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Accumulated evidence from searching for candidate gene-disease associations of complex diseases can offer 
some insights as the field moves toward discovery-oriented approaches with massive genome-wide testing. Meta-
analyses of 50 non–human lymphocyte antigen gene-disease associations with documented overall statistical 
significance (752 studies) show summary odds ratios with a median of 1.43 (interquartile range, 1.28–1.65). Many 
different biases may operate in this field, for both single studies and meta-analyses, and these biases could 
invalidate some of these seemingly ‘‘validated’’ associations. Studies with a sample size of >500 show a median 
odds ratio of only 1.15. The median sample size required to detect the observed summary effects in each pop­
ulation addressed in the 752 studies is estimated to be 3,535 (interquartile range, 1,936–9,119 for cases and 
controls combined). These estimates are steeply inflated in the presence of modest bias. Population heterogeneity, 
as well as gene-gene and gene-environment interactions, could steeply increase these estimates and may be 
difficult to address even by very large biobanks and observational cohorts. The one visible solution is for a large 
number of teams to join forces on the same research platforms. These collaborative studies ideally should be 
designed up front to also assess more complex gene-gene and gene-environment interactions. 

association; genes; meta-analysis; odds ratio; polymorphism, genetic 

Abbreviation: IQR, interquartile range. 

Human genome epidemiology is rapidly changing from 
the investigation of single genes and gene variants to the 
adoption of discovery-oriented approaches that encompass 
searching across millions of genetic variants (1, 2). More­
over, the challenge of accumulating evidence and modeling 
gene-gene interactions and gene-environment interactions is 
becoming more tangible as more rich databases are accu­
mulated based on collaborative case-control studies and 
large cohort studies and biobanks. Theoretical debates have 
been ongoing for some time on the exact contribution of 
single variants and the magnitude of expected genetic ef­
fects (3). The accumulated evidence from candidate gene-

disease association studies to date can give us some useful 
evidence to also guide future efforts. In this paper, we briefly 
review the implications of small effect sizes of individual 
genetic variants on the design and interpretation of genetic 
studies of complex diseases 

HOW LARGE ARE EFFECT SIZES OF INDIVIDUAL 
GENETIC VARIANTS FOR COMPLEX DISEASES? 

We scrutinized an updated, comprehensive database of 
122 meta-analyses of non–human lymphocyte antigen gene-
disease association studies of unrelated subjects on distinct, 
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TABLE 1. The five most common genes* implicated in genetic 
associationsy 

Rank Gene Associations Publications 

1 ACE 6 731 

2 MTHFR 5 729 

3 APOE 3 905 

4 GSTM1 3 538 

5 DRD3 3  65  

* ACE, angiotensin I converting enzyme 1; MTHFR, 5,10-methyl­

enetetrahydrofolate reductase; APOE, apolipoprotein E; GSTM1, 
glutathione S-transferase M1; DRD3, dopamine receptor D3. 

y The number of significant associations is based on the database 
of 50 meta-analyses. The number of published studies pertains to in­
dexed papers in the Human Genome Epidemiology (HuGE) Published 
Literature database for the period October 1, 2000, to September 6, 
2005. Human lymphocyte antigen genetic variants are not considered in 
either database. 

nonoverlapping associations with binary outcomes, where 
data were available on each included study to create the 
pertinent 2-by-2 table (4). The a priori rules for selection of 
meta-analyses, studies, and genetic contrasts have been de­
scribed previously (4–6). In brief, whenever information was 
available to create both 2-by-2 and 2-by-3 tables, we selected 
the former. Among the possible genetic contrasts that could 
result in 2-by-2 tables, we chose the one proposed by the first 
study on the postulated association; when it was unclear, we 
chose the one proposed by the meta-analysis. When this was 
also unclear, the order of preference was recessive model, dom­
inant model, allele-based model. Availability of information 
on 2-by-2 tables ensured that all data were reanalyzed consis­
tently across studies in a meta-analysis and that the frequency 
of the genetic variant of interest was precisely recorded for 
both the cases and controls and could be used for analysis. 

Fifty meta-analyses concluded with a statistically sig­
nificant association (p < 0.05) even when between-study 
heterogeneity was accounted for by random-effects calcu­
lations (DerSimonian and Laird model (7)). These 50 asso­
ciations included a total of 752 studies. The published 
systematic reviews from which these 50 meta-analyses were 
derived examined only the specific gene variant in 39 meta­
analyses, several variants of the same gene in seven meta­
analyses, and variants from several genes perceived to be in 
the same pathway in another four meta-analyses. All studies 
on the 50 associations could be considered a typical com­
parison of cases and controls (case-control studies, cross-
sectional studies, cases vs. population controls, prevalence 
data from cohort designs); only two meta-analyses also 
clearly included studies with a prospective cohort design 
and incident events. 

