Table of Contents

Prologue ... 2

Part I. Narrative Report

Executive summary ... 4
Background ... 6
Objectives ... 6
Methods ... 6
Results ... 6

Cases reported ... 6
Seasonality .. 7
2001 Rates .. 8
Rates by site ... 9
Rates by age .. 10
Rates by sex .. 10
Rates by age and sex .. 11
Hospitalizations ... 11
Deaths ... 12
Hemolytic Uremic Syndrome .. 12
1996–2001 Rates .. 15

Comments ... 21

Other ongoing projects ... 23
Burden of illness .. 23
Routes of transmission of foodborne pathogens ... 23

Other FoodNet activities .. 24

Future activities ... 25

Online materials available on Web site ... 26

2001 FoodNet working group .. 27
FoodNet Web site ... 28

Part II. Summary Tables and Graphs

Listing of Summary Tables and Graphs .. 29
Prologue
This is the sixth in a series of annual reports. The FoodNet Surveillance Report for 2001 (Final Report) summarizes the data collected through FoodNet’s active surveillance sites during 2001. It represents the continued efforts of numerous individuals, and the collaboration of multiple federal, state, and local public health agencies. This Final Report consists of two parts: Part I, Narrative Report; and Part II, Summary Tables and Graphs. It uses the 2000 census population counts as the denominator, and includes a small number of additional cases reported since the publication of the Preliminary Report. Therefore, Tables 1A and 1B, found in Part II of the Final Report, Summary Tables and Graphs, are updated, with recalculated incidence rates. Furthermore, surveillance data for hemolytic uremic syndrome and deaths are provided in this Final Report.

Further information concerning FoodNet, including previous surveillance reports, MMWR articles, and other FoodNet publications, can be obtained by contacting the Foodborne and Diarrheal Diseases Branch at 404.371.5465 or via the Internet at http://www.cdc.gov/foodnet.
Part I

Narrative Report
Executive Summary

The Foodborne Diseases Active Surveillance Network (FoodNet) is the principal foodborne disease component of the Centers for Disease Control and Prevention’s (CDC’s) Emerging Infections Program (EIP). FoodNet is a collaborative project among CDC, the nine EIP sites, the Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA), and the United States Food and Drug Administration (FDA). FoodNet augments, but does not replace, longstanding activities at CDC, USDA, FDA, and in states to identify, control, and prevent foodborne disease hazards.

FoodNet is a sentinel network that is producing more stable and accurate national estimates of the burden and sources of specific foodborne diseases in the United States through active surveillance and additional studies. Enhanced surveillance and investigation are integral parts of developing and evaluating new prevention and control strategies that can improve the safety of our food and the public’s health. Ongoing FoodNet surveillance is being used to document the effectiveness of new food safety control measures, such as the USDA–FSIS Pathogen Reduction and Hazard Analysis and Critical Control Point (PR/HACCP) systems, in decreasing the number of cases of foodborne diseases that occur in the United States each year.

The following are key findings of FoodNet surveillance activities during 2001:

- There has been a sustained decline in the incidence of infections caused by *Yersinia, Listeria, Campylobacter, and Salmonella* Typhimurium over the past six years. These declines indicate important progress toward achieving the U.S. Department of Health and Human Services Healthy People 2010 objectives of reducing the incidence of several foodborne diseases by the end of the decade. However, additional measures will be needed to further reduce the incidence of these diseases to achieve our national health objectives by 2010.

- The decline in the incidence of infections caused by *Yersinia, Listeria, Campylobacter, and Salmonella* Typhimurium are unlikely to be due to surveillance artifacts. FoodNet conducts several studies to monitor the surveillance factors that can influence the incidence of these laboratory-diagnosed foodborne diseases. These factors include the frequency with which persons with gastrointestinal symptoms seek medical care, the frequency with which diagnostic stool specimens are submitted to clinical laboratories, and the frequency with which the laboratories routinely test stool specimens for various pathogens. We are unaware of any changes in these factors that might explain the magnitude of the declines observed in the reported foodborne infections.

- Food animals are a major source of *Yersinia, Listeria, Campylobacter, and Salmonella* Typhimurium. One contributing factor to the decline in foodborne infections caused by these pathogens is likely to be a change in the industry and regulatory approach to meat and poultry safety. Beginning in 1997, the USDA-FSIS began implementing the Pathogen Reduction/Hazard Analysis Critical Control Point (PR/HACCP) systems regulations in the meat and poultry slaughter and processing plants. Additional evidence of the contribution of the USDA regulations to the decline in the incidence of *Salmonella* infections in humans described in this report is the decline in the prevalence of *Salmonella* isolated from FSIS-regulated meat and poultry products.
• Enhanced surveillance and outbreak investigations have identified new control measures and focused industry attention on foodborne illness, so that control measures are more likely to be implemented. Recent interventions include egg safety programs for the prevention of *Salmonella* Enteritidis infections, increased attention to fresh produce safety through better agricultural practices on farms and food processing, regulation of fruit and vegetable juice, industry efforts to reduce food contamination, food safety education, and increased regulation of imported food.

• Although there have been important declines in the incidence of infection for several foodborne diseases, the incidence of foodborne diseases remains high. Efforts to reduce the rate of foodborne diseases might include steps to reduce the prevalence of these pathogens in their respective important animal reservoirs; e.g., cattle (*Escherichia coli* O157), egg-laying chickens (*Salmonella* Enteritidis), and seafood, particularly oysters (*Vibrio*). Implementation of nationwide, consistent on-farm preventive controls would reduce the risk of human illness from *Salmonella* Enteritidis-contaminated eggs.

• The lack of a sustained decline in *E. coli* O157 infections indicates a need for increased efforts to reduce the burden of these infections. Preventing *E. coli* O157 will not be a simple task because it can be transmitted through food, water, person-to-person contact, and direct animal exposure. FoodNet studies and recent outbreaks have shown that an important route of transmission is direct contact with cattle or their environment. Strategies that reduce *E. coli* O157 on farms could decrease direct contact infection and food contamination, as well as entry into the water supply.

• The high incidence of foodborne diseases in infants and young children is a major concern. FoodNet studies have shown that breast-feeding of infants is important in preventing foodborne disease in infants. To determine other opportunities for prevention of foodborne diseases among children, FoodNet began a case-control study in 2002 of sporadic cases of *Salmonella* and *Campylobacter* among young children.

