
Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-1

14. Functions and Operators

Introduction

Functions modify the value of one or more variables to produce a result (i.e.,
ROUND(2.33333) produces the value 2).

Operators are used to combine two items (i.e., the + operator combines Var1 and Var2 to
produce a sum, as in Var3=Var1+Var2).

Functions and operators appear within commands and are used for common tasks that
include extracting a year from a date, combining two numeric values, or testing logical
conditions.

Almost all functions require arguments enclosed in parentheses and separated by commas.
If arguments are required, do not place any spaces between the function name and the left
parenthesis. Syntax rules must be followed. Quotes that must enclose text strings are
displayed in question or prompt dialog boxes. Parentheses must enclose arithmetic
expressions and can explicitly control the order of operations. Parentheses also enclose
function arguments.

Syntax Notations

The following rules apply when reading this manual and using syntax:

Syntax Explanation

ALL CAPITALS Epi Info commands and reserved words are
shown in all capital letters similar to the
READ command.

<parameter> A parameter is information to be supplied to
the command. Parameters are enclosed with
less-than and greater-than symbols or angle
brackets < >. Each valid parameter is
described following the statement of syntax
for the command. Parameters are required

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-2

Syntax Explanation

by the command unless enclosed in braces {
}. Do not include the < > symbols in the code.

[<variable 1>] Brackets [] around a parameter indicates
that there can potentially be more than one
parameter.

{<parameter>} Braces { } around a parameter indicate that
the parameter is optional. Do not include the
{ } symbols in the code.

| The pipe symbol ’|’ is used to denote a choice
and is usually used with optional
parameters. An example is in the LIST
command. You can use the GRIDTABLE or
the UPDATE option, but not both. The
syntax appears as follows with the pipe
symbol between the two options:
LIST {* EXCEPT} <VarNames>
{GRIDTABLE | UPDATE}

/*

*/

The combination of backslash and asterisk
in the beginning of a line of code and an
asterisk and backslash, as shown in some
code samples, indicates a comment.
Comments are skipped when a program is
run.

" " Quotation marks must surround all text
values as in:
DIALOG "Notice: Date of birth is invalid."

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-3

Operators

There are various types of operators discussed in this appendix. The following types are
provided:

• Arithmetic Operators are used to perform mathematical calculations.

• Assignment Operators are used to assign a value to a property or variable.
Assignment Operators can be numeric, date, system, time, or text.

• Comparison Operators are used to perform comparisons.

• Concatenation Operators are used to combine strings.

• Logical Operators are used to perform logical operations and include AND, OR, or
NOT.

• Boolean Operators include AND, OR, XOR, or NOT and can have one of two
values, true or false.

Operator Precedence

If several operations occur in an expression, each part is evaluated and resolved in a
predetermined order called Operator Precedence. Parentheses can be used to override the
order of precedence and evaluate some parts of an expression before others. Operations
within parentheses are always performed before those outside. Within parentheses,
however, normal Operator Precedence is maintained.

If expressions contain operators from more than one category, arithmetic operators are
evaluated first, comparison operators next, and logical operators last. Comparison
operators all have equal precedence; they are evaluated in the left-to-right order in which
they appear. Arithmetic and logical operators are evaluated in the following order of
precedence:

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-4

Arithmetic Comparison Logical

Negation (-) Equality (=) NOT

Exponentiation (^) Inequality (<>) AND

Multiplication and
division (*, /) Less than (<) OR

Integer division (\) Greater than (>) XOR

Modulus arithmetic
(Mod)

Less than or equal to
(<=)

Addition and
Subtraction (+, -)

Greater than or equal
to (>=)

String concatenation (&) IS

If addition and subtraction, multiplication and division, occur together respectively in an
expression, each operation is evaluated as it occurs from left to right.
The string concatenation operator (&) is not an arithmetic operator, but in precedence, it
does fall after all arithmetic operators and before all comparison operators. The IS operator
is an object reference comparison operator. It does not compare objects or their values; it
checks only to determine whether two object references refer to the same object.

& Ampersand

Description
This operator forces text string concatenation of two expressions. Text concatenation
operator connects or concatenates two values to produce a continuous text value.

Syntax
<expression> & <expression>

• The <expression> represents any valid logical expression.

