# PorA Variable Regions of Neisseria meningitidis

Joanne E. Russell,\*† Keith A. Jolley,\* Ian M. Feavers,† Martin C. J. Maiden,\* and Janet Suker†

Subtypes, defined by variation in the outer membrane protein PorA, are an integral part of the characterization scheme for Neisseria meningitidis. Identification of these variants remains important as the PorA protein is a major immunogenic component of several meningococcal vaccines under development, and characteristics of PorA are used to provide detailed epidemiologic information. Historically, serosubtypes have been defined by reactivity with a set of monoclonal antibodies. However, nucleotide sequence analyses of porA genes have established that the panel of serosubtyping monoclonal antibodies is not exhaustive, and many porA variants cannot be detected. In addition, the nomenclature system used to define subtypes is inadequate. We examined all available nucleotide sequences of the porA VR1 and VR2 regions to identify and define subtype families. A revised nomenclature scheme, compatible with the previous serologic nomenclature scheme, was devised. A Web-accessible database describing this nomenclature and its relationship to previous schemes was established (available from: http://neisseria.org/nm/typing/pora).

Neisseria meningitidis is a major cause of bacterial meningitis and continued meningitis and septicemia worldwide (1). In the absence of a comprehensive vaccine against this organism, the characterization of its variable surface antigens is important for epidemiologic monitoring and vaccine development (2). The serologic characterization scheme for meningococci comprises the following: groups, based on variants in the capsular polysaccharide; types, based on variants of the PorB outer membrane protein (OMP); subtypes, based on variants of the PorA OMP; and immunotypes, based on variants in the lipooligosaccharide (3). Within this scheme, PorA, also known as the class 1 OMP, is assigned the prefix "P1." followed by numbers, separated by commas, that correspond to the subtype designation (thus: P1.7,16). The two PorA variable regions (VR1 and VR2) that confer the subtypes are especially important because they elicit bactericidal antibodies in humans (4). Consequently, a number of meningococcal vaccines under development contain the PorA protein as a major component (5).

Nucleotide sequence analyses of porA genes from multiple meningococcal isolates have established that the panel of serosubtyping monoclonal antibodies (MAbs) is not comprehensive. Meningococci are frequently only partially serosubtyped, and an increasing number of isolates are classified as non-serosubtypeable, either because a variant is not recognized by MAbs or because PorA is not expressed. This heterogeneous group of isolates can be fully characterized on the basis of their PorA VR1 and VR2 amino acid sequences deduced from nucleotide sequence data. To accommodate subtypes identified on the basis of sequence data alone, the scheme originally developed for MAb reactivity data (3) was modified so that VR families and variants were assigned on the basis of amino acid sequence relationships rather than their reactivity with specific MAbs. A distance matrix of all known VR1 and VR2 amino acid sequences was constructed, and VR amino acid sequences containing  $\geq 80\%$  identity to each other were grouped into VR families. The VR epitope recognized by an existing MAb raised against PorA, or the first defined amino acid sequence of a VR family, was arbitrarily designated as the prototype VR for that particular family. Successive distinct members of a VR family were designated as minor variants of that family, and as such were sequentially assigned an additional unique lower case letter, e.g., P1.5a, P1.5b, P1.5c (6).

Although this nomenclature system was sufficiently flexible to accommodate both novel subtypes determined from nucleotide sequence analyses and those defined by the reactivity of specific MAbs, limitations have become apparent. First, while the 80% similarity rule has generally proved adequate to assign VR families, it is open to misinterpretation, leading to the inappropriate designation of VR sequences. Second, the assignment of minor variants within VR families is limited by the number of letters in the alphabet (7,8). We present a revised nomenclature, which addresses these issues and shows the relationship of

<sup>\*</sup>University of Oxford, Oxford, United Kingdom; and †National Institute for Biological Standards and Control, South Mimms Potters Bar, United Kingdom

new designations to the previous designations and to the reactivities of the MAb panel. A database accessible through the Internet has been established, which will enable this scheme to be continually updated.

#### **Materials and Methods**

#### **Bacterial Isolates**

Two sets of meningococcal isolates were used for *porA* gene sequencing in this work. The first was a set of 393 isolates from cases of disease from diverse locations throughout the United Kingdom. These included 125 isolates from 1975; 100 isolates from 1985; 100 isolates from1995; and 18 urethral isolates, provided by the Meningococcal Reference Unit, Manchester Public Health Laboratory, Manchester. Fifty isolates were provided by the Scottish Meningococcus and Pneumococcus Reference Laboratory, Glasgow. The second set of isolates included the 107 globally representative isolates obtained from both patients and carriers; these isolates were used to develop and evaluate the multilocus sequence typing isolate characterization scheme (9).

#### porA Gene Sequences and Validation

Nucleotide sequences of porA genes encoding the variants included in Appendix Tables 1 and 2 (online only; available from: http://www.cdc.gov/ncidod/EID/vol10no4/ 03-0247.htm\_app.htm) were obtained from the literature or GenBank, determined by sequencing of polymerase chain reaction (PCR) products from the above isolates, or submitted by personal communication or to the PorA Web site. Where possible, sequences not determined in this study were validated by requesting sequence electropherograms from depositors. When electropherograms could not be resolved, isolates were requested and the porA genes resequenced. Seven sequences contained errors on resequencing original isolates and were therefore removed from the new nomenclature scheme. The deposited VR sequences used in this study were those submitted to the PorA Web site by June 11, 2001.

## DNA Amplification and Nucleotide Sequence Determination of *porA*

Boiled meningococcal suspensions or DNA prepared from such suspensions with an Isoquick kit (Microprobe Corporation, Washington) were used as template to amplify the *porA* gene by using Taq Polymerase (Applied Biosystems, by Roche Molecular Systems Inc., Branchburg, NJ) with primers 210 and 211 (10). The amplification products were purified by precipitation with the addition of 0.6 V of 20% polyethylene glycol 8000/2.5M NaCl (11) and their nucleotide sequences determined at least once on each DNA strand. Sequence reactions were carried out with primers 8L, 8U, 103L, 103U, 122L, 122U, 210, and 211 (10) using BigDye Ready Reaction Mix (Applied Biosystems) in accordance with the manufacturer's instructions. Unincorporated dye terminators were removed by precipitation of the termination products with the addition of 2.6 V of 96% ethanol and 115 mM sodium acetate. The reaction products were then separated and detected with an ABI Prism 377 automated DNA sequencer (PE Biosystems). Sequences were assembled from the resultant electropherograms with the STADEN suite of computer programs (12).

#### Manipulation and Alignment of Sequences

Sequences were manipulated in SeqLab, part of the GCG software package (13). All unique nucleotide sequences for each VR were aligned with reference to both the nucleotide and the amino acid sequences, such that all sequences remained in frame, gaps were minimized, and similar codons were aligned.

#### Identification of Families and Variants

To remain consistent with serologic and historical nomenclature, where a variant had been identified previously by serologic means, the identified sequence was used as a family prototype around which new sequences were grouped. An 80% amino acid identity cut-offagainst the shortest sequence length when the sequences were of different length to allow for insertions, duplications, and deletions-was used as a guide in this grouping. In a few cases, a variant was assigned to a particular family even though the amino acid identity was slightly less than 80%, compared to the family prototype. In these cases, the new variant was still more similar to this particular family than to others but also contained a particular motif that was representative of family members. Therefore, a combination of overall similarity and presence of particular motifs was used to make the groupings. In a few cases, family-specific motifs were missing, but the sequences were otherwise identical or highly similar to members of the family. In such cases, the sequence was assigned as a variant of the family.

