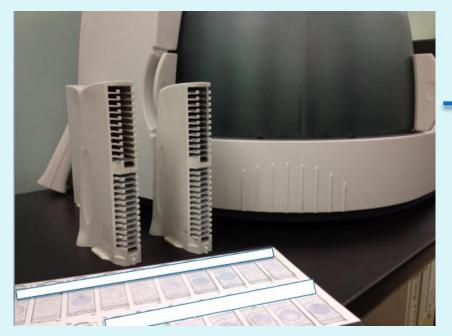
ASC Task Force Recommendations for *Productivity and Quality Assurance in the Era of Automated Screening*

> Tarik M. Elsheikh, MD Cleveland Clinic Cleveland, OH

American Society of Cytopathology Productivity and Quality Assurance in the Era of Automated Screening Task Force


Task Force Members:

- Tarik M. Elsheikh, Chair
- Marshall Austin
- David Chhieng
- Fern Miller
- Ann Moriarty
- Andrew Renshaw

Image assisted cervical screening

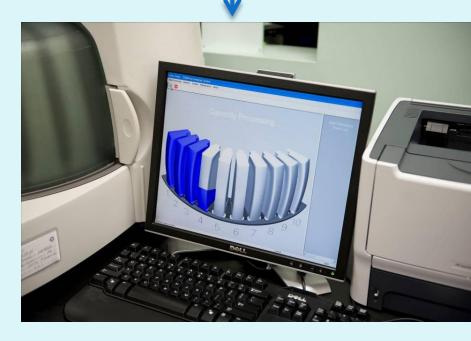
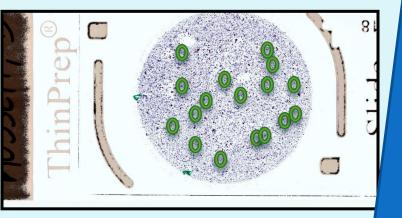

- Estimated over 55 million Paps (USA)
 - 85-90% (ThinPrep and SurePath)
 - 50-65% image assisted
- ThinPrep Imaging System (TIS)
- BD FocalPoint Guiding System (FP GS)

Image Assisted Cervical Screening



- Fully integrated interactive computer IS designed to assist cytotechnologists (CTs) in primary screening
- Image processor rapidly scans slides

Image Assisted Cervical Screening

TIS

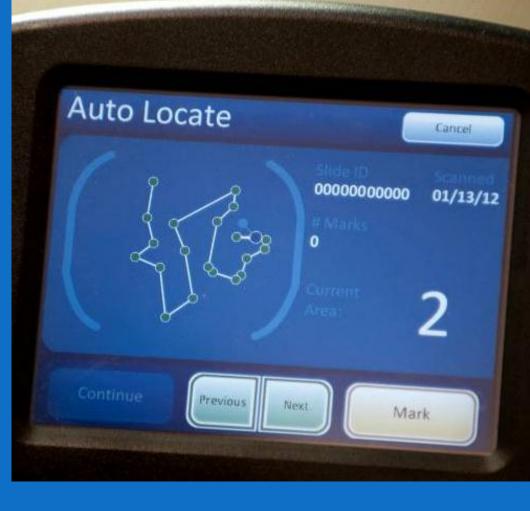
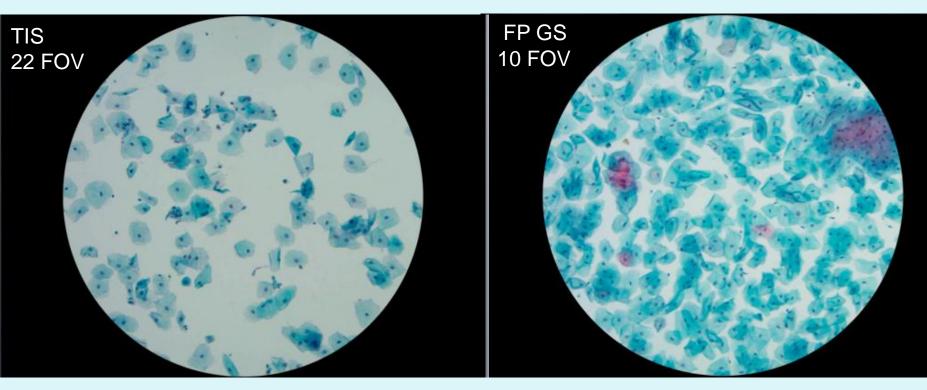