• The increase in the incidence of infections caused by *Salmonella* Newport represents an emerging challenge to public health. Many of these isolates are resistant to nine or more antimicrobial agents, including all agents approved for oral use in children. Further studies are necessary to understand and resolve these problems. FoodNet recently began a case-control study of sporadic cases of *Salmonella* Newport to assess possible risk factors and opportunities for prevention.
Background

Foodborne infections are an important public health challenge. The Centers for Disease Control and Prevention (CDC) has estimated that in 1997, foodborne infections caused 76 million illnesses, 325,000 hospitalizations, and 5,000 deaths. CDC, the Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA), the United States Food and Drug Administration (FDA), and the nine Emerging Infections Program (EIP) sites are actively involved in preventing foodborne diseases. In 1997, the interagency national Food Safety Initiative was established to meet the public health challenge of foodborne diseases. CDC’s principal role in the Food Safety Initiative has been to enhance surveillance and investigation of infections that are usually foodborne. FoodNet has been instrumental in accomplishing this mission.

Objectives

The objectives of FoodNet are to determine the frequency and severity of foodborne diseases; determine the association of common foodborne diseases with eating specific foods; and describe the epidemiology of new and emerging bacterial, parasitic, and viral foodborne pathogens. To address these objectives, FoodNet uses active surveillance and conducts related epidemiologic studies. By monitoring the burden of foodborne diseases over time, FoodNet can document the effectiveness of new food safety initiatives, such as the USDA Hazard Analysis and Critical Control Points (HACCP) system, in decreasing the rate of foodborne diseases in the United States each year.

Methods

In 2001, FoodNet conducted population-based active surveillance for clinical laboratory isolations of *Campylobacter*, *Cryptosporidium*, *Cyclospora*, Shiga toxin-producing *E. coli* including *E. coli* O157, *Listeria*, *Salmonella*, *Shigella*, *Vibrio*, and *Yersinia* infections in Connecticut, Georgia, Minnesota, and Oregon, and selected counties in California, Colorado, Maryland, New York, and Tennessee (total population 37.8 million). A case was defined as isolation (for bacteria) or identification (for parasites) of an organism from a clinical specimen. For simplicity, in this report all isolations are referred to as infections, although not all strains of all pathogens have been proven to cause illness in each case. To identify cases, FoodNet personnel contact each of the more than 450 clinical laboratories serving the catchment areas either weekly or monthly, depending on the size of the clinical laboratory. FoodNet also conducts surveillance for foodborne disease outbreaks and hemolytic uremic syndrome (HUS), the latter principally through pediatric nephrologists.

Results

Cases reported

In 2001, a total of 13,755 laboratory-confirmed infections caused by the pathogens under surveillance were identified in nine sites. Of these, 13,148 were bacterial, including 4,751 *Campylobacter* infections, 5,240 *Salmonella* infections, 2,219 *Shigella* infections, 560 *E. coli* O157 infections, 61 non-O157 Shiga toxin-producing *E. coli* (STEC) infections, 144 *Yersinia* infections, 94 *Listeria* infections, and 79 *Vibrio* infections (Table 1A). Of the 4,900 *Salmonella* isolates that were serotyped, the most commonly identified
serotypes were Typhimurium (1,076 cases), Enteritidis (711), Newport (559), and Heidelberg (332). In addition, 607 cases of parasitic diseases were reported, including 575 cases of Cryptosporidium infection and 32 cases of Cyclospora infection (Table 1B).

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>CA</th>
<th>CO</th>
<th>CT</th>
<th>GA</th>
<th>MD</th>
<th>MN</th>
<th>NY</th>
<th>OR</th>
<th>TN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>999</td>
<td>343</td>
<td>495</td>
<td>614</td>
<td>300</td>
<td>954</td>
<td>248</td>
<td>586</td>
<td>212</td>
<td>4751</td>
</tr>
<tr>
<td>Escherichia coli O157</td>
<td>36</td>
<td>37</td>
<td>39</td>
<td>50</td>
<td>16</td>
<td>232</td>
<td>31</td>
<td>77</td>
<td>42</td>
<td>560</td>
</tr>
<tr>
<td>Non-O157 STEC</td>
<td>0</td>
<td>4</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>Listeria</td>
<td>16</td>
<td>5</td>
<td>15</td>
<td>16</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>5</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>480</td>
<td>317</td>
<td>454</td>
<td>1675</td>
<td>622</td>
<td>693</td>
<td>271</td>
<td>290</td>
<td>438</td>
<td>5240</td>
</tr>
<tr>
<td>Shigella</td>
<td>427</td>
<td>144</td>
<td>60</td>
<td>714</td>
<td>141</td>
<td>493</td>
<td>28</td>
<td>112</td>
<td>100</td>
<td>2219</td>
</tr>
<tr>
<td>Vibrio</td>
<td>16</td>
<td>5</td>
<td>9</td>
<td>24</td>
<td>13</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td>Yersinia</td>
<td>17</td>
<td>9</td>
<td>9</td>
<td>50</td>
<td>12</td>
<td>19</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>144</td>
</tr>
<tr>
<td>Total</td>
<td>2051</td>
<td>878</td>
<td>1126</td>
<td>3334</td>
<td>1147</td>
<td>2620</td>
<td>608</td>
<td>1155</td>
<td>836</td>
<td>13755</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>CA</th>
<th>CO</th>
<th>CT</th>
<th>GA</th>
<th>MD</th>
<th>MN</th>
<th>NY</th>
<th>OR</th>
<th>TN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidium</td>
<td>60</td>
<td>14</td>
<td>17</td>
<td>159</td>
<td>29</td>
<td>198</td>
<td>15</td>
<td>56</td>
<td>27</td>
<td>575</td>
</tr>
<tr>
<td>Cyclospora</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>14</td>
<td>21</td>
<td>187</td>
<td>29</td>
<td>198</td>
<td>15</td>
<td>56</td>
<td>27</td>
<td>607</td>
</tr>
</tbody>
</table>