Common phenotypes included cardiovascular disease out­
comes (n ¼ 10), various cancers (n ¼ 7), schizophrenia (n ¼ 
7), dementia (n ¼ 4), diabetes and its complications (n ¼ 3), 
and cerebrovascular outcomes (n ¼ 3). The five most com­
mon genes implicated in the associations are shown in 
table 1. It is interesting that four of these five genes are also 
included on the list of the five genes for which the highest 
number of papers appear in the published literature accord­

ing to the Human Genome Epidemiology (HuGE) Published 
Literature database as of September 6, 2005 (http://www. 
cdc.gov/genomics/search/aboutHPLD.htm). Postulated gene-
disease associations are primarily described for the most 
sought-after candidate genes. Does this reflect that these 
genes are indeed important for many different outcomes? 
Does it mean that once an association has been proposed for 
a specific disease, bias is created and many other spurious 
associations of the same variant are then also reported for 
other diseases, or is it a manifestation of searching ‘‘under 
the lamp-post’’ until now? Probably what we see is a combi­
nation of all three factors. 

Figure 1 shows the distribution of the genetic effects in 
the 50 meta-analyses (left panel) and in the 752 individual 
studies (right panel). We chose the direction of the genetic 
contrast in such a way that all summary odds ratios are 
higher than 1.00. For the meta-analyses, the median sum­
mary odds ratio is 1.43, with an interquartile range (IQR) of 
1.28–1.65 and a range of 1.10–2.58. The distribution of the 
odds ratios in the 752 studies shows a median of 1.30 (IQR, 
1.01–1.90). We should acknowledge that some of these 
seemingly significant gene-disease associations may not be 
true despite the fact that evidence of their presence comes 
from a considerable number of studies. In particular, for 
associations in the 1.1–1.3 range, even limited reporting or 
publication bias could produce a spurious effect (8). 

There were 168 out of 752 studies that had more than 500 
participants or alleles (depending on the assessed contrasts). 
These ‘‘larger’’ studies are part of 42 meta-analyses, whereas 
eight meta-analyses are composed entirely of studies with 
a smaller sample size. The distribution of effect sizes across 
these 168 studies shows a median odds ratio of only 1.15 and 
an IQR of 1.01–1.45. Of the 42 meta-analyses with studies 
whose sample size exceeds 500, only 14 maintain formal 
statistical significance when limited to these larger studies. 
The median summary odds ratio for these 14 gene-disease 
associations is 1.45 (IQR, 1.28–1.64; range, 1.21–2.24). 

Most of the genetic variants involved in these 50 postu­
lated associations are relatively common. For the 752 indi­
vidual studies, the median proportion for the minor genetic 
group (the less-frequent group according to the assumed 
genetic model) in the controls is 24.8 percent (IQR, 
9.7–40.7 percent). 

Overall, these data suggest that typical effect sizes of 
individual genetic variants for complex diseases pertain to 
odds ratios of 1.2–1.6. Some smaller effects are possible but 
are extremely difficult to differentiate from the potential 
impact of bias. Bias cannot be excluded even for the larger 
effects. Bias could be due to a large variety of factors. Their 
detailed description goes beyond the scope of this commen­
tary but includes poor quality and design problems in single 
studies (9, 10), low prior probability of an association and 
relatively high p values (8, 11), reporting and publication 
biases (12, 13), and biased criteria for inclusion of studies in 
meta-analysis. 

IMPLICATIONS FOR SAMPLE SIZE REQUIREMENTS 

One might then ask: Even if these summary effect sizes 
reflect the truth and if they are representative of the effect 
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FIGURE 1. Left panel: distribution of summary odds ratios based on random-effects calculations in 50 meta-analyses with formally statistically 
significant results for gene-disease associations of common diseases. Calculations were performed with Intercooled Stata 8.2 software (Stata 
Corporation, College Station, Texas). Right panel: distribution of odds ratios in the 752 studies included in these 50 meta-analyses. For both panels, 
the median is shown by a vertical line. For eligibility criteria for the screening of the meta-analyses, refer to Ioannidis et al. (4–6). A full list of 
nonoverlapping meta-analyses with binary outcomes is available in the online supplement to reference 4, and a full list of the data from the 50 
included meta-analyses per study is available from the authors. 