 Image processor locates 22 or 10 FOVs for every slide (TIS or FPGS)

Image Assisted Cervical Screening

CT evaluates all FOV

- If no abnormalities \rightarrow sign out as "Negative"
- Any abnormalities → require Full Manual Review (FMR) of entire slide

Image Assisted Cervical Screening

- Many studies showed increased sensitivity associated with imaging systems
 - Higher detection of ASC, LSIL and HSIL
- Most striking outcome is NOT increased sensitivity, but increased productivity

Halford 2010, Allen 2002, Lozano 2007, Davey 2007, Dziura 2006, Miller 2007, Pacheco 2008, Papillo 2008

Image assisted cervical screening

- FDA approved workload limits are doubled for image assisted Paps: <u>200 slides/day</u>
- Slides counted "100" per 2010 FDA alert, as imaged only slides count as 0.5 slide
- All workload studies, including FDA trials, counted each slide as 1.0
- Increased productivity became an attractive option for many labs

* 2010 FDA alert: "The maximum daily limit specified in each of the device product labeling is only an upper limit and should never be used as an expectation for daily productivity or as a performance target"

 Some labs are encouraging their CTs to meet desired productivity expectations, NOT "Quota" or "Performance Targets"

Expectations:

- are determined on an individual basis
- do not represent a minimum required # of screened slides to be achieved consistently

Productivity and Quality Assurance in the Era of Automated Screening Task Force

The Task Force was assigned the following charges:

1. Research and evaluate quality assurance monitors

currently available for automated screening instruments

- 2. Recommend quality assurance monitors for automated Pap test screening
- 3. <u>Create a statement of appropriate workload and</u> <u>screening practices for cytologic specimens when</u> <u>automated screening is employed</u>

4. Monitor emerging screening technologies and make recommendations for best practices for quality assurance and workload.

May 2009

Productivity and Quality Assurance in the Era of Automated Screening Task Force

What represents a reasonable and realistic maximum CT workload limit, without sacrificing quality?

ASC Task Force Recommendations September 2011

- Recommendations are based upon literature review and best available research to date
- Pertain only to gynecologic specimens with image-assisted screening
- Do not apply to non-GYN specimens, including FNAs

American Society of Cytopathology Task Force Productivity and Quality Assurance in the Era of Automated Screening

Recommendations <u>(evidence-based):</u>

- CT workday not include > 7 hrs of GYN screening in an 8 hr shift. Breaks should be mandatory
- Future studies of CT workload should use actual # of screening hours
- 3. Average laboratory gynecologic CT workload should NOT exceed **70** slides/day (2010 FDA count)
- 4. Full manual review at least 15% of screened slides
- 5. ECA-adjusted workload: monitor CT productivity
- 6. Quality indicators for evaluating CT performance2011

Endorsements

•ASCP (American Society of Clinical Pathology)

• ASC (American Society of Cytopathology) UNANIMOUS

•ASCT (American Society of Cytotechnology)

• PSC (Papanicolaou Society of Cytology)

American Society of Cytopathology Task Force Productivity and Quality Assurance in the Era of Automated Screening

Recommendations <u>(evidence-based):</u>

- 1. <u>CT workday not include > 7 hrs of GYN screening</u> in an 8 hr shift. Breaks should be mandatory
- Future studies of CT workload should use actual # of screening hours
- 3. <u>Average laboratory gynecologic CT workload</u> <u>should NOT exceed **70** slides/day (2010 FDA count)</u>
- 4. Full manual review at least 15% of screened slides
- 5. ECA-adjusted workload: monitor CT productivity
- 6. Quality indicators for evaluating CT perfoseptember 2011

ASC Task Force recommendations: "The Evidence"