Seasonality

Isolation rates for pathogens showed seasonal variation: 42% of *E. coli* O157, 36% of *Salmonella*, 37% of *Campylobacter*, and 26% of *Shigella* were isolated between June and August (Figure 1). *Yersinia* infections were more likely to have occurred in winter months, with 49% of cases being reported during January, February, or December (Figure 1).
Figure 1. Cases of foodborne disease caused by specific pathogens, by month, FoodNet sites, 2001

2001 Rates

To compare the number of cases among sites with different populations, preliminary annual incidence rates were calculated. Incidence is the number of cases divided by the population. All 2001 rates reported here were calculated with 2000 census population counts. 2001 census projections were not available. Overall incidence rates were highest for infections with Campylobacter (13.8/100,000 population), Salmonella (15.3/100,000), and Shigella (6.5/100,000). Lower overall incidence rates were reported for E. coli O157 (1.6/100,000), non-O157 STEC (0.18/100,000) Cryptosporidium (1.5/100,000), Yersinia (0.42/100,000), Listeria (0.27/100,000), Vibrio (0.23/100,000), and Cyclospora (0.08/100,000).
Incidence rates for many of these pathogens varied substantially among the sites (Figure 2). The incidence rates for Campylobacter infection varied from 7.2/100,000 in Maryland to 31.5/100,000 in California, and for Shigella infections from 1.3/100,000 in New York to 13.5/100,000 in California. Incidence rates for aggregate Salmonella infection also varied among the sites, from 8.5/100,000 in Oregon to 20.5/100,000 in Georgia. Among the two most common serotypes of Salmonella, S. Typhimurium ranged from 2.0/100,000 in California to 4.1/100,000 in Tennessee and S. Enteritidis ranged from 0.84/100,000 in Oregon to 4.5/100,000 in Maryland. Incidence rates for E. coli O157 infection varied from 0.38/100,000 in Maryland to 4.7/100,000 in Minnesota. FoodNet began collecting information on non-O157 STEC in 2000; the majority of these cases were reported in Connecticut and Minnesota. Infection caused by Yersinia varied from 0.26/100,000 in Connecticut to 0.6/100,000 in Georgia. Incidence rates of Cryptosporidium infection ranged from 0.49/100,000 in Connecticut to 4.0/100,000 in Minnesota. Listeriosis ranged from 0.08/100,000 in Minnesota to 0.5/100,000 in California, and Vibrio infections ranged from 0.06/100,000 in Minnesota to 0.5/100,000 in California. Reasons for these regional differences in incidence rates are being investigated; for example, most laboratories do not test specimens routinely for all pathogens. However, regional differences in E. coli O157 incidence are only partially accounted for by differences in laboratory practices.

Figure 2. Cases per 100,000 population of foodborne disease caused by specific pathogens, FoodNet sites, 2001
Rates by age

Annual incidence rates of foodborne illness varied by age, especially for Campylobacter and Salmonella infections (Figure 3). For children <1 year of age, the rate of Salmonella infection was 144/100,000 and the rate of Campylobacter infection was 32.6/100,000, substantially higher than for other age groups.

Figure 3. Incidence of Campylobacter and Salmonella infections by age group, FoodNet sites, 2001

Rates by sex

Incidence rates also varied by sex (Table 2). Overall, males were more likely than females to be infected with every pathogen except E. coli O157 and Listeria. Among males, rates of Campylobacter infection were 24% higher, rates of Shigella were 35% higher, rates of Cryptosporidium infection were 48% higher, and rates of Vibrio were 61% higher.
Table 2. Sex-specific incidence rates per 100,000 population, by pathogen, FoodNet sites, 2001

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>15.3</td>
<td>12.3</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>1.82</td>
<td>1.23</td>
</tr>
<tr>
<td>Cyclospora</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>E. coli O157</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Listeria</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>Salmonella</td>
<td>15.3</td>
<td>14.9</td>
</tr>
<tr>
<td>Shigella</td>
<td>7.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Vibrio</td>
<td>0.29</td>
<td>0.18</td>
</tr>
<tr>
<td>Yersinia</td>
<td>0.43</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Rates by age and sex

The incidence rate of Campylobacter infection was higher for males than for females in most age groups, except for persons less than one year of age, those aged 20-29 years and those aged 65-74 years. Among persons less than 12 years of age, the incidence rate of Salmonella infection was higher among males than among females. Among persons more than 50 years of age, the incidence rate of Salmonella infection was higher among women than among men.

Hospitalizations

Overall, 16.2% of persons with culture-confirmed infection were hospitalized; hospitalization rates differed markedly by pathogen (Figure 4). The percentage of hospitalizations was highest for persons infected with Listeria (86.2% of reported cases) followed by those infected with E. coli O157 (38.2%), Vibrio (29.1%), Yersinia (26.4%), Cryptosporidium (23.1%), Salmonella (17.7%), Shigella (12.1%), Campylobacter (11.2%), and non-O157 STEC (8.2%).
Deaths

Fifty-one persons died; of those, 19 were infected with *Listeria*, 15 with *Salmonella*, six with *Campylobacter*, four with *Vibrio*, three with *E. coli* O157, two with *Cryptosporidium*, and two with *Yersinia*. The pathogen with the highest case-fatality rate was *Listeria*; 20% of persons infected with *Listeria* died.

HUS

Hemolytic uremic syndrome (HUS) is a life-threatening illness characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. Most cases of HUS in the United States are preceded by diarrhea caused by infection with *Shiga toxin-producing Escherichia coli* (STEC). *E. coli* O157:H7 is the most easily and frequently isolated STEC, but many other serotypes can also cause HUS. Active surveillance for pediatric HUS cases was established in 1997 in five FoodNet sites (California, Connecticut, Georgia, Minnesota, and Oregon). Surveillance was expanded to include areas of Maryland and New York in 1999, Tennessee in 2000, and Colorado in 2001. Maryland, Tennessee, and Colorado submitted pilot HUS data in 1998, 1999, and 2000, respectively. These data were included, but were considered as outside the catchment area. Active surveillance is accomplished through pediatric nephrologists, who report all cases of HUS, including those from outside the FoodNet catchment area. Data on HUS cases in adults are also collected, but surveillance is passive and often incomplete. The primary objectives of HUS surveillance are to 1) determine the incidence of HUS, 2) monitor long-term trends in STEC infection using HUS as a marker, and 3) identify and monitor STEC strains that cause HUS over time. A total of 361 cases of HUS were reported between 1997 and 2001 (Table 3A). Sixty-one percent of reported cases occurred in females. The median age was five years and the median length of hospitalization was 12 days.
In 2001, 95 HUS cases were reported, and deaths occurred in eight (8%) of these cases. Among children less than 15 years of age, 79 HUS cases were reported and five (6%) deaths occurred. Consistent with the seasonal distribution of 2001 *E. coli* O157:H7 infections, 32 (34%) of the 2001 HUS cases were diagnosed between June and August (Figure 4).