sizes for individual genetic variants associated with com­
plex diseases, what kinds of studies are needed to document 
them in various population settings? Let us focus on the 
population settings in which these prior studies have already 
been conducted. For each of the 752 studies, we estimated 
the required sample so as to have 90 percent power to detect 
at a ¼ 0.05 the genetic effect size seen in the respective 
meta-analysis, if the frequency of the genetic variants in the 
control group is that observed in the study. The choice of 
a ¼ 0.05 represents a typical threshold for claiming statis­
tical significance. Aiming for lower a values (e.g., to ac­
commodate multiple testing) would further increase the 
required sample size steeply. We assume the same allocation 
ratio between cases and controls in these hypothetical well-
powered studies as the allocation ratio in the original stud­
ies. The actual allocation ratios are usually close to 1, with 
a median of 0.93 cases per control and an IQR of 0.53–1.15; 
using an allocation ratio of 1 for all calculations makes little 
difference overall (not shown in detail here). However, one 
should note that some studies understandably seem to have 
difficulty recruiting cases, even with the relatively small 
sample sizes used to date. Maintaining a reasonable alloca­
tion ratio may be a challenge if much larger samples are to 
be recruited, but, for now, let us assume that it can be done. 
Sample size calculations were implemented in Intercooled 
Stata 8.2 by using the sampsi Stata module (Stata Corpora­
tion, College Station, Texas). 

Figure 2 shows that the required total sample size (cases 
and controls combined) can be very large. The left panel 
gives the distribution of the necessary sample sizes per 

study, with a median of 3,535 and an IQR of 1,936–9,119 
for cases and controls combined. The numbers required are 
much larger compared with studies conducted to date in the 
field. On median, 13.3-fold more subjects would have to be 
genotyped than in each original study conducted in each 
population (IQR, 5.9–31.4) (figure 2, right panel). If we 
try to account for even limited bias, these sample size re­
quirements can be inflated considerably. For example, if the 
true odds ratios are 0.1 lower than the observed summary 
effect sizes (an assumption that may be quite conservative, 
based on the above), then the median required sample size 
becomes 6,244 (IQR, 2,698–35,444). If half of the observed 
summary effect is due to bias and half is real (e.g., for 
observed summary log(odds ratio) ¼ 0.46, the true effect 
is 0.23), the median required sample size becomes 14,618 
(IQR, 7,791–36,435). 

CAVEATS AND LIMITATIONS 

Meta-analyses in this field are becoming increasingly 
popular (14), but they cover only a portion of the available 
evidence on gene-disease associations. According to the 
HuGE Published Literature database, as of October 11, 
2005, there were at least 17,467 published reports of original 
studies on human genome epidemiology, most of them (n ¼ 
16,267) pertaining to gene-disease associations (15). It is 
unclear, however, whether the decision to perform and re­
port a meta-analysis would be influenced by the postulated 
effect size of a significant association. Second, we acknowl­
edge that some of the excluded, statistically nonsignificant 
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FIGURE 2. Left panel: distribution of the total sample sizes (cases and controls combined) required for 90% power to detect associations of the 
magnitude suggested by the summary odds ratio of a meta-analysis and the control frequency actually observed in each of the 752 studies (refer to 
the text for calculation details). Calculations are based on two-sided tests. Right panel: distribution of the ratio of the required (as in left panel) vs. the 
actual sample size used in the 752 studies. Calculations were performed with Intercooled Stata 8.2 software (Stata Corporation, College Station, 
Texas). 

meta-analyses may have been underpowered to detect an 
existing, true genetic association (5). However, other aspects 
being equal, on average these effects are likely to be smaller 
than those included; thus, sample size requirements would 
be even larger. 

Third, nondifferential measurement error in these studies 
may dilute the observed effect sizes, but it is more likely that 
selective reporting biases in favor of significant results are 
stronger and more than counterbalance this diluting impact. 
Fourth, the meta-analyzed variant may be in linkage dis­
equilibrium with only the true culprit that has a larger odds 
ratio. However, the current discovery-oriented approaches 
generally do not necessarily target only the true, biologi­
cally important functional culprits. If anything, the 50 asso­
ciations analyzed here probably have stronger functional 
support than the vast majority of associations that would 
be obtained currently through whole genome association 
analyses and other high-throughput approaches. Finally, our 
analyzed sample did not include any of the very few genetic 
variants that have been identified to date with a postulated odds 
ratio exceeding 3. The only such meta-analysis published in 
the time frame of our literature search (the apolipoprotein E 
gene (APOE) and Alzheimer’s disease (16)) did not provide 
2-by-2 tables per study. Considerations for the search of variants 
with very strong effects probably are different. 

In the presence of genuine heterogeneity (e.g., ethnic or 
‘‘racial’’diversity) in the genetic effects (17), synergistic gene-
gene interactions (18), and synergistic gene-environment 
interactions (19), the required sample sizes would easily in­
crease further. For example, if the effect is present in only one 
ethnic subgroup or combination of gene(s) and environmental 
exposures, then analysis of an entire sample may wash out 

the effect and reduce power. Misclassification is also a major 
concern for measurement of environmental exposures, but it 
can also affect genotyping. In the presence of even modest 
nondifferential misclassification, the required sample sizes 
increase steeply (20). 