- FDA clinical trial studies
 - Performed by manufactures for pre-market approval
- Literature review
- Lab survey
- Longitudinal studies
 - ThinPrep imager
 - Focal point GS

The FDA Clinical Trial Studies

		ruble i i cytotte inbiogist beretuning funts					
TIS		te/CT Review Number of Number of			Extrapolated Daily Rates (8-hour workday)		
Clinical Trial	N	Iethods Slides	Hours	Low	Average	High	
	- Sit	- - Site/CT		Avg Hrs Screened Per Day		Mean Extrap Daily Rates	
 * FDA approval: 200 slides/d 4 sites 8 CTs 	Site 2	Lab	7	.8	1	09	
	-	Lab	4	.5	2	04	
		3-1	4.2		23	30	
		3-2	4	.7	17	78	

Table 14: Cytotechnologist Screening Rates

- 6/8 CTs screened an average of 4.2-6.1 hrs/day
- Highest CT average daily rates: 230 and 178 slides, extrapolated from 4.2 and 4.7 hrs (site 3)
- Lowest lab average daily rate: 109 slides, average 7.8 hrs (site 2)

FocalPoint GS Clinical Trial

- Total 16 CTs from 4 sites in study
 only data from
 - 12 CTs reported
- 5 CTs avg'd 3-4 hr
- 7 CTs avg'd 4-5 hr
- None worked > 5 hr

All workload data extrapolated to 8 hrs
Highest lab avg: 150

Extrap from 4.6 hr

Highest CT avg: 172

Extrap from 4.8 hr

Table I.8.1 Cytotechnologist Screening Rates						
Site/CT	CT Review Methods Evaluated		Average Number of Hours Screened Per Day 5.15		hour workday) Mean High Day Day 78.1 192.0	
MS 3,258		Avg Hrs Screened Per Day		Mean Extrap Daily Rates		
		_ab	4.6 ′	1	150	.9
Site 4		CT 933	4.82		172.2	
I	00	210				

I 9 1 Cutatachnologist Savaning Datas

* FDA approval: 170 slides/ 8 hr workday

Major Limitations Associated with TIS and FocalPoint GS Clinical Trial Studies

- 1. Small sample sizes (9-12,000 cases)
- 2. Non-routine lab (clinical trial) setting
 - Screening time calculations did not include computer time, including detailed clinical information/history check or results entry into LIS
- 3. High day rates were extrapolated from hourly rates
- 4. High 8-hr daily screening rates were never actually achieved by any CT (extrapolated numbers)
- Extrapolated rates are not realistic because they don't take into account necessary breaks or fatigue.
 <u>Cytotechnologists are not machines</u>

Literature Review

Image Assisted Paps and Productivity: Literature Review

- A major duty of cytology directors/supervisors is determining appropriate workloads for their CTs
- Literature on workload was limited
 - Entirely related to TIS
 - No FocalPoint GS studies were available, outside clinical trial
- Extremes in results:
 - No appreciable change up to >200% increase in productivity (approx 200-228 slides/day)

Lozano 2007, Schledermann 2007, Davey 2007, Duby 2009, Dawson 2006

Literature Review²

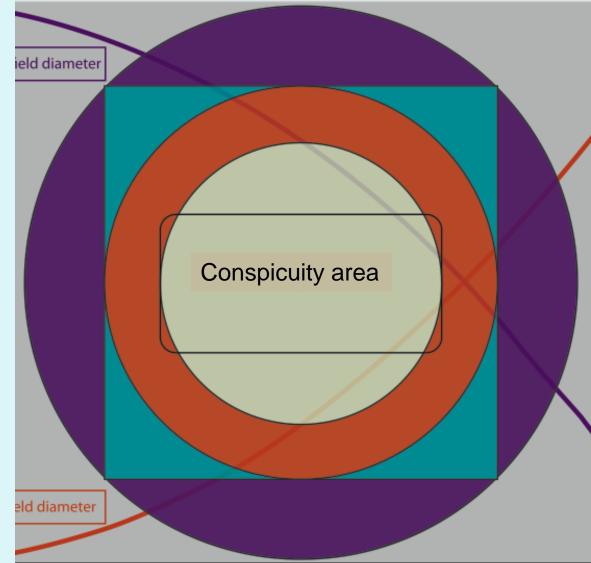
- No significant gain in sensitivity or specificity at higher speeds (140-160 slides/day)
- Studies that reported significant increases in sensitivity, showed only modest gains in productivity
- Workloads over 100 slides/day can lead to decreased detection of HSIL, and overall lower screening performance of the CTs

