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Human noroviruses cause severe, self-limiting gas-
troenteritis that typically lasts 24-48 hours. Because of the
lack of suitable tissue culture or animal models, the true
nature of norovirus pathogenesis remains unknown. We
show, for the first time, that noroviruses can infect and repli-
cate in a physiologically relevant 3-dimensional (3-D),
organoid model of human small intestinal epithelium. This
level of cellular differentiation was achieved by growing the
cells on porous collagen-I coated microcarrier beads under
conditions of physiological fluid shear in rotating wall ves-
sel bioreactors. Microscopy, PCR, and fluorescent in situ
hybridization provided evidence of norovirus infection.
Cytopathic effect and norovirus RNA were detected at each
of the 5 cell passages for genogroup | and Il viruses. Our
results demonstrate that the highly differentiated 3-D cell
culture model can support the natural growth of human
noroviruses, whereas previous attempts that used differen-
tiated monolayer cultures failed.

H uman noroviruses are the leading cause of nonbacter-
ial, self-limiting gastrointestinal illness worldwide
(1-4). Infected persons may develop symptoms of severe
nausea, vomiting, and watery diarrhea within 12-24 hours
of exposure and typically remain symptomatic for 1-2
days (5). Infections may lead to death in immunocompro-
mised persons. The most common routes of norovirus
transmission are ingestion of contaminated food and water
and person-to-person contact (5).

Noroviruses are nonenveloped, positive-sense, single-
stranded RNA viruses =27-35 nm in diameter (6,7). They
belong to the genus Norovirus in the family Caliciviridae
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and consist of 3 genogroups (I, 1, and 1V) that infect
humans (8-11). On the basis of sequence diversity of the
capsid gene, noroviruses can be classified into 8 genetic
clusters within GI, 17 in GllI, and 1 in GIV (11).

Understanding of the pathogenesis of human
noroviruses has been limited by our inability to propagate
these viruses in vitro (12). Studies of viral attachment to
cultured gastrointestinal epithelial cells (Caco-2) using
recombinant virus-like particles or infectious noroviruses
indicate that specific histo—blood group antigens play a
key role in the attachment of the virus to the host cells
(13-17).

Recently, the first in vitro norovirus cell culture model
was reported for a norovirus that infects mice (18,19).
Asanaka et al. (20) reported production of Norwalk virus
particles (norovirus GI.1, the prototype strain) after trans-
fection of cultured kidney cells. However, these models do
not answer the fundamental questions of human norovirus
attachment to, entry into, and replication within cells of the
human gastrointestinal tract, and the resulting symptoms.
In vitro differentiation of small intestinal epithelium that
approaches physiologic functionality of the in vivo host
may allow for the development of a pathogenesis model
for norovirus.

Representative models of differentiated human intes-
tinal epithelium can be established by growing cells in 3
dimensions (3-D) on collagen-1-coated porous microcarri-
er beads in rotating-wall vessel (RWV) bioreactors that
model the physiologic fluid-shear environment in their
respective organs (21-24). The design of the RWV biore-
actor is based on the principle that organs and tissues func-
tion in a 3-D environment and that this spatial context is
necessary for development of cultures that more realisti-
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cally resemble in vivo tissues and organs (25). We present
the results of our first attempts to infect a physiologically
relevant 3-D small intestinal epithelium model (INT-407)
with genogroup | and 11 human noroviruses.

Materials and Methods

Generation of the Small Intestinal Epithelium Model

We summarize results from 4 different infectivity tri-
als that used 3-D small intestinal epithelial cells (Table 1).
The human embryonic intestinal epithelial cell line INT-
407 was obtained from the American Type Culture
Collection (Manassas, VA, USA) (CCL-6). It was initially
grown as standard monolayers in GTSF-2 medium
(Hyclone, Logan, UT, USA) containing penicillin/strepto-
mycin and Fungizone (Invitrogen, Carlsbad, CA, USA) in
T-75 flasks at 37°C in a 5% CO, environment in prepara-
tion for seeding into the RWV. GTSF-2 medium is a triple-
sugar minimal essential medium «-L-15 base
supplemented with 10% heat-inactivated fetal bovine
serum, 2.2 g/L NaHCO,, and 2.5 mg/L insulin-transferrin-
sodium selenite (26).