The overall rate of HUS among children under five years of age in the nine sites from 1997 to 2001 was 1.7/100,000, and among children 5 to 14 years of age it was 0.4/100,000 (Table 3B). *E. coli* O157:H7 was isolated from 59% of stools that were specifically tested for this pathogen (Table 3C). Eight patients had stool samples that tested positive for Shiga toxin, but stool cultures did not yield *E. coli* O157:H7. Only two other STEC were identified by stool culture, but it is unclear how rigorously they were sought. A total of 28 cases had STEC serology done to identify anti-O157, O111, or O126 antibodies; 16 cases (57%) had detectable antibody to O157 and three cases (11%) had detectable antibodies to O111.

Table 3A. HUS cases by site* and year, 1997–2001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>Age</td>
<td>Age</td>
<td>Age</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td><15 years</td>
<td>≥15 years</td>
<td><15 years</td>
<td>≥15 years</td>
<td><15 years</td>
</tr>
<tr>
<td>California</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Colorado</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Georgia</td>
<td>6</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Maryland</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Minnesota</td>
<td>9</td>
<td>3</td>
<td>17</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>New York</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>15</td>
</tr>
<tr>
<td>Oregon</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Tennessee</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>6</td>
<td>46</td>
<td>4</td>
<td>48</td>
</tr>
</tbody>
</table>

*Includes cases among persons residing outside the formal catchment area.
n/a means not applicable.
Table 3B. Pediatric HUS cases, by site† and age, 1997–2001

<table>
<thead>
<tr>
<th>State</th>
<th>Age < 5 years</th>
<th>Cases</th>
<th>Rate per 100,000</th>
<th>Age 5–14 years</th>
<th>Cases</th>
<th>Rate per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>8</td>
<td>1.0</td>
<td>5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado***</td>
<td>2</td>
<td>1.3</td>
<td>4</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>13</td>
<td>1.3</td>
<td>8</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>28</td>
<td>1.2</td>
<td>6</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland*</td>
<td>7</td>
<td>1.1</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>45</td>
<td>2.8</td>
<td>21</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York*</td>
<td>12</td>
<td>3.0</td>
<td>5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>22</td>
<td>2.0</td>
<td>9</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee**</td>
<td>7</td>
<td>1.8</td>
<td>4</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>144</td>
<td>1.7</td>
<td>68</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Includes cases among persons residing within catchment area only
*Based only on 1999-2001 data
**Based only on 2000-2001 data
***Based only on 2001 data

Table 3C. Results of microbiologic testing for STEC infection among HUS cases, 1997–2001

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Total Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea in three weeks before HUS diagnosis/Total patients</td>
<td>329/360 (91%)</td>
<td></td>
</tr>
<tr>
<td>Stool specimen obtained/Total patients</td>
<td>327/360 (91%)</td>
<td></td>
</tr>
<tr>
<td>Stool cultured for E. coli O157:H7/Patients with stool specimen obtained</td>
<td>316/327 (97%)</td>
<td></td>
</tr>
<tr>
<td>E. coli O157:H7 isolated from stool/Patients with stool cultured for E. coli O157:H7</td>
<td>185/316 (59%)</td>
<td></td>
</tr>
<tr>
<td>Stool tested for Shiga toxin/Patients with stool specimen obtained</td>
<td>111/327 (34%)</td>
<td></td>
</tr>
<tr>
<td>Stool Shiga-toxin positive/Patients with stool tested for Shiga toxin</td>
<td>75/111 (68%)</td>
<td></td>
</tr>
<tr>
<td>Non-O157 STEC isolated from stool/Patients with stool tested for Shiga toxin</td>
<td>2/111 (2%)</td>
<td></td>
</tr>
<tr>
<td>Stool yielding E. coli O157:H7, non-O157 STEC and/or Shiga toxin/to total patients with stool cultured for E. coli O157:H7</td>
<td>193/316 (61%)</td>
<td></td>
</tr>
</tbody>
</table>
1996–2001 Rates

The number of sites and the population under surveillance have nearly doubled since FoodNet began in 1996 (Figures 6 and 7). Because of substantial variation in incidence among the sites, adding new sites influences overall incidence. To account for the increased population and variation in the incidence among sites, a log-linear Poisson regression model was used to estimate the effect of time on the incidence of various pathogens, treating time (i.e., calendar year) as a categorical variable, with 1996 as the reference year. The relative change in incidence between 1996 and 2001 was estimated and confidence intervals for that change were calculated.

The bacterial pathogens with the highest relative incidence during the period between 1996 and 2001 were Campylobacter, Salmonella, and Shigella (Figure 8A). Pathogens with lower incidence were E. coli O157, Listeria, and Yersinia (Figure 8B). The incidence of infection with most pathogens decreased between 1996 and 2001. For three pathogens (Yersinia, Listeria, and Campylobacter), this decrease was observed consistently over several years. During the period of 1996 to 2001, the estimated incidence of Yersinia infections decreased 47% (95% confidence interval [CI]=59% to 32% decrease), Listeria decreased 32% (95% CI=51% to 7% decrease), Campylobacter decreased 25% (95% CI=15% to 33% decrease), and Salmonella decreased 10% (95% CI=9% to 0% decrease) (Table 4A). Considerable temporal variations were observed for the five most common Salmonella serotypes. Between 1996 and 2001, S. Typhimurium decreased 26% (95% CI=36% to 13% decrease), S. Enteritidis decreased 18% (95% CI=38% decrease to 8% increase), S. Newport increased 34% (95% CI=20% decrease to 126% increase), S. Heidelberg increased 40% (95% CI=4% to 89% increase), and S. Javiana increased 122% (95% CI=62% to 537% increase) (Table 4B). A substantial decline in the incidence of S. Enteritidis infection during the period of 1996 through 1999 was partially reversed by increased incidence in both 2000 and 2001. Between 1996 and 2001, the estimated incidence of E. coli O157 infections decreased 17% (95% CI=39% decrease to 13% increase), but this decline reflects a decrease only for 2001.
The incidence of *Shigella* infections showed considerable variation by year and site. The estimated incidence in 2001 was 29% lower than in 1996 (95% CI=53% decrease to 10% increase). The incidence of *Vibrio* infections was 94% higher in 1997 than it was in 1996, reflecting the emergence of *Vibrio parahaemolyticus* O3:K6 (6), and has not shown a consistent change since; the incidence was 87% higher in 2001 than it was in 1996 (95% CI=5% to 234% increase) (Figure 8C).

