Global Measles Publications

Updated April 20, 2022

← Publications

The scientific publications below are authored or co-authored by CDC scientists within the Global Immunization Division, Center for Global Health.

2022

Measles susceptibility in maternal-infant dyads-Bamako, Maliexternal icon
Dixon MG, Tapia MG, Wannemuehler K, et al. Vaccine. 2022;S0264-410X(22)00027-5. doi: 10.1016/j.vaccine.2022.01.012.

Innovations in vaccine delivery: Increasing access, coverage, and equity and lessons learnt from measles and rubella elimination.external icon
Goodson JL, Rota PA
. Drug Deliv Transl Res. 2022;12(5):959-967. doi: 10.1007/s13346-022-01130-9.

2021

Development of a measles and rubella multiplex bead serological assay for assessing population immunity.external icon
Coughlin MM, Matson Z, Sowers SB, et al. J Clin Microbiol. 2021;59(6):e02716-20. doi: 10.1128/JCM.02716-20.

Risk factors for measles deaths among children during a nationwide measles outbreak - Romania, 2016-2018.external icon
Donadel M, Stanescu A, Pistol A, et al. BMC Infect Dis. 2021;(1):279. doi: 10.1186/s12879-021-05966-3.

Progress toward measles elimination - worldwide, 2000-2020.
Dixon MG, Ferrari M, Antoni S, et al. MMWR Morb Mortal Wkly Rep. 2021;70(45):1563-1569. doi: 10.15585/mmwr.mm7045a1.

Measles in the 21st century: Progress toward achieving and sustaining elimination.external icon
Gastañaduy PA, Goodson JL, Panagiotakopoulos L, Rota PA, Orenstein WA, Patel M. J Infect Dis. 2021;224(Supplement_4):S420-S428. doi: 10.1093/infdis/jiaa793.

The changing global epidemiology of measles, 2013-2018.external icon
Patel MK, Antoni S, Nedelec Y, et al. J Infect Dis. 2020;222(7):1117-1128. doi: 10.1093/infdis/jiaa044.

2020

Rapid diagnostic tests to address challenges for global measles surveillanceexternal icon.
Brown DW, Warrener L, Scobie HM, et al. Curr Opin Virol. 2020;41:77–84. doi: 10.1016/j.coviro.2020.05.007.

Community-based surveillance in Côte d'Ivoireexternal icon.
Clara A, Ndiaye SM, Joseph B, et al. Health Secur. 2020;18(S1):S23-S33. doi: 10.1089/hs.2019.0062.

What it will take to achieve a world without measlesexternal icon.
Cochi SL, Schluter WW. J Infect Dis. 2020;222(7):1073–1075. doi: 10.1093/infdis/jiaa045.

Vaccination coverage survey and seroprevalence among forcibly displaced Rohingya children, Cox's Bazar, Bangladesh, 2018: a cross-sectional study.external icon
Feldstein LR, Bennett SD, Estivariz CF, et al. PLoS Med. 2020;17(3):e1003071. doi: 10.1371/journal.pmed.1003071.

Access, demand, and utilization of childhood immunization services: a cross-sectional household survey in Western Area Urban district, Sierra Leone, 2019.external icon
Feldstein LR, Sutton R, Jalloh MF, et al. J Glob Health. 2020;10(1):010420. doi: 10.7189/jogh.10.010420.

Recent setbacks in measles elimination: the importance of investing in innovations for immunizationsexternal icon.
Goodson JL. Pan Afr Med J. 2020;35(Suppl 1):15. doi: 10.11604/pamj.supp.2020.35.1.21740.

Assessment of VaxTrac electronic immunization registry in an urban district in Sierra Leone: implications for data quality, defaulter tracking, and policyexternal icon.
Jalloh MF, Namageyo-Funa A, Gleason B, et al. Vaccine. 2020;38(39):6103–6111. doi: 10.1016/j.vaccine.2020.07.031.

High risk of subacute sclerosing panencephalitis following measles outbreaks in Georgiaexternal icon.
Khetsuriani N, Sanadze K, Abuladze M, Tatishvili N. Clin Microbiol Infect. 2020;26(6):737–742. doi: 10.1016/j.cmi.2019.10.035.