Cells were trypsinized at 70% confluency, and 5 x 106
cells were added to the RWV. Cells were assayed for via-
bility by trypan blue dye exclusion. Then they were intro-
duced into the RWV (Synthecon, Inc., Houston, TX, USA)
containing 5 mg/mL porous Cytodex-3 microcarrier beads
(collagen type-l—coated porous microspheres, average size
175 u in diameter, Sigma, St. Louis, MO, USA), which
produced a final ratio of =10 cells/bead (21,22). Cells were
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cultured in the RWV bioreactors, with the rotation speed
adjusted to maintain the cell aggregates in suspension dur-
ing the entire culture duration (=18-20 rotations/min ini-
tial and 24-28 rotations/min final, depending on the size of
the aggregates).

Cell growth was monitored daily and fresh medium
was replenished by 90% of the total vessel volume each
24-72 hours, depending on the growth and metabolic
activity (as monitored by tissue culture media color
change) of the cultures. 3-D cells were harvested 35 days
after seeding into the RWV except for the fourth infectivi-
ty trial, for which aggregates were harvested starting on
day 29 and continuing to day 35. Using a 10-mL wide-bore
pipette, mature 3-D aggregates were placed into 24-well
plates (=40,000 cells/well) and infected with norovirus on
the same day they were harvested.

Before each infectivity assay, immunohistochemical
staining was performed on aliquots of the 3-D INT-407
cells to ensure differentiation. Aliquots of the mature tissue
aggregates were fixed with paraformaldehyde (4%
paraformaldehyde in 1x phosphate-buffered saline [PBS])
for 30 min at room temperature and then stained with anti-
bodies specific for tight junction markers ZO-1, Occludin,
Claudin-1, and E-cadherin (Zymed Laboratories
[Invitrogen], South San Francisco, CA, USA). The
aliquots were then imaged using confocal laser scanning
microscopy (Zeiss Axioplan Il microscope, Carl Zeiss,
Thornwood, NY, USA). Correct localization of these
markers at cell membranes is highly indicative of differen-
tiated cells (22). Previous characterization of the 3-D INT-

Table 1. Summary of methods from the 4 norovius infectivity trials*

Infectivity trial (date) Virus stocks/commentst

Time points assayed Assays performed

First (Mar 2005)

Combined equal volumes of strains 149, 155,
and flag2 (PO). Effective dilutions of 10" to 107
were assayed. Supernates were harvested from

1 h=72 h; media
changed in all wells at
24 h postinfection.

CPE, RT-PCR (Table 3), thin
section light microscopy and
ultrathin section TEM (Figure 1).

all infected wells, dilutions of viral stock, and time

points combined (15 mL final volume).
Supernate cocktail from first infectivity trial (P1),
strains 149 and flag2 tested alone (PO stool
samples). Supernates from each time point were
harvested for subsequent infectivity trials

Second (Jun 2005)

(~3 mL/time point).
Third (Aug 2005)

Supernate from combined stock (P2), 149, and
flag2 (P1), stool sample flag2 (P0O) were

Same as first infectivity
trial; media changed
every 24 h.

Same as first infectivity trial,
except that CPE (Figure 2) was
documented photographically
(Figure 3 refers to TEM).

Same as second
infectivity trial.

Same as second infectivity trial
(Figure 4); first attempt with FISH

harvested. Controls generated by ultrafiltration

(10,000 MWCO).
Fourth (Dec 2005)

replication was not occurring.