Literature Review³ Comparison of Manual vs. TIS Screening

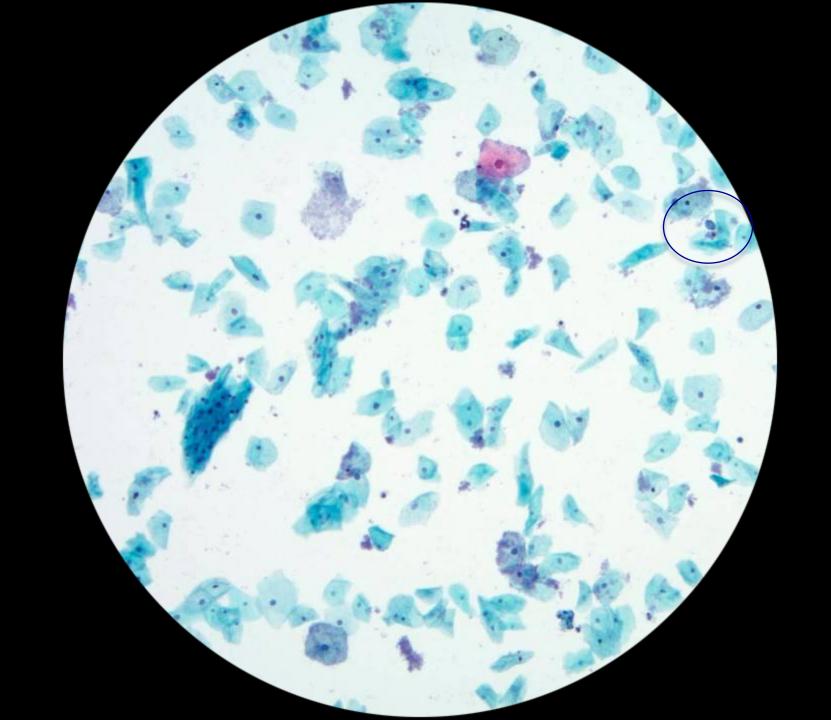
<u>3 distinct workload ranges (all slides counted as 1.0)</u>

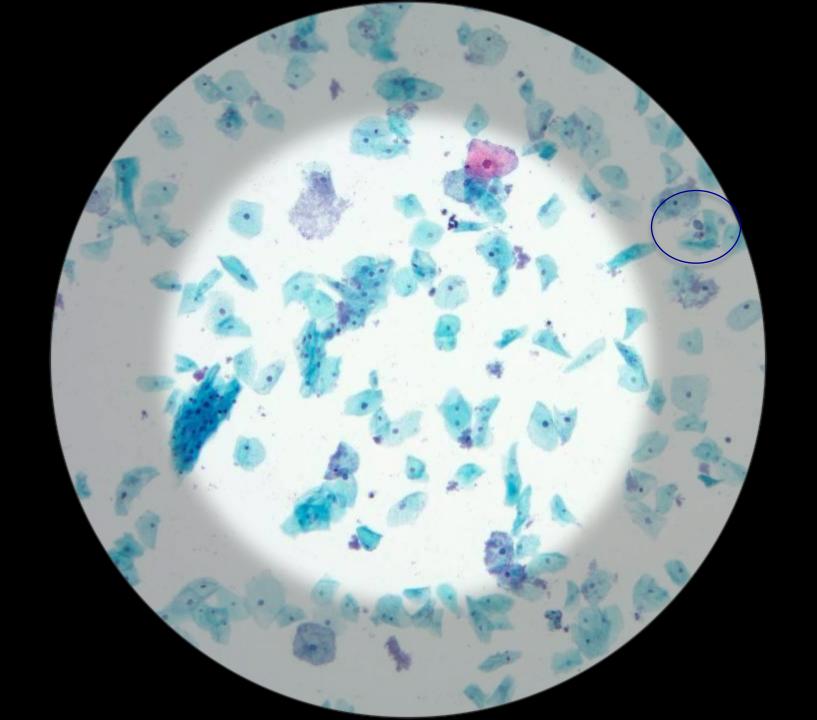
- Low (< 60 slides/day)</p>
 - Workload did not influence screening accuracy
- Intermediate (60-103 slides/day)
 - Imager consistently increased CT detection of HSIL+
- High (> 103 slides/day)
 - Imager did not increase HSIL detection
 - When ASC increased, HSIL decreased: CTs tended to call abnormals as "ASC" rather than precisely classify them

