Modeling Insights into *Haemophilus influenzae* Type b Disease, Transmission, and Vaccine Programs

Technical Appendix 1

Model Structure

The following set of partial differential equations defines the rates at which the simulated population moves between model states:

$$\frac{\partial NS}{\partial t} + \frac{\partial NS}{\partial a} = \mu(t, a)X(t) + \omega_L LS(t, a) + \omega_{BPIG}I(t, a) - V(t) + \lambda(t, a) + \gamma(t, a)\varepsilon(a) + \delta_{BPIG}(t, a) - V(t) + \lambda(t, a) + \gamma(t, a)\varepsilon(a) + \delta_{BPIG}(t, a) - V(t) + \lambda(t, a) + \gamma(t, a)\varepsilon(a) + \delta_{BPIG}(t, a) - V(t) + \lambda(t, a) + \gamma(t, a)\varepsilon(a) + \delta_{BPIG}(t, a) - V(t) + \lambda(t, a) + \gamma(t, a)\varepsilon(a) + \delta_{BPIG}(t, a) - V(t) + \lambda(t, a) +$$

$$\frac{\partial I}{\partial t} + \frac{\partial I}{\partial a} = \delta_{BPIG}(t, a)NS(t, a) - \omega_{BPIG}I(t, a)$$

$$\frac{\partial NC}{\partial t} + \frac{\partial NC}{\partial a} = \lambda(t, a)NS(t, a) - \sqrt{(t) + \rho_C + \sigma(a) + \gamma(t, a)\varepsilon(a)} \frac{NC}{NC}(t, a)$$

$$\frac{\partial LS}{\partial t} + \frac{\partial LS}{\partial a} = \omega_H HS(t, a) - \Psi(t) + \omega_L + \lambda(t, a)(1 - \alpha_L) + \gamma(t, a)\varepsilon(a) \underline{L}S(t, a)$$

$$\frac{\partial LC}{\partial t} + \frac{\partial LC}{\partial a} = \lambda(t, a)(1 - \alpha_L)LS(t, a) - \left[\mathbf{f}(t) + \rho_C + \sigma(a)(1 - \beta_L) + \gamma(t, a)\varepsilon(a) \right] \underline{L}C(t, a)$$

$$\frac{\partial HS}{\partial t} + \frac{\partial HS}{\partial a} = \rho_C VC(t,a) + LC(t,a) + HC(t,a) + \rho_D D(t,a) + \gamma(t,a)\varepsilon(a) VS(t,a) + LS(t,a) - V(t) + \omega_H(a) + \lambda(t,a)(1-\alpha_H) - \frac{1}{2}HS(t,a)$$

$$\frac{\partial HC}{\partial t} + \frac{\partial HC}{\partial a} = \lambda(t, a)(1 - \alpha_H)HS(t, a) + \gamma(t, a)\varepsilon(a)[NC(t, a) + LC(t, a)] - (t) + \rho_C + \sigma(a)(1 - \beta_H)HC(t, a)$$

$$\frac{\partial D}{\partial t} + \frac{\partial D}{\partial a} = \sigma(a) VC(t, a) + (1 - \beta_L)LC(t, a) + (1 - \beta_H)HC(t, a) - V(t) + \rho_D D(t, a)$$

In which:

- NS, NC, LS, LC, HS, HC, D, and I are population states, where N=No antibody, L = Low antibody, H = High antibody, S = Susceptible, C = Colonized, D = Diseased, and I = Immune; X(t) is the total population.
- $\mu(t,a)$ and $\nu(t)$ are time-dependent birth and death rates, respectively. Birth rate also depends on age as individuals are only born into the age=0 group
- ω_L is the rate at which low antibody wanes to no antibody and $\omega_H(a)$ is the age-dependent rate at which high antibody wanes to low antibody
- $\lambda(t,a)$ is the time- and age-dependent force of infection
- $\gamma(t,a)$ is the time- and age-dependent rate of vaccination, and $\epsilon(a)$ is the age-dependent vaccine take rate
- $\sigma(a)$ is the age-dependent rate of invasive disease among colonized persons
- α_L and α_H are the efficacy of low and high antibody at preventing colonization
- β_L and β_H are the efficacy of low and high antibody at preventing invasive disease
- ρ_C and ρ_D are the rates of recovery from colonization and invasive disease, respectively
- $\delta_{BPIG}(t,a)$ is the time- and age-dependent rate of BPIG use (for Alaska Native populations only), and ω_{BPIG} is the rate of waning of BPIG protection.