 232]. This biofilm matrix is enriched by divalent metallic cations, such as calcium, magnesium and iron, which make it a solid enclave in which microbial organisms can embed themselves [233–235]. Such a biofilm potentiates the pathogenicity of various microbes by allowing them to withstand host defense mechanisms (e.g., acting as a barrier to engulfment and killing by polymorphonuclear leukocytes) or by making them less susceptible to antimicrobial agents (e.g., forming a matrix that binds antimicrobials before their contact with the organism cell wall or providing for a population of metabolically quiescent, antimicrobial tolerant "persister" cells) [228, 236, 237]. Some Candida spp., in the presence of dextrose-containing fluids, produce slime similar to that of their bacterial counterparts, potentially explaining the increased proportion of BSIs caused by fungal pathogens among patients receiving parenteral nutrition fluids [238].


Strategies for Prevention of Catheter-Related Infections in Adult and Pediatric Patients

Education, Training and Staffing


  1. Educate healthcare personnel regarding the indications for intravascular catheter use, proper procedures for the insertion and maintenance of intravascular catheters, and appropriate infection control measures to prevent intravascular catheter-related infections [7–15]. Category IA
  2. Periodically assess knowledge of and adherence to guidelines for all personnel involved in the insertion and maintenance of intravascular catheters [7–15]. Category IA
  3. Designate only trained personnel who demonstrate competence for the insertion and maintenance of peripheral and central intravascular catheters. [14–28]. Category IA
  4. Ensure appropriate nursing staff levels in ICUs. Observational studies suggest that a higher proportion of "pool nurses" or an elevated patient–to-nurse ratio is associated with CRBSI in ICUs where nurses are managing patients with CVCs [29–31]. Category IB


Well-organized programs that enable healthcare providers to become educated and to provide, monitor, and evaluate care are critical to the success of this effort. Reports spanning the past four decades have consistently demonstrated that risk for infection declines following standardization of aseptic care [7, 12, 14, 15, 239–241] and that insertion and maintenance of intravascular catheters by inexperienced staff might increase the risk for catheter colonization and CRBSI [15, 242]. Specialized "IV teams" have shown unequivocal effectiveness in reducing the incidence of CRBSI, associated complications, and costs [16–26]. Additionally, infection risk increases with nursing staff reductions below a critical level [30].


Selection of Catheters and Sites

Peripheral and Midline Catheter Recommendations

  1. In adults, use an upper-extremity site for catheter insertion. Replace a catheter inserted in a lower extremity site to an upper extremity site as soon as possible. Category II
  2. In pediatric patients, the upper or lower extremities or the scalp (in neonates or young infants) can be used as the catheter insertion site [32, 33]. Category II
  3. Select catheters on the basis of the intended purpose and duration of use, known infectious and non-infectious complications (e.g., phlebitis and infiltration), and experience of individual catheter operators [33–35]. Category IB
  4. Avoid the use of steel needles for the administration of fluids and medication that might cause tissue necrosis if extravasation occurs [33, 34]. Category IA
  5. Use a midline catheter or peripherally inserted central catheter (PICC), instead of a short peripheral catheter, when the duration of IV therapy will likely exceed six days. Category II
  6. Evaluate the catheter insertion site daily by palpation through the dressing to discern tenderness and by inspection if a transparent dressing is in use. Gauze and opaque dressings should not be removed if the patient has no clinical signs of infection. If the patient has local tenderness or other signs of possible CRBSI, an opaque dressing should be removed and the site inspected visually. Category II
  7. Remove peripheral venous catheters if the patients develops signs of phlebitis (warmth, tenderness, erythema or palpable venous cord), infection, or a malfunctioning catheter [36]. Category IB


Central Venous Catheters Recommendations

  1. Weigh the risks and benefits of placing a central venous device at a recommended site to reduce infectious complications against the risk for mechanical complications (e.g., pneumothorax, subclavian artery puncture, subclavian vein laceration, subclavian vein stenosis, hemothorax, thrombosis, air embolism, and catheter misplacement) [37–53]. Category IA
  2. Avoid using the femoral vein for central venous access in adult patients [38, 50, 51, 54]. Category 1A
  3. Use a subclavian site, rather than a jugular or a femoral site, in adult patients to minimize infection risk for nontunneled CVC placement [50–52]. Category IB
  4. No recommendation can be made for a preferred site of insertion to minimize infection risk for a tunneled CVC. Unresolved issue
  5. Avoid the subclavian site in hemodialysis patients and patients with advanced kidney disease, to avoid subclavian vein stenosis [53, 55–58]. Category IA
  6. Use a fistula or graft in patients with chronic renal failure instead of a CVC for permanent access for dialysis [59]. Category 1A
  7. Use ultrasound guidance to place central venous catheters (if this technology is available) to reduce the number of cannulation attempts and mechanical complications. Ultrasound guidance should only be used by those fully trained in its technique. [60–64]. Category 1B
  8. Use a CVC with the minimum number of ports or lumens essential for the management of the patient [65–68]. Category IB
  9. No recommendation can be made regarding the use of a designated lumen for parenteral nutrition. Unresolved issue
  10. Promptly remove any intravascular catheter that is no longer essential [69–72]. Category IA
  11. When adherence to aseptic technique cannot be ensured (i.e catheters inserted during a medical emergency), replace the catheter as soon as possible, i.e, within 48 hours [37, 73–76]. Category IB


The site at which a catheter is placed influences the subsequent risk for catheter-related infection and phlebitis. The influence of site on the risk for catheter infections is related in part to the risk for thrombophlebitis and density of local skin flora.