Literature Review⁴


Increased speed was accomplished mostly by:

- Reduced time examining FOV and Lower % of Full Manual Review
- As low as 3% FMR reported in literature
- As workload \clubsuit the time devoted to screen FOVs \clubsuit
- CTs struggled to identify ASC and HSIL at higher speeds → increased misses
- Most False Negatives were due to failure to identify abnormal changes present in at least one of the FOVs


Halford 2010, Zhang 2007, Bolger 2006, Roberts 2007, Elsheikh 2010


Field of View (FOV)

- Best chance to find abnormal cells is in white zone
- Likelihood worsens in orange zone
- Small single cells most likely missed in purple zone

Gill 2011

Lab Survey

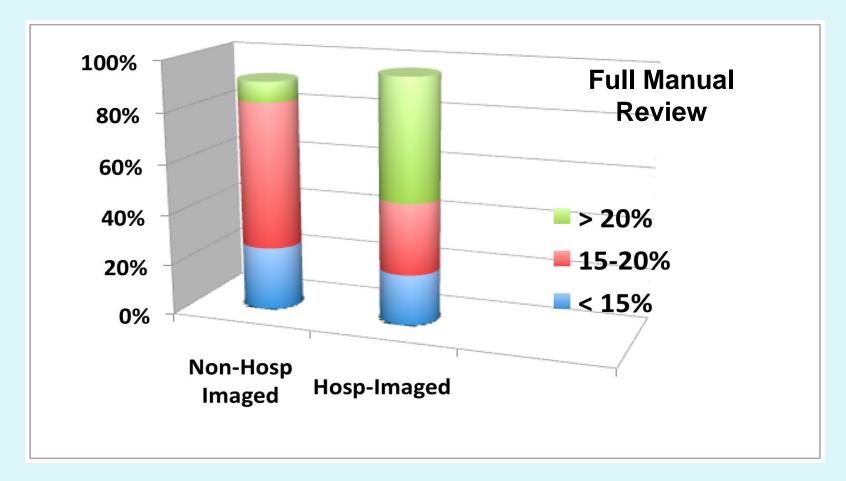
Lab Survey Image Assisted Screening

	Total Labs	Non- Hospital Labs	Hospital Labs
Labs	31	18	13
Techs	*312	224	88

- Represents approx 5% of CT workforce
- * No significant participation from large Commercial labs

Miller, ASC 2010

Lab Survey: Productivity with Image Assisted Screening


Slides/day	Non-Hospital Lab Average	Hospital Lab Average
	% Labs	% Labs
< 60		34%
60-80	24%	66%
81-100	34%	
101-120	30%	
121-140	12%	

88% of non-hospital labs screened < 120 slides/day

100% of hospital labs screened < 100 slides/day

Miller, ASC 2010

Lab Survey: FMR and Image Assisted Screening

Majority of labs performed > 15% FMR

- 25% of non-hospital labs perform < 15% FMR
- 20% of hospital labs perform < 15% FMR

Miller, ASC 2010

Prospective Longitudinal Studies

Original Article

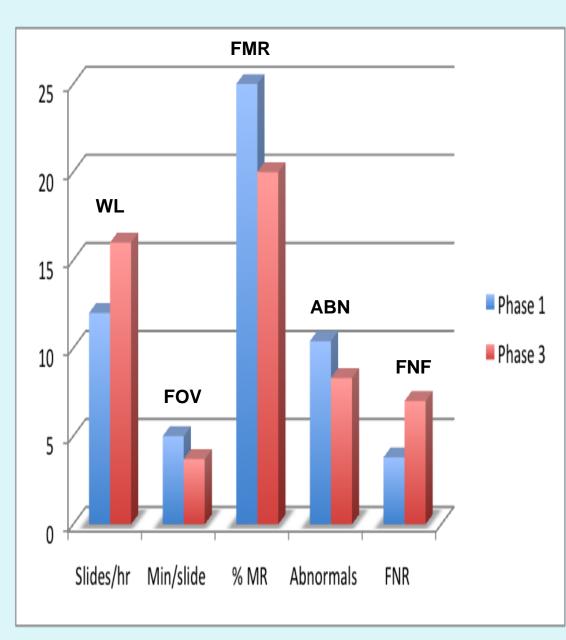
Increasing Cytotechnologist Workload Above 100 Slides Per Day Using the ThinPrep Imaging System Leads to Significant Reductions in Screening Accuracy

- Utilizing TIS, evaluated the performance of 3 CTs, with variable levels of experience and screening speeds
- Asked CTs to progressively increase their productivity over 3 phases (8 weeks)
- Did not specify how to increase productivity

	Phase 1		Phase 2		Phase 3		% increase
	Slides/da	Slides/hr	Slides/da	Slides/hr	Slides/da	Slides/hr	phase 1-3
	у		у		у		
CT 1	79	11.3	87	12.5	110	14.9	+37
CT 2	87	12	100	13.7	118	15.3	+36
CT 3	98	13	121	16.6	128	18.8	+32

• Phase 1: CTs screened at their usual pace

- Phase 2: CTs screened as fast as they could without sacrificing the quality of their work
- Phase 3: CTs screened 15% > phase 2 (individualized)
- **36% increase** in productivity: 87 to 118 slides/day (12 to 16 slides/hr) (FDA max 25 slides/hr)


- We emphasized to the CTs, however, that although increased productivity was desired, they are NOT "quota"
 - -i.e. there were no mandatory minimal # of slides required to screen, and
 - In no way should quality be compromised

Results

- As workload increased:
- actual screening time (FOV min/slide)
- - (P <.001)

• 🛧 FNF

 ↓ total abnormals
 (P <.001), ASC, and HSIL

Elsheikh 2010

Missed Abnormals Were For Real

	Phase 1 %	Phase 3 %	Relative %	P value
Total Abnormals	10.4	8.3	- 20	< .001
ASC	6.7	4.9	- 27	< .001
ASC-HPV+	47.6	58.6	+ 23	.04

- ◆ abnormal rate associated with ◆ ASC and ↑ ASC-HPV+ (all values statistically significant)
- Suggests higher threshold for calling atypia → under-calling Abnormals

FocalPoint GS Study

Design: Identical to TIS study

- 3 CTs increased their workload over 6 week period
- Phase I: CTs screened at their usual pace
- Phase II: CTs screened as fast as they could without diminishing the quality of their work
- Phase III: CTs screened 15% more than their daily workload from phase II

FocalPoint GS Study

	Phase I	Phase III	% Change	<i>P</i> value
Workload Slides/day	76.7	114.1	+49%	.008
FOV Min/slide	5.5	3.7	-33%	.031
FMR	38%	19%	-50%	
Abnormals: ASC+	15.5%	10.5%	-32%	<.001
FNF	1 %	6.9%	+60%	<.001

Overall, as CT workload increased to >100 slides/day
 → ↓ time spent/10 FOVs, ↓ % FMR, ↓ abnormal rate; and ↑ FNF(calculated at LSIL+ threshold)

Levi 2011

Limitations of the TIS and FPGS Longitudinal Studies

- Two studies that involved only 6 CTs
 - It is possible that additional CTs may have had completely different screening abilities
 - There is no evidence of this in the literature
 - CTs were carefully selected to represent good performers with varying speeds and experience
 - Results were reproducible at 2 different labs, with 2 different imaging systems

