Diagnosis and Management of Suspected Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT) Following Johnson & Johnson (Janssen) COVID-19 Vaccination

April 20th, 2021
Disclaimer

- The findings and conclusions in this report are those of the presenters and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC) or the American Society of Hematology (ASH).
- Mention of a product or company name is for identification purposes only and does not constitute endorsement by CDC or ASH.
Diagnosis and Management of Suspected Vaccine-induced Immune Thrombotic Thrombocytopenia Following Johnson & Johnson (Janssen) COVID-19

John T. Brooks, MD
Chief Medical Officer, CDC COVID-19 Response

John R. Su, MD, PhD, MPH
Vaccine Safety Team, CDC COVID-19 Response

Jean Marie Connors, MD
Medical Director, Anticoagulation Management and Stewardship Services
Hematology Division, Brigham and Women’s Hospital/Dana Farber Cancer Institute
Associate Professor of Medicine, Harvard Medical School

Lisa Baumann Kreuziger, MD, MS
Associate Investigator, Blood Research Institute, Versiti
Associate Professor, Hematology & Oncology, Medical College of Wisconsin
Outline

• Introduction
• Background
• Diagnosis
• Management
• Adverse Event Reporting (VAERS)
• Discussion
Thrombosis with Thrombocytopenia Syndrome (TTS) after Johnson & Johnson (Janssen) COVID-19 vaccine: Background

April 20, 2021

John Su, MD, PhD, MPH
AstraZeneca’s COVID-19 vaccine: EMA finds possible link to very rare cases of unusual blood clots with low blood platelets

News 07/04/2021

EMA confirms overall benefit-risk remains positive

EMA’s safety committee (PRAC) has concluded today that unusual blood clots with low blood platelets should be listed as very rare side effects of Vaxzevria (formerly COVID-19 Vaccine AstraZeneca).

In reaching its conclusion, the committee took into consideration all currently available evidence, including the advice from an ad hoc expert group.

EMA is reminding healthcare professionals and people receiving the vaccine to remain aware of the possibility of very rare cases of blood clots combined with low levels of blood platelets occurring within 2 weeks of vaccination. So far, most of the cases reported have occurred in women under 60 years of age within 2 weeks of vaccination. Based on the currently available evidence, specific risk factors have not been confirmed.

People who have received the vaccine should seek medical assistance immediately if they develop symptoms of this combination of blood clots and low blood platelets (see below).

The PRAC noted that the blood clots occurred in veins in the brain (cerebral venous sinus thrombosis, CVST) and the abdomen (splanchnic vein thrombosis) and in arteries, together with low levels of blood platelets and sometimes bleeding.

The Committee carried out an in-depth review of 62 cases of cerebral venous sinus thrombosis and 24 cases of splanchnic vein thrombosis reported in the EU drug safety database (EudraVigilance) as of 22 March 2021, 18 of which were fatal. The cases came mainly from spontaneous reporting systems of the EEA and the UK, where around 25 million people had received the vaccine.

COVID-19 is associated with a risk of hospitalisation and death. The reported combination of blood clots and low blood platelets is very rare, and the overall benefits of the vaccine in preventing COVID-19 outweigh the risks of side effects.
Janssen COVID-19 Vaccine Timeline* (2021)

- Feb 27: Emergency Use Authorization
- Feb 28: Interim ACIP recommendation
- Mar 2: Vaccination starts

Mar 19 thru Apr 12:
- 6 CVST† with thrombocytopenia cases reported to VAERS; records collection and investigation by CDC and FDA

Apr 13:
- CDC and FDA recommend pause; HAN issued; investigation continues

* For illustrative purposes, not drawn to scale, † cerebral venous sinus thrombosis
Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination

Andreas Greinacher, M.D., Thomas Thiele, M.D., Theodore E. Warkentin, M.D., Karin Weisser, Ph.D., Paul A. Kyrle, M.D., and Sabine Eichinger, M.D.

CONCLUSIONS
Vaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia mediated by platelet-activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia. (Funded by the German Research Foundation.)