To further ensure that family groupings were consistent, the relationships among aligned nucleotide sequences encoding VR1 or VR2 were visualized by split decomposition analysis using SPLITSTREE version 3.1 (14). The split decomposition analysis was carried out in a sequential manner. In each analysis, a limited number of families were resolved, and the remaining variants were clustered together at a node. The variants that were resolved first were removed, and the analysis was repeated to resolve further families, and so on until all family groups were resolved (15). For analysis of the whole datasets, Hamming distances (equivalent to p-distance) were used

#### RESEARCH

because some of the families were so diverse that using a substitution model was not possible. This method resolved the most distantly related families. The Kimura three parameter model (16) was used to determine whether related sequences constituted families.

A database and Web site containing all the assignments have been established (available from: http://neisseria. org/nm/typing/pora). The sequences are stored in a PostgreSQL database running on Linux. Perl scripts enable the database to be queried against either peptide or nucleotide sequences; when an identical match is not found, a BLAST search (17) can be performed to identify the nearest variant and family. Any length of sequence can be queried, enabling the variants to be quickly identified from a whole or partial gene sequence.

#### Results

#### Validation of Sequence Variants

The sequences defining the following subtypes in the previous nomenclature were not included in the new nomenclature as a consequence of the sequence validation: P1.2a, P1.2d, P1.5b, P1.10h, P1.10i, P1.10j, P1.18b, P1.19c, P1.24, P1.29.

#### **Resolution of VR Families**

The amino acid sequences of the prototype member of each of the VR families identified are shown aligned in Figures 1 and 2 together with corresponding nucleotide sequences. A total of 10 VR1 and 17 VR2 families were resolved. The most closely related VR families are VR2 P1.2 and VR2 P1.10, although the family prototypes are recognized by specific MAbs that are not cross-reactive. Both families start with a consensus amino acid sequence of HFVQ and end with PTLVP. They can be differentiated, however, by split decomposition where they cluster separately (15) and by certain motifs in their sequences. The P1.10 family members have a consensus motif QNKQNQ, with either the first or second triplet commonly repeated, while the P1.2 family members usually start with HFVQQ and commonly have variations of PQSQ or PKSQ. Grouped within the P1.2 family are four sequences that were previously designated as the P1.33 family. Like sequences in most of the P1.2 family members, these start with HFVQQ and, although they mostly end with SKPTLVP rather than SQPTLVP, they maintain the position of the serine residue.

#### Variation within Families

There was more variation within VR2 (161 unique variants) than in VR1 (73 unique variants). The variation in the VR families was mainly due to changes that could be ascribed to single nonsynonymous base changes. Although

| VR1   | 5  | PLONIQ-P OVTK B                         | ( R                                                                            |
|-------|----|-----------------------------------------|--------------------------------------------------------------------------------|
| VR1   | 7  | AQAA-NGGASGQV KVTKVTK                   | £ 1                                                                            |
| VR1   | 12 | KLSSTNAK TGN KVE-VTK J                  | ( A                                                                            |
| VR1   | 17 | PPQK-NQSQPVVTK J                        | ( A )                                                                          |
| VR1   | 18 | PPSRG-QTGNRVTK (                        | 1 G                                                                            |
| VR1   | 19 | PPSKSQP QV-KVTK J                       | ( A                                                                            |
| VR1   | 20 | QPQTANTQQGG KV-KVTK J                   | ( A )                                                                          |
| VR1   | 21 | OPOVING VOGN OV-KVIK /                  | ( A                                                                            |
| VR1   | 22 | QPSKAQG-QTNN QV-KVTK J                  | ( A                                                                            |
| VR1   | 31 | PPSSNQGKNQ AQTGNTVTK J                  | ( <b>A</b>                                                                     |
|       |    |                                         |                                                                                |
| 1911  | 1  | CCP CTC CAA AAT ATT CAA CCT             | T CAG GTT ACT ANG CG                                                           |
| 100.1 | 1. | SCA CAA SCC SCT AAC SST SSA             |                                                                                |
| 100.1 | 12 | AND CTC TCA AND ACT AND DCT AND         |                                                                                |
| 100.1 |    |                                         |                                                                                |
|       |    |                                         |                                                                                |
| 580.3 | 20 | CAL FEE FAA AFE LET AAF AFT             | The same state set set and set |
| 181   | 21 | CAG CCC CAA GTA ACT AAC GGT             | GTE CAA GEC ANT CAE GTA ANA GTT ACT ANG GEC                                    |
| 108.1 |    | CAG CCC TCA ANG GCT CAA GGT CAA         | ACG AAC ANT CAG GTA AAA GTT ACT ANG GC                                         |
| 19.1  | 21 | CCA CCC TCA AGC ART CAA GOT AAA AAT CAA | AN GOT CAN ACG GOC ANT ACA GTT ACT ANG GO                                      |

Figure 1. Alignment of the amino acid and corresponding nucleotide sequence of each VR1 family "prototype." For a larger reproduction of this figure, see http://www.cdc.gov/ncidod/EID/ vol10no4/03-0247-G1.htm

there may be minor differences in the relative contribution of nonsynonymous base changes and insertions or deletions between individual VR families, approximately twice as many variants have arisen as a result of point mutations than from any other type of mutation. The repetition of amino acid motifs or single residues was common within VR2. An example is the repetition of a threonine residue within the VR2 P1.13 family, where there are sequences with three to nine consecutive threonine residues.

#### **Nomenclature Scheme**

A consultation process was conducted by email among users of the PorA Web site and other interested parties. Several formats for a revised nomenclature were proposed and a request for alternatives made. The consensus opinion was to replace letters with numbers in subtype variant names in the following format: the prefix "P1." followed by the VR1 family name, followed by a dash and then the variant number, followed by a comma and the VR2 variant name in the same format. When a family prototype VR, or first sequence belonging to a family, was identified, no variant number was used; for example, a protein with VR1

| VR2        | 1  | YV-AVENGV-      |            | AB     | KKVA  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
|------------|----|-----------------|------------|--------|-------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|------|------|------|-----|
| VR2        | 2  | HF-VOOTP        | }          | 3Q P1  | TLVP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 3  | TL-ANGANNT      | I I        |        | RVP   |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 4  | HV-VVNNK        |            | -V A1  | THVP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| WD2        |    | W-DFO           |            | - 91   | VWHA  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VPG<br>VP2 | 10 | WE-WONK         |            | 100 01 | TIVE  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VRG        | 10 | HF-VQNK         | a varanta  | QK P   | EUP   |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 13 | YU-TIV-NTG      | SATTTTT-   |        | -FVP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 14 | YV-DEKK         |            | 1      | IVHA  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 15 | HY-TRQNN        |            | -A D1  | FVP   |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 16 | YY-TKDT         | P          | NN L1  | TLVP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 23 | HW-NTVYNTN      | GTTTT      |        | -TVP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 25 | TY-TVDSS        |            | GV V1  | TPVP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 26 | HF-VADS         | (          | GK IT  | TRVP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VR2        | 20 | YYYTTATNSS      | TSTT       |        | FVP   |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VP2        | 30 | HV-TTVVN        | - ATTTTT   |        | FVP   |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VP2        | 34 | W-DDOGK         |            |        | IVGP  |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| 1700       | 10 | TE-TE EMA-      |            | WP -   | DUD   |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VP2        | 55 | 11-152.34       |            | an     |       |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
|            |    |                 |            |        |       |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
|            |    |                 |            |        |       |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| VP.Z       | 1  | INI CIC CCC     | GIG GAA AS | I 66C  | CLV   |        |     |     |     |     |     |     |     |     |     | <b>eci</b> | ***  | ***  | ¢11  | 606 |
| 100.2      | 2  | CAT TTT GTT     | CYC CYC YC | T CCT  |       |        |     |     |     |     |     |     | 299 | YOL | CYC | CCT        | ACT  | CTC  | GTT  | eec |
| 100.2      |    | CAT OTT GCT     | ANT OUT OU | T AAT  | AA1 A |        | ATT |     |     |     |     |     |     |     |     |            | 100  | CAC  | ATT  | 000 |
| 178.2      |    | TAT 676 6AT     | 636 636    |        |       |        |     |     |     |     |     |     |     |     |     | AGT        | 336  | 7.47 | 0.47 | 606 |
| 1/8.2      | 10 | CAT TTT GTT     | CAG ANT AN | s      |       |        |     |     |     |     |     | CAA | AAT | CAG | cee | CCT        | ACT  | CTC  | GTT  | CCG |
| VD2        | 13 | TAT TGG ACT     | ACT GTG    | - AAT  | ACC G | OT AGT | CCT | ACT | аст | ACT | ACT | ACT |     |     |     |            |      | TTC  | CTT  | CCG |
| 500.2      | 14 | TAT CTC CAT     | CYC YYC YS | c      |       |        |     |     |     |     |     |     |     |     |     |            | 94.C | CTT  | C AT | 666 |
| VP.2       | 15 | CAT TAT ACT     | Yee cye ya | C AAT  |       |        |     |     |     |     |     |     |     |     | 6CT | çat        | ¢TT  | TTC  | ¢TT  | CCG |
| VR2        | 16 | TAT TAT ACT     | ANG GAT AC | λ      |       |        |     |     |     |     |     |     | 99C | AAT | 992 | CTT        | ACT  | CTC  | GTT  | cce |
| 1002       | 23 | CAT TOO AAT     | ACT OTO TA | T AAC  | ACT & | NC GOT | ACT | ACT | ACT | ACT |     |     |     |     |     |            |      | TTC  | 611  | 000 |
| 5/0.2      | 26 | CAT TTT GTT     | CCC CAT AC | T      |       |        |     |     |     |     |     |     | 633 | COT | AAG | ATT        | ACT  | ecc  | CTT  | eec |
| VR.Z       | 28 | TAT TAT TAT ACT | ACT CC AC  | T AAC  | AGT A | PT ACT | AGT | ACT | ACT |     |     |     |     |     |     |            |      | TTC  | OTT  | 000 |
| VR2        | 20 | CAT TAT ACT     | ACT GTG TA | T AAT  |       |        | GCT | ACT | ACT | λСТ | ACT | ACT | ACT |     |     |            |      | TTC  | GTT  | CCG |
|            |    |                 |            |        |       |        |     |     |     |     |     |     |     |     |     |            |      |      |      |     |
| 10802      | 34 | TAT GTG GAT     | eyc cye ee | 666 6  |       |        |     |     |     |     |     |     |     |     |     |            | 611  | ስስፍ  | 666  | CCT |