Surveillance for the parasitic pathogens *Cryptosporidium* and *Cyclospora* began in 1997. Between 1997 and 2001, the incidence of *Cryptosporidium* cases decreased 6% (95% CI=48% decrease to 68% increase) (Figure 8D). Although the incidence of *Cyclospora* has decreased since 1997, the statistical model could not be applied to *Cyclospora* because of the rarity of cases (128 cases between 1997 and 2001).

Following the September 11 and anthrax attacks of 2001, public health resources were diverted to emergency response activities. To test the hypothesis that the declines in foodborne disease incidence reflect decreased surveillance activities in late 2001, we repeated the Poisson regression analysis using data collected only from January through August for each year from 1996 through 2001. We observed no change in the results compared to the models that included all 12 months; therefore these reported declines are unlikely to be caused by a surveillance artifact associated with these attacks.
Figure 6. FoodNet surveillance area (sites indicated by black areas), 1996
(total population=14,281,096)

Figure 7. FoodNet surveillance area (sites indicated by black areas), 2001
(total population=37,817,351)
Figure 8A. Relative rates of laboratory-diagnosed cases of *Campylobacter*, *Salmonella*, and *Shigella*, by year, 1996–2001

Figure 8B. Relative rates of laboratory-diagnosed cases of *E. coli* O157, *Listeria*, and *Yersinia*, by year, 1996–2001
Figure 8C. Relative rates of laboratory-diagnosed cases of *Vibrio*, by year, 1996–2001

![Graph showing relative rates of Vibrio cases from 1996 to 2001.](image)

Figure 8D. Relative rates of laboratory-diagnosed cases of *Cryptosporidium*, by year, 1997–2001

![Graph showing relative rates of Cryptosporidium cases from 1997 to 2001.](image)
Table 4A. Percent change in incidence* of diagnosed infections for pathogens under surveillance in FoodNet, by pathogen, 1996–2001

<table>
<thead>
<tr>
<th>Bacterial Pathogen</th>
<th>Percent Change</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>-25</td>
<td>33% to 15% decrease</td>
</tr>
<tr>
<td>Escherichia coli O157</td>
<td>-17</td>
<td>39% decrease to 13% increase</td>
</tr>
<tr>
<td>Listeria</td>
<td>-32</td>
<td>51% to 7% decrease</td>
</tr>
<tr>
<td>Salmonella</td>
<td>-10</td>
<td>9% decrease to 0%</td>
</tr>
<tr>
<td>Shigella</td>
<td>-29</td>
<td>53% decrease to 10% increase</td>
</tr>
<tr>
<td>Vibrio</td>
<td>+87</td>
<td>5% to 234% increase</td>
</tr>
<tr>
<td>Yersinia</td>
<td>-47</td>
<td>59% to 32% decrease</td>
</tr>
</tbody>
</table>

*Per 100,000 population

Table 4B. Percent change in incidence* of diagnosed infections for Salmonella serotypes, by serotype, 1996–2001

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Percent Change</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella Typhimurium</td>
<td>-26</td>
<td>36% to 13% decrease</td>
</tr>
<tr>
<td>Salmonella Enteritidis</td>
<td>-18</td>
<td>38% decrease to 8% increase</td>
</tr>
<tr>
<td>Salmonella Newport</td>
<td>+34</td>
<td>20% decrease to 126% increase</td>
</tr>
<tr>
<td>Salmonella Heidelberg</td>
<td>+40</td>
<td>4% to 89% increase</td>
</tr>
<tr>
<td>Salmonella Javiana</td>
<td>+122</td>
<td>62% to 537% increase</td>
</tr>
</tbody>
</table>

*Per 100,000 population

Table 5. Comparison of 2001 incidence with the Healthy People 2010 objectives

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>2001 Actual Incidence*</th>
<th>2010 Objective Incidence*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>13.8</td>
<td>12.3</td>
</tr>
<tr>
<td>Escherichia coli O157</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Salmonella</td>
<td>14.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Listeria</td>
<td>0.3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

*Per 100,000 population
Between 1996 and 2001, the incidence of infections caused by *Yersinia*, *Listeria*, and *Campylobacter* showed a substantial and sustained decline. The declines in the incidence of foodborne diseases targeted in the national health objectives indicate important progress. However, additional measures must be taken to achieve the national health objectives.

On the basis of studies conducted by FoodNet to monitor factors that can influence the incidence of foodborne diseases, changes in healthcare-seeking behaviors for persons with diarrhea or changes in laboratory testing practices are unlikely to explain the declines observed in disease incidence. Enhanced surveillance and outbreak investigations have identified new control measures and focused attention on preventing foodborne diseases. The declines in the incidence of these foodborne infections occurred in the context of several control measures, including implementation by the U.S. Department of Agriculture's Food Safety Inspection Service (FSIS) of the Pathogen Reduction/Hazard Analysis Critical Control Point (HACCP) systems regulations in meat and poultry slaughter and processing plants. The decline in the rate of *Salmonella* infections in humans coincided with a decline in the prevalence of *Salmonella* isolated from FSIS-regulated products to levels well below baseline levels before HACCP was implemented. Additional interventions include egg-safety programs for *S. Enteritidis*, increased attention to fresh produce safety through better agricultural practices, introduction of HACCP in the seafood industry, regulation of fruit and vegetable juice, industry efforts including new intervention technologies to reduce food contamination, food safety education, and increased regulation of imported food.