Whenever an expression is not a string, it is converted to a String subtype. If both
expressions are Null, the result is Null. However, if only one expression is Null, that
expression is treated as a zero-length string ("") when concatenated with the other
expression. Any expression that is Empty is also treated as a zero-length string.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-5

DEFINE NameVar TEXTINPUT

ASSIGN NameVar=LastName&FirstName

LIST NameVar LastName FirstName

= Equal Sign

Description
This operator assigns a value to a variable or property. Comparison operator also used as
an equal to; the result of comparison operators is usually a logical value, either true or
false.

Syntax
<variable> <operator> <value>

• The <variable> represents any variable or any writable property.

• The <value> represents any numeric or string literal, constant, or expression.

Comments
The name on the left side of the equal sign can be a simple scalar variable or an element of
an array. Properties on the left side of the equal sign can only be those writable properties
at run time.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Newvar NUMERIC

ASSIGN Newvar =Age

LIST Newvar Age

Addition (+)

Description
This operator provides the sums of two numbers. Basic arithmetic operator used for
addition; the result of an arithmetic operator is usually a numeric value.

Syntax
[expression1] <operator> [expression2]

Comments

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-6

Although the + operator can be used to concatenate two character strings, the & operator
should be used for concatenation to eliminate ambiguity and provide self-documenting code.
If + operator is used, there may be no way to determine whether addition or string
concatenation will occur. The underlying subtype of the expressions determines the
behavior of the + operator in the following way:

If Then
Both expressions are numeric Add
Both expressions are strings Concatenate
One expression is numeric and the
other is a string

Add

If one or both expressions are Null expressions, the result is Null. If both expressions are
Empty, the result is an integer subtype. However, if only one expression is Empty, the other
expression is returned unchanged as a result.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Newvar NUMERIC

ASSIGN Newvar = Age + 5

LIST Age Newvar

AND

Description
This operator performs logical conjunction on two Boolean expressions. If both expressions
evaluate to True, the AND operator returns True. If either or both expressions evaluate to
False, the AND operator returns False.

Syntax
[Logical Expression] AND [Logical Expression]

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-7

Comments
The expression is any valid logical expression in Epi Info.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Smoke

DEFINE Result TEXTINPUT

IF Age > 75 AND Sex = 2 THEN

ASSIGN Result="Senior"

END

SELECT Result = "Senior"

LIST Result Age Sex

In this case, the value of "Senior" is assigned to all records that meet both criteria Age > 75
and Sex = 2.

ARITHMETIC
Description
These basic arithmetic operators can be used in combination with other commands. The
result is a numeric value.

Syntax
[Expression] <Operator> [Expression]

• [Expression] is a numeric value or a variable containing data in numeric format.
Comments
The results are expressed in numeric format. The basic mathematical operators that can be
used in Epi Info are as follows:

• Addition + Basic arithmetic operator used for addition; the result of an arithmetic

operator is usually a numeric value (example 3 + 3).

• Subtraction – Basic arithmetic operator used for subtraction or negation; the result
of an arithmetic operator is usually a numeric value (example 3 – 1).

• Multiplication * (Asterisk) Basic arithmetic operator used for multiplication; the
result of an arithmetic operator is usually a numeric value.

• Division / Basic arithmetic operator used for division; the result of an arithmetic
operator is usually a numeric value.

• Exponentiation ^

• Modulus or Remainder MOD

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-8

Arithmetic operators are shown in descending order of precedence. Parentheses can be used
to control the order in which operators are evaluated. The default order, however,
frequently achieves the correct result.

While it is possible to do date math with dates considered as a number of days (example
IncubationDays = SymptomDateTime – ExposureDateTime), the behavior of the database
services underlying Epi Info makes it more efficient to use time interval functions (e.g.,
IncubationDays = MINUTES(ExposureDateTime, Symptom DateTime)/[24*60]). For doing
date math, the following rules apply:

Date + Date produces Date
Date – Date produces Days
Date * Date not permitted
Date / Date not permitted
Date ^ Date not permitted
Date + Number produces Date
Number + Date produces Number
The last two rules apply as well to other math operations: -, *, /, ^
The "zero day" for date math is December 30, 1899.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE var1 NUMERIC

ASSIGN var1=1250 MOD 100

DEFINE var2 NUMERIC

ASSIGN var2=1+1

DEFINE var3 NUMERIC

ASSIGN var3=2-1

DEFINE var4 NUMERIC

ASSIGN var4=1*1

DEFINE var5 NUMERIC

ASSIGN var5=8/4

DEFINE var6 NUMERIC

ASSIGN var6=5^2

LIST var1 var2 var3 var4 var5 var6

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-9

COMPARISONS

Description
These comparison operators can be used in If, Then, and Select statements in Check Code
and Analysis programs. Yes/No variables can only be tested for equality against other
Yes/No constants (+), (-), and (.).