Figure 2. Alignment of the amino acid and corresponding nucleotide sequence of each VR2 family "prototype." For a larger reproduction of this figure, see http://www.cdc.gov/ncidod/EID/ vol10no4/03-0247-G2.htm

family 5 variant 3, and VR2 family 10 prototype would be written as: P1.5–3,10. This scheme was then used to rename all of the variants examined. The new names of variants are listed in online Appendix Tables 1 and 2, together with the previous nomenclature, peptide sequence, and source or reference. A database accessible through the Internet was established (available from: http://neisseria.org/nm/typing/pora).

#### Discussion

These analyses confirm that, while diverse, the VR1 and VR2 peptide sequences can be assigned to distinct meningococcal PorA variant sequence families. However, these regions of the PorA protein are likely to be exposed to continual selection imposed by host immune responses, and VR families might evolve over time into different families. The similarity of the P1.2 and P1.10 VR2 families is perhaps a consequence of relatively recent divergence of one VR family into two. Devising a scheme for defining the boundaries of VR families that accurately reflects the evolution of these regions is therefore not possible. Moreover, the high diversity of these sequences presents problems in developing a facile nomenclature. In revising the nomenclature system, we used amino acid sequences, deduced from nucleotide sequences, of the two VRs as the definition of subtype variants. The replacement of letters with numbers in subtype variant designations overcomes the shortage of letters but entails a change of name of variants.

Since MAbs are still routinely used globally for meningococcal serosubtyping, to avoid confusion, family names from the previous nomenclature were retained when possible, and especially when the family prototype was specifically recognized by a typing MAb. The new nomenclature builds on the previous designations but has the advantage of a limitless capacity for expanding the number of variants included. Retaining family names, when they can be shown to be reasonable, results in some minor changes to some family groupings. As meningococci evolve, the use of nucleotide sequencing to determine the VR peptide sequences will be increasingly important for epidemiologic studies and vaccine design, especially as the MAb panel gradually becomes less useful and sequencing technology becomes more available.

In the course of this study, a number of VR sequences that had been deposited previously in GenBank were found, when resequenced, to contain errors and were in fact previously identified variants. These sequences had been given new variant names and, in two cases, were sufficiently novel to warrant the naming of new families. The widespread use and, more importantly, the comparison of VR sequence data among different laboratories require consistency of nomenclature and a high level of data accuracy. One way to achieve this is through a central PorA database in which sequence electropherograms are submitted for verification before new variant numbers are assigned. We have established a Web site for this role (available from: http://neisseria.org/nm/typing/pora). All known variants are listed, and a database query page is provided so that a VR sequence can be typed or pasted in and identified if previously seen. The Web site also includes links to the porB typing and MLST Web pages. The PorA Web site is now in widespread use by the research community and provides a single point of focus to ensure consistency in identifying and naming this important protein.

This work was funded by the Meningitis Research Foundation and the Wellcome Trust. M.C.J.M. is a Wellcome Trust Senior Research Fellow.

Dr. Russell is a scientist whose research interest is the molecular study of infectious disease agents.

#### References

- 1. Pollard AJ, Maiden MCJ. Meningococcal disease. Totowa (NJ): Humana Press; 2001.
- Kuipers B, van den Dobbelsteen G, Wedege E, van Alphen L. Serological characterization. In: Pollard AJ, Maiden MC, editors. Meningococcal disease: methods and protocols. Totowa (NJ): Humana Press; 2001. p. 131–45.
- Frasch CE, Zollinger WD, Poolman JT. Serotype antigens of *Neisseria meningitidis* and a proposed scheme for designation of serotypes. Rev Infect Dis 1985;7:504–10.
- Martin SL, Borrow R, van der Ley P, Dawson M, Fox AJ, Cartwright KAV. Effect of sequence variation in meningococcal PorA outer membrane protein on the effectiveness of a hexavalent PorA outer membrane vesicle vaccine. Vaccine 2000;18:2476–81.
- Jodar L, Feavers IM, Salisbury D, Granoff DM. Development of vaccines against meningococcal disease. Lancet 2002;359:1499–508.
- Suker J, Feavers IM, Achtman M, Morelli G, Wang J-F, Maiden MCJ. The *porA* gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation. Mol Microbiol 1994;12:253–65.
- Sacchi CT, Lemos APS, Brandt ME, Whitney AM, Melles CEA, Solari CA, et al. Proposed standardisation of *Neisseria meningitidis* PorA variable region typing nomenclature. Clin Diagn Lab Immunol 1998;5:845–55.
- Maiden MCJ, Russell J, Suker J, Feavers IM. Neisseria meningitidis subtype nomenclature. Clin Diagn Lab Immunol 1999;6:771–2.
- Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 1998;95:3140—5.
- Feavers IM, Maiden MCJ. A gonococcal *porA* pseudogene: implications for understanding the evolution and pathogenicity of *Neisseria gonorrhoeae*. Mol Microbiol 1998;30:647–56.
- Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991;13:171–4.
- 12. Staden R. The Staden sequence analysis package. Mol Biotechnol 1996;5:233–41.
- Womble DD. GCG: the Wisconsin Package of sequence analysis programs. Methods Mol Biol 2000;132:3–22.
- Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 1998;14:68–73.

#### RESEARCH

- Russell J. Variation in the PorA protein and clonal diversity within the UK Neisseria meningitidis population over a twenty year period (1975–1995). [doctoral thesis]. Oxford: The Open University; 2001.
- Takahata N, Kimura M. A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes. Genetics 1981;98:641–57.

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.