Although the incidence of infection has declined for several foodborne diseases, the incidence of foodborne diseases remains high. Efforts to reduce the rate of foodborne illnesses might include steps to reduce the prevalence of these pathogens in their respective important animal reservoirs: cattle (*E. coli* O157), egg-laying chickens (*S. Enteritidis*), and seafood, particularly oysters (*Vibrio*). Implementation of nationwide, consistent, on-farm preventive controls would reduce the risk for human illness from *S. Enteritidis*-contaminated eggs. The increases in infections caused by *S. Newport*, *S. Heidelberg*, and *S. Javiana* and the high incidence of foodborne diseases in children, especially infants, are of major concern. To determine possible risk factors for infections and opportunities for prevention, FoodNet has initiated a case-control study of sporadic cases of *Salmonella* and *Campylobacter* in young children.

The findings in this report are subject to at least three limitations. First, FoodNet data are limited to diagnosed illnesses; though, most foodborne illnesses are neither laboratory diagnosed nor reported to state health departments. For

example, although clinical laboratories in FoodNet sites routinely test stool specimens for *Salmonella* and *Shigella*, and almost always for *Campylobacter*, only about 60% routinely test for *E. coli O157*, and fewer test routinely for other pathogens. Variations in testing for pathogens could account for some of the variations in incidence, including variations by site and age. Second, because some laboratory-diagnosed illnesses reported to FoodNet also might be acquired through nonfoodborne routes (e.g., through contaminated water, person-to-person contact, and direct animal exposure), reported rates do not represent foodborne sources exclusively. Finally, although FoodNet data provide the most detailed information available for these infections, the data do not reflect the entire U.S. population.
Other Ongoing Projects

Burden of Illness

Cases reported through active surveillance represent only a fraction of the number of cases in the community. To better estimate the number of cases of foodborne disease in the community, FoodNet conducts surveys of laboratories, physicians, and the general population in the participating EIP sites (Figure 9). Using these data, we can determine the proportion of people in the general population with a diarrheal illness, and from among those, the number who seek medical care for the illness. We can estimate the proportion of physicians who ordered a bacterial stool culture for patients with diarrhea, and we can evaluate how variations in laboratory testing for bacterial pathogens influence the number of culture-confirmed cases. Using FoodNet and other data, CDC estimated that 76 million foodborne illnesses, 325,000 hospitalizations, and 5,000 deaths occurred in 1997 in the United States.⁵

This model can be used for developing estimates of the burden of illness caused by each foodborne pathogen. For example, data from this model suggest that in 1997 there were 1,400,000 *Salmonella* infections, resulting in 113,000 physician office visits and 37,200 culture-confirmed cases in this country. Laboratory-diagnosed cases alone resulted in an estimated 8,500 hospitalizations and 300 deaths; additional hospitalizations and deaths occur among persons whose illness is not laboratory diagnosed.

Figure 9. Burden of Illness Pyramid

Routes of Transmission of Foodborne Pathogens

FoodNet conducts case-control studies to determine the proportion of foodborne diseases that are caused by specific foods or food preparation and handling practices. To date, FoodNet has conducted case-control studies of *E. coli* O157; *Salmonella* serotypes Enteritidis, Heidelberg, and Typhimurium; infant salmonellosis; *Campylobacter*; and *Cryptosporidium*. A *Listeria* case-control study is ongoing. Case-control studies of infant *Salmonella*

and Campylobacter infections, Salmonella Newport and Salmonella Enteritidis infections were launched in 2002. By determining the contribution to these foodborne diseases made by specific foods or food preparation and handling practices, prevention efforts can be made more specific and their effectiveness documented.

Other FoodNet Activities in 2001

- The population under active surveillance was expanded in 2001 by including five additional counties in Colorado and Prince George’s County and Montgomery County in Maryland.
- The third cycle of the FoodNet population survey was completed in 2001. The purpose of the survey is to estimate more precisely the burden of acute diarrheal illness in the United States. FoodNet population survey data help determine the prevalence and severity of self-reported diarrheal illness, common symptoms associated with diarrhea, the proportion of persons with diarrhea who seek care, and exposures that may be associated with foodborne illness.
- The *E. coli* O157 case-control study was completed, enrolling 333 cases and 591 controls. Preliminary analysis reported at the 2002 International Conference on Emerging Infectious Diseases can be obtained at http://www.cdc.gov/foodnet/pub/iceid/2002/kennedy_m.htm.
- The *Cryptosporidium* case-control study was completed, enrolling 281 cases and 524 controls.
- FoodNet continued collaboration with the Environmental Health Specialists Network (EHS-Net) to strengthen relationships between epidemiology, laboratory, and food protection programs and to better identify factors contributing to foodborne illness and foodborne disease outbreaks, particularly in retail establishments.
Future Activities for 2002

- Continue population-based surveillance for *Campylobacter*, *Cryptosporidium*, *Cyclospora*, *Salmonella*, *Shigella*, Shiga toxin-producing *Escherichia coli* including *E. coli* O157, *Listeria*, *Yersinia*, and *Vibrio* infections, and for hemolytic uremic syndrome.
- Conduct the fourth cycle of the FoodNet population survey. Begun in 2002 in the nine FoodNet sites, it will run for 12 months and will be conducted in both English and Spanish.
- Continue the *Listeria* case-control study.
- Conduct case-control study of infant *Salmonella* and *Campylobacter* infections.
- Conduct case-control study of *Salmonella* Newport infections.
- Conduct case-control study of *Salmonella* Enteritidis infections.
- Continue collaboration with EHS-Net to better identify factors contributing to foodborne illness and foodborne disease outbreaks, particularly in retail establishments.
- Conduct cohort study to estimate the proportion of enteric infections that progress to reactive arthritis.
- Conduct Retail Food study to determine the prevalence of antimicrobial resistance among *Salmonella*, *Campylobacter*, *E. coli*, and enterococci isolated from a convenience sample of chicken, ground turkey, ground beef, and pork chops purchased from selected grocery stores in the United States.
- The population under active surveillance will be expanded in 2002 to include all counties in Maryland, Boulder, and Broomfield counties in Colorado, and Erie, Niagara, and Wyoming counties in New York.
Materials Available On-Line