Challenges to achieving measles elimination, Georgia, 2013–2018.
Khetsuriani N, Sanadze K, Chlikadze R, et al. Emerg Infect Dis. 2020;26(11):2565–2577. doi: 10.3201/eid2611.200259.

Risk factors for measles virus infection and susceptibility in persons aged 15 years and older in China: a multi-site case-control study, 2012-2013external icon.
Ma C, Hao L, Rodewald L, et al. Vaccine. 2020;38(16):3210–3217. doi: 10.1016/j.vaccine.2020.03.006.

The African Region early experience with structures for the verification of measles elimination — a reviewexternal icon.
Masresha B, Luce R, Tanifum P, Lebo E, Dosseh A, Mihigo R. Pan Afr Med J. 2020;35(Suppl 1): 1. doi: 10.11604/pamj.supp.2020.35.1.19061.

The impact of a prolonged Ebola outbreak on measles elimination activities in Guinea, Liberia, and Sierra Leone, 2014–2015external icon.
Masresha BG, Luce R Jr, Weldegebriel G, Katsande R, Gasasira A, Mihigo R. Pan Afr Med J. 2020;35(Suppl 1):8. doi: 10.11604/pamj.supp.2020.35.1.19059.

Seroprevalence of measles, rubella, tetanus, and diphtheria antibodies among children in Haiti, 2017external icon.
Minta AA, Andre-Alboth J, Childs L, et al. Am J Trop Med Hyg. 2020;103(4):1717­–1725. doi: 10.4269/ajtmh.20-0112.

Action needed now to prevent further increases in measles and measles deaths in the coming yearsexternal icon.
Mulholland K, Kretsinger K, Wondwossen L, Crowcroft N. Lancet. 2020;396(10265):1782–1784. doi: 10.1016/S0140-6736(20)32394-1.

Measles and rubella IgG seroprevalence in persons 6 months–35 years of age, Mongolia, 2016external icon.
Nogareda F, Gunregjav N, Sarankhuu A, et al. Vaccine. 2020;38(26):4200–4208. doi: 10.1016/j.vaccine.2020.04.024.

The changing global epidemiology of measles, 2013–2018external icon.
Patel MK, Antoni S, Nedelec Y, et al. J Infect Dis. 2020;222(7):1117–1128. doi: 10.1093/infdis/jiaa044.

Progress toward regional measles elimination — worldwide, 2000–2019.
Patel MK, Goodson JL, Alexander JP Jr., et al. MMWR Morb Mortal Wkly Rep. 2020;69:1700–1705. doi: 10.15585/mmwr.mm6945a6.

A microneedle patch for measles and rubella vaccination: a game changer for achieving eliminationexternal icon.
Prausnitz MR, Goodson JL, Rota PA, Orenstein WA. Curr Opin Virol. 2020;41:68–76. doi: 10.1016/j.coviro.2020.05.005.

Progress towards measles elimination in Eritrea: 2003–2018external icon.
Yehdego T, Yhdego TK, Masresha B, et al. Pan Afr Med J. 2020;35(Suppl 1):7. doi: 10.11604/pamj.supp.2020.35.1.19126.

2019

Spread of measles in Europe and implications for US travelersexternal icon.
Angelo KM, Gastañaduy PA, Walker AT, et al. Pediatrics. 2019;144(1):e20190414. doi: 10.1542/peds.2019-0414.

Successes and challenges for preventing measles, mumps and rubella by vaccinationexternal icon.
Bankamp B, Hickman C, Icenogle JP, Rota PA. Curr Opin Virol. 2019;34:110-116. doi: 10.1016/j.coviro.2019.01.002.

Use of FTA cards to transport throat swabs and oral fluid samples for molecular detection and genotyping of measles and rubella virusesexternal icon.
Bankamp B, Sein C, Pukuta Simbu E, et al. J Clin Microbiol. 2019;57(5). doi: 10.1128/JCM.00048-19.