Address for correspondence: Janet Suker, Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms Potters Bar, EN6 3QG, United Kingdom; fax: [+44]-1707-663796; email: available from: http://neisseria.org/nm/typing/pora



Lyme Disease Vaccine Antibiotics in Animal Feed French Perspective
Search past issues of EID at www.cdc.gov/eid

|                | Previous     |                           | Source or              |
|----------------|--------------|---------------------------|------------------------|
| Variant        | nomenclature | vR1 peptide sequence      | reference              |
| 5              | 5            | ΡΙ ΟΝΙΟΡΟΥΤΚΡ             | (1)                    |
| 5_1            | 5a           | PLONIOOPOVTKR             | (23)                   |
| Removed        | 1 5b         | PALPNIOPOVTKA             | $(\frac{2,3}{4})$      |
| 5_2            | . 50<br>50   | PLPNIOPOVTKR              | (1)                    |
| 5_3            | 50<br>5d     | PLONIKOPOVTKR             | $(\underline{5})$      |
| 5_7<br>5_1     | 5e           | PLONICKPOVTKR             | $(\underline{5})$      |
| 5 5            | 50           | PLONIOPSVTKP              | WS                     |
| 5-5<br>5-6     | -            | LLONIOOPOVTKR             | WS                     |
|                | 7            |                           | (7)                    |
| /              | 7            | AQAANGGASGQVKVIKVIKA      | $(\underline{\prime})$ |
| /-1            | /a           | AQAANGGAGASGQVKVIKVIKA    |                        |
| 7-2            | 7b           | AQAANGGASGQVKVTKA         | ( <u>3</u> )           |
| 7–3            | 7c           | AQAANGGARASGQVKVTKVTKA    | ( <u>3</u> )           |
| 7–4            | 7d           | AQAANGGAGASGQVKVTKA       | ( <u>3</u> )           |
| 7–5            | 7e           | AQAANGGAVASGQVKVTKVTKA    | ( <u>5</u> )           |
| 7–6            | 7f           | AQAANGGASDQVKVTKA         | GenBank                |
|                | -            |                           | AF146084               |
| 7-7            | /g           | AQSANGGASGQVKVTKVTKA      | (6)                    |
| 7-8            | 7h           | AQAANGGAGASGQVKVTKVTKVTKA | . ( <u>6</u> )         |
| 7–9            | 71           | AQAANGGASGANGGASGQVKVTKA  | This study             |
| 7–10           | -            | AQAANGGVSGQVKVTKVTKA      | WS                     |
| 7–11           | -            | AQAANGGASGQVKVTKVTKVTKA   | WS                     |
| 12             | 12           | KLSSTNAKTGNKVEVTKA        | ( <u>1</u> )           |
| 12-1           | 12a          | KPSSTNAKTGNKVEVTKA        | ( <u>8</u> )           |
| 12-2           | 12b          | KPSSTKAKTGNKVEVTKA        | ( <u>5</u> )           |
| 12-3           | 12c          | KPSSTNAKTGNKVKVTKA        | WS                     |
| 12-4           | 12d          | KSSNTNAKTSNKVEVTKA        | WS                     |
| 12-5           | 12e          | KPSSTNPKTGNKVEVTKA        | (6)                    |
| 12-6           | 12f          | OPSNTNGKTGNKVEVTKA        | ( <b>6</b> )           |
| 12-7           |              | KPSSTNANSSTNAKTGNKVEVTKA  | WS                     |
| 12-8           | -            | KPSSTNAKTSNEVEVTKA        | WS                     |
| 17             | 17           | ΡΡΟΚΝΟSΟΡVVTKA            | (1)                    |
| 17_1           | 179          | PPPKNOSOPVVTKA            | This study             |
| 17 - 1<br>17 2 | 17a          | PPOKNOSOPI VTKA           | WS                     |
| 17-2           |              |                           | <b>W</b> D             |
| 18             | 18           | PPSKGQTGNKVTKG            | $(\underline{1})$      |
| 18-1           | 18a          | PPSQGQTGNKVTKG            | (3)                    |
| Removed        | l 18b        | PPSKGQTAIKVTKA            | ( <u>9</u> )           |
| 18-2           | 18c          | PPSKSQTGNKVTKG            | This study             |
| 18–3           | 18d          | PPSKGQTGNKVTKA            | This study             |
| 18–4           | 18e          | PPSKGQTGNKVIKG            | GenBank                |
| 18.5           | 1 Q f        | PPSKCOVCNEVTEC            | AF102343               |
| 10-5           | 18 22        | OI SKOQVONKVTKO           | This study             |
| 10-0           | 10g,52       | ODSKOQVONKVIKO            |                        |
| 10-/           | 1011,52a     |                           | ( <u>o</u> )           |
| 10-0           | -            | PLANDIALA INO             | VOLULI                 |
| 10.0           |              | DDDUDOTONIU               | AðIIII                 |
| 10-9           | -            |                           | W S                    |
| 18-10          | -            | PPSEGQIGNTVIKA            | ws                     |
| 19             | 19           | PPSKSQPQVKVTKA            | ( <u>1</u> )           |
| 19–1           | 19a          | PPSKSQSQVKVTKA            | ( <u>10</u> )          |

Appendix Table 1. VR1 sequence nomenclature<sup>a</sup>

| 19–2    | 19b | PPSKSQLQVKVTKA         | GenBank           |
|---------|-----|------------------------|-------------------|
|         |     |                        | Z14291            |
| Removed | 19c | PASKSQPQVKVTKA         | ( <u>4</u> )      |
| 19–3    | 19d | PRSKSQPQVKVTKA         | (11)              |
| 19–4    | 19e | PPSNSQPQVKVTKA         | $\overline{(11)}$ |
| 19–5    | 19f | PLSKSQPQVKVTKA         | (11)              |
| 19–6    | 19g | PPLKSQPQVKVTKA         | ( <u>6</u> )      |
| 19–7    | 19h | PSSKSQPQVKVTKA         | ( <u>6</u> )      |
| 19–8    | 19i | PPPKSQPQVKVTKA         | WS                |
| 19–9    | 19j | PPSKSQPQVKVTQVKVTKA    | WS                |
| 19–10   | 19k | PHSKSQPQVKVTKA         | WS                |
| 19–11   | -   | PPSRSQPQVKVTKA         | ( <u>12</u> )     |
| 19–12   | -   | PSSKSQSQVKVTKA         | WS                |
| 19–13   | -   | PPSKSQTQVKVTKA         | WS                |
| 19–14   | -   | PPSKSQHQVKVTKA         | WS                |
| 20      | 20  | QPQTANTQQGGKVKVTKA     | ( <u>3</u> )      |
| 21      | 21  | QPQVTNGVQGNQVKVTKA     | ( <u>3</u> )      |
| 21-1    | 21a | QPNGVQGNQVKVTKA        | This study        |
| 21-2    | 21b | QPQATNGVQGGQQGNQVKVTKA | This study        |
| 21-3    | 21c | QPQVTKGVQGNQVKVTKA     | WS                |
| 21-4    | 21d | QPQVPNGVQGNQVKVTKA     | WS                |
| 21-5    | 21e | QPQVPNSVQGNQVKVTKA     | WS                |
| 21-6    | -   | QPQATNGVQGGRQGNQVTVTKA | ( <u>8</u> )      |
| 21–7    | -   | QLQVTNGVQGNQVKVTKA     | WS                |
| 22      | 22  | QPSKAQGQTNNQVKVTKA     | ( <u>1</u> )      |
| 22-1    | 22a | QPSRTQGQTSNQVKVTKA     | ( <u>8,13</u> )   |
| 22-2    | 22b | QPSRTQAQTSNQVKVTKA     | This study        |
| 22–3    | 22c | QPSKAKGQTNNQVKVTKA     | WS                |
| 22–4    | 22d | QLSKAQGQTNNQVKVTKA     | WS                |
| 22–5    | -   | QPSKAQGQTNNQVKVTKR     | WS                |
| Removed | 29  | PAPKYSTTQVTKA          | ( <u>4</u> )      |
| 31      | 31  | PPSSNQGKNQAQTGNTVTKA   | This study        |

<sup>a</sup>Sequences that have been removed were the result of sequencing errors in the original research. WS, Web site submission.