The following reports are available on the FoodNet Web site:
http://www.cdc.gov/foodnet

The following MMWR articles about FoodNet are available at this Web site:
http://www.cdc.gov/epo/mmwr/mmwr.html

The following FoodNet News newsletters are available at the FoodNet Web site:
http://www.cdc.gov/foodnet
FoodNet News. Volume 1, No. 1, Fall 1998
FoodNet News. Volume 1, No. 3, Fall 1999

A list of FoodNet publications and presentations is available at the following FoodNet Web site:
http://www.cdc.gov/foodnet/pub.htm

Additional information about the pathogens under FoodNet surveillance is available at the following Web sites:
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/foodborneinfections_g.htm
http://www.cdc.gov/health/diseases.htm
<table>
<thead>
<tr>
<th>State</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>Frederick Angulo, Timothy Barrett, Michael Beach, Nancy Bean, Richard Bishop, Chris Braden, Laura Conn, Stephanie DeLong, Patricia Griffin, Felicia Hardnett, Peggy Hayes, Mike Hoekstra, Jeff Jones, Malinda Kennedy, Beth Imhoff, Jenny Lay, Deborah Levy, Kathleen Maloney, Paul Mead, Thomas Navin, Robert Pinner, Cathy Rebmann, Karen Stamey, Bala Swaminathan, Robert Tauxe, Thomas Van Gilder, Stephanie Wong</td>
</tr>
<tr>
<td>Colorado</td>
<td>Jim Beebe, Steve Burnite, Matt Finke, Ken Gershman, Lucinda Hammond, Sally Hauser, Sean Lieske, Sue Lynch, Ellen Mangione, Pam Shillam</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Gary Budnick, Matthew Carter, Terry Fiorentino, James Hadler, Robert Heimer, Robert Howard, Sharon Hurd, Kati Kelley, Arisitea Kinney, Ruthanne Marcus, Donald Mayo, Patricia Mshar, Quyen Phan, Charles Welles</td>
</tr>
<tr>
<td>California</td>
<td>Wendy Baughman, Paul Blake, Laurel Boykin, Sabrina Burden, Monica Farley, Katherine Gibbs-McCombs, Laura Gilbert, Susan Lance-Parker, Susan Ray, Matthew Sattah, Suzanne Segler, Stepy Thomas</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Jeff Bender, John Besser, Richard Danila, Craig Hedberg, Carlota Medus, Kirk Smith, Dana Soderlund, Sara Stenzel, Ellen Swanson</td>
</tr>
<tr>
<td>New York</td>
<td>Bridget Anderson, Dianna Bopp, Kathy Carlton, Hwa-Gan Chang, Barbara Damaske, Nellie Dumas, Marie Fitzgerald, Karim Hechemy, Jonathan Hibbs, Dale Morse, Candace Noonan, Brian Sauders</td>
</tr>
<tr>
<td>Oregon</td>
<td>Vijay Balan, Chris Biggs, Maureen Cassidy, Paul Cieslak, Emilio DeBess, David Fleming, Bill Keene, Lore Lee, Eileen Lorber, Steve Mauvais, Teresa McGivern, Yijun Pang, Beletshachew Shiferaw, Bob Sokolow</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Effie Boothe, Allen Craig, Diane Eigsti Gerber, Timothy Jones, William Moore, William Schaffner, Pat Turri</td>
</tr>
<tr>
<td>USDA-FSIS</td>
<td>Kristin Holt, Noreen Hynes, Tamar Lasky, Denise Lewis, Phyllis Sparling, Kaye Wachsmuth</td>
</tr>
<tr>
<td>FDA-CFSAN</td>
<td>Ken Falci, Bing Garthright, Clifford Purdy</td>
</tr>
</tbody>
</table>
For more information on FoodNet, visit our Web page at:

www.cdc.gov/foodnet
Part II
Summary Tables and Graphs
Part II: Listing of Summary Tables and Graphs