Genetic characterization of measles and rubella viruses detected through global measles and rubella elimination surveillance, 2016­–2018.
Brown KE, Rota PA, Goodson JL, et al. MMWR Morb Mortal Wkly Rep. 2019;68(26):587–591. doi: 10.15585/mmwr.mm6826a3.

Combining serological and contact data to derive target immunity levels for achieving and maintaining measles eliminationexternal icon.
Funk S, Knapp JK, Lebo E, et al. BMC Med. 2019;17(1):180. doi: 10.1186/s12916-019-1413-7.

Accelerating measles and rubella elimination through research and innovation — findings from the Measles & Rubella Initiative research prioritization process, 2016external icon.
Grant GB, Masresha BG, Moss WJ, et al. Vaccine. 2019;37(38):5754-5761. doi: 10.1016/j.vaccine.2019.01.081.

Evaluating vaccination policies to accelerate measles elimination in China: a meta-population modelling studyexternal icon
[published correction appears in Int J Epidemiol. 2019 Aug 1;48(4):1385].
Hao L, Glasser JW, Su Q, et al. Int J Epidemiol. 2019;48(4):1240-1251. doi: 10.1093/ije/dyz058.

The clinical impact and cost-effectiveness of measles-mumps-rubella vaccination to prevent measles importations among international travelers from the United Statesexternal icon.
Hyle EP, Fields NF, Fiebelkorn AP, et al. Clin Infect Dis. 2019;69(2):306-315. doi: 10.1093/cid/ciy861.

Measles and rubella seroprevalence among adults in Georgia in 2015: helping guide the elimination effortsexternal icon.
Khetsuriani N, Chitadze N, Russell S, Ben Mamou M. Epidemiol Infect. 2019;147:e319. doi: 10.1017/S0950268819002048.

Research priorities for accelerating progress toward measles and rubella elimination identified by a cross-sectional web-based surveyexternal icon.
Kriss JL, Grant GB, Moss WJ, et al. Vaccine. 2019;37(38): 5745–5753. doi: 10.1016/j.vaccine.2019.02.058.

International importations of measles virus into the United States during the postelimination era, 2001–2016external icon.
Lee AD, Clemmons NS, Patel M, Gastañaduy PA. J Infect Dis. 2019;219(10):1616-1623. doi: 10.1093/infdis/jiy701.

Economic value of vaccinating geographically hard-to-reach populations with measles vaccine: A modeling application in Kenyaexternal icon.
Lee BY, Brown ST, Haidari LA, et al. Vaccine. 2019;37(17): 2377–2386. doi: 10.1016/j.vaccine.2019.03.007.

Increase in infant measles deaths during a nationwide measles outbreak — Mongolia, 2015–2016external icon.
Lee CT, Hagan JE, Jantsansengee B, et al. J Infect Dis. 2019;220(11):1771-1779. doi: 10.1093/infdis/jiz140.

Immunogenicity and safety of measles-rubella vaccine co-administered with attenuated Japanese encephalitis SA 14–14–2 vaccine in infants aged 8 months in China: a non-inferiority randomised controlled trialexternal icon.
Li Y, Chu SY, Yue C, et al. Lancet. 2019;19(4):402–409. doi: 10.1016/S1473-3099(18)30650-9.

Progress toward measles elimination — China, January 2013–June 2019.
Ma C, Rodewald L, Hao L, et al. MMWR Morb Mortal Wkly Rep. 2019;68(48):1112–1116. doi: 10.15585/mmwr.mm6848a2.

Progress toward measles elimination — Pakistan, 2000–2018.
Mere MO, Goodson JL, Chandio AK, et al. MMWR Morb Mortal Wkly Rep. 2019;68(22):505–510. doi: 10.15585/mmwr.mm6822a4.

Immunogenicity, effectiveness, and safety of measles vaccination in infants younger than 9 months: a systematic review and meta-analysisexternal icon.
Nic Lochlainn LM, de Gier B, van der Maas N, et al.  Lancet Infect Dis. 2019;19(11):1235–1245. doi: 10.1016/S1473-3099(19)30395-0.