## **Appendix References**

- 1. Maiden MCJ, Suker J, McKenna AJ, Bygraves J, Feavers IM. <u>Comparison of the class 1</u> <u>outer membrane proteins of eight serological reference strains of *Neisseria meningitidis*. Mol Microbiol 1991;5:727–36.</u>
- 2. Van der Ley P, Heckels JE, Virji M, Hoogerhout P, Poolman JT. <u>Topology of outer</u> <u>membrane porins in pathogenic *Neisseria* spp.</u> Infect Immun 1991;59:2963–71.
- Suker J, Feavers IM, Achtman M, Morelli G, Wang J-F, Maiden MCJ. <u>The *porA* gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation</u>. Mol Microbiol 1994;12:253–65.
- 4. Brooks JL, Fallon RJ, Heckels JE. <u>Sequence variation in class 1 outer membrane protein</u> in *Neisseria meningitidis* isolated from patients with meningococcal infection and close household contacts. FEMS Microbiol Lett 1995;128:145–50.

- Arhin FF, Moreau F, Coulton J, Mills EL. <u>Sequencing of *porA* from clinical isolates of *Neisseria meningitidis* defines a subtyping scheme and its genetic regulation. Can J Microbiol 1998;44:56–63.
  </u>
- Sacchi CT, Whitney AM, Popovic T, Beall DS, Reeves MW, Plikaytis BD, et al. <u>Diversity and prevalence of PorA types in *Neisseria meningitidis* serogroup B in the <u>United States</u>, 1992-1998. J Infect Dis 2000;182:1169–76.
  </u>
- McGuiness B, Barlow AK, Clarke IN, Farley JE, Anilionis A, Poolman JT, et al. <u>Deduced amino acid sequences of class 1 protein (PorA) from three strains of *Neisseria* <u>meningitidis.</u> J Exp Med 1990;171:1871–82.
  </u>
- Sacchi CT, Lemos APS, Brandt ME, Whitney AM, Melles CEA, Solari CA, et al. <u>Proposed standardisation of *Neisseria meningitidis* PorA variable region typing <u>nomenclature.</u> Clin Diagn Lab Immunol 1998;5:845–55.
  </u>
- 9. McGuinness BT, Lambden PR, Heckels JE. <u>Class 1 outer membrane protein of *Neisseria meningitidis*: epitope analysis of the antigenic diversity between strains, implications for subtype definition and molecular epidemiology. Mol Microbiol 1993;7:505–14.</u>
- 10. Feavers IM, Fox AJ, Gray S, Jones DM, Maiden MCJ. <u>Antigenic diversity of</u> <u>meningococcal outer membrane protein PorA has implications for epidemiological</u> <u>analysis and vaccine design.</u> Clin Diagn Lab Immunol 1996;3:444–50.
- Wedege E, Caugant DA, Musacchio A, Saunders NB, Zollinger WD. <u>Redesignation of a purported P1.15 subtype-specific meningococcal monoclonal antibody as a P1.19-specific reagent.</u> Clin Diagn Lab Immunol 1999;6:639–42.
- 12. Sacchi CT, Lemos AP, Popovic T, Cassio de Morais J, Whitney AM, et al. <u>Serosubtypes</u> and PorA types of *Neisseria meningitidis* serogroup B isolated in Brazil during 1997– <u>1998: overview and implications for vaccine development.</u> J Clin Microbiol 2001;39:2897–903.
- 13. Maiden MCJ, Bygraves JA, McCarvil J, Feavers IM. <u>Identification of meningococcal</u> serosubtypes by polymerase chain reaction. J Clin Microbiol 1992;30:2835–41.
- 14. Bart A, Dankert J, van der Ende A. <u>Antigenic variation of the class I outer membrane</u> protein in hyperendemic *Neisseria meningitidis* strains in the Netherlands. Infect Immun 1999;67:3842–6.
- 15. Suker J, Feavers IM, Maiden MCJ. <u>Monoclonal antibody recognition of members of the</u> <u>meningococcal P1.10 variable region family: implications for serological typing and</u> <u>vaccine design.</u> Microbiology 1996;142:63–9.
- 16. Wedege E, Kolberg J, Delvig A, Hoiby EA, Holten E, Rosenqvist E, et al. <u>Emergence of a new virulent clone within the electrophoretic type 5 complex of serogroup B</u> <u>meningococci in Norway.</u> Clin Diagn Lab Immunol 1995;2:314–21.
- Saunders NB, Brandt BL, Warren RL, Hansen BD, Zollinger WD. <u>Immunological and</u> molecular characterization of three variant subtype P1.14 strains of *Neisseria* <u>meningitidis</u>. Infect Immun 1998;66:3218–22.
- 18. Feavers IM, Heath AB, Bygraves JA, Maiden MCJ. <u>Role of horizontal genetic exchange</u> in the antigenic variation of the class 1 outer membrane protein of *Neisseria meningitidis*. Mol Microbiol 1992;6:489–95.

|                   | Previous     |                       | Source or               |
|-------------------|--------------|-----------------------|-------------------------|
| Variant           | nomenclature | VR2 peptide sequence  | reference               |
| 1                 | 1            | YVAVENGVAKKVA         | (1)                     |
| 1–1               | 1a           | YVAVENGATKKVA         | (6)                     |
| 1-2               | 1b           | YVAVENGVVKKVA         | This study              |
| 1–3               | 1c           | YVAVENGVAKKVT         | WS                      |
| 2                 | 2            | HFVQQTPKSQPTLVP       | ( <u>1</u> )            |
| -                 | 2a           | found to be 2e        | ( <u>1</u> )            |
| 2-1               | 2b           | HFVQQPPKSQPTLVP       | ( <u>10</u> )           |
| 2-2               | 2c           | HFVQQTPQSQPTLVP       | ( <u>3</u> )            |
| Remove            | d 2d         | HFVQETPKSQPTLVP       | ( <u>4</u> )            |
| 2–3               | 2e           | HFVQQPPKSQLTLVP       | This study              |
| 2–4               | 2f           | HFVQQTPQSRPTLVP       | This study              |
| 2–5               | 2g           | HFVQQIPQSQPTLVP       | WS                      |
| 2-6               | 2i           | HFVQQTPTLVP           | ( <u>6</u> )            |
| 2-7               | -            | HFVQQTSKSQPTLVP       | WS                      |
| 2-8               | -            | HFVQQTTKSQPTLVP       | WS                      |
| 2–9               | -            | HFVQQTPQSKPTLVP       | WS                      |
| 2-10              | -            | HFVOOAPOSOSTLVP       | WS                      |
| 2-11              | -            | HFVLOTPOSOPTLVP       | WS                      |
| 2-12              | -            | HFVOOIPKSOPTLVP       | WS                      |
| 2-13              | _            | YFVOOTPOSOPTLVP       | GenBank                 |
|                   |              |                       | AF239810                |
| 2-14              | 33           | HFVOOKLASKPTLVP       | WS                      |
| 2-15              | 33a          | HEVOOKSTSKPTLVP       | WS                      |
| 2-16              | 33h          | HEVOOKPTSKPTLVP       | WS                      |
| 2 - 10<br>2-17    | 33c          | HFVOOOPTSEPTLVP       | WS                      |
| 2-17<br>2-18      | -            | HEVOOIPKSOPILVP       | WS                      |
| 2_10              | _            | HEVOOTSOSOPTI VP      | WS                      |
| 2-20              | -            | HFVQQTPIVQQTPKSQPTLVP | WS                      |
| 3                 | 3            | TLANGANNTIIRVP        | (3)                     |
| 3–1               | 3a           | TVANGANNTIIRVP        | (14)                    |
| 3-2               | 3b           | TLANGANDTIIRVP        | This study              |
| 3_3               | -            | TLANGADNTIIRVP        | WS                      |
| 3-4               | -            | TPANGANNTIIRVP        | WS                      |
| 3–5               | -            | TLAKGANNTIIRVP        | WS                      |
| 4                 | 4            | HVVVNNKVATHVP         | (13)                    |
| +<br>/_1          |              | HVVVNNNVATHVP         | $(\underline{13})$      |
| $\frac{1}{1}$     | 4h           | HVVVNNKVATHVDAKVATHVD | This study              |
| 4-3               | 40<br>4c     | HVVVNNKVTTHVP         | WS                      |
| 0                 | 0            | VVDEOSKANA            | (1)                     |
| 9                 | 9            |                       | ( <u>1</u> )<br>ConBonk |
| 9-1               | 9a           | IVDSKIHA              |                         |
| 0.2               |              | VUCEOSVVIIA           | AF140043                |
| 9-2<br>0-2        | -            |                       | WS<br>WC                |
| 9-5<br>0-4        | -            | Y VDEQSKDHA           | WS                      |
| 9–4<br>0 <i>5</i> | -            | Y VDKQSKYHA           | WS                      |
| 9–5               | -            | YVDEQSEYHA            | WS                      |
| 10                | 10           | HFVQNKQNQRPTLVP       | ( <u>3</u> )            |
| 10-1              | 10a          | HFVQNKQNQPPTLVP       | ( <u>10,15</u> )        |
|                   |              |                       | ·                       |