Infectivity followed through 5 passages in cell
culture using strains 155 and flag2 (PO-P5).
Effective dilution of viruses at P5 = 1:106, if

Infected aggregates
were processed at 24 h
postinfection, and the
viruses were used for
subsequent passage.

CPE, RT-PCR, molecular beacon
FISH (Figure 5). PCR products
from P3 of both strains were
cloned and sequenced. Compared
sequences with sequenced PCRs
from original stools.

*CPE, cytopathic effect; RT-PCR, reverse transcription—-PCR; TEM, transmission electron microscopy; MWCO, molecular weight cutoff; FISH,

fluorescence in situ hybridization.

tPassage no. (P#) definitions: PO, viruses from a stool sample and used to infect a cell culture for the first time; P1, viruses harvested from PO cell
cultures and used to infect cell culture a second time; P2, viruses harvested from P1 and used to infect cell culture a third time; P3, viruses harvested
from P2 and used to infect cell culture a fourth time; P4, viruses harvested from P3 and used to infect cell culture a fifth time; and P5, viruses harvested

from P4 and used to infect cell culture a sixth time.
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407 model also included collagen type-11, fibronectin, sia-
Iyl Lewis A antigen, villin, and periodic acid—Schiff stain-
ing to show mucin production (22).

Viruses, diluted 1:5 to 1:1,000 in GTSF-2 media, were
applied to the 3-D cell cultures as 0.1-mL aliquots per well
across a minimum of 3 wells per time point for each of the
infection trials described in Table 1. Viruses were intro-
duced to the cells by gentle mixing of the aggregates with
the viral suspension. The infected aggregates were incu-
bated for 1 h at 37°C in a 5% CO, incubator before being
overlaid with 1 mL of fresh GTSF-2 media.

Preparation and Characterization of Virus Stocks

Stool samples were obtained from persons who
became ill during acute gastroenteritis outbreaks on cruise
ships (identified as samples 149 [GII] and 155 [GI]) and in
a nursing home (identified as flag2 [GII]). Approximately
1 g of stool was suspended in 0.01 M PBS to obtain a
10%-20% stool suspension (=5-10 mL). The suspension
was vortexed for 60 s, centrifuged at 1,000x g, and
processed through a 0.22-u filter to remove bacterial con-
tamination. Virus samples were stored at —80°C for future
assays.

The presence of norovirus in the purified samples was
confirmed by reverse transcription-PCR (RT-PCR) and
sequencing (10). BLAST (www.ncbi.nlm.nih.gov/
BLAST) was performed on these sequences to determine
genogroup (Table 2). Stool extracts were screened for
other enteric viruses by 3 passages on Buffalo Green
Monkey cells and Caco-2 cells grown as conventional
monolayers. Stool extracts were also tested for enterovirus
by RT-PCR (27).

Microscopic Analysis

Cellular pathology of 3-D tissue aggregates for the sec-
ond and third infection trials was documented by using an
Olympus DP70 CCD camera and inverted microscope sys-
tem (Nikon Eclipse TE300, Kanagawa, Japan) at each time
point assayed. Subcellular pathology was assessed by using
light and transmission electron microscopy (TEM). These
samples (=40,000 cells per well) were fixed in 3.5% glu-
taraldehyde/0.5% paraformaldehyde in PBS and processed
by washing cells 3x with 0.1 M sodium cacodylate buffer
(Electron Microscopy Sciences, Hatfield, PA, USA) before
incubation in 1% osmium tetroxide diluted in 0.1 M sodi-
um cacodylate buffer for 1 h at room temperature. Cells
were washed with buffer and dehydrated by using a graded

series of ethanol rinses (33, 50, 75, 90, and 3x 100%
ethanol). Samples were then embedded in hard-grade LR
WhiteTM Resin (London Resin Co., Berkshire, England) at
60°C for 24 h. Block faces were cut into the samples by
using a Leica EM Trim (Wetzlar, Germany). Thin (60 nm)
and ultrathin (30 nm) sections were cut by using a Diatome
Ultra 45° (Biel, Switzerland) diamond knife on a Leica
Ultracut UCT ultramicrotome. Thin sections were affixed
to microscope slides and stained with toludine blue, then
viewed on a Nikon Optiphot-2 light microscope. Ultrathin
sections were affixed to copper mesh grids, stained and
contrasted with uranyl acetate and lead citrate for 7 min
each, and then viewed on a JEOL-2010 (Tokyo, Japan)
transmission electron microscope at 106 kV.