Operator Description

= Equal to Comparison operator used for equal to; the result of
comparison operators is usually a logical value, either True or
False. EX. A1 = B1

> Greater than comparison operator. Compares a value greater
than another value; the result of comparison operators is usually
a logical value, either True or False. Comparison operator used
for comparing a value greater than another value; the result of
comparison operators is usually a logical value, either True or
False. EX. A1 > B1.

< Less than comparison operator. Compares a value less than
another value; the result of comparison operators is usually a
logical value, either True or False. Comparison operator used for
comparing a value less than another value; the result of
comparison operators is usually a logical value, either True or
False. EX. A1< B1

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

LIKE Left side variable matches right side pattern; in pattern, ’*’
matches any number of characters, ’?’ matches any one character.

Syntax
[Expression] <Operator> [Expression]
[Expression] is any valid expression.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-10

Comments
Comparison operators are executed from left to right. There is no hierarchy of comparison
operators. The <> operator can be used only with numeric variables. For non-numeric
variables, use NOT.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

SELECT Age>20

LIST Age Disease

READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

SELECT Age<45

LIST Age Disease

READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

SELECT Age>=38

LIST Age Disease

READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

SELECT Age<>77

LIST Age Disease

LIKE Operator

Description
This operator is used with the SELECT command to locate subsets of information using a
wildcard search. LIKE can be used only to locate data in text variables and uses asterisks
(*) to define the select value. It can also be used to create IF/THEN statements.

Syntax
SELECT <variable> LIKE "*value*"
SELECT <variable> LIKE "*val*"

SELECT <variable> LIKE "v*"
SELECT <variable> LIKE "*v"

• The select variable must be a text type. The value can be a whole or partial text
value. Text variables must be enclosed in quotes.

Comments

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-11

The results appear in the Output window. Use LIST to view the selected records.

Examples
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE Sick NUMERIC

IF Disease LIKE "h*" THEN

ASSIGN Sick = 0

END

SELECT Disease LIKE "h*"

LIST Age Disease DateAdmitted Sick GRIDTABLE

NOT

Description
This operator reverses the True or False value of the logical expression that follows.

Syntax
NOT [Expression]

The expression represents any valid logical expression in Epi Info.

Comments
If the value of an expression is True, NOT returns the value False. If the expression is
False, NOT <expression> is True.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego
DEFINE NoVanilla YN
IF NOT Vanilla = (+) THEN

 NoVanilla = (+)
ELSE

NoVanilla = (-)
END
FREQ NoVanilla Vanilla

VANILLA NOVANILLA

Yes No

No Yes

OR

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-12

Description
This operator returns True if one or the other or both expressions are True. If either
expression evaluates to True, OR returns True. If neither expression evaluates to True, OR
returns False.

Syntax
[Logical Expression] OR [Logical Expression]
[Logical Expression] represents any valid logical expression in Epi Info.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE IceCream YN

IF VANILLA=(+) OR CHOCOLATE=(+) THEN

IceCream=(+)

ELSE

IceCream=(-)

END

FREQ IceCream

VANILLA CHOCOLATE ICE CREAM

Yes Yes Yes

No Yes Yes

Yes No Yes

No No No

Yes Yes Yes

XOR (eXclusive OR)

Description
This operator performs a logical exclusion on two expressions.

Syntax
[Logical Expression] XOR [Logical Expression]

The [Logical Expression] represents any valid logical expression in Epi Info 7 for Windows.

Comments

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-13

If one, and only one, of the expressions evaluates to True, the result is True. However, if
either expression is Null, the result is also Null. When neither expression is Null, the result
is determined according to the following table:

If
expression1
is

And
expression2
is

Then result
is

True True False

True False True

False True True

False False False

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Oneicecream YN

IF Vanilla = (+) XOR Chocolate = (+) THEN

Oneicecream = (+)

ELSE

Oneicecream = (-)

END

LIST Vanilla Chocolate Oneicecream GRIDTABLE

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-14

Functions

Do not put a space before the first parenthesis. Functions take the value of one or more
variables and return the result of a calculation or transformation.

ABS Function

Description
The ABS function returns the absolute value of a variable by removing the negative sign, if
any.

Syntax
ABS<variable>

• The <variable> can be an existing numeric variable, a defined variable containing
numbers, or a numeric constant.

Comments
Results will be numeric.