Appendix Table 2. VR2 sequence nomenclature<sup>a</sup>

| 10–2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10b                                                                                                                                                              | HFVQDKKGQPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <u>10,15</u> )                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10c                                                                                                                                                              | HFVQNKQNQQPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <u>10,15</u> )                                                                                                                                                                                       |
| 10–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10d                                                                                                                                                              | HFVQNKQNKQNQPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( <u>10,15</u> )                                                                                                                                                                                       |
| 10–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10e                                                                                                                                                              | HFVQNKQSQRPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <u>3</u> )                                                                                                                                                                                           |
| 10–6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10f                                                                                                                                                              | HFVQNKQNQQNQQNQPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( <u>10,15</u> )                                                                                                                                                                                       |
| 10–7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10g                                                                                                                                                              | HFVQNKQNKPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (10, 15)                                                                                                                                                                                               |
| Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10h                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4)                                                                                                                                                                                                    |
| Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10i                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4)                                                                                                                                                                                                    |
| Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10j                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\overline{4})$                                                                                                                                                                                       |
| 10-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10k                                                                                                                                                              | HFVQNKQNQQNQPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | This study                                                                                                                                                                                             |
| 10–9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101                                                                                                                                                              | HFVQNKQNKQNQLPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | This study                                                                                                                                                                                             |
| 10-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10m                                                                                                                                                              | HFVONKONKONKONOPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This study                                                                                                                                                                                             |
| 10-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10n                                                                                                                                                              | HFVONKONORSTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | This study                                                                                                                                                                                             |
| 10-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10o                                                                                                                                                              | HFVONKONOLPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GenBank                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AF182278                                                                                                                                                                                               |
| 10-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10p                                                                                                                                                              | HFVONKONKKNOPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WS                                                                                                                                                                                                     |
| 10–14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10a                                                                                                                                                              | HFVONKOHOPPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WS                                                                                                                                                                                                     |
| 10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10r                                                                                                                                                              | HEVONKONOPSTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WS                                                                                                                                                                                                     |
| 10-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                                                                                                              | HFVONKONOWSTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WS                                                                                                                                                                                                     |
| 10 - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10t                                                                                                                                                              | HEVONKONOTPTLVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WS                                                                                                                                                                                                     |
| 10-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                              | HEVONKOSOPPTI VP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WS                                                                                                                                                                                                     |
| 10-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                              | HEVONKONKOKOPPTI VP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6)                                                                                                                                                                                                    |
| 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10i 10v                                                                                                                                                          | HEVONKONOWI TI VP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GenBank                                                                                                                                                                                                |
| 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101,100                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AE162346                                                                                                                                                                                               |
| 10 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <b>v</b>                                                                                                                                                      | HEVDDKKGODDTI VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (6)                                                                                                                                                                                                    |
| 10-21<br>10.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10x                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WS                                                                                                                                                                                                     |
| 10-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10y                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WS                                                                                                                                                                                                     |
| 10-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                | HEVENKONODDI VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <b>6</b> )                                                                                                                                                                                           |
| 10 - 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (())                                                                                                                                                                                                   |
| 10_25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                | HEVODKKGOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WS                                                                                                                                                                                                     |
| 10-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                | HFVQDKKGQP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WS                                                                                                                                                                                                     |
| $\frac{10-25}{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 13                                                                                                                                                             | HEVQDKKGQP           YWTTVNTGSATTTTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WS<br>( <u>16</u> )                                                                                                                                                                                    |
| $     \frac{10-25}{13}     13-1   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>13<br>13a                                                                                                                                                   | HFVQDKKGQP       YWTTVNTGSATTTTFVP       YWTTVNTGSATTTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WS<br>( <u>16</u> )<br>( <u>3</u> )                                                                                                                                                                    |
| 10-25<br>10-25<br>13<br>13-1<br>13-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>13<br>13a<br>13b                                                                                                                                            | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WS<br>(16)<br>(3)<br>(16)                                                                                                                                                                              |
| $   \begin{array}{r}     10 - 25 \\     \hline     13 \\     13 - 1 \\     13 - 2 \\     13 - 3 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>13<br>13a<br>13b<br>13c                                                                                                                                     | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATITTFVP<br>YWTTVNTGSATITTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WS<br>(16)<br>(3)<br>(16)<br>(10)                                                                                                                                                                      |
| 10–25<br>13<br>13–1<br>13–2<br>13–3<br>13–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>13<br>13a<br>13b<br>13c<br>13d                                                                                                                              | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATITTFVP<br>YYTTVTQGSATTTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)                                                                                                                                                              |
| 10-25<br>13<br>13-1<br>13-2<br>13-3<br>13-4<br>13-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e                                                                                                                       | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATITTFVP<br>YYTTVTQGSATTTTFVP<br>YWTTVNTGSATTTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(10)<br>(16)                                                                                                                                              |
| 10-25<br>13<br>13-1<br>13-2<br>13-3<br>13-4<br>13-5<br>13-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f                                                                                                                | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATITTFVP<br>YYTTVTQGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(10)<br>(16)<br>(5)                                                                                                                                       |
| 10-25<br>13<br>13-1<br>13-2<br>13-3<br>13-4<br>13-5<br>13-6<br>13-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g                                                                                                         | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YYTTVTQGSATTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)                                                                                                                                |
| $ \begin{array}{c} 10-25 \\ 13 \\ 13-1 \\ 13-2 \\ 13-3 \\ 13-4 \\ 13-5 \\ 13-6 \\ 13-7 \\ 13-8 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h                                                                                                  | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YYTTVTQGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)                                                                                                                        |
| $ \begin{array}{c} 10-25 \\ 13 \\ 13-1 \\ 13-2 \\ 13-3 \\ 13-4 \\ 13-5 \\ 13-6 \\ 13-7 \\ 13-8 \\ 13-9 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i                                                                                           | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study                                                                                                                  |
| $   \begin{array}{r}     10-25 \\     13-1 \\     13-2 \\     13-3 \\     13-4 \\     13-5 \\     13-6 \\     13-7 \\     13-8 \\     13-9 \\     13-10 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j                                                                                    | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YYTTVTQGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTFVP<br>YWTTVNTGSATTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS                                                                                                    |
| $ \begin{array}{c} 10-25 \\ 13 \\ 13-1 \\ 13-2 \\ 13-3 \\ 13-4 \\ 13-5 \\ 13-6 \\ 13-7 \\ 13-8 \\ 13-9 \\ 13-10 \\ 13-11 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k                                                                             | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATITTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTFVP<br>YWTTVNTGSATTFVP<br>YWTTVNTGSATTFVP<br>YWTTVNTGSATTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study                                                                               |
| $ \begin{array}{c} 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k                                                                             | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATITTFVP<br>YWTTVNTGSATITTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS                                                                                |
| $ \begin{array}{c} 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ \hline 14\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14                                                                  | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)                                                                                |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a                                                           | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTAVNAGSATTTFVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)<br>(8)                                                                         |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b                                                    | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTAVNAGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKKVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)<br>(8)<br>(17)                                                          |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c                                             | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTAVNAGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKKVHA<br>YVDEKKNMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)<br>(8)<br>(17)<br>(17)                                                  |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d                                      | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTAVNAGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)<br>(8)<br>(17)<br>(17)<br>(11)                                                 |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-5\\ 14-$ | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d<br>14e                               | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTAVNAGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKKVHA<br>YVDEKKMVHA<br>YVDENKMVHA<br>YVDENKMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)<br>(8)<br>(17)<br>(17)<br>(17)<br>(11)<br>This study                           |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ 14-5\\ 14-6\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d<br>14e<br>14f                        | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTAVNAGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDENKMVHA<br>YVDENKMVHA<br>YVDENKMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)<br>(8)<br>(17)<br>(17)<br>(17)<br>(11)<br>This study<br>This study             |
| $ \begin{array}{c} 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ 14-5\\ 14-6\\ 14-7\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d<br>14e<br>14f<br>14c                 | HFVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTVNTGSATTTFVP<br>YWTVNTGSATTTFVP<br>YWTVNTGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKKVHA<br>YVDEKKMVHA<br>YVDEKQVSHA<br>YVDEKQVSHA<br>YVDEKVMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WS<br>(16)<br>(3)<br>(16)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>This study<br>WS<br>(13)<br>(8)<br>(17)<br>(17)<br>(17)<br>(11)<br>This study<br>This study<br>WS       |
| $ \begin{array}{c} 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ 14-5\\ 14-6\\ 14-7\\ 14-8\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d<br>14e<br>14f<br>14g                 | HIVIQUE ADA ANDRESS AND AND ANDRESS AND AND ANDRESS AND | WS<br>(16)<br>(3)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                       |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ \hline 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ 14-5\\ 14-6\\ 14-7\\ 14-8\\ 14.0\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d<br>14e<br>14f<br>14g<br>-            | HI HEVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKKVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WS<br>(16)<br>(3)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                       |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ 14-5\\ 14-6\\ 14-7\\ 14-8\\ 14-9\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d<br>14e<br>14f<br>14g<br>-<br>-       | HI HEVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTAVNAGSATTTFVP<br>YVDEKKMVHA<br>YVDEKKKVHA<br>YVDEKKMVHA<br>YVDEKQVSHA<br>YVDEKRMVHA<br>YVDEKRMVHA<br>YVDEKRMVHA<br>YVDEKRMVHA<br>YVDEKRMVHA<br>YVDEKRMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WS<br>(16)<br>(3)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                       |
| $ \begin{array}{c} 10-25\\ 10-25\\ 13\\ 13-1\\ 13-2\\ 13-3\\ 13-4\\ 13-5\\ 13-6\\ 13-7\\ 13-8\\ 13-9\\ 13-10\\ 13-11\\ 13-12\\ 14\\ 14-1\\ 14-2\\ 14-3\\ 14-4\\ 14-5\\ 14-6\\ 14-7\\ 14-8\\ 14-9\\ 15\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>13<br>13a<br>13b<br>13c<br>13d<br>13e<br>13f<br>13g<br>13h<br>13i<br>13j<br>13k<br>-<br>14<br>14a<br>14b<br>14c<br>14d<br>14e<br>14f<br>14g<br>-<br>-<br>15 | HEVQDKKGQP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTTTFVP<br>YWTTVNTGSATTTTTTFVP<br>YWTTVNTGSATTTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YWTTVNTGSAATTTFVP<br>YVDEKKMVHA<br>YVDEKKKVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKQVSHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA<br>YVDEKKMVHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WS<br>(16)<br>(3)<br>(10)<br>(10)<br>(10)<br>(16)<br>(5)<br>(5)<br>(5)<br>(16)<br>This study<br>WS<br>(13)<br>(8)<br>(17)<br>(17)<br>(17)<br>(17)<br>(11)<br>This study<br>WS<br>WS<br>WS<br>WS<br>(1) |