(April 9, 2021)
This is an official

CDC HEALTH ALERT

Distributed via the CDC Health Alert Network
April 13, 2021, 1:00 PM ET
CDCHAN-00442

Cases of Cerebral Venous Sinus Thrombosis with Thrombocytopenia after Receipt of the Johnson & Johnson COVID-19 Vaccine

Summary
As of April 12, 2021, approximately 6.85 million doses of the Johnson & Johnson (J&J) COVID-19 vaccine (Janssen) have been administered in the United States. The Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) are reviewing data involving six U.S. cases of a rare type of blood clot in individuals after receiving the J&J COVID-19 vaccine that were reported to the Vaccine Adverse Events Reporting System (VAERS). In these cases, a type of blood clot called cerebral venous sinus thrombosis (CVST) was seen in combination with low levels of blood platelets (thrombocytopenia). All six cases occurred among women aged 18–48 years. The interval from vaccine receipt to symptom onset ranged from 6–13 days. One patient died. Providers should maintain a high index of suspicion for symptoms that might represent serious thrombotic events or thrombocytopenia in patients who have recently received the J&J COVID-19 vaccine. When these specific type of blood clots are observed following J&J COVID-19 vaccination, treatment is different from the treatment that might typically be administered for blood clots. Based on studies conducted among the patients diagnosed with immune thrombotic thrombocytopenia after the AstraZeneca COVID-19 vaccine in Europe, the pathogenesis of these cases and unusual adverse events after vaccination may be associated with platelet-activating antibodies against platelet factor-4 (PF-4), a type of protein. Usually, the anticoagulant drug called heparin is used to treat blood clots. In this setting, the use of heparin may be harmful, and alternative treatments need to be given.

CDC will convene an emergency meeting of the Advisory Committee on Immunization Practices (ACIP) on Wednesday, April 14, 2021, to further review these cases and assess potential implications on vaccine policy. FDA will review that analysis as it also investigates these cases. Until that process is complete, CDC and FDA are recommending a pause in the use of the J&J COVID-19 vaccine out of an abundance of caution. The purpose of this Health Alert is, in part, to ensure that the healthcare provider community is aware of the potential for these adverse events and can provide proper management due to the unique treatment required with this type of blood clot.

Background
VAERS is a national passive surveillance system jointly managed by CDC and FDA that monitors adverse events after vaccinations. The six patients (after 6.85 million vaccine doses administered) described in these VAERS reports came to attention in the latter half of March and early April of 2021, and developed symptoms a median of 9 days (range = 6–13 days) after receiving the J&J COVID-19 vaccine. Initial presenting symptoms were notable for headache in five of six patients, and back pain in the sixth who subsequently developed a headache. One patient also had abdominal pain, nausea, and vomiting. Four developed focal neurological symptoms (focal weakness, aphasia, visual disturbance) prompting presentation for emergency care. The median days from vaccination to hospital admission was 15 days (range = 10–17 days). All were eventually diagnosed with

https://emergency.cdc.gov/han/2021/han00442.asp
U.S. National Response

- Health Alert Network Health Alert
 - Second in CDC history (first was after September 11, 2001)
- American Society for Hematology
 - Developed and released FAQ (https://www.hematology.org/covid-19/vaccine-induced-immune-thrombotic-thrombocytopenia)
U.S. Reports of TTS, as of April 16, 2021 (N = 6)

- 6 reports of CVST with thrombocytopenia (platelet counts <150K/mm3) following 6.86 million doses of Johnson & Johnson (Janssen) nCoV-19 vaccine administered
 - Crude reporting rate of 0.87 cases per million doses administered

- All reports of TTS were of CVST, which is rare, but clinically serious, and can result in substantial morbidity and mortality
 - CVST is not usually associated with thrombocytopenia
 - All 6 reports were in women age range 18–48 years, all with thrombocytopenia
 - No obvious patterns of risk factors detected
U.S. Reports of TTS, as of April 16, 2021 (N = 6)

- CVST with thrombocytopenia has not been observed after administration of the two authorized mRNA vaccines
 - 182 million mRNA COVID-19 doses administered with no reported cases to date
- Clinical features of Janssen cases are like those observed following the AstraZeneca COVID-19 vaccine in Europe
- Both Janssen and AstraZeneca vaccines contain replication-incompetent adenoviral vectors
 - human (Ad26.COV2.S) for Janssen
 - chimpanzee (ChAdOx1) for AstraZeneca
Potential Signs and Symptoms of TTS*