Effect of measles vaccination in infants younger than 9 months on the immune response to subsequent measles vaccine doses: a systematic review and meta-analysisexternal icon.
Nic Lochlainn LM, de Gier B, van der Maas N, et al. Lancet Infect Dis. 2019;19(11):1246–1254. doi: 10.1016/S1473-3099(19)30396-2.

Assessment of economic burden of concurrent measles and rubella outbreaks, Romania, 2011–2012.
Njau J, Janta D, Stanescu A, et al. Emerg Infect Dis. 2019;25(6):1101–1109. doi: 10.3201/eid2506.180339.

Progress toward regional measles elimination — worldwide, 2000–2018.
Patel MK, Dumolard L, Nedelec Y, et al. MMWR Morb Mortal Wkly Rep. 2019;68(48):1105–1111. doi: 10.15585/mmwr.mm6848a1.

Classification of global measles cases in 2013–2017 as due to policy or vaccination failure: a retrospective review of global surveillance dataexternal icon.
Patel MK, Orenstein WA. Lancet Glob Health. 2019;7(3):e313–e320. doi: 10.1016/S2214-109X(18)30492-3.

Measlesexternal icon.
Strebel PM, Orenstein WA. N Engl J Med. 2019;381(4):349–357. doi: 10.1056/NEJMcp1905181.

Measles and rubella immunity in the population of Bhutan, 2017external icon.
Wangchuk S, Nogareda F, Tshering N, et al. Vaccine. 2019;37(43):6463–6469. doi: 10.1016/j.vaccine.2019.08.085.

Progress toward measles elimination — European Region, 2009–2018.
Zimmerman LA, Muscat M, Singh S, et al. MMWR Morb Mortal Wkly Rep. 2019;68(17):396–401. doi: 10.15585/mmwr.mm6817a4.

2018

Progress toward regional measles elimination — worldwide, 2000–2017.
Dabbagh A, Laws RL, Steulet C, et al. MMWR Morb Mortal Wkly Rep. 2018;67(47):1323–1329. doi: 10.15585/mmwr.mm6747a6.

Progress and challenges in measles and rubella elimination in the WHO European Regionexternal icon.
Datta SS, O'Connor PM, Jankovic D, et al. Vaccine. 2018;36(36):5408–5415. doi: 10.1016/j.vaccine.2017.06.042.

Measles outbreak response decision-making under uncertainty: a retrospective analysisexternal icon.
Fonnesbeck CJ, Shea K, Carran S, et al. J R Soc Interface. 2018;15(140). doi: 10.1098/rsif.2017.0575.

Measles-Rubella supplementary immunization activity readiness assessment — India, 2017–2018external icon.
Gurnani V, Haldar P, Khanal S, et al. MMWR Morb Mortal Wkly Rep. 2018;67(26):742–746. doi: 10.15585/mmwr.mm6726a3.

Progress toward measles elimination — Western Pacific Region, 2013–2017.
Hagan JE, Kriss JL, Takashima Y, et al. MMWR Morb Mortal Wkly Rep. 2018;67(17):491–495. doi: 10.15585/mmwr.mm6717a3.

A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaquesexternal icon.
Joyce JC, Carroll TD, Collins ML, et al. J Infect Dis. 2018;218(1):124–132. doi: 10.1093/infdis/jiy139.

Healthcare-associated measles following a nationwide outbreak in Mongoliaexternal icon.
Lake JG, Luvsansharav UO, Hagan JE, et al. Clin Infect Dis. 2018;67(2):288–290. doi: 10.1093/cid/ciy067.

Global landscape of measles and rubella surveillanceexternal icon.
Patel MK, Gibson R, Cohen A, Dumolard L, Gacic-Dobo M. Vaccine. 2018;36(48):7385–7392. doi: 10.1016/j.vaccine.2018.10.007.

Use of the revised World Health Organization cluster survey methodology to classify measles-rubella vaccination campaign coverage in 47 counties in Kenya, 2016external icon.
Subaiya S, Tabu C, N'ganga J, et al. PLoS One. 2018;13(7):e0199786. doi: 10.1371/journal.pone.0199786.

Page last reviewed: March 22, 2022
Content source: Global Immunization