Value
ABS
Function

-2 2

1 1

0 0

-0.0025 0.0025

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Age2 NUMERIC

DEFINE Age3 NUMERIC

ASSIGN Age2 = Age * -1

ASSIGN Age3 = ABS(Age2)

LIST Age Age2 Age3

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-15

DAY

Description
The DAY function extracts the day from the date.

Syntax
DAY (<variable>)

The <variable> is in date format.

Comments
If the date is stored in a text variable, the function will not be processed, and will be null.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE CurrentDay NUMERIC

ASSIGN CurrentDay = DAY(01/15/2007)

LIST CurrentDay

DAYS

Description
The DAYS function returns the number of days between <var2> and <var1>. If any of the
variables or values included in the formula is not a date, the result will be null.

Syntax
DAYS(<var1>, <var2>)

The <variable> is in a date format.

Comments
If the date stored in <var1> is later (more recent) than the date in <var2>, the result is the
difference in days expressed as a negative number.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE SickDays NUMERIC

ASSIGN SickDays = DAYS(04/18/1940, DateOnset)

LIST SickDays GRIDTABLE

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-16

EXISTS
Description
This function returns True if a file exists. Otherwise, it returns False.

Syntax
EXISTS(<variable>)

<variable> represents the complete path and file name in text format.

Comments
If you do not have permission to access the file, a False may be returned.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE var1 TEXTINPUT

ASSIGN var1="C:\epi_info\epimap.exe"

IF EXISTS(Var1) =(+) then

DIALOG "Hello"

END

IF Exists("C:\Epi_Info\EpiInfo.mnu")=(+) then

DIALOG "File epiInfo.mnu exists"

END

EXP
Description
This function raises the base of the natural logarithm (e) to the power specified.

Syntax
EXP(<variable>)

Comments
This variable can be an existing numeric variable, a defined variable containing numbers,
or a numeric constant.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE ExpA NUMERIC

ASSIGN ExpA=EXP(Age)

LIST ExpA Age

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-17

FILEDATE

Description
This function returns the date a file was last modified or created. If FILEDATE is specified
with a file path that lacks a directory, the current directory is used. If FILEDATE is
specified without a file, or with a file that does not exist, the function returns missing.

Syntax
FILEDATE(<variable>)

The <variable> represents the complete file path and the name is text format.

Comments
This function is useful when several users are updating a large database.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:RHepatitis

DEFINE NewUpdate DATEFORMAT

ASSIGN NewUpdate=FILEDATE("C:\epi_info\Sample.mdb")

IF FILEDATE("C:\epi_info\Sample.mdb") > NewUpdate THEN

DIALOG "This information may be out of date. Please check the source."

TITLETEXT="Warning"

END

LIST NewUpdate

FINDTEXT

Description
This function returns the position in a variable in which the string is located.

Syntax
FINDTEXT(<variable1>,<variable2>)

The <variable1> represents the string of characters to be found. The <variable2>
represents the string to be searched.

Comments
If the sting is not found, the result is 0; otherwise it is a number corresponding to the
position of the string starting from the left. The first character is 1. If the result is 0, the
test was not found.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-18

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE Var11 NUMERIC

VAR11=FINDTEXT("M",LASTNAME)

LIST LASTNAME Var11

FORMAT

Description
This function changes the format of one variable type to text in a specified format. If no
format is specified it returns text and converts a number to text.

Syntax
FORMAT(<variable>,["Format Specification"])

The <variable> represents a variable in any format and the [Format Specification] can
represent any of the following:

Format Specification Description

Date Formats

General Date 11/11/1999 05:34

Long Date System's long date format

Medium Date System's medium date format

Short Date System's short date format

Long Time System's long time format

Medium Time System's medium time format

Short Time System's short time format

Number Formats

General Number No thousand separator

Currency Thousand separator plus two decimal places (based on system
settings)

Fixed At least #.##

Standard #,###.##

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-19

Format Specification Description

Percent Number multiplied by 100 plus a percent sign

Scientific Standard scientific notation

Yes/No Displays NO if number = 0, else displays Yes

True/False False if number = 0

On/Off True if number <> 0
Displays 0 if number = 0, else displays 1

Custom Format Allows for the creation of customized formats

Comments
Output may vary based on the specific configuration settings of the local computer.

Format(Time, "Long Time")

MyStr = Format(Date,"Long Date")

MyStr = Format(MyTime,"h:m:s")

Returns "17:4:23"

MyStr = Format(MyTime,"hh:mm:ssAMPM")

Returns "05:04:23 PM"

MyStr = Format(MyDate,"dddd, mmm yyyy")

Returns "Wednesday, ' Jan 27 1993". If format is not supplied, a string is returned.