Viral RNA Extraction and RT-PCR

RNA from tissue samples was extracted by using
either an RNEasy or a ViralAmp RNA extraction kit
(Qiagen, Valencia, CA, USA). RT-PCR was performed by
using the OneStep RT-PCR kit (Qiagen) according to man-
ufacturers’ instructions. Primer sequences for RT-PCR and
seminested PCR to amplify the RNA-dependent RNA
polymerase gene are listed in Vinje et al. (10), with the
exception of the MP290 primer for seminested PCR,
which is 5-GAYTACTCYCSITGGGAYTC-3'. Viral RNA
was subjected to RT-PCR for 60 min at 42° C and 15 min
at 95°C to inactivate the RT enzyme and activate Tag. A 3-
step PCR was then conducted for 40 cycles (30 s at 94°C,
30 s at 50°C, and 30 s at 72°C).

Sequencing

PCR products amplified from cell cultures (P3 pas-
sage) of the fourth infection trial were sequenced after
cloning into the PGEM-T Easy Vector System (Promega,
Madison, WI, USA). Sequences have been deposited in
GenBank under accession nos. DQ531707 (for outbreak
sample 155) and DQ531708 (for outbreak sample flag2).

Fluorescence in Situ Hybridization

The molecular beacon fluorescence in situ hybridiza-
tion (FISH) assay performed during the fourth infection
trial used modified reverse PCR primer sequences for
genogroup | and Il viruses (28). For genogroup 1, the mod-
ified probe sequence was 5-TAMRA-CAGGCCCTTA-
GACGCCATCATCATTGCCTG-DABCYL-3’, and for
genogroup 2, the modified probe sequence was 5’-
TAMRA-CTCGGTCGACGCCATCTTCATTCACACC-

Table 2. Genetic characterization of the RNA-dependent RNA polymerase sequence of the norovirus strains used in the study

Sample ID Date collected (2004) Setting Strain in GenBank with closest sequence similarity (%) Genogroup
149 Apr 14 Cruise ship AJ487474 NLV/Castell/2001/Sp (97%) Il

155 Jun 21 Cruise ship DQ157140 Hu/Offenburg1155/2004/D (100%) |
flag2 Dec 14 Nursing home AJB626578 NV/GII/Stockholm/IV1138/2003/SE (97%) Il
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GAG-DABCYL-3'. (Underlined sequences for each probe
indicate the self-complementary regions.)

Cells in the tissue aggregate were fixed in 4%
paraformaldehyde for 30 min and then washed 3 times in
1x Dulbecco’s PBS (DPBS, Sigma). The weight of the
aggregates allowed these to settle by normal gravity to the
bottom of the microfuge tube. Tissues were permeabilized
with 0.1% Triton X-100 in 1x DPBS for 15 min at room
temperature and then washed 3x with 1x DPBS. Molecular
beacon (either genogroup 1 or genogroup 2) was suspend-
ed to a final concentration of 1 uM in 1x DPBS. The
molecular beacon was incubated with the tissues in a water
bath for 1 h at 37°C. The aggregates were then washed 3x
with 1x DPBS and transferred to 12-well tissue culture
plates. Cell aggregates were imaged by using a Leica con-
focal laser scanning microscope with a 63x water immer-
sion objective. Captured images were digitally stacked to
create 3-D images (VOLOCITY, Improvision Inc.,
Lexington, MA, USA).