| 15–2    | 15c               | HYTRQNNNNTDVFVP         | This study                 |
|---------|-------------------|-------------------------|----------------------------|
| 15–3    | 15d               | HYTRPNNTDVFVP           | (11)                       |
| 15–4    | 15e               | HYNTRONNADVFVP          | WS                         |
| 15-5    | 15f               | HYTRONSADVFVP           | This study                 |
| 15-6    | 150               | HYTRONYADVFVP           | WS                         |
| 15_7    | 15g               | HYTRONNANVEVP           | (6)                        |
| 15_8    | 1511              | HYTRONNAGVEVP           | $(\underline{0})$          |
| 15_0    | -                 | UVTDONNITDONNADVEVD     | ( <u>12</u> )              |
| 15 10   | -                 |                         | ( <u>12</u> )              |
| 15-10   | -<br>1 <i>5</i> 1 |                         | ( <u>12</u> )              |
| 15-11   | 130               |                         | $(\underline{10})$         |
| 15-12   | -                 | HYNIRQNNIDVFVP          | WS                         |
| 15-13   | -                 | HYTRQNNQNNIDVFVP        | WS                         |
| 15–14   | -                 | HYINIRQNNIDVFVP         | WS                         |
| 15–15   | -                 | HYTRQSNTDVFVP           | WS                         |
| 15–16   | -                 | HYTRQNNADFVP            | WS                         |
| 16      | 16                | YYTKDTNNNLTLVP          | (1)                        |
| 16–1    | 16w               | YYTKGKNNALTLVP          | ws                         |
| 16-2    | 16b               | YYTKNTNNNLTLVP          | (18)                       |
| 16_3    | 16c               | YYTKDKNDNI TI VP        | $(\underline{10})$         |
| 16_1    | 16d               | VYTKDKNDKI TI VP        | $(\underline{5})$          |
| 16 5    | 160               | VVTKDTNININI TI VP      | $(\underline{5})$          |
| 10–J    | 100<br>16f        |                         | ( <u>J</u> )<br>This study |
| 10-0    | 101               |                         | This study                 |
| 10-7    | 10g               |                         | This study                 |
| 16-8    | 100               | Y Y IKDKNNALILVP        | ( <u>)</u>                 |
| 16–9    | 161               | YYIKDINDLILVP           | WS                         |
| 16–10   | 16j               | YYTNNNLTLVP             | This study                 |
| 16–11   | 16k               | YYTTDTNNNLTLVP          | This study                 |
| 16–12   | 16l               | YYTKDTNDNLTLVP          | This study                 |
| 16–13   | 16m               | YYTEDTNNNLTLVP          | WS                         |
| 16–14   | 16n               | YYTKDTNTNLTLVP          | WS                         |
| 16–15   | 16p               | YYNTKDTNNNLTLVP         | This study                 |
| 16–16   | 16q               | YYTKDTNNNPTLVP          | This study                 |
| 16–17   | 16r               | YYTKDTNNTNNNLTLVP       | ( <u>6</u> )               |
| 16–18   | 16s               | YYTKDTNTNNNLTLVP        | GenBank                    |
|         |                   |                         | AF143744                   |
| 16–19   | 16t               | YYTKDTNNNLTHTKDTNNNLTLV | P ( <u>6</u> )             |
| 16–20   | 16u               | KDTNNNLTLVP             | ( <u>6</u> )               |
| 16–21   | 16v               | YYTKDTKNNLTLVP          | ( <u>6</u> )               |
| 16-22   | -                 | YYTKDTNNILTLVP          | WS                         |
| 16–23   | -                 | YYTKDNKNDNLTLVP         | ( <u>6</u> )               |
| 16–24   | -                 | YYTKVENDNLTLVP          | WS                         |
| 16–25   | -                 | YYTKDTNNNLNLTLVP        | WS                         |
| 16–26   | -                 | YYTNTNNNLTLVP           | WS                         |
| 16–27   | -                 | YYTKDTNNNLTLVS          | WS                         |
| 73      | 23                | HWNTVVNTNGTTTTFVP       | (3)                        |
| 23_1    | 23                | HWNTVYNTNGTTTTTTTVD     |                            |
| 23-1    | 25a               | HWNTVVNTNGTTTTTFVP      | WS                         |
| 23-2    | -                 |                         | ¥¥ 5                       |
| Removed | 24                | TLANVANTNIGVP           | ( <u>13</u> )              |
| 25      | 25                | TYTVDSSGVVTPVP          | ( <u>1</u> )               |
| 25-1    | 25a               | TYTVDSSGVFTPVP          | This study                 |
| 25-2    | 25b               | TYTEGSSGVFTPVP          | WS                         |
| 25–3    | 25c               | TYTVDSSGVVTPLP          | WS                         |
| 25-4    | 25d               | TYTVGSRDVVTPVP          | GenBank                    |
|         |                   |                         | AF162345                   |