MyStr = Format(23)

Returns "23".

User-defined formats

MyStr = Format(5459.4, "##,##0.00")

Returns "5,459.40"

MyStr = Format(334.9, "###0.00")

Returns "334.90"

MyStr = Format(5, "0.00%")

Returns "500.00%"

MyStr = Format("HELLO", "<")

Returns "hello"

MyStr = Format("This is it", ">")

Returns "THIS IS IT"

MyStr = Format("This is it", ">;*")

Returns "THIS IS IT"

Example
READ 'C:\Epi_Info\Refugee.MDB':Patient

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-20

DEFINE var2 NUMERIC

DEFINE var3 NUMERIC

DEFINE var4 NUMERIC

DEFINE var5 NUMERIC

DEFINE var6 NUMERIC

DEFINE var7 YN

DEFINE var8 Boolean

DEFINE var9

DEFINE var10

var2=FORMAT(BOH, "Currency")

var3=FORMAT(BOH, "fixed")

var4=FORMAT(BOH, "Standard")

var5=FORMAT(BOH, "Percent")

var6=FORMAT(BOH, "Scientific")

var7=FORMAT(BOH, "Yes/No")

var8=FORMAT(BOH, "True/false")

var9=FORMAT(BOH, "On/Off")

var10=FORMAT(BOH, "VB\s #,###.##")

LIST dob var2 var3 var4 var5 var6 var7 var8 var9 var10

HOUR

Description
This function returns a numeric value that corresponds to the hour recorded in a date/time
or time variable.

Syntax
HOUR(<variable>)

The <variable> represents a variable in date format.

Comments
If the time is stored in a text variable, the function will not be processed, and the result will
be null.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-21

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Local DATEFORMAT

ASSIGN Local = SYSTEMTIME

LIST Local

DEFINE hour1 NUMERIC

ASSIGN hour1=hour(local)

LIST Local hour1

HOURS

Description
This function returns the number of hours between <var1> and <var2> in numeric format.

Syntax
HOURS(<var1>, <var2>)

<var1> and <var2> represent variables in time or date/time format.

Comments
If the time stored in <var1> is later (more recent) than the time in <var2>, the result will
be the difference in hours expressed as a negative number. Both variables must contain
data in date, time, or date/time format. If any of the variables or values included in the
formula is not a date, the result will be null.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE hour1 NUMERIC

ASSIGN hour1=HOURS(Timesupper,Dateonset)

LIST hour1

LIST hour1 Timesupper Dateonset

LN

Description
The function LN returns the natural logarithm (logarithm in base e) of a numeric value or
variable. If the value is zero or null, it returns a null value.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-22

Syntax
LN(<variable>)

The <variable> can be an existing numeric variable, a defined variable containing numbers,
or a numeric constant.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Natlogofage NUMERIC

ASSIGN Natlogofage = LN(AGE)

LIST Age Natlogofage

LOG

Description
This function returns the base 10 logarithm (decimal logarithm) of a numeric value or
variable. If the value is 0 or null it returns a null value.

Syntax
LOG(<variable>)

The <variable> can be an existing numeric variable, a defined variable containing numbers,
or a numeric constant.

Comments
The results will be numeric.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Declog NUMERIC

ASSIGN Declog = LOG(Age)

LIST Age Declog

MINUTES

Description
This function returns the number of minutes between <var1> and <var2> in numeric
format.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-23

Syntax
MINUTES(<var1>, <var2>)

<var1> and <var2> represent variables in time or date/time format.

Comments
If the time stored in <var1> is later (more recent) than the time in <var2>, the result will
be the difference in minutes expressed as a negative number. Both variables must contain
data in date, time, or date/time format. If any of the variables or values included in the
formula is not a date, the result will be null.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Min1 NUMERIC

ASSIGN Min1=MINUTES(timesupper,dateonset)

LIST Min1

MONTH

Description
This function extracts the month from the date.

Syntax
MONTH(<variable>)

The <variable> represents a variable in date format.

Comments
If the date is stored in a text variable, the function will not be processed, and the result will
be null.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE CurrMonth NUMERIC

ASSIGN CurrMonth = MONTH(01/01/2005)

LIST CurrMonth

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-24

MONTHS

Description
This function returns the number of months between <var1> and <var2>. If any of the
variables or values included in the formula is not a date, the result will be null.

Syntax
MONTHS(<var1>, <var2>)

<var1> and <var2> represent variables in date format.

