Health Disparities in Implementation of Genomic Medicine: Challenges and Opportunities

Megan C. Roberts, PhD
Assistant Professor
Director of Implementation Science in Precision Health and Society
UNC Eshelman School of Pharmacy
Division of Pharmaceutical Outcomes and Policy
Objectives:

• Review health disparities in the implementation of genetic testing and cascade screening for hereditary cancers and heart disease

• Describe how implementation science approaches can be used to address health disparities
Time Lags in Translational Research

- 55%
- 14%, 17 years

Balas and Boren 2000; Morris et al. 2011; Asch et al. 2003; Smedley, Stith, Nelson 2003
Defining disparities

• AHRQ: “Any difference among populations that are statistically significant and differ from the reference group by at least 10 percent”

• IOM: “the difference in treatment or access not justified by the differences in health status or preferences of the groups”

• WHO: “differences in health which are not only unnecessary and avoidable but, in addition, are considered unfair and unjust.”

(Braveman, 2006)
Defining disparities cont.

• AHRQ: “Any difference among populations that are statistically significant and differ from the reference group by at least 10 percent”

• IOM: “the difference in treatment or access not justified by the differences in health status or preferences of the groups”

• WHO: “differences in health which are not only unnecessary and avoidable but, in addition, are considered unfair and unjust.”

(Braveman, 2006)
Difference vs. Disparity

McGuire et al. 2006
Access to Care, 2014

AHRQ, 2016
Unique Challenges to Genomic Medicine

• Ethical, Legal and Social
• (Genetic) literacy
• (Genetic risk) communication
• Rapidly-evolving knowledge
• Big Data
• Costs
• Many more...

Barriers to genomic medicine

<table>
<thead>
<tr>
<th>Level/Stakeholder</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>Knowledge about genetic conditions and genetic testing</td>
</tr>
<tr>
<td>Relatives</td>
<td>Family dynamics</td>
</tr>
<tr>
<td>Providers</td>
<td>Communication about genetic conditions with patients and relatives</td>
</tr>
<tr>
<td>Laboratories</td>
<td>Different laboratory systems (e.g., centralized versus local) to undertake screening</td>
</tr>
<tr>
<td>Health-care organizations</td>
<td>Coordination between various specialties (e.g., primary care, cardiology, genetics); Electronic Health Records</td>
</tr>
<tr>
<td>Community/state leaders</td>
<td>State public health genomics programs to improve access to genetic testing</td>
</tr>
<tr>
<td>National health policymakers</td>
<td>Medicare and Medicaid benefits for genetic testing</td>
</tr>
</tbody>
</table>

Khoury et al. 2012
Disparities in access to genomic medicine

• Barriers change over time
• Barriers vary between and within variation
 • Example:
 • Awareness of genetic testing for cancer risk varies by
 • Sub-ethnicity
 • Acculturation
 • Language level
 • Nativity
 • Racial and ethnic identity
• Barriers to cascade screening
 • State genetic privacy laws
 • Geography
 • Family Communication
 • Others
Disparities in quality care

- Lack of representation in research
 - Reliability of predictive models
 - Population prevalence
 - Testing benefits
- Access to risk management strategies

Landry, et al. 2018; Hall and Olopade 2006
What tools do we have to address complex disparities?
Implementation Science (IS)

Study of methods to promote the adoption and integration of
• evidence-based practices,
• interventions, and
• policies

into routine health care and public health settings in order to improve our impact on patient and population health.
Implementation Science Research Methods
(Adapted from Proctor et al., *Adm Policy Ment Health*, 2009)

Context

- Intervention Strategies
 - Evidence-based Practices

- Implementation Strategies
 - 73 Strategies (Powell et al. 2015)

Outcomes

- Implementation Outcomes
 - e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

- Service Outcomes
 - e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

- Client Outcomes
 - e.g., Satisfaction, Health outcomes

Implementation Research Methods
Usual Practice

Context

Intervention Strategies
Evidence-based Practices

Implementation Strategies
73 Strategies (Powell et al. 2015)

Implementation Outcomes
e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes
e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes
e.g., Satisfaction, Health outcomes

Implementation Research Methods
Core of Implementation Science

Context

- Intervention Strategies
 - Evidence-based Practices

Implementation Strategies
- 73 Strategies (Powell et al. 2015)

Implementation Outcomes
- e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes
- e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes
- e.g., Satisfaction, Health outcomes

Implementation Research Methods
Core of Implementation Science cont.

Context

Intervention Strategies
Evidence-based Practices

Implementation Strategies
73 Strategies (Powell et al. 2015)

Implementation Outcomes
- e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes
- e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes
- e.g., Satisfaction

Health outcomes

Implementation Research Methods
Implementation Strategies

<table>
<thead>
<tr>
<th>Example Implementation Strategy</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build a coalition</td>
<td>Recruit and cultivate relationships with partners in the implementation effort</td>
</tr>
<tr>
<td>Conduct educational meetings</td>
<td>Hold meetings targeted toward different stakeholder groups (e.g., providers, administrators, other organizational stakeholders, and community, patient/consumer, and family stakeholders) to teach them about the clinical innovation</td>
</tr>
<tr>
<td>Assess for readiness and identify barriers and facilitators</td>
<td>Assess various aspects of an organization to determine its degree of readiness to implement, barriers that may impede implementation, and strengths that can be used in the implementation effort</td>
</tr>
<tr>
<td>Conduct local needs assessment</td>
<td>Collect and analyze data related to the need for the innovation</td>
</tr>
<tr>
<td>Identify and prepare champions</td>
<td>Identify and prepare champions dedicated to supporting, marketing, and driving through an implementation, overcoming indifference or resistance that the intervention may provoke in an organization</td>
</tr>
</tbody>
</table>
Implementation Science Research Methods
(Adapted from Proctor et al., *Adm Policy Ment Health*, 2009)

