Hereditary Hemochromatosis: Are We Ready for Population Screening?

Epidemiology

David Melzer
Professor of Epidemiology and Public Health
University of Exeter, UK & University of Connecticut, School of Medicine (USA)
Hereditary Hemochromatosis
textbook onset age 40 to 60 in men, less common and later onsets in women

widespread iron deposition

Fatigue, weakness, joint pain, abdominal pain
• Liver – cirrhosis and hepatocellular cancer
• Arthritis / arthropathy
• Diabetes

Less common
Susceptibility to infection, cardiomyopathy, arrhythmias, endocrine glands, erectile dysfunction, menstrual problems, Bronze skin
(e.g. Powell L et al, The Lancet 2016, Hollerer et al Haematologica 2017)

From: Hollerer et al Haematologica 2017
Genetic variants

Hereditary Haemochromatosis (HH - Type 1) predominantly occurs with European ancestries

HFE mutations
- 95% of HH is linked to p.C282Y homozygosity
- 5% p.C282Y/p.H63D
- *Plus some rare variants*

Higher prevalence in northern Europe
 - especially Ireland and the UK
But present across European ancestries
Prevalence in North America

HFE p.C282Y homozygosity (‘HMZ’)

HEIRS study: 99,711 participants across 5 North American Medical Centers
(Adams et al, NEJM, 2005)

White Americans – 1 in 227 people are C282Y homozygote p.(C282Y/C282Y)

<table>
<thead>
<tr>
<th>Group</th>
<th>Prevalence (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>0.44</td>
<td>0.42 to 0.47</td>
</tr>
<tr>
<td>Native American</td>
<td>0.11</td>
<td>0.06 to 0.20</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.027</td>
<td>0.022 to 0.032</td>
</tr>
<tr>
<td>Black</td>
<td>0.014</td>
<td>0.012 to 0.017</td>
</tr>
<tr>
<td>Pacific Islander</td>
<td>0.012</td>
<td>0.0043 to 0.032</td>
</tr>
<tr>
<td>Asian</td>
<td>0.000039</td>
<td>0.00015 to 0.00010</td>
</tr>
</tbody>
</table>
Biochemical ‘penetrance’: e.g. ferritin levels

C282Y partially inactivates control of iron absorption from the gut

Stages (of clinical progression):
1. Genetic risk only
2. Iron overload
3. Iron overload & early symptoms
4. Iron overload & organ damage

High risk for later stages in those with ferritin >1000µg/L

Ferritin and transferrin saturation at any one time - only moderately predictive

HFE Genotype

- Homozygotes “HMZ”
- Non-HMZ HFE mutations
- Wild Type (no HFE mutations)
Treatment

Phlebotomy effective at correcting iron overload
 Intensive initially
 Maintenance – 4 or 5 times per year
 \(\text{(maintenance blood can be used for transfusion for others)} \)

Good response
 • fatigue, weakness, abdominal pain
 • Liver fibrosis

Limited response
 • cirrhosis
 • arthritis
 • diabetes
 \(\text{so need to treat before this damage established} \)

Reduction in liver fibrosis after phlebotomy in group identified in family screening

7.5 fold reduction in fibrosis scores except in cirrhosis

(Powell L et al, Arch Internal Medicine, 2006)
US Preventive Services Task Force - HH report
Whitlock EP et al, Annals of Internal Medicine, 2006

HH Screening for primary care clinicians: *Review to February 2005*

Key questions:

1: What is the risk for developing clinical hemochromatosis in p.C282Y homozygotes?
2: Does early treatment reduce morbidity and mortality?
3: Can groups at risk be readily identified before genetic screening?

Noted insufficient data on precise penetrance and no RCTs of treatment

On ‘very small numbers’: 38% to 50% of C282Y HMZ develop iron overload cirrhosis (6.3%), diabetes (3.6%),
limited data on male and females separately, limited follow-up time

So: **supported family screening & testing of high risk symptomatic groups**
Penetrance to clinical diagnosis

HFE p.C282Y homozygous mutation

Wide range of estimates from clinical and smaller studies: 1% to 50%

Larger ‘community’ studies with genotyping:

- Low rates of associated disease, except in p.C282Y homozygote males with very high ferritin levels

Beutler et al Lancet 2002: Kaiser Permanente health appraisal clinics, sample n=41,038, n=152 HMZ

less than 1% of homozygotes develop frank clinical haemochromatosis

i.e. full syndrome, after excluding prevalent cases

Liver problem or hepatitis: p.C282Y HMZ 8.1% vs 4.1% wild type OR 2.1 95% CI 1.1 to 4.0

HEIRS study: 5 North American centers, primary care patient sample n=99,711, n=299 HMZ

Higher prevalence chronic fatigue & metacarpophalangeal joint swelling with higher serum ferritin levels

Healthiron study (Allen et al, NEJM, 2008): population sample n=31,000 (203 HMZ) in Melbourne, Australia

Male p.C282Y homozygotes with serum ferritin level ≥1000 μg/L were more likely to report fatigue, use of arthritis medicine, and a history of liver disease

etc
UK Biobank

500,000 volunteers
aged 40 to 70: baseline interview – 2006 to 2010
Assays: including liver enzymes, but no blood iron studies (so far)

Follow-up.....
hospital admission records, cancer registry, death certificates
GP records – recently released on ~250,000
MRI in a subset, including iron imaging

Consent – no individual feedback of genotypes: so results are under routine clinical care
HFE p.C282Y prevalence in UKB

451,243 European descent (on genetic clustering)

p.C282Y homozygotes (‘HMZ’): sample size=2,890

0.64% of population, or 1 in 156

Male HMZ 1294, Female 1596, mean age ~57 years

Follow-up – now max 11 years, mean 8 years

UK Biobank: C282Y allele frequency similar to other UK studies

UKB = 7.3%: Alspac (Bristol UK) 7.9%, TwinsUK 6.9%

0.68% in 10,500 Welsh blood donors (Jackson HA, BJH, 2001: no diagnosed HH)

(0.9 in Generation Scotland cohort, 0.88 in UKB)

approx. 350,000 people in the UK

UKB 14.3% C282Y heterozygous (i.e. one copy of the mutation)

15.1% in Welsh blood donor study

Prevalence data from Pilling L et al, BMJ, 2019
Age at hemochromatosis diagnosis (p.C282Y HMZ)

UK Biobank (usual care, n=2890)
- n=210 at baseline, n=321 incident diagnosed

Men	Women

eMERGE 7 US Medical systems biobank (n=98).
- Gallego et al, Am J Human Genetics 2015
UKB baseline associations, Men

Reported doctor diagnoses to study Nurse, or from inpatient hospital records back to 1997

Women p.C282Y HMZ osteoarthritis only:
OR 1.33 (CI 1.15 to 1.53)
Chronic pain & frailty
Older group (60 to 70 years) in UK Biobank, baseline

Chronic pain (3+ months)
Male p.C282Y HMZ: associations with hip, back, shoulder/neck

Sarcopenia (muscle weakness): \(\text{OR}=2.38: 1.80-3.13, p = 9.70 \times 10^{-10} \)
Frailty: \(\text{OR}=2.01: 1.45-2.80, p = 3.41 \times 10^{-05} \)
– based on weakness, fatigue and weight loss

p.C282Y HMZ women: Excess pain at ages 65 to 70:
chronic knee, hip and back pain.

From Tamosauskaite J et al, J Gerontology Medical Sciences 2019
incident diagnoses only: men
i.e.: minimising possible biased response to UKB

– hospital inpatient records to 2017

Males: HMZ versus wild type

Hazard Ratio (vs wild type)

0 2 4 6 8 10 12 14 16 18

Diabetes (type 1 & 2)
Osteoarthritis
Liver disease (any)
Liver cancer

Females –
Osteoarthritis HR=1.54 (1.11 to 2.15)

robust to excluding HH diagnoses at baseline
- also osteoarthritis and diabetes excluding liver disease (reducing hospital admission biases)

Adjusted for age, sex, 10 genetic principal components, assessment centre and chip. Removing related participants – little changed
Mortality by HFE p.C282Y in UKB

Heterozygotes $HR = 0.99$ (0.96 to 1.03)
consistent with previous heterozygote evidence – no excess mortality.

HMZ: n=148 deaths
$HR = 1.22$ (95%CI 1.03 to 1.43) $p=0.02$ versus wild type

Lifetable ages 40 to 75:
Men: 1 in 23 additional HMZ men die by age 75
difference 4.4% i.e. HMZ=19.5% 95%CI 15.8 to 24
versus no HFE mutations =15.1% CI 14.7 to 15.5

Women: currently 1 in 38 additional deaths in HMZ
– not (yet) statistically significant

Adapted from Pilling L et al, BMJ, 2019 with longer follow-up:
original finding n=107 deaths in homozygotes,
published $HR =1.23$ (CI 1.01 to 1.48, $p=0.04$)
Epidemiology conclusions

1: **risk** for developing clinical hemochromatosis in p.C282Y homozygotes?
 - p.C282Y homozygotes do get substantial excess morbidity, some excess mortality (especially males)
 - Onsets at older ages common
 - Substantial pain and arthritis, in addition to liver disease

3: **readily identifiable before** genetic screening?
 - Many are not being diagnosed early under routine care (UKB, eMERGE)
 - Difficult to diagnose without routine testing
 - e.g. fatigue & arthritis common anyway

Primary prevention – population screening
Secondary prevention – clinical screening
Epidemiology acknowledgements

Thank you - participants and study team!
[project approval 14631]

Luke C Pilling, Janice Atkins, Jone Tamosauskaite,
Garan Jones, Andrew Wood, Lindsay Jones

Chia-Ling Kuo – University of Connecticut Health Center (UCHC)
George A Kuchel – UCHC Center on Aging

Luigi Ferrucci M.D., US National Institute on Aging, NIH

funded by the Medical Research Council
MR/M023095/1 & MRS009892/1 (PI David Melzer)