Comments
If the date stored in <var1> is later (more recent) than the date in <var2>, the result will be
the difference in months expressed as a negative number.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE AgeMonths NUMERIC

ASSIGN AgeMonths = MONTHS(BirthDate,01/01/2000)

LIST AgeMonths

NUMTODATE

Description
This function transforms three numbers into a date format.

Syntax
NUMTODATE(<year>, <month>, <day>)

• <year> represents a numeric variable or a number representing the year.

• <month> represents a numeric variable or a number representing the month.

• <day> represents a numeric variable or a number representing the day.

Comments
If the date resulting from the conversion is not valid (e.g., December 41, 2000), the date is
recalculated to the corresponding valid value (e.g., January 10, 2001). When <Year> ranges
between 0 and 29, it is represented as the respective year between 2000 and 2029. Values
from 30 to 99 are represented as the respective year between 1930 and 1999. The earliest
date that can be recorded is Jan 01, 100.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-25

Day Month Year
Date
Created

02 02 1999 02/02/1999

60 01 1999 03/01/1999

15 18 2000 03/18/2001

99 99 99 06/07/0107

20 74 74 08/20/1974

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE day1 NUMERIC

DEFINE month1 NUMERIC

DEFINE year1 NUMERIC

ASSIGN day1= day(BirthDate)

ASSIGN month1 = month(BirthDate)

ASSIGN year1 = year(BirthDate)

define date2 DATEFORMAT

ASSIGN date2= NUMTODATE(year1,month1,day1)

LIST month1 day1 year1 date2 BirthDate GRIDTABLE

NUMTOTIME

Description
This function transforms three numbers into a time or date/time format.

Syntax
NUMTOTIME(<hour>, <minute>, <second>)

• <hour> represents a numeric constant or variable representing hours.

• <minute> represents a numeric constant or variable representing minutes.

• <second> represents a numeric constant or variable representing seconds.

Comments
Time must be entered in 24-hour format. Invalid dates will be recalculated to the respective
valid time. If the number of the hour exceeds 24, the resulting variable will have a
date/time format and the default day 1 will be December 31, 1899.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-26

Hour Minute Second Time Created

00 00 00 12:00:00 AM

00 00 90 12:01:30 AM

15 84 126 04:26:06 PM

25 00 00 12/31/1899 1:00:00 AM

150 250 305 01/05/1900 10:15:05
AM

15999 7500 8954 09/21/1901 07:29:14
AM

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE Var3 DATEFORMAT

ASSIGN Var3=SYSTEMTIME

DEFINE Hour1 NUMERIC

DEFINE Minute1 NUMERIC

DEFINE Second1 NUMERIC

ASSIGN Hour1=HOUR(VAR3)

ASSIGN Minute1=MINUTE(VAR3)

ASSIGN Second1=SECOND(VAR3)

DEFINE Time2 DATEFORMAT

ASSIGN Time2=NUMTOTIME(HOUR1,MINUTE1,SECOND1)

LIST Var3 Hour1 Minute1 Second1 Time2

RECORDCOUNT

Description
This function returns the number of records in the current View. In Analysis, this takes
into account any SELECT statement and value of the Process (Deleted) setting.

Syntax
RECORDCOUNT

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-27

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

IF RECORDCOUNT=0 THEN

DIALOG "No records found."

QUIT

END

RND

Description
This function generates a random number between <var1> and <var2>.

Syntax
RND(<min>, <max>)

• The <min> represents a number or numeric variable that corresponds to the
lowest value of the random number to be generated.

• The <max> represents a number or numeric variable that is one higher than the
highest possible value for the random number to be generated.

Comments

The random number generated is from <min> up to but not including <max>. For a set of
random numbers consisting of only 0 and 1, the syntax RND(0, 2) would be used to generate
a random number from 0 up to but not including 2. If the value for <min> is greater than
the value for <max> a syntax error results.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Random1 NUMERIC

DEFINE Random2 NUMERIC

DEFINE Random3 NUMERIC

ASSIGN Random1=RND(1,100)

ASSIGN Random2=RND(1,100)

ASSIGN Random3=RND(1,100)

LIST Random1 Random2 Random3

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-28

ROUND

Description
This function rounds the number stored in the variable to the closest integer. Positive
numbers are rounded up to the next higher integer if the fractional part is greater than or
equal to 0.5. Negative numbers are rounded down to the next lower integer if the fractional
part is greater than or equal to 0.5.