Results

First Infection Trial (March 2005)

This first attempt was performed with a cocktail of
norovirus strains 149, 155, and flag2 (stool samples are
defined as Passage 0 [P0]). At 24 h postinfection, infected
cell aggregates exhibited vacuolization and shortening of
the microvilli (Figure 1) and were detached from the
cytodex beads, exhibiting cytopathic effect (CPE) (data
not shown). CPE was first observed in tissue aggregates
receiving the highest concentration of virus and then
developed in aggregates receiving the lowest concentra-
tion of virus. TEM showed the presence of uniform 29-
nm-diameter particles, consistent with the size of
norovirus particles, which invaded the microvilli within 1
h postinfection (Figure 1, Panel C) and accumulated with-
in the tissue aggregates within 24-66 h postinfection
(Figure 1, Panels D and E, respectively). Concomitant with
microscopic observations, viral RNA was detected as early
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Table 3. Relative increases in viral RNA as measured by limiting
dilution PCR*

Effective dilution of working viral

Hours postinfection

stock applied to cells 1 24 66 72
110 + + + ND
1100 + + + ND
1:1,000 - - + +

Negative control - - - -
*ND, not done.

as 1 h postinfection for the 1:10 and 1:100 dilutions and at
66 h postinfection for the 1:1,000 dilution (Table 3).

Second Infection Trial (June 2005)

Figures 2 and 3 show results for CPE and TEM,
respectively, for P1 of the combined virus stocks and PO
for strains flag2 and 149 (Figure 2, Panels B, C, and D and
Figure 3, Panels B, C, and D). As with the first infection
trial, viral CPE was manifested by cells sloughing off the
collagen beads as a mat, with the individual cells becom-
ing highly elongated or distorted within 24-48 h postinfec-
tion. Similar to other studies that used murine norovirus
(18), TEM exhibited uniformly sized 27-29-nm particles
in infected cell aggregates and internal membrane
rearrangement. By using RT-PCR, norovirus RNA was
detected in all infected samples. Both the combined stock
(P1) and flag2 (PO) showed an increase of viral RNA as
detected by limited dilution during RT-PCR.

Third Infection Trial (August 2005)

In trial 3, we used P2 of the virus cocktail (strains 149,
155, and flag2), P1 of flag2, and the stool sample from
flag2 (PO) to infect a new batch of differentiated 3-D INT-
407 cells. For virus-negative controls, we filtered the virus
inoculum through a 10,000-molecular weight cutoff
(MWCO) filter. Both the cocktail and the flag2 isolate
were able to generate CPE within 24 h postinfection
(Figure 4, Panels B, D, and E), whereas the MWCO fil-
trates did not show CPE and tested negative by RT-PCR
(Figure 4, panels A and C).

Figure 1. Light and transmission electron micrographs of uninfected and infected tissue aggregates with a combined stock of norovirus-
es (NoV) representing 3 strains (Passage 0 [PQ]). A) Uninfected tissue aggregates displaying well-formed microvilli (MV). B) Infected tis-
sue aggregates exhibiting vacuolization and shortening of the microvilli. C) Transmission electron microscopy (TEM) at 1 h postinfection
showing possible norovirus in a microvillus. D) TEM at 24 h postinfection showing significant vacuolization, and internal membrane
rearrangement. E) TEM at 66 h postinfection showing accumulation of suspected norovirus particles. For a larger reproduction of these
panels, see online Figure 1 available at www.cdc.gov/EID/content/13/3/396-G1.htm
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Figure 2. Demonstration of cytopathic effect in infected tissue aggregates during the second infection trial. A) Uninfected aggregate, 24
h into the experiment. B) Cells infected with lysate from the first infection trial (P1) at 24 h postinfection. C) Stool sample flag2 at 24 h
postinfection (P0). D) Stool sample 149 at 48 h postinfection (P0). Arrows indicate cells exhibiting unusual pathology.