- Severe headache
- Backache
- New neurologic symptoms
- Severe abdominal pain
- Shortness of breath
- Leg swelling
- Tiny red spots on the skin (petechiae)
- New or easy bruising

Thrombocytopenia (<150,000 per mm³)

AND either

Confirmation of thrombosis/embolus by imaging, surgery, or pathology

OR

Symptoms consistent with CVST, DVT, PE, intra-abdominal thrombosis, ischemic stroke, or MI

From https://brightoncollaboration.us/thrombosis-with-thrombocytopenia-syndrome-case-finding-definition/
Vaccine-induced immune thrombotic thrombocytopenia: Diagnosis

Jean M Connors MD

Medical Director, Anticoagulation Management Services
Hemostatic Antithrombotic Stewardship program
Hematology Division
Brigham and Women’s Hospital/Dana Farber Cancer Institute
Associate Professor of Medicine, Harvard Medical School
Conflict of Interest

- Scientific Advisory Boards and Consulting: Abbott, Bristol-Myers Squibb, Pfizer, Takeda
- Research Funding to Institution: CSL Behring
VITT – Vaccine Induced Immune Thrombotic Thrombocytopenia

Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination

(AZ) April 9, 2021

Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination

(AZ) April 9, 2021

Correspondence

Thrombotic Thrombocytopenia after Ad26.COVID2.S Vaccination

(J&J) April 14, 2021

Original Article

Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination

April 16, 2021

<table>
<thead>
<tr>
<th></th>
<th>Austria/Germany</th>
<th>Norway</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>11</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>Onset post vaccine, days</td>
<td>5-16</td>
<td>7-10</td>
<td>6-24</td>
</tr>
<tr>
<td>Age, years</td>
<td>22-49</td>
<td>32-54</td>
<td>21-77</td>
</tr>
<tr>
<td>Sex: male</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>female</td>
<td>9</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Platelets x 10⁹/L</td>
<td>13-37</td>
<td>10-70</td>
<td>7-113</td>
</tr>
<tr>
<td>PF4 assay positive</td>
<td>all</td>
<td>all</td>
<td>22/23</td>
</tr>
</tbody>
</table>

Norway: ChAdOx1 nCoV-19 vaccine administered to health care professionals <65 years of age not working with Covid-19 patients

Clinical Signs and Symptoms

Reported findings

- Thrombosis in unusual locations
 - “typical” VTE sites also reported
- Thrombocytopenia
- Low fibrinogen
- Elevated D-dimer

Thrombosis in unusual locations: symptoms

- Cerebral venous sinus thrombosis (CVST)
 - Headache, vision changes, N/V, other neurologic symptoms
- Splanchnic vein thrombosis
 - Abdominal pain, back pain, N/V
- Portal, hepatic, splenic, mesenteric veins
Diagnostic tests

CBC with platelet count
 • Platelets may be minimally decreased in early stages

Symptom directed imaging
 • Must use IV contrast for head and abdominal imaging
 • DVT, PE, multiple vascular beds and arterial thrombosis also reported

Heparin induced thrombocytopenia (HIT) assay
 • Will discuss PF4 ELISA and functional platelet assays

Fibrinogen
 • May be normal or low normal early in presentation
 • Very low in severe cases

D-dimer
 • Will be elevated in setting of thrombosis
Autoimmune HIT: endogenous polyanion substitutes for heparin

HIT assays

Heparin-PF4 Antibody detection
- Heparin-PF4 enzyme-linked immunosorbent assay (ELISA)
 - Standard ELISA technology
 - IgG detection has best specificity
- Rapid immunoassays (RI)
 - Have not been tested/validated in VITT
 - Magnetic beads coated with PF4 and heparin substitute
 - Particle gel immunoassay (PaGIA)