As in adults, the use of peripheral venous catheters in pediatric patients might be complicated by phlebitis, infusion extravasation, and catheter infection [243]. Catheter location, infusion of parenteral nutritional fluids with continuous IV fat emulsions, and length of ICU stay before catheter insertion, have all increased pediatric patients’ risk for phlebitis. However, contrary to the risk in adults, the risk for phlebitis in children has not increased with the duration of catheterization [243, 244].

The density of skin flora at the catheter insertion site is a major risk factor for CRBSI. No single trial has satisfactorily compared infection rates for catheters placed in jugular, subclavian, and femoral veins. In retrospective observational studies, catheters inserted into an internal jugular vein have usually been associated with higher risk for colonization and/or CRBSI than those inserted into a subclavian [37–47]. Similar findings were noted in neonates in a single retrospective study [245]. Femoral catheters have been demonstrated to have high colonization rates compared with subclavian and internal jugular sites when used in adults and, in some studies, higher rates of CLABSIs [40, 45–47, 50, 51, 246]. Femoral catheters should also be avoided, when possible, because they are associated with a higher risk for deep venous thrombosis than are internal jugular or subclavian catheters [48–50, 53, 247]. One study [38] found that the risk of infection associated with catheters placed in the femoral vein is accentuated in obese patients. In contrast to adults, studies in pediatric patients have demonstrated that femoral catheters have a low incidence of mechanical complications and might have an equivalent infection rate to that of non-femoral catheters [248–251]. Thus, in adult patients, a subclavian site is preferred for infection control purposes, although other factors (e.g., the potential for mechanical complications, risk for subclavian vein stenosis, and catheter-operator skill) should be considered when deciding where to place the catheter.

In two meta-analyses, the use of real-time two-dimensional ultrasound for the placement of CVCs substantially decreased mechanical complications and reduced the number of attempts at required cannulation and failed attempts at cannulation compared with the standard landmark placement [60, 61]. Evidence favors the use of two-dimensional ultrasound guidance over Doppler ultrasound guidance [60]. Site selection should be guided by patient comfort, ability to secure the catheter, and maintenance of asepsis as well as patient-specific factors (e.g., preexisting catheters, anatomic deformity, and bleeding diathesis), relative risk of mechanical complications (e.g., bleeding and pneumothorax), the availability of bedside ultrasound, the experience of the person inserting the catheter, and the risk for infection.

Catheters should be inserted as great a distance as possible from open wounds. In one study, catheters inserted close to open burn wounds (i.e, 25 cm2 overlapped a wound) were 1.79 times more likely to be colonized and 5.12 times more likely to be associated with bacteremia than catheters inserted farther from the wounds [252].

Type of Catheter Material. Polytetrafluoroethylene (Teflon ®) or polyurethane catheters have been associated with fewer infectious complications than catheters made of polyvinyl chloride or polyethylene [36, 253, 254]. Steel needles used as an alternative to catheters for peripheral venous access have the same rate of infectious complications as do Teflon® catheters [33, 34]. However, the use of steel needles frequently is complicated by infiltration of intravenous (IV) fluids into the subcutaneous tissues, a potentially serious complication if the infused fluid is a vesicant [34].


Hand Hygiene and Aseptic Technique


  1. Perform hand hygiene procedures, either by washing hands with conventional soap and water or with alcohol-based hand rubs (ABHR). Hand hygiene should be performed before and after palpating catheter insertion sites as well as before and after inserting, replacing, accessing, repairing, or dressing an intravascular catheter. Palpation of the insertion site should not be performed after the application of antiseptic, unless aseptic technique is maintained [12, 77–79]. Category IB
  2. Maintain aseptic technique for the insertion and care of intravascular catheters [37, 73, 74, 76]. Category IB
  3. Wear clean gloves, rather than sterile gloves, for the insertion of peripheral intravascular catheters, if the access site is not touched after the application of skin antiseptics. Category IC
  4. Sterile gloves should be worn for the insertion of arterial, central, and midline catheters [37, 73, 74, 76]. Category IA
  5. Use new sterile gloves before handling the new catheter when guidewire exchanges are performed. Category II
  6. Wear either clean or sterile gloves when changing the dressing on intravascular catheters. Category IC


Hand hygiene before catheter insertion or maintenance, combined with proper aseptic technique during catheter manipulation, provides protection against infection [12]. Proper hand hygiene can be achieved through the use of either an al-cohol-based product [255] or with soap and water with adequate rinsing [77]. Appropriate aseptic technique does not necessarily require sterile gloves for insertion of peripheral catheters; a new pair of disposable nonsterile gloves can be used in conjunction with a "no-touch" technique for the insertion of peripheral venous catheters. Sterile gloves must be worn for placement of central catheters since a "no-touch" technique is not possible.


Contact Us:
  • Centers for Disease Control and Prevention
    1600 Clifton Rd
    Atlanta, GA 30333
  • 800-CDC-INFO
    TTY: (888) 232-6348
  • Contact CDC–INFO
CDC Safe Healthcare Blog See this discussed on CDCs Safe Healthcare Blog The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Road Atlanta, GA 30329-4027, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #