Estimating Foodborne Illness Source Attribution for Illnesses Caused by *Salmonella*, *Escherichia coli* O157 (*E. coli* O157), *Listeria monocytogenes* (Lm), and *Campylobacter*

Joanna Zablotsky Kufel, USDA

Dana Cole, CDC

Michael Bazaco, FDA
Overview of Presentation

- Overview of Project Approach
- Exploratory Analyses
 - Question and Answer Period
- Methods and Model Results
- Assumptions, Strengths, Limitations and Conclusions
 - Question and Answer Period
Overview of Project Approach

Joanna Zablotsky Kufel, PhD, MPH
Office of Data Integration and Food Protection (ODIFP)
Food Safety and Inspection Service (FSIS)
United States Department of Agriculture
Outline

- Purpose
- Background
- Selection of Pathogens
- Data Sources
- Selection of Estimator
- Comparison to Painter et al, 2013
- Conclusions
Purpose

To provide harmonized source attribution estimates by developing a single, robust method to produce estimates that all 3 agencies may use in their food safety activities.
IFSAC Priority Pathogens

- Identified four priority pathogens as the initial focus:
 - *Salmonella*
 - *Escherichia coli O157 (E. coli O157)*
 - *Listeria monocytogenes (Lm)*
 - *Campylobacter*

- Pathogens were selected based on:
 - Frequency and severity of illnesses
 - Targeted interventions could be very effective
Phase 1: Background

Objective:
Determine the best approach to estimate source attribution using outbreak surveillance data while exploring the uncertainties and variability associated with computing attribution estimates using outbreak data

Approach:
- Explore ways to estimate percentages of illnesses caused by priority pathogens attributable to food categories in new categorization scheme using outbreak data
- Conduct a literature review to identify variability, methods and data sources used to estimate foodborne illness attribution
Phase 1: Modeling Approach

- **Determine data source and food categories:**
 - CDC Foodborne Disease Outbreak Surveillance System (FDOSS), 1998-2010
 - Food categorization scheme (defined in a separate IFSAC project) designed to align with regulatory agency approaches

- **Define inclusion and exclusion criteria**

- **Explore measures for estimating attribution:**
 - Fractions based on distribution of outbreak events across food categories, or distribution of outbreak illnesses across food categories?
Phase 1: Literature Review Methods

Data Sources:
PubMed, Web of Science, and EmBase

Studies Considered:
- 125 publications and 64 outbreak abstracts, including:
 - *Salmonella*: 25 publications
 - *E. coli*: 35 publications
 - *Lm*: 27 publications
 - *Campylobacter*: 21 publications
 - Multi-Pathogen: 17 publications
Phase 1: Combined Results and Findings

- Analysis revealed that attribution estimates derived from outbreak data can vary depending on:
 - Unit of analysis (i.e., outbreak counts or outbreak-associated illnesses)
 - Food classification scheme used to categorize foods implicated in outbreaks
 - Time period of analysis
 - Amount of missing data and the number of foods with unknown contaminated ingredients

- Attribution estimates from outbreak data are different from those calculated using data from other surveillance populations
 - Uncertainty regarding the representativeness of outbreaks of foodborne illness in the general population
Phase 1: Combined Results and Findings

- These findings provide the foundation for pursuing a tri-agency approach to estimating foodborne illness source attribution using outbreak data.

- More complex methods would be needed to estimate attribution to:
 - Smooth variation
 - Account for factors associated with outbreak size
 - Develop uncertainty parameters
Estimating Foodborne Illness Source Attribution for Illnesses Caused by *Salmonella*, *E. coli* O157, *Lm*, and *Campylobacter*
Phase 2
Data Sources

- CDC Foodborne Disease Outbreak Surveillance System (FDOSS), which collects data on foodborne disease outbreaks
 - During 1998–2008, reporting was made through the electronic Foodborne Outbreak Reporting System (eFORS)
 - From 2009 to present, reporting was made through the National Outbreak Reporting System (NORS)
Results from IFSAC Projects Incorporated into Model

- **Improve the food categories used to estimate attribution**
 - Project expanded the previously used food categorization scheme to include more specific food categories

- **Assessment of whether outbreak illnesses are representative of sporadic illnesses**
 - An analysis of data collected by CDC FoodNet and compared the characteristics of illnesses associated with outbreaks with those that are not linked to outbreaks
Selection of Model Inputs

- Simple v. Complex Foods
- Suspected v. Confirmed Etiology
- Outbreak Illnesses v. Outbreak Counts
Simple v. Complex Foods

Food Outbreak Attribution Definition

Simple Foods
Foods that can be grouped into only one category:

- “Green salad” with spinach, tomatoes, and carrots but contaminated ingredient is known to be spinach → Leafy Green
- Steak → Beef
- Fruit salad → Fruits-nuts

Complex Foods
Foods that can be grouped into more than one category:

- “Lasagna” with tomatoes, noodles, egg, and beef → Vine-stalk, Grains-beans, Egg, Beef
- “Meatloaf” with ground beef, egg, breadcrumbs, and onions → Beef, Egg, Grains-beans, Vegetables
Simple v. Complex Food Outbreak Attribution

Simple Food Attribution:

- Limit analysis to data from outbreaks with simple foods (e.g., include outbreaks due to steak, but not meatloaf)
 - Strengths:
 - Identified which food category was contaminated
 - Easier to delineate regulatory authority for outbreak-associated foods
 - Limitations:
 - Loss of data from approximately half of all outbreaks
 - Loss of data about foods typically consumed as part of complex foods (e.g., eggs, lettuce)
Simple v. Complex Food Outbreak Attribution (cont.)

Complex Food Attribution:
- Include data from outbreaks with both simple and complex foods by determining the ingredients of complex foods and then modeling the relative importance of each ingredient.
 - Strengths:
 - Inclusion of all available data
 - Limitations:
 - Accuracy of the food assignments to categories is diminished
 - No formal interagency agreement on how to estimate complex food attribution

IFSAC Approach: Simple food only
Confirmed v. Suspected Etiology Definitions

- Laboratory and clinical guidelines for confirming an etiology are specific to each bacterial agent
- If at least two outbreak illnesses are laboratory-confirmed, the outbreak is considered to have a confirmed etiology
- An etiology is "suspected" unless it meets pre-defined criteria for confirming an outbreak etiology
Confirmed v. Suspected Etiology
Strengths and Limitations

- **Confirmed Etiology Only**
 - **Strengths:**
 - Ensures inclusion of only outbreaks definitively associated with particular pathogens
 - **Limitations:**
 - Loss of outbreak data for analysis

- **Confirmed + Suspected Etiology**
 - **Strengths:**
 - Maximizes use of available data
 - Concerns with using suspected etiology reduced with 4 IFSAC priority pathogens
 - **Limitations:**
 - Increased uncertainty
Confirmed v. Suspected Etiology

IFSAC Approach

- IFSAC conducted a quantitative assessment in Phase 1 to determine what information would be lost if only confirmed outbreaks were included in dataset
 - Among outbreaks with an implicated etiology in the data:
 - Confirmed outbreaks comprised 90% of the data
 - Previous analyses by Painter et al utilized both confirmed and suspected etiologies to estimate attribution

IFSAC Approach: Explore all implicated etiology outbreaks for attribution
Outbreak Illnesses v. Outbreak Counts

Assumptions

- **Outbreak illnesses** (cases of illness within outbreaks): the probability that a food commodity will cause illness varies across the different commodities
 - e.g., raw ground chicken likely to cause more illnesses than raw chicken carcasses
- **Outbreak counts** (number of outbreaks): each food commodity has the same probability of causing illness in the population
 - e.g., raw ground chicken likely to cause the same number of outbreaks as raw chicken
Outbreak Illnesses v. Outbreak Counts (cont.)

Strengths and Limitations

- Outbreak illnesses
 - *Strengths:*
 - Enables better assignment of illnesses to commodities
 - *Limitations:*
 - Small outbreaks potentially underrepresented in data as they are less likely to be detected/investigated
 - Has potential to bias results toward large outbreaks

Outbreak counts

- *Strengths:*
 - Use has potential to reduce the influence of very large outbreaks on the resulting attribution estimates
- *Limitations:*
 - Eliminates possibility of investigating the relationship between outbreak size and other variables, including implicated food, setting, among others
Outbreak Illnesses v. Outbreak Counts
IFSAC Approach

Use of illness counts
- Enables better assignment of illnesses to commodities
- Minimizes the impact of large outbreaks,
- Allows for future IFSAC efforts to incorporate complex foods into attribution estimates

IFSAC decision: Use illness counts
Comparison to Painter et al., 2013

- **Use of Single Food Category v. Multiple Food Category**
 - IFSAC: Simple foods
 - Painter: Complex foods

- **Years of Data**
 - IFSAC: 1998-2012
 - Painter: 1998-2008

- **Categorization Scheme**
 - IFSAC: Updated scheme that aligns with regulatory agency approaches (17 food categories)
 - Painter: 2009 scheme developed by panel of epidemiologists (17 food categories)

- **Study Outcomes**
 - IFSAC: Percent of illness attribution
 - Painter: Number of illness, hospitalizations, deaths

- **Choice of Pathogens**
 - IFSAC: 4 pathogens
 - Painter: 36 agents
Conclusions

IFSAC Summary Decisions for Model Inputs

- CDC FDOSS outbreak data (1998-2012)
- 4 priority pathogens
- Simple food attribution approach
- Confirmed + suspected etiology
- Outbreak illness as unit of measure
Overview of Presentation

- Overview of Project Approach
- Exploratory Analyses
 - Question and Answer Period
- Methods and Model Results
- Assumptions, Strengths, Limitations and Conclusions
 - Question and Answer Period
Exploratory Analyses

Dana Cole, DVM, PhD
Lead, Analytics Team
Enteric Diseases Epidemiology Branch
Centers for Disease Control and Prevention (CDC)
Exploratory Analyses Outline

- Outbreak size variability
- Food categories
- Years to include in analysis
Exploratory Analysis #1: Outbreak Size Variability

- **Aim:** estimate the percentage of outbreak illnesses attributed to each food category

- **Caveat:** outbreak size did not fit a normal distribution
 - Outbreak size did not fit a normal distribution
 - Log transformed outbreak size
Exploratory Analysis #1: Log Transformation of Outbreak Size

- Multistate
- Setting of Food Prep
 - Multiple
 - Other
 - Private Home
 - Restaurant
 - Unknown

- Category
 - Beef
 - Chicken
 - Dairy
 - Eggs
 - Fish
 - Fruits
 - Game
 - Grains-Beans
 - Oils-Sugars
 - Other MorP
 - Other Produce
 - Other Seafood
 - Pork
 - Seeded vegetables
 - Sprout
 - Turkey
 - Vegetable Row Crops

- Campylobacter
- E. coli O157
- Lm
- Salmonella
Exploratory Analysis #1: Results and Decision

Results
- Log transformation of observed illnesses resulted in outbreak sizes that were approximately normally distributed
- 4 factors significantly associated with outbreak size
 - Pathogen
 - Setting of food preparation
 - Exposures occurred in a single state or in multiple states
 - Food category of implicated food

Decision
- Concluded that the attribution model needed to account for factors associated with variability in outbreak size
Exploratory Analysis #2: Food Categories

- Needed to aggregate some categories to improve the number of outbreaks within food categories

- **Aggregated Categories**
 - Shellfish and Other aquatic animals aggregated into “Other seafood”
 - Other meat and Other poultry aggregated into “Other meat and poultry”
 - Nuts-seeds, Fungi, Herbs, and Root-underground aggregated into “Other produce”
Exploratory Analysis #3: Years to Include in Analysis

E. coli O157 Example

- Attribution estimates vary, depending on how many years are included in analysis
Exploratory Analysis #3: Years to Include in Analysis

- Several food categories did not have illnesses reported in some years (blue boxes in table)
- Including only data collected in the last 5-7 years of the study period would have substantially limited the dataset

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>53</td>
<td>98</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>Fruits</td>
<td>56</td>
<td>626</td>
<td>892</td>
<td>169</td>
<td>106</td>
<td>139</td>
<td></td>
<td>18</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3579</td>
</tr>
<tr>
<td>Game</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Grains-beans</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>Oils-sugars</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Other meat & poultry</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Other produce</td>
<td></td>
<td>2067</td>
</tr>
<tr>
<td>Other seafood</td>
<td></td>
<td>380</td>
</tr>
<tr>
<td>Total</td>
<td>1089</td>
<td>3009</td>
<td>2371</td>
<td>1039</td>
<td>1953</td>
<td>1051</td>
<td>1617</td>
<td>1365</td>
<td>4067</td>
<td>1381</td>
<td>4345</td>
<td>1658</td>
<td>2919</td>
<td>1913</td>
<td>1324</td>
<td>31101</td>
</tr>
</tbody>
</table>
Exploratory Analysis #3: Results and Decisions

Results
- Estimates based on the most recent 5 years of available data were more stable than those based on 3 years
- When data older than 5 years was excluded:
 - Some food categories had no data, or only a few years of data
 - Main effect was on FDA-regulated food categories

Decisions
- Use data from all years (1998-2012)
- Give full weight to data reported in the most recent 5 years (2008-2012)
- Discount weight of earlier years
Exploratory Analysis #4: Weight of Data

The chart illustrates the weight of data over different years with an exponential decay function. The years are divided into 5-year intervals:

- **1998-2002**
 - 0.8: 10%
 - 0.7: 5%
 - 0.5: <1%
 - 0.2: 0%

- **2003-2007**
 - 0.8: 31%
 - 0.7: 28%
 - 0.5: 16%
 - 0.2: 5%

- **2008-2012**
 - 0.8: 58%
 - 0.7: 67%
 - 0.5: 83%
 - 0.2: 95%
Question and Answer Period
Overview of Presentation

- Overview of Project Approach
- Exploratory Analyses
 - Question and Answer Period
- Methods and Model Results
- Assumptions, Strengths, Limitations and Conclusions
 - Question and Answer Period
For each pathogen, outbreak size was estimated using the following Analysis of Variance (ANOVA) model:

\[
\text{Log ill} = \alpha + \beta_1 (\text{Multistate}) + \beta_2 (\text{Setting}) + \beta_3 (\text{Food Category})
\]

The model estimated the number of illnesses assigned to each outbreak in the dataset. For example:

- All single-state (\(\beta_1\)) Campylobacter outbreaks in which food was prepared in a restaurant (\(\beta_2\)) and the implicated food was Chicken (\(\beta_3\)) were assigned the same model-estimated number of illnesses.
Model: Percentage of IllnessCaused by Each Pathogen Attributed to Each Food Category

- For each outbreak, the model estimated outbreak size was discounted or not, depending on the year the outbreak occurred.
- For each pathogen, the model estimated discounted outbreak size for all outbreaks assigned to each food category was summed.
- Attribution percentages were estimated by dividing the estimated number of illnesses associated with each food category by the total number of illnesses caused by the pathogen.

\[
\text{Sum of weighted illnesses within a food category for a given pathogen} \times 100
\over\text{Sum of all weighted illnesses for a given pathogen}
\]
Model: Estimating Statistical Uncertainty

- 10,000 Bayesian bootstrap replications of the dataset were generated
 - Probability of each outbreak being sampled was based on a prior probability defined by non-informative Dirichlet distribution
 - For each replicate, the attribution percentage for each pathogen-food category pair was calculated

- The attribution percentages were defined by the 5% and 95% values of the distribution of 10,000 data replicates to describe the 90% credibility intervals for each estimated attribution percentage
Results Overview

- Summary of data
- Data from most recent 5 years
- Estimated attribution percentages
- Estimated 90% credibility intervals
Summary of Data

- 2,739 reported outbreaks were caused by 1 of the 4 pathogens during 1998-2012. Excluded:
 - 84 caused by multiple pathogens
 - 1,011 for which no food vehicle was identified
 - 3 that occurred in outlying U.S. territories
 - 689 attributed to foods containing ingredients from multiple food categories

- Used data from 952 outbreaks in which a simple food was implicated:
 - 597 outbreaks caused by *Salmonella*
 - 170 caused by *E. coli* O157
 - 161 caused by *Campylobacter*
 - 24 caused by *Lm*
The average ANOVA model-estimated outbreak size was often smaller than the observed outbreaks. Log transformation and ANOVA model limited impact of unusually large outbreaks. Discount function decreased the model estimated size of outbreaks occurring before 2008.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Land Animals</th>
<th>Aquatic Animals</th>
<th>Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beef</td>
<td>Pork</td>
<td>Chicken</td>
</tr>
<tr>
<td>Salmonella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed average</td>
<td>31</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>outbreak size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANOVA model-estimated average outbreak size*</td>
<td>22</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>E. coli O157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed average</td>
<td>19</td>
<td>None</td>
<td>36</td>
</tr>
<tr>
<td>outbreak size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANOVA model-estimated average outbreak size</td>
<td>11</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>Campylobacter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed average</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>outbreak size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANOVA model-estimated average outbreak size</td>
<td>2</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>Listeria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed average</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>outbreak size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANOVA model-estimated average outbreak size</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

*ANOVA model-estimated average outbreak size after exponential discounting of outbreaks occurring from 1998-2007
Summary of Data

- The average ANOVA model-estimated outbreak size was often smaller than the observed:
 - Log transformation and ANOVA model limited impact of unusually large outbreaks
 - Discount function decreased the model estimated size of outbreaks occurring before 2008

Table: Pathogen Data

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Other Sea-food</th>
<th>Grains</th>
<th>Oils</th>
<th>Sugars</th>
<th>Fruits</th>
<th>Seeded Vegetables</th>
<th>Sprouts</th>
<th>Vegetable Row Crops</th>
<th>Other Produce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed average outbreak size</td>
<td>9</td>
<td>38</td>
<td>None</td>
<td></td>
<td>55</td>
<td>118</td>
<td>38</td>
<td>41</td>
<td>107</td>
</tr>
<tr>
<td>ANOVA model-estimated average outbreak size*</td>
<td>6</td>
<td>14</td>
<td>None</td>
<td></td>
<td>32</td>
<td>53</td>
<td>30</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>E. coli O157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed average outbreak size</td>
<td>19</td>
<td>None</td>
<td>36</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANOVA model-estimated average outbreak size</td>
<td>11</td>
<td>None</td>
<td>36</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANOVA model-estimated average outbreak size after exponential discounting of outbreaks occurring from 1998-2007
Results: Contribution of Data from the Most Recent 5 Years to Attribution Estimates

- **Salmonella:**
 - 30% of outbreaks
 - 45% of illnesses

- **E. coli O157:**
 - 30% of outbreaks
 - 24% of illnesses

- **Campylobacter:**
 - 33% of outbreaks
 - 17% of illnesses

- **Lm:**
 - 50% of outbreaks
 - 60% of illnesses
Salmonella and Campylobacter were attributed to the most food categories

<table>
<thead>
<tr>
<th>Food category</th>
<th>Salmonella (N=597)</th>
<th>E. coli O157 (N=170)</th>
<th>Campy (N=161)</th>
<th>Lm (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other meat & poultry</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Game</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other seafood</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grains-beans</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oils-sugars</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeded vegetables</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprouts</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetable row crops</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other produce</td>
<td>![Bar chart]</td>
<td>![Bar chart]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimated Attribution Percentages

Food categories that together accounted for 75% of illnesses caused by each pathogen

Salmonella

E. coli O157

Campylobacter

Lm
Results: Estimated Attribution Percentages

<table>
<thead>
<tr>
<th>Food category</th>
<th>Salmonella (N=597)</th>
<th>E. coli O157 (N=170)</th>
<th>Campy (N=161)</th>
<th>Lm (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other meat & poultry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Game</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other seafood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grains-beans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oils-sugars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeded vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetable row crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other produce</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wide interval indicates greater uncertainty in point estimate
- *Lm* estimates have widest intervals because of few outbreaks
- *Campylobacter* and *E. coli O157* estimates also have relatively wide intervals
- More outbreaks caused by *Salmonella* than any of the other 3 pathogens, and estimates had the smallest intervals
Question and Answer Period
Overview of Presentation

- Overview of Project Approach
- Exploratory Analyses
 - Question and Answer Period
- Methods and Model Results
- Assumptions, Strengths, Limitations and Conclusions
 - Question and Answer Period
Model Assumptions, Strengths, and Limitations

Michael Bazaco, PhD
Epidemiologist
Center for Food Safety and Applied Nutrition (CFSAN)
U.S. Food and Drug Administration (FDA)
Outline

- Assumptions
- Limitations
 - Sparse Data
 - Outbreak Inclusion
 - Representativeness
- Strengths
 - Outbreak Based Estimates
 - Model Based Attribution Estimates
- Conclusions
Assumptions

- **Generalizability**
 - Outbreak illnesses are the same as sporadic illnesses
 - Foods implicated in outbreaks are the same foods causing sporadic illnesses
 - Institutional populations and sources of food contamination are representative of the general U.S. population

- **Equivalence of disease risks within food categories**
Limitations: Sparse Data
Lm and Fruit

- **Outbreak data is sparse**
 - As seen with the *Lm* in fruit estimate, a single large outbreak can be heavily influential on specific model estimates
 - The 2011 outbreak of *Lm* in cantaloupe was very influential in this analysis (147 illnesses)
 - The combination of sparse data (24 total outbreaks) and this one very large outbreak is reflected in our *Lm* estimates and credibility intervals
Limitations: Outbreak Inclusion

- Only analyzed 952 (36%), of the 2,739 total outbreaks attributed to the four priority pathogens
- Excluded outbreaks due to:
 - No food product was identified for many outbreaks
 - Foods containing ingredients from multiple food categories were excluded
 - Some outbreaks were caused by multiple pathogens
 - Some outbreaks occurred in outlying U.S. territories
Limitations
Representativeness: Institutionalized Populations

- 10% of the outbreaks in this analysis occurred in institutionalized populations (prisons, hospitals, nursing homes) and these may not be representative of the U.S. population
 - Institutionalized populations are demographically different
 - Institutionalized populations have access to fewer food options
 - Illnesses in an institution may be more likely to be captured during an outbreak
Limitations
Representativeness: *Campylobacter* and Dairy Products

- A number of published studies have shown attribution estimates for food sources responsible for sporadic campylobacteriosis differ from those in outbreaks
 - Studies of sporadic illness have consistently shown low campylobacteriosis rates associated with dairy products
 - Studies of outbreak illnesses have shown higher campylobacteriosis rates associated with dairy products
- This model attributes 66% of *Campylobacter* illnesses to dairy products
Limitations
Representativeness: *Campylobacter* and Raw Milk

- Unpasteurized milk and unpasteurized milk products (cheese) accounted for 60% of the 161 *Campylobacter* outbreaks included in this analysis
- Unpasteurized milk and unpasteurized milk products are not regularly consumed by the population, so extrapolating this data to the general population is problematic
Strengths of Outbreak-Based Estimates

- Provided harmonized estimates with input from subject matter experts from three agencies (CDC, FDA, USDA-FSIS)
- Used Bayesian Bootstrapping to calculate measures of uncertainty around the estimates (an indicator of the precision of these estimates)
- Incorporated all years of available data (1998-2012) in the model and weighted the most recent outbreaks more heavily
Strengths of Model-Based Attribution Estimates

- There are biases associated with estimates based solely on outbreak counts or outbreak associated illness counts.
 - When looking only at outbreak illnesses, very large outbreaks can skew the estimates
 - When focusing on outbreak counts alone, outbreaks involving 2-3 cases are as impactful as very large ones

- This modeling approach mitigated the impact of these two issues
Strengths of Model-Based Attribution Estimates

- The model accounted for other sources of potential bias and uncertainty
 - Single state outbreaks v multi-state outbreaks
 - Setting of food preparation
- The ANOVA model of log-transformed data helped to smooth variability of data
- By incorporating all years of available data (1998-2012), we minimized the variability that can be seen in foodborne illness attribution across years
- We applied a shelf and decay function to put more emphasis on recent outbreaks
Conclusions

- *Salmonella* illnesses were attributed to multiple food categories and attribution estimates had the least amount of statistical uncertainty compared with the other pathogens in the model.

- *Campylobacter* infections spanned a broad array of categories, but the point estimate for the Dairy category was notable (66%) and had wide credibility intervals (57-74%).
 - High number of outbreaks associated with raw milk or cheese produced from raw milk (e.g., unpasteurized queso fresco).
Conclusions (cont.)

- 82% of *E. coli* O157 illnesses were attributed to Beef and Vegetable row crops
- 81% of *Lm* illnesses were attributed to Dairy and Fruit
 - The limited number of *Lm* outbreaks and the wide credibility intervals dictate caution in interpreting the proportion of listeriosis illnesses attributed to these two food categories
Conclusions (cont.)

- Improved method for estimating attribution percentages from outbreak data
- These estimates should be interpreted in the context of the analysis:
 - The credibility intervals should be considered when evaluating the precision of the estimates
 - Limitations associated with the use of outbreak data
- We urge caution in interpreting results
 - *Lm* in fruit
 - *Campylobacter* in dairy
- Results should be used with other scientific data when informing decisions on food safety activities
Question and Answer Period