Functional platelet activation assays
- Serotonin release assay (SRA) “gold standard for HIT
- Other sophisticated assays using normal platelets to check for platelet activation by the patient’s serum containing antibodies are not available at many institutions but may be available on a send-out basis for confirmation in some settings.
Heparin/PF4 ELISA

Patient Plasma \[\rightarrow\] HIT: Anti-heparin/PF4 \[\rightarrow\] PF4 and heparin or heparin-like molecules \[\uparrow\] VITT: anti-? polyanion/PF4

Color indicator with read out of optical density or OD

Antibody Binding

- Anti-IgG

Key Terms
- HIT: Anti-heparin/PF4
- VITT: anti-? polyanion/PF4
HIT assays: what we know with VITT

• For HIT diagnosis, PF4 ELISA has excellent NPP but mediocre PPV
 • Low levels of antibodies are common in some clinical settings, e.g. cardiovascular surgery

• VITT cases to date:
 • Marked positive PF4 IgG ELISA with high OD
 • Addition of high dose heparin inhibits OD
 • Platelet activation by patient serum
 • Does not require heparin
 • Inhibited by high dose heparin
 • Inhibited by antibody IV.3 which blocks FcRγIIA
 • May be augmented by adding PF4
 • Rapid immunoassays shown not to be as reliable as standard PF4 IgG ELISA
 • Magnetic beads (HemosIL AcuStar HIT IgG) negative but ELISA positive in the UK cases

Schultz, NEJM 2021
Diagnostic steps

- **High index of suspicion in recently vaccinated patients**
 - *Time* from vaccination is key
 - 5 to 24 days reported, outside this window by a few days may still be VITT
 - Thrombosis in **unusual locations** but typical VTE have been reported

- **Order tests**
 - CBC and platelet count
 - Heparin/PF4 IgG ELISA
 - Fibrinogen
 - D-dimer

- **Initiate treatment**
 - If thrombocytopenia and thrombosis in unusual location, **don’t wait** for PF4 ELISA results to initiate treatment

If within window post vaccine with DVT or PE but no thrombocytopenia avoid heparin anticoagulants and follow for more severe sequelae
Final comments

• Knowledge is evolving in real time

• Mechanism of development of prothrombotic state and relationship to vaccine unknown

• Patient specific factors not clear, easy to speculate based on reported data but better understanding of pathophysiology and contributing risks is needed
Management of VITT

Lisa Baumann Kreuziger, MD, MS

Associate Investigator, Blood Research Institute, Versiti

Associate Professor, Hematology & Oncology, Medical College of Wisconsin
Conflict of Interest

• Consulting: CSL Behring, Quercegen Pharmaceuticals, HHS Vaccine Injury Compensation Program
• Intellectual Conflict of Interest: ASH FAQ contributor, NIH COVID-19 Guideline Panel
Management of VITT

Similar to autoimmune HIT

Avoid heparin & use non-heparin anticoagulant

IV Immunoglobulin (IVIG)

Avoid platelet transfusion*

Consider referral to tertiary care center for expertise in hemostasis
Pathophysiology of HIT

Thrombocytopenia
Thrombin generation
Thrombosis

PF4 and heparin bind in stoichiometric ratios, forming a complex bound by IgG

Platelet alpha granules release PF4

Platelet FC receptors bind the HIT antibody

Platelet activation, aggregation, and release of procoagulant microparticles; platelet removal by splenic macrophages and platelet incorporation into thrombi
Anticoagulation

Non-Heparin anticoagulant

- IV direct thrombin inhibitor (bivalirudin, argatroban)
- Fondaparinux
- Apixaban or rivaroxaban

Treat for 3 months for provoked thrombosis
IVIG

- Decrease platelet activation
- 1-2 grams/kg IV in divided doses
- Give early if recognized
- Used in ITP also
 - Consider while awaiting PF4 ELISA

Platelet transfusions

- Worse mortality in HIT with platelet transfusions → Avoid platelet transfusions
- Cerebral vein thrombosis can have intracranial hemorrhage
 - Not a contraindication to anticoagulation
 - Present in 4 of 6 patients reported after J&J/Janssen vaccination
 - Occurred in 3 of 13 patients with CVT after AZ vaccination
 - Additional thrombotic events after receiving platelet transfusion or heparin
- Determine risk benefit ratio after IVIG if severe hemorrhage or emergent surgery

Scully M. et al. NEJM DOI: 10.1056/NEJMoa2105385
Overlap with Disseminated Intravascular Coagulation?