Syntax
ROUND(<variable>)

The <variable> can be an existing numeric variable, a defined variable containing numbers,
or a numeric constant.

Comments
The results are returned in numeric format.

Differences Between
TRUNC and ROUND

Value TRUNC ROUND

0.123456 0 0

7.99999999 7 8

45.545 45 46

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

FREQ AGE

DEFINE Decade NUMERIC

ASSIGN Decade=ROUND(AGE/10)+1

LIST AGE Decade

SECONDS

Description
This function returns the number of seconds between <var1> and <var2> in numeric
format.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-29

Syntax
SECONDS(<var1>, <var2>)

<var1> and <var2> represent variables in time or date/time format.

Comments
If the time stored in <var1> is later (more recent) than the time in <var2>, the result will
be the difference in seconds expressed as a negative number. Both variables must contain
data in date, time or date/time format. If any of the variables or values included in the
formula is not a date, the result is null.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Sec1 NUMERIC

ASSIGN Sec1=SECONDS(Timesupper,DateOnset)

LIST Timesupper DateOnset Sec1

SIN, COS, TAN
Description
These functions return the respective trigonometric value for the specified variable.

Syntax
SIN(<variable>)

The <variable> can be an existing numeric variable, a defined variable containing numbers,
or a numeric constant.

Comments
The variable is interpreted as the angle in radians. To convert degrees to radians, multiply
by pi (3.1415926535897932) divided by 180.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE SinA NUMERIC

DEFINE SinB NUMERIC

DEFINE CosA NUMERIC

DEFINE TanA NUMERIC

ASSIGN SinA=SIN(AGE)

ASSIGN SinB=SIN(AGE)*3.14/180

ASSIGN CosA=COS(AGE)

ASSIGN TanA=TAN(AGE)

LIST SinA CosA TanA SinB

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-30

SUBSTRING

Description
This function returns a string that is a specified part of the value in the string parameter.

Syntax
SUBSTRING(<variable>, [First], [Length])

• The <variable> represents a variable in text format.

• The [First] represents the position of the first character to extract from the file.

• The [Length] represents the number of characters to extract.

Comments
This function cannot be used with non-string variables.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Text1 TEXTINPUT

ASSIGN Text1 ="James Smith"

DEFINE LName TEXTINPUT

ASSIGN LName = SUBSTRING(Text1,7,5)

LIST Text1 LName

SYSTEMDATE

Description
This function returns the date stored in the computer's clock.

Syntax
SYSTEMDATE

Comments
The SYSTEMDATE cannot be changed (assigned) from Classic Analysis. To use the
SYSTEMDATE for computations, a new variable must be defined.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-31

Example
To calculate next week's date:
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE TodayDate DATEFORMAT

ASSIGN TodayDate =SYSTEMDATE + 7

LIST TodayDate

SYSTEMTIME

Description
This function returns the time stored in the computer’s clock at the time the command is
executed.

Syntax
SYSTEMTIME

Comments
The SYSTEMTIME cannot be changed from Classic Analysis (assigned). To use the system
time for computations, a new variable must be defined.

Example
To calculate a time two hours after the current time:
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE Later DATEFORMAT

ASSIGN Later =SYSTEMTIME

LIST Later

ASSIGN Later =SYSTEMTIME+(120)

LIST Later

TRUNC

Description
This function removes decimals from a numeric variable, returning the integer part of the
number. This follows the same logic as rounding toward zero.

Syntax
TRUNC(<variable>)
The <variable> can be an existing numeric variable, a defined variable containing numbers,
or a numeric constant.
Comments

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-32

The result will be returned in numeric format.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:ADDFull

DEFINE Trc1 Numeric

ASSIGN Trc1 = TRUNC(ADDSC)

LIST Trc1 ADDSC

TXTTODATE

Description
This function returns a date value that corresponds to the string.

Syntax
TXTTODATE(<variable>)

The <variable> represents a variable in text format.

Comments
The text variable can be in any format that can be recognized as a date (e.g., "Jan 1, 2000",
"1/1/2000").

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance
DEFINE Var1 TEXTINPUT
ASSIGN Var1="05/20/2006"
DEFINE Var2 DATEFORMAT
ASSIGN Var2=TXTTODATE(Var1)
DISPLAY DBVARIABLES
LIST Var1 Var2

TXTTONUM

Description
This function returns a numeric value that corresponds to the string.