Tables

Population in catchment areas ... Table 1
Percent site by pathogen .. Table 1a
Percent pathogen by site ... Table 1b
Cases per 100,000 by pathogen for all sites ... Table 2a
Cases per 100,000 by pathogen by site .. Table 2b
Cases per 100,000 by month by pathogen for all sites Table 3
 Cases per 100,000 by month by pathogen by site, California Table 3a
 Cases per 100,000 by month by pathogen by site, Colorado Table 3b
 Cases per 100,000 by month by pathogen by site, Connecticut Table 3c
 Cases per 100,000 by month by pathogen by site, Georgia Table 3d
 Cases per 100,000 by month by pathogen by site, Maryland Table 3e
 Cases per 100,000 by month by pathogen by site, Minnesota Table 3f
 Cases per 100,000 by month by pathogen by site, New York Table 3g
 Cases per 100,000 by month by pathogen by site, Oregon Table 3h
 Cases per 100,000 by month by pathogen by site, Tennessee Table 3i
Pathogen by month collected for all sites ... Table 4
 Pathogen by month collected, by site, California Table 4a
 Pathogen by month collected, by site, Colorado Table 4b
 Pathogen by month collected, by site, Connecticut Table 4c
 Pathogen by month collected, by site, Georgia Table 4d
 Pathogen by month collected, by site, Maryland Table 4e
 Pathogen by month collected, by site, Minnesota Table 4f
 Pathogen by month collected, by site, New York Table 4g
 Pathogen by month collected, by site, Oregon Table 4h
 Pathogen by month collected, by site, Tennessee Table 4i
Age distribution by pathogen for all sites ... Table 5
 Age distribution by pathogen by site, California Table 5a
 Age distribution by pathogen by site, Colorado Table 5b
 Age distribution by pathogen by site, Connecticut Table 5c
 Age distribution by pathogen by site, Georgia Table 5d
 Age distribution by pathogen by site, Maryland Table 5e
 Age distribution by pathogen by site, Minnesota Table 5f
 Age distribution by pathogen by site, New York Table 5g
 Age distribution by pathogen by site, Oregon Table 5h
 Age distribution by pathogen by site, Tennessee Table 5i
Cases per 100,000 by age distribution by pathogen for all sites Table 6
 Cases per 100,000 by age distribution by pathogen by site, California Table 6a
 Cases per 100,000 by age distribution by pathogen by site, Colorado Table 6b
 Cases per 100,000 by age distribution by pathogen by site, Connecticut Table 6c
 Cases per 100,000 by age distribution by pathogen by site, Georgia Table 6d
 Cases per 100,000 by age distribution by pathogen by site, Maryland Table 6e
 Cases per 100,000 by age distribution by pathogen by site, New York Table 6f
 Cases per 100,000 by age distribution by pathogen by site, Oregon Table 6g
 Cases per 100,000 by age distribution by pathogen by site, Tennessee Table 6h
Cases per 100,000 by age distribution by pathogen by site, Tennessee............ Table 6i
Sex distribution by pathogen for all sites ... Table 7
Sex distribution by pathogen by site, California .. Table 7a
Sex distribution by pathogen by site, Colorado.. Table 7b
Sex distribution by pathogen by site, Connecticut .. Table 7c
Sex distribution by pathogen by site, Georgia .. Table 7d
Sex distribution by pathogen by site, Maryland... Table 7e
Sex distribution by pathogen by site, Minnesota .. Table 7f
Sex distribution by pathogen by site, New York.. Table 7g
Sex distribution by pathogen by site, Oregon .. Table 7h
Sex distribution by pathogen by site, Tennessee.. Table 7i
Race by pathogen for all sites... Table 8
Race by pathogen by site, California ... Table 8a
Race by pathogen by site, Colorado.. Table 8b
Race by pathogen by site, Connecticut .. Table 8c
Race by pathogen by site, Georgia.. Table 8d
Race by pathogen by site, Maryland.. Table 8e
Race by pathogen by site, Minnesota... Table 8f
Race by pathogen by site, New York... Table 8g
Race by pathogen by site, Oregon... Table 8h
Race by pathogen by site, Tennessee... Table 8i
Ethnicity by pathogen for all sites.. Table 9
Ethnicity by pathogen by site, California .. Table 9a
Ethnicity by pathogen by site, Colorado... Table 9b
Ethnicity by pathogen by site, Connecticut ... Table 9c
Ethnicity by pathogen by site, Georgia... Table 9d
Ethnicity by pathogen by site, Maryland.. Table 9e
Ethnicity by pathogen by site, Minnesota.. Table 9f
Ethnicity by pathogen by site, New York.. Table 9g
Ethnicity by pathogen by site, Oregon... Table 9h
Ethnicity by pathogen by site, Tennessee... Table 9i
Salmonella serotypes by site ... Table 10
Percent Shigella species by site ... Table 11
Source of specimen by pathogen for all sites.. Table 12
Source of specimen by pathogen by site, California ... Table 12a
Source of specimen by pathogen by site, Colorado... Table 12b
Source of specimen by pathogen by site, Connecticut....................................... Table 12c
Source of specimen by pathogen by site, Georgia... Table 12d
Source of specimen by pathogen by site, Maryland.. Table 12e
Source of specimen by pathogen by site, Minnesota... Table 12f
Source of specimen by pathogen by site, New York... Table 12g
Source of specimen by pathogen by site, Oregon... Table 12h
Source of specimen by pathogen by site, Tennessee... Table 12i
Patient status by pathogen for all sites.. Table 13
Patient status by pathogen by site, California... Table 13a
Patient status by pathogen by site, Colorado.. Table 13b
Patient status by pathogen by site, Connecticut... Table 13c
Patient status by pathogen by site, Georgia... Table 13d
Patient status by pathogen by site, Maryland... Table 13e
Patient status by pathogen by site, Minnesota.. Table 13f

31
Patient status by pathogen by site, New York ... Table 13g
Patient status by pathogen by site, Oregon .. Table 13h
Patient status by pathogen by site, Tennessee .. Table 13i

Patient outcome by pathogen for all sites ... Table 14
Patient outcome by pathogen by site, California ... Table 14a
Patient outcome by pathogen by site, Colorado .. Table 14b
Patient outcome by pathogen by site, Connecticut .. Table 14c
Patient outcome by pathogen by site, Georgia .. Table 14d
Patient outcome by pathogen by site, Maryland .. Table 14e
Patient outcome by pathogen by site, Minnesota ... Table 14f
Patient outcome by pathogen by site, New York ... Table 14g
Patient outcome by pathogen by site, Oregon .. Table 14h
Patient outcome by pathogen by site, Tennessee ... Table 14i

Age distribution for invasive specimens for all sites ... Table 15
Age distribution for invasive specimens by site, California Table 15a
Age distribution for invasive specimens by site, Colorado Table 15b
Age distribution for invasive specimens by site, Connecticut Table 15c
Age distribution for invasive specimens by site, Georgia Table 15d
Age distribution for invasive specimens by site, Maryland Table 15e
Age distribution for invasive specimens by site, Minnesota Table 15f
Age distribution for invasive specimens by site, New York Table 15g
Age distribution for invasive specimens by site, Oregon Table 15h
Age distribution for invasive specimens by site, Tennessee Table 15i

Sex distribution for invasive specimens for all sites ... Table 16
Sex distribution for invasive specimens by site, California Table 16a
Sex distribution for invasive specimens by site, Colorado Table 16b
Sex distribution for invasive specimens by site, Connecticut Table 16c
Sex distribution for invasive specimens by site, Georgia Table 16d
Sex distribution for invasive specimens by site, Maryland Table 16e
Sex distribution for invasive specimens by site, Minnesota Table 16f
Sex distribution for invasive specimens by site, New York Table 16g
Sex distribution for invasive specimens by site, Oregon Table 16h
Sex distribution for invasive specimens by site, Tennessee Table 16i
Graphs
Rates per 100,000 by pathogen per month
Campylobacter
Cryptosporidium
Cyclospora
Escherichia coli O157
STEC nonO157
Listeria
Salmonella
Salmonella Enteritidis
Salmonella Typhimurium
Salmonella Heidelberg
Salmonella Newport
Salmonella Montevideo
Salmonella Agona
Shigella
Shigella sonnei
Shigella flexneri
Shigella dysenteriae
Vibrio
Yersinia

Age-specific rates per 100,000 distribution by pathogen for all sites
Campylobacter
Cryptosporidium
Cyclospora
Escherichia coli O157
Listeria
Salmonella
Shigella
Vibrio
Yersinia