Fourth Infection Trial (December 2005)

In trial 4, we used strain 155 (genogroup 1) and flag2
(genogroup 1) and infected 3-D INT-407 cells. We fol-
lowed viral infection for both of these strains through 5
passages in cell culture. With each viral passage, cell cul-
tures showed CPE after 24-48 h, and norovirus RNA for
both strains was detected by FISH with genogroup specif-
ic molecular beacons (Figure 5). We further sequenced RT-
PCR products from the original stool sample that
contained strains 155 and flag2 and both strains from pas-
sage 3 in cell culture. Only 1 nucleotide substitution for
passage 3 flag2 was observed in a 261 bp product, and no
nucleotide change was shown for strain 155.

Discussion

Our primary goal was to develop an in vitro cell cul-
ture assay for human noroviruses. This assay is necessary
before we can even begin to understand the mechanisms of
pathogenesis for this virus. Our starting point for develop-
ing an infectivity assay for human noroviruses was to use
the 3-D INT-407 small intestinal epithelium model previ-
ously developed for the study of Salmonella pathogenesis
(22). Multiple factors were considered for choosing this
model. First, early biopsy studies that used human volun-
teers indicated that norovirus infection targets the human
small intestine (29,30). Second, reports showing differen-
tiation of INT-407 cells in 3-D in the RWV essentially pro-

duces a “co-culture” model of multiple intestinal cell types
(enterocytes, goblet cells, and M cell-like markers) (22).
This phenomenon of multicellularity has been hypothe-
sized as a factor likely needed for norovirus infectivity
(12). Finally, extensive characterization of this model 3-D
system (22,23) showed apical expression of certain cell-
surface antigens (e.g., Lewis antigen A), which are thought
to be important in the attachment of noroviruses to cells
(4,13-17,31).

However, expression of these antigens alone is not
sufficient for a successful cell culture of human norovirus,
because our attempts to infect 3-D aggregates established
from the large intestinal (colon) cell lines Caco-2 and HT-
29 cells were unsuccessful (data not shown). We are not
sure whether this phenomenon is due solely or in part to 1)
correct presentation of the cell surface receptors that would
be necessary for viral attachment and efficient entry into
cells or 2) physiologic relevance of the 3-D small intestin-
al model that confirms previous human biopsy studies that
show human noroviruses have an affinity for cells of the
small intestine (29,30).

We have developed the first successful in vitro cell
culture assay for norovirus based on multiple lines of
orthogonal evidence. CPE has been a measure of viral
infectivity, but this measure alone can be deceiving. Duizer
et al. (12) noted CPE in several samples but on further
investigation found that it was caused by contaminating

Figure 3. Transmission electron microscopy of uninfected and infected cell cultures from the second infection trial at 48 h postinfection.
A) Uninfected cells showing normal internal membrane organelles. B) Suspected 29-nm particles in cells, viruses from cell culture lysate
from the first infection trial (P1). C) Stool sample flag2 (P0). D) Stool sample 149 (P0) showing numerous 29-nm particles and internal
rearrangement of membrane-bound organelles.
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Figure 4. Cytopathic effect results from the third infectivity trial at 24 hours postinfection. A) Virus-free control of B) combined viral stock
lysate from second passage experiment (second infectivity trial, P1), which was used to infect naive cells (P2). C) Virus-free control of
the flag2 stool sample. D) Corresponding infection with the flag2 stool sample (P0O). E) Flag2 in cell culture (P1). Cells in Panels B, D,
and E were confirmed as positive for norovirus by reverse transcription-PCR (RT-PCR) and seminested PCR. Cells in uninfected con-
trols were negative for norovirus by both RT-PCR and nested PCR. Arrows indicate cells exhibiting unusual pathology. For a larger repro-