| 25–5 | 25e | TYTVDSSNVVTPVP        | GenBank       |
|------|-----|-----------------------|---------------|
|      |     |                       | AF157834      |
| 25-6 | 25f | TYTVDSGVVTPVP         | ( <u>6</u> )  |
| 25-7 | 25g | YTVDSSGVVTPVP         | WS            |
| 25-8 | -   | TYTVDSSGVP            | WS            |
| 25–9 | -   | TYTVDNSSVVTPVP        | WS            |
| 26   | 26  | HFVADSQGKITRVP        | ( <u>10</u> ) |
| 26-1 | 26a | HFVADSQGEITRVP        | GenBank       |
|      |     |                       | AF146084      |
| 26–2 | -   | YFTADPNDQNKITRVP      | WS            |
| 28   | 28  | YYYTTATNSSTSTTFVP     | ( <u>10</u> ) |
| 30   | 30  | HYTTVYNATTTTTFVP      | WS            |
| 30-1 | 30a | HYTTVYNATTTTFVP       | This study    |
| 30-2 | 30b | HYTTVYNATTTTTTFVP     | (6)           |
| 30–3 | 30c | HYTTVYNATTTTTTTFVP    | This study    |
| 30–4 | 30d | HYTTVYNATTTTTTTTFVP   | WS            |
| 30–5 | 30e | HYTTVYNATTTTTTTTTTFVP | WS            |
| 34   | 34  | YVDDQGKVKGP           | ( <u>6</u> )  |
| 34–1 | -   | YVDDQKVKGP            | WS            |
| 35   | -   | TFTLESNQMKPVP         | WS            |

## **Appendix References**

- Maiden MCJ, Suker J, McKenna AJ, Bygraves J, Feavers IM. <u>Comparison of the class 1</u> <u>outer membrane proteins of eight serological reference strains of *Neisseria meningitidis*. Mol Microbiol 1991;5:727–36.
  </u>
- 2. Van der Ley P, Heckels JE, Virji M, Hoogerhout P, Poolman JT. <u>Topology of outer</u> <u>membrane porins in pathogenic *Neisseria* spp.</u> Infect Immun 1991;59:2963–71.
- Suker J, Feavers IM, Achtman M, Morelli G, Wang J-F, Maiden MCJ. <u>The *porA* gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation</u>. Mol Microbiol 1994;12:253–65.
- 4. Brooks JL, Fallon RJ, Heckels JE. <u>Sequence variation in class 1 outer membrane protein</u> in *Neisseria meningitidis* isolated from patients with meningococcal infection and close household contacts. FEMS Microbiol Lett 1995;128:145–50.
- Arhin FF, Moreau F, Coulton J, Mills EL. <u>Sequencing of *por*A from clinical isolates of *Neisseria meningitidis* defines a subtyping scheme and its genetic regulation. Can J Microbiol 1998;44:56–63.
  </u>
- Sacchi CT, Whitney AM, Popovic T, Beall DS, Reeves MW, Plikaytis BD, et al. <u>Diversity and prevalence of PorA types in *Neisseria meningitidis* serogroup B in the <u>United States</u>, 1992-1998. J Infect Dis 2000;182:1169–76.
  </u>
- McGuiness B, Barlow AK, Clarke IN, Farley JE, Anilionis A, Poolman JT, et al. <u>Deduced amino acid sequences of class 1 protein (PorA) from three strains of *Neisseria* <u>meningitidis.</u> J Exp Med 1990;171:1871–82.
  </u>
- Sacchi CT, Lemos APS, Brandt ME, Whitney AM, Melles CEA, Solari CA, et al. <u>Proposed standardisation of *Neisseria meningitidis* PorA variable region typing <u>nomenclature.</u> Clin Diagn Lab Immunol 1998;5:845–55.
  </u>

- 9. McGuinness BT, Lambden PR, Heckels JE. <u>Class 1 outer membrane protein of *Neisseria meningitidis*: epitope analysis of the antigenic diversity between strains, implications for subtype definition and molecular epidemiology. Mol Microbiol 1993;7:505–14.</u>
- 10. Feavers IM, Fox AJ, Gray S, Jones DM, Maiden MCJ. <u>Antigenic diversity of</u> <u>meningococcal outer membrane protein PorA has implications for epidemiological</u> <u>analysis and vaccine design.</u> Clin Diagn Lab Immunol 1996;3:444–50.
- 11. Wedege E, Caugant DA, Musacchio A, Saunders NB, Zollinger WD. <u>Redesignation of a purported P1.15 subtype-specific meningococcal monoclonal antibody as a P1.19-specific reagent.</u> Clin Diagn Lab Immunol 1999;6:639–42.
- 12. Sacchi CT, Lemos AP, Popovic T, Cassio de Morais J, Whitney AM, et al. <u>Serosubtypes</u> and PorA types of *Neisseria meningitidis* serogroup B isolated in Brazil during 1997– <u>1998: overview and implications for vaccine development.</u> J Clin Microbiol 2001;39:2897–903.
- 13. Maiden MCJ, Bygraves JA, McCarvil J, Feavers IM. <u>Identification of meningococcal</u> serosubtypes by polymerase chain reaction. J Clin Microbiol 1992;30:2835–41.
- 14. Bart A, Dankert J, van der Ende A. <u>Antigenic variation of the class I outer membrane</u> protein in hyperendemic *Neisseria meningitidis* strains in the Netherlands. Infect Immun 1999;67:3842–6.
- 15. Suker J, Feavers IM, Maiden MCJ. <u>Monoclonal antibody recognition of members of the</u> <u>meningococcal P1.10 variable region family: implications for serological typing and</u> <u>vaccine design</u>. Microbiology 1996;142:63–9.
- 16. Wedege E, Kolberg J, Delvig A, Hoiby EA, Holten E, Rosenqvist E, et al. <u>Emergence of a new virulent clone within the electrophoretic type 5 complex of serogroup B</u> <u>meningococci in Norway.</u> Clin Diagn Lab Immunol 1995;2:314–21.
- Saunders NB, Brandt BL, Warren RL, Hansen BD, Zollinger WD. <u>Immunological and</u> molecular characterization of three variant subtype P1.14 strains of *Neisseria* <u>meningitidis</u>. Infect Immun 1998;66:3218–22.
- 18. Feavers IM, Heath AB, Bygraves JA, Maiden MCJ. <u>Role of horizontal genetic exchange</u> in the antigenic variation of the class 1 outer membrane protein of *Neisseria meningitidis*. Mol Microbiol 1992;6:489–95.