- High D-dimer levels and low fibrinogen reported in cases of VITT

<table>
<thead>
<tr>
<th>N</th>
<th>Vaccine</th>
<th>Low Fibrinogen</th>
<th>Elevated D-dimer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>AZ</td>
<td>3/5 (60%)</td>
<td>5/5 (100%)</td>
<td>Schultz (DOI: 10.1056/NEJMo2104882)</td>
</tr>
<tr>
<td>11</td>
<td>AZ</td>
<td>3/6 (50%)</td>
<td>7/7 (100%)</td>
<td>Greinacher (DOI: 10.1056/NEJMo2104840)</td>
</tr>
<tr>
<td>1</td>
<td>J&J/Janssen</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
<td>Muir (DOI: 10.1056/NEJMc2105869)</td>
</tr>
<tr>
<td>23</td>
<td>AZ</td>
<td>13/23 (57%)</td>
<td>21/21 (100%)</td>
<td>Scully (DOI: 10.1056/NEJMo2105385)</td>
</tr>
</tbody>
</table>

- Consider correction of fibrinogen to >150 mg/dl
- Incidence may change as recognized earlier in disease course

What if….?

• Situations will arise as more people tested & early recognition of VITT
• Other reasons for thrombocytopenia & thrombosis (e.g., cancer-associated thrombosis) → PF4 ELISA
• DVT or PE after vaccination without thrombocytopenia
 – Avoid heparin (consider DOAC)
 – Await PF4 ELISA results
 – Follow platelet count
• Thrombocytopenia & positive PF4 ELISA without thrombosis
 – Consider IVIG
 – Consider non-heparin anticoagulant
Should aspirin be given to patients after J&J vaccination?

- Blocking thromboxane does not block platelet activation in HIT
- Aspirin is associated with risk of bleeding (RR 1.3)
- Incidence of VITT is RARE

NO
Management of VITT

Similar to autoimmune HIT

<table>
<thead>
<tr>
<th>Avoid heparin & use non-heparin anticoagulant</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV Immunoglobulin (IVIG)</td>
</tr>
<tr>
<td>Avoid platelet transfusion*</td>
</tr>
<tr>
<td>Consider referral to tertiary care center for expertise in hemostasis</td>
</tr>
</tbody>
</table>
Vaccine-induced Immune Thrombotic Thrombocytopenia: Frequently Asked Questions

(Version 1.1; last updated April 16, 2021)

Input from: James Busell, MD; Jean M. Connors, MD; Douglas B. Cines, MD; Cynthia E. Dunbar, MD; Laura C. Michaelis, MD; Lisa Baumann Kreuziger, MD; Agnes Y. Y. Lee, MD, MSic; Ingrid Pabinger, MD

HTTPS://WWW.HEMATOLOGY.ORG/COVID-19/VACCINE-INDUCED- IMMUNE-THROMBOTIC-THROMBOCYTOPENIA
Thrombosis with Thrombocytopenia Syndrome (TTS) after Johnson & Johnson (Janssen) COVID-19 vaccine: Reporting Adverse Events

April 20, 2021

John Su, MD, PhD, MPH
How to Report an Adverse Event to VAERS

- Managed by CDC and FDA
- Go to vaers.hhs.gov
- Submit a report online
- For help:
 Call 1-800-822-7967
 Email info@VAERS.org
 video instructions https://youtu.be/sbCWhcQADFE
- Please send records to VAERS ASAP if contacted and asked
 - HIPAA permits reporting of protected health information to public health authorities including CDC and FDA
Reporting to VAERS – by website

- https://vaers.hhs.gov/esub/index.jsp
- Times out after 20 MINUTES of inactivity
 – Warning at 15 minutes
Reporting to VAERS – by electronic form

- https://vaers.hhs.gov/uploadFile/index.jsp
- Can fill and upload at your convenience
Discussion
Thank You
The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.