HOW DO WE MEET THE EMERGING CHALLENGES OF 
HUMAN GENOME EPIDEMIOLOGY? 

Meeting the goals of the current research agenda in ge­
netic association studies would probably require sample 
sizes in the range of several thousands to more than tens 
of thousands to answer the simpler questions, and sample 
sizes possibly in the range of 50,000–100,000 or even lar­
ger to answer questions of modest complexity. These num­
bers pertain to case-control studies, including in particular 
those nested within even larger cohorts. Even the single 
largest general-purpose observational cohorts and biobanks 
(21, 22) would be challenged to meet these numbers. Except 
for very common diseases, such as coronary artery disease, 
where a considerable fraction of the population may be suit­
able cases, for most diseases, the largest biobanks and co­
horts may be unable to provide conclusive answers. For 
example, for Parkinson’s disease, if the frequency of the 
disease in a general population cohort is 1 percent, then 
the cohort must include 500,000 subjects to enable enroll­
ment of approximately 5,000 cases with the disease to con­
clusively answer the simple questions. 

A cohort base of several million subjects may have to be 
recruited to answer the somewhat more complex questions. 
Finally, for the most common diseases, such as coronary 
artery disease noted above, it is unclear whether a broadly 
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defined phenotype would be sufficient to capture the under­
lying genetic complexity. The failure of single genetic 
variants–disease association studies of coronary artery dis­
ease to date (23, 24) may be due to the fact that such a common 
phenotype may reflect an array of many subphenotypes, each 
with a different genetic background. The pertinent sub-
phenotypes, even if appropriately deciphered without get­
ting lost in exploratory subgroup analyses, may have 
much lower prevalence and incidence rates and thus ex­
tremely high sample size requirements to delineate their 
risk factors. Etiologic heterogeneity with diverse subphe­
notypes of different genetic background in less common 
diseases would be even more difficult to address. 

The effort to identify more complex effects should not 
be abandoned. Because of the small effect sizes of indi­
vidual genetic variants, it may be reasonable to look for 
complex genotypes that operate in biologic pathways and 
gene-environment interactions. Yang et al. (25) have shown 
that the combination of a few genetic variants (10 to 20) at 
multiple loci, each with a modest effect size (odds ratio 
of about 1.5), may account for a substantial portion of the 
population attributable fraction for many common diseases. 
Of course, we do not know the form of joint effects of ge­
netic variants (multiplicative, additive, or otherwise) nor 
how these variants interact with environmental factors. Con­
ventional wisdom has taught us that looking for interactions 
usually requires a vast expansion of sample sizes of the 
original studies; however, under certain plausible biologic 
scenarios of more extreme interactions among genes and 
genes and environmental factors, there could be increased 
statistical power for looking for such interactions in studies 
designed to detect marginal effects of individual genotypes 
(26, 27). The search for more complex genotypes with stron­
ger effects in such studies also makes sense in terms of the 
eventual application of these findings to genomic medicine. 
As shown by Holtzman and Marteau (28) and confirmed in 
the analyses presented here, individual genetic variants with 
weak or modest effect sizes are unlikely to be used for pre­
diction and prevention of common diseases, whereas the 
combination of genetic variants, even with modest individ­
ual effect sizes, can lead to a marked increase in the ability 
to predict disease risks (29). 

If heterogeneity is immense across populations, it is ques­
tionable whether this predictive enterprise is feasible at all. If 
most genetic variance is highly defined by very ‘‘private’’ 
genetic variation interacting with highly ‘‘private’’ environ­
mental exposures, then epidemiology is probably not the way 
to address risk factors for complex diseases. Yet, it is unclear 
whether anything else can take the place of epidemiologic 
investigation in this pursuit (30). Given the complexity of the 
genetics of common diseases, we should foster good a priori 
hypotheses regarding genes and environmental factors, inno­
vative study designs, and strong collaborative efforts. 

At a minimum, research teams working with the same 
disease and sets of questions should join forces in networks 
with common objectives. This goal is currently a major 
effort of the HuGENet ‘‘network of networks’’ initiative 
(31, 32). Reaching the point where our knowledge base 
for genetic associations for complex diseases is reliable is 
not easy. However, such knowledge is likely to be highly 

desirable because it would allow us to explain a large pro­
portion of the cause of most common diseases and may also 
lead to new therapeutic avenues and tailored preventive in­
terventions. A road map has been recently proposed on how 
to reach this goal (32). It emphasizes efforts that will min­
imize bias in the published and unpublished literature, en­
hance data synthesis across diverse teams of investigators, 
grade the credibility of the evidence accumulated, and main­
tain updated field-wide synopses that summarize the evolv­
ing knowledge in a specific field in as systematic and 
unbiased a manner as possible. Eventually, the impact on 
individual and public health could be considerable. 
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