Context

- **Intervention Strategies**
 - Evidence-based Practices

- **Implementation Strategies**
 - 73 Strategies (Powell et al. 2015)

Outcomes

- **Implementation Outcomes**
 - e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

- **Service Outcomes**
 - e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

- **Client Outcomes**
 - e.g., Satisfaction, Health outcomes
Implementation Frameworks

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process frameworks</td>
<td>Specify stages, phases to describe/guide the process of translating research into practice</td>
<td>EPIS</td>
</tr>
<tr>
<td>Determinant frameworks</td>
<td>Specify types/classes or domains of determinants that can act as barriers and enablers (independent variables) that influence the implementation outcomes (dependent variables)</td>
<td>CFIR</td>
</tr>
<tr>
<td>Classic theories</td>
<td>Theories that originate from fields external to implementation science which can be applied to understand or explain aspects of implementation</td>
<td>Theory of planned behavior</td>
</tr>
<tr>
<td>Implementation theories</td>
<td>Theories developed by implementation researchers to provide understanding of aspects of implementation</td>
<td>ISF</td>
</tr>
<tr>
<td>Evaluation frameworks</td>
<td>Specify aspects of implementation that could be evaluated</td>
<td>RE-AIM</td>
</tr>
</tbody>
</table>

Example Framework: Consolidated Framework for Implementation Research (CFIR)
An example: Familial Hypercholesterolemia

Context

Intervention Strategies
- Evidence-based Practices: Genetic testing for FH

Implementation Strategies
- 73 Strategies (Powell et al. 2015)

Implementation Outcomes
- e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes
- e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes
- e.g., Satisfaction

Health outcomes

Implementation Research Methods
An example: Familial Hypercholesterolemia

Context

Intervention Strategies
- Evidence-based Practices

Implementation Strategies
- 73 Strategies (Powell et al. 2015)

Implementation Outcomes
- e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes
- e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes
- e.g., Satisfaction

Health outcomes

Implementation Research Methods
An example: Familial Hypercholesterolemia

Context

Intervention Strategies

Evidence-based Practices

Implementation Strategies

73 Strategies (Powell et al. 2015)

Implementation Outcomes

e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes

e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes

e.g., Satisfaction, Health outcomes

Implementation Research Methods
An example: Familial Hypercholesterolemia

Context

Intervention Strategies

Evidence-based Practices

Implementation Strategies

73 Strategies (Powell et al. 2015)

Implementation Outcomes
———
e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes
———
e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes
———
e.g., Satisfaction, Health outcomes

Implementation Research Methods
An example: Familial Hypercholesterolemia
An example: Familial Hypercholesterolemia

Context

Intervention Strategies
Evidence-based Practices: Genetic testing for FH

Implementation Strategies
73 Strategies (Powell et al. 2015)

Outcomes
Implementation Outcomes
e.g., Feasibility, Fidelity, Penetration, Acceptability, Sustainability, Uptake, Costs

Service Outcomes
e.g., Efficiency, Safety, Effectiveness, Equity, Patient-centeredness, Timeliness

Client Outcomes
e.g., Satisfaction

Health outcomes

Implementation Research Methods
Examples from the literature
Implementing genomic services in diverse settings from the IGNITE network

- Limited patient engagement
- Limited provider knowledge
- Need to integrate genomics into EHR

Sperber, et al. 2017
State-based public health genomics programs: An example of a multilevel approach

- Estimate burden of hereditary conditions
- Educate providers and public
- Promote policies to increase access to genetic services
- Build a coalition (collaborate with key stakeholders)
- Tailor programs to meet local needs

Senier et al. 2018; Powell et al. 2015
Conclusion: Although genomic discovery provides the potential for population health benefit, the current knowledge base around implementation to turn this promise into a reality is severely limited. Current gaps in the literature demonstrate a need to apply implementation science principles to genomic medicine in order to deliver on the promise of precision medicine.

Purpose: The objective of this study was to identify trends and gaps in the field of implementation science in genomic medicine.

Methods: We conducted a literature review using the Centers for Disease Control and Prevention’s Public Health Genomics Knowledge Portal, particularly oncology (35%, n = 99). Key study design elements, such as racial/ethnic composition of study populations, were underreported in studies. Few studies incorporated implementation science theoretical frameworks, sustainability measures, or capacity building.
Future Directions
Acknowledgements

• NCI
 • David Chambers
 • Muin Khoury
 • Amy Kennedy
 • Mindy Clyne

• NASEM Genomics and Public Health Action Collaborative
 • Cascade Screening Sub-group (Led by Heather Hampel and Katherine Wilemon)
 • Working group members

• Sara Jacobs
Thank you.

Questions?