Syntax
TXTTONUM(<variable>)

The <variable> represents a variable in text format.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-33

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Oswego

DEFINE Var1 TEXTINPUT

ASSIGN Var1="12345"

DEFINE Var2 NUMERIC

ASSIGN Var2=TXTTONUM(Var1)

LIST Var1 Var2

DISPLAY DBVARIABLES

UPPERCASE

Description
This function returns a string (text) variable that has been converted to uppercase.

Syntax
UPPERCASE(<variable>)

The <variable> represents a variable in text format.

Comments
Only lowercase letters are converted to uppercase; all uppercase letters and non-letter
characters remain unchanged.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE LastName2 TEXTINPUT

ASSIGN LastName2 = UPPERCASE(LASTNAME)

LIST LastName2 LASTNAME

YEAR

Description
This function extracts the year from a date.

Syntax
YEAR(<variable>)

The <variable> represents a variable in date format.

Epi Info™ 7 User Guide – Chapter 14 – Functions and Operators

14-34

Comments
The date argument is any expression that can represent a date. If the date variable
contains null, null is returned.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance

DEFINE CurrentYear NUMERIC

ASSIGN CurrentYear =YEAR(01/01/2006)

LIST CurrentYear

YEARS

Description
This function returns the number of years from <var1> to <var2> in numeric format. If any
of the variables or values included in the formula is not a date, the result will be null.

Syntax
YEARS(<var1>, <var2>)

<var1> and <var2> are represented in date format.

Comments
If the date stored in <var1> is later (more recent) than the date in <var2>, the result will be
the difference in years expressed as a negative number.

Example
READ {C:\My_Project_Folder\Sample\Sample.prj}:Surveillance
DEFINE SurveyDate DATEFORMAT
ASSIGN SurveyDate=05/15/2001
DEFINE AgeYears NUMERIC
ASSIGN AgeYears =YEARS(BirthDate,SurveyDate)
MEANS AgeYears
LIST AgeYears BirthDate SurveyDate

	14. Functions and Operators
	Introduction
	Syntax Notations

	Operators
	Operator Precedence
	& Ampersand
	= Equal Sign
	Description
	Addition (+)
	Example

	AND
	Description
	Syntax
	Comments
	Example

	ARITHMETIC
	Description
	Syntax
	Example

	COMPARISONS
	Description
	Syntax
	Comments
	Example

	LIKE Operator
	Description
	Syntax
	Comments
	Examples

	NOT
	Description
	Syntax
	Comments
	Example

	OR
	Description
	Syntax
	Example

	XOR (eXclusive OR)
	Description
	Syntax
	Comments
	Example

	Functions
	ABS Function
	Description
	Syntax
	Comments
	Example

	DAY
	Description
	Syntax
	Comments
	Example

	DAYS
	Description
	Syntax
	Comments
	Example

	EXISTS
	Description
	Syntax
	Comments
	Example

	EXP
	Description
	Syntax
	Comments
	Example

	FILEDATE
	Syntax
	Comments
	Example

	FINDTEXT
	Description
	Syntax
	Comments
	Example

	FORMAT
	Syntax
	Comments
	Example

	HOUR
	Description
	Syntax
	Comments
	Example

	HOURS
	Description
	Syntax
	Comments
	Example

	LN
	Description
	Syntax
	Example

	LOG
	Description
	Syntax
	Comments
	Example

	MINUTES
	Description
	Syntax
	Comments
	Example

	MONTH
	Description
	Syntax
	Comments
	Example

	MONTHS
	Description
	Syntax
	Comments
	Example

	NUMTODATE
	Description
	Syntax
	Comments
	Example

	NUMTOTIME
	Description
	Syntax
	Comments
	Example

	RECORDCOUNT
	Description
	Syntax
	Example

	RND
	Description
	Syntax
	Comments
	Example
	Description
	Syntax
	Comments
	Example

	SECONDS
	Description
	Syntax
	Comments
	Example

	SIN, COS, TAN
	Description
	Syntax
	Comments
	Example

	SUBSTRING
	Description
	Syntax
	Comments
	Example

	SYSTEMDATE
	Description
	Syntax
	Comments
	Example

	SYSTEMTIME
	Description
	Syntax
	Comments
	Example

	TRUNC
	Description
	Syntax
	Comments
	Example

	LIST Trc1 ADDSC
	TXTTODATE
	Description
	Syntax
	Comments
	Example

	TXTTONUM
	Description
	Syntax
	Example

	UPPERCASE
	Description
	Syntax
	Comments
	Example

	YEAR
	Description
	Syntax
	Comments
	Example

	YEARS
	Description
	Syntax
	Comments
	Example