L B St ot

duction of these panels, see online Figure 4 available at www.cdc.gov/EID/content/13/3/396-G4.htm

viruses. For the 3 virus strains we investigated, we took
several measures to ensure that the viruses were indeed
noroviruses. First, patients from these 3 outbreaks showed
clinical symptoms typical of norovirus infection. Second,
these virus isolates failed to produce CPE through 3 pas-
sages in conventional monolayers of buffalo green monkey
and Caco-2 cells. Third, RT-PCR for co-infecting
enteroviruses was negative. However, successful norovirus
replication was demonstrated through 5 passages in the 3-
D small intestinal model, as confirmed by CPE, RT-PCR,
and FISH with genogroup-specific molecular beacons.
Although the Duizer et al. (12) study noted infrequent
CPE, our study demonstrated positive CPE and norovirus-
positive RT-PCR every time viruses came in contact with
cell culture. This occurred whether viruses originated from
stool samples or at any passage in the 3-D INT-407 cell
culture. Furthermore, positive CPE from a viral sample
could be abrogated by passing the sample through an ultra-
filter. The filtrate, when applied to cells, did not cause CPE
and was norovirus negative by both RT-PCR and seminest-
ed PCR. Additionally, for virus infected cell cultures but
not uninfected cells, light microscopy and TEM demon-
strated both the pathology and evidence of accumulation of
viral particles that are the correct size for human norovirus.

Thus, cellular pathology was due to norovirus infection
and not caused by other enteric viruses or sample toxicity.

In vitro cell culture models used to study the host-
pathogen interaction have benefited from the recognition
that organs and tissues function in a 3-D environment and
that this spatial context is necessary for development of
cultures that more realistically resemble the in vivo tissues
and organs from which they were derived (21-23). We
used RWYV bioreactor technology to engineer 3-D models
of human small intestinal epithelium to investigate suscep-
tibility for norovirus infection. This method to generate 3-
D organoid models has been used to study Salmonella
typhimurium and Escherichia coli infection by using small
and large intestinal models (21-23,32), Pseudomonas
infection by using lung epithelial models (33),
cytomegalovirus infection by using placental tissue mod-
els (34), and Epstein-Barr virus by using lymphoblastoid
cell models (35).

Our study shows that selecting the appropriate cell
line, growing the cells as 3-D aggregates, and infecting
them when they are fully differentiated is key for success-
ful in vitro cell culture of human noroviruses. Future
research with this model will include further testing of a
broader panel of genetically diverse human noroviruses,

70 um

Figure 5. Deconvolved confocal laser scanning micrographs of the molecular beacon fluorescence in situ hybridization assay, demon-
strating viral infectivity of a genogroup | virus (Sample 155) and genogroup Il virus (flag2) at 24 hours postinfection. A) Typical response
for uninfected cells, no molecular beacon observed. B) Sample 155, P5 in cell culture. C) Sample flag2, P5 in cell culture.
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determining the sensitivity, identifying neutralizing epi-
topes and protective immune responses, and obtaining a
better understanding of the molecular biology of norovirus
replication and transcription to develop improved preven-
tion protocols.
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Norovirus
[nor'-0-vi'ras]

EXEVARAra feTa Tt

Genus of viruses that cause viral gastroenteritis. Noroviruses are named after the original strain,
“Norwalk virus,” which caused an outbreak of acute gastroenteritis among children at an elementary
school in Norwalk, Ohio, in 1968. Numerous outbreaks of disease with similar symptoms have been
reported since, and the etiologic agents were called “Norwalk-like viruses” or “small round-struc-
tured viruses.” Noroviruses are transmitted primarily through the fecal-oral route and are highly con-
tagious; as few as 10 viral particles may infect a person.

Sources: Mahy BWJ. A dictionary of virology. London: Academic Press; 2001; http://www.cdc.gov/ncidod/dvrd/revb/gastro/
norovirus-ga.htm; http://www.medicinenet.com/norovirus_infection/article.htm
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