Innovating to Slow the Spread: CDC Combats Antimicrobial Resistance

Each year in the United States, more than 3 million people are infected by an antimicrobial-resistant germ or *C. difficile* (a bacterium associated with antibiotic use), and nearly 50,000 people die. Since 2016, CDC has invested more than $350 million in antimicrobial resistance (AR) innovation to drive aggressive action and empower the United States and the world to comprehensively respond to AR. CDC continuously works to address threats from CDC’s 2019 AR Threats Report through these projects. More resources are needed to invest in this critical research addressing gaps across healthcare, the community, and the environment.

From 2016–2022, CDC was only able to invest roughly $29 million a year of annual, sustainable AR funding in new ways to stop AR threats.

Nearly 80% of 2016–2022 investments are cross-cutting to fight not only AR threats but other emerging, infectious disease threats in healthcare, community, and the environment.

Around the world, CDC has invested in almost 200 innovative AR projects in more than 50 countries, 2016–2022.

INVESTING IN INNOVATION, 2016-2022

- Nearly 20% of all appropriated dollars for CDC’s Antimicrobial Resistance Solutions Initiative has supported public health innovations
- 500+ funded projects
- 180+ public/private institutions supported globally

CDC works with partners in more than 50 countries to find scalable innovative solutions to address AR globally.

![Map showing countries where CDC has funded innovation projects since 2016.](image)

Country where CDC has funded at least one innovation project since 2016.

1This includes more than $200 million of annual appropriations and more than $150 million of supplemental appropriations.
IMPROVING DETECTION IN VIETNAM
Experts at PATH are strengthening national Infection Prevention and Control (IPC) policies and enhancing AR data collection, analysis, and surveillance in healthcare facilities in Vietnam to better understand the spread of AR and more effectively respond to outbreaks.

ANTIBIOTIC STEWARDSHIP ON THE FARM
Researchers at the Ohio State University evaluated antibiotic use decision-making tools and training for dairy calf producers, finding improved antibiotic use on these farms. Researchers are also assessing changes in resistance genes where the calves live after the intervention.

PREVENTING INFECTIONS THROUGH WASH
Experts at Center for Disease Dynamics, Economics & Policy are helping CDC understand the impact waste disposal from healthcare facilities into the environment has on people. They are modeling the cost-effectiveness of water and sanitation interventions on key health outcomes in healthcare facilities in low- and middle-income countries.

TRACKING RESISTANCE IN KENYA
Researchers from Washington State University are decreasing resistant infections in Kenya using a point prevalence survey, a tool to identify people who are receiving an antibiotic or had infection at a certain point in time, to learn more about antibiotic use and how infections are spread between the community and healthcare facilities.

CLEANING THE HEALTHCARE ENVIRONMENT
Researchers from Duke University and University of North Carolina investigated new methods for environmental disinfection and found UV light emitters as effective tools for intensely disinfecting rooms.

MODELING AR INFECTIONS IN U.S. HEALTHCARE
At the University of Utah, researchers are using models, tailored with patient and health economic data, to inform regional health policy decisions for hospital and nursing home interventions.

SHARING EXPERTISE IN KENYA AND INDIA
Microbiology experts at the American Society for Microbiology are improving detection and surveillance of resistant bacteria in Kenya and India through on-site mentorship programs with clinical lab staff to better understand the spread of AR in these communities and hospitals.
Monitoring Aspergillus Resistance
University of Georgia researchers studied azole-resistant *Aspergillus fumigatus* collected from select agricultural sites, helping CDC better understand the effects of antimicrobial-resistant fungi isolates in the environment and how that might affect AR in humans.

Tracking Gonorrhea for Better Treatment
At the University of Oxford, researchers are improving laboratory methods to detect drug-resistant gonorrhea directly from patient samples and create publicly available tools to analyze genetic AR data to better detect and treat the disease, potentially informing future standards or guidelines.

Studying Treatment Outcomes to Improve Antibiotic Selections
Researchers at the University of Virginia studied outcomes for patients with *Shigella* infections who were treated in Bangladesh. These results were presented to the Clinical Laboratory Standards Institute to support establishment of azithromycin clinical breakpoints for *Shigella*, allowing U.S. and global laboratories to screen isolates and report resistance findings to clinicians improving treatment decisions.

Mapping Salmonella to Slow the Spread
At the Instituto de Biomedicina y Biotecnología de Cantabria in Spain, researchers are identifying and evaluating the different structures and dynamics of *Salmonella* plasmids and how they spread AR, adding to knowledge on how resistance emerges and spreads.

Tracking Resistance through Travel
Experts at Massachusetts General Hospital and Harvard University are characterizing how often healthy travelers become infected and/or colonized—carrying and potentially spreading the germ—with certain drug-resistant germs. The study will also investigate risk factors, how long people are colonized, and how often it is spread within households.

Controlling TB Spread in India
In India, experts at the National Institute for Research in TB are closing knowledge gaps about treatment of drug-resistant TB, using innovative platforms like ECHO (a virtual clinic model to serve remote areas of the world) to inform practice recommendations and control spread across the country.
LEVERAGING CDC’S INNOVATIVE PROGRAMS FOR IMPACT

CDC leverages various programs to invest in innovative solutions to address research gaps related to AR across healthcare, the community, and the environment.

BAAs	Through **Broad Agency Announcements (BAAs)**, CDC supports innovations and collaborations with investigators to identify and implement new ways to prevent antimicrobial-resistant infections and their spread. In fiscal years 2016 through 2022, more than $55 million was awarded through BAAs to fight AR.
SHEPheRD	Through the **Safety and Healthcare Epidemiology Research Development (SHEPheRD) Program**, CDC has awarded more than 20 organizations across the United States the opportunity to develop and conduct research and innovative prevention projects related to safety in healthcare settings. This significant opportunity allows CDC to request research and other collaborative proposals from these organizations over a 5-year cycle to find innovative approaches to preventing healthcare-associated infections and AR across the healthcare spectrum.
MInD	The **Modeling Infectious Diseases in Healthcare Network (MInD – Healthcare)** develops a virtual laboratory where researchers can investigate factors that drive the spread of HAIs and simulate multiple prevention strategies to estimate their benefits in a timely and cost-effective manner.
SBIR	The **Small Business Innovation Research (SBIR)** provides “seed funds” for small business concerns (SBCs) to explore their technological potential and the incentive for SBCs to profit from commercialization of their innovations. CDC’s SBIR Program targets innovations in diagnostics, data science (e.g., artificial intelligence, machine learning, etc.), surveillance, occupational safety and health, and public health.

Learn more about CDC’s AR Solutions Initiative: www.cdc.gov/DrugResistance