Limitations of Longitudinal Studies²

- Studies were conducted over relatively short time periods (6-8 wks)
 - It's possible that results would've been different if:
 - CTs were allowed more time to adapt to increasing workload, or
 - By getting feedback on quality of their performance they can accordingly improve
 - There is no evidence of this in the literature at those higher speeds
 - Literature shows CTs can improve their performance with feedback at much lower workloads (< 50 slides/d) & manual screening

Brimo 2010

Limitations of Longitudinal Studies³

Additional studies are needed?

- -Possibly, but
 - Need to be evidence-based
 - Not based on surveys or interviews
 - Follow a similar model of increasing workload
 - These studies are very difficult to perform: most labs can not afford to have 3 or 4 CTs removed from regular duty service for several months → severe financial and TAT impacts

PANEL DISCUSSES IMPACT OF NEW TECHNOLOGIES ON WORKLOAD LIMITS

On July 22-23, 1999, the Centers for Disease Control (CDC) convened a panel to discuss the impact of new technologies for gynecologic cytology on workload limitations. The majority of the panel members was a divergence of opinion regarding conventional non-gyn slides due to their variable nature, i.e., fine needle aspirations that have many slides which are mostly blood. 3. **How should "workload" be defined?** group of slides being rescreened, screening, and the use of validated u commercially prepared challenge taining 40, 50, 60, 70, or 80 slide could be used as one component of

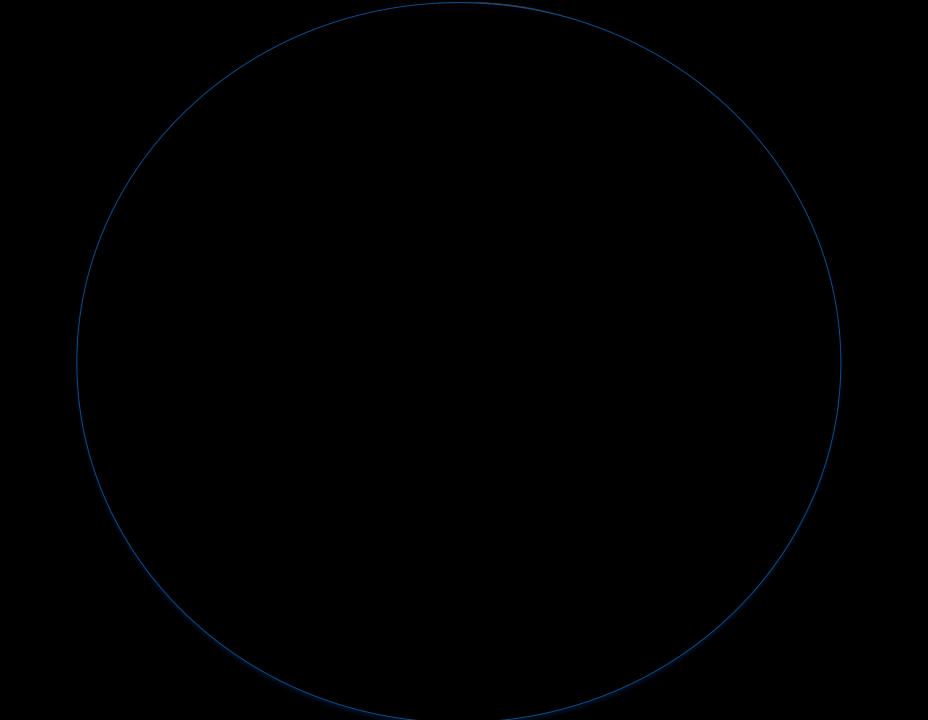
1. The current workload limit is used inappropriately as a target in some labs. Many participants were concerned that the 100-slide limit is too high and it was suggested that 80 slides might be more appropriate. The lack of studies correlating accuracy levels with workload was noted, and the need for such studies was stressed at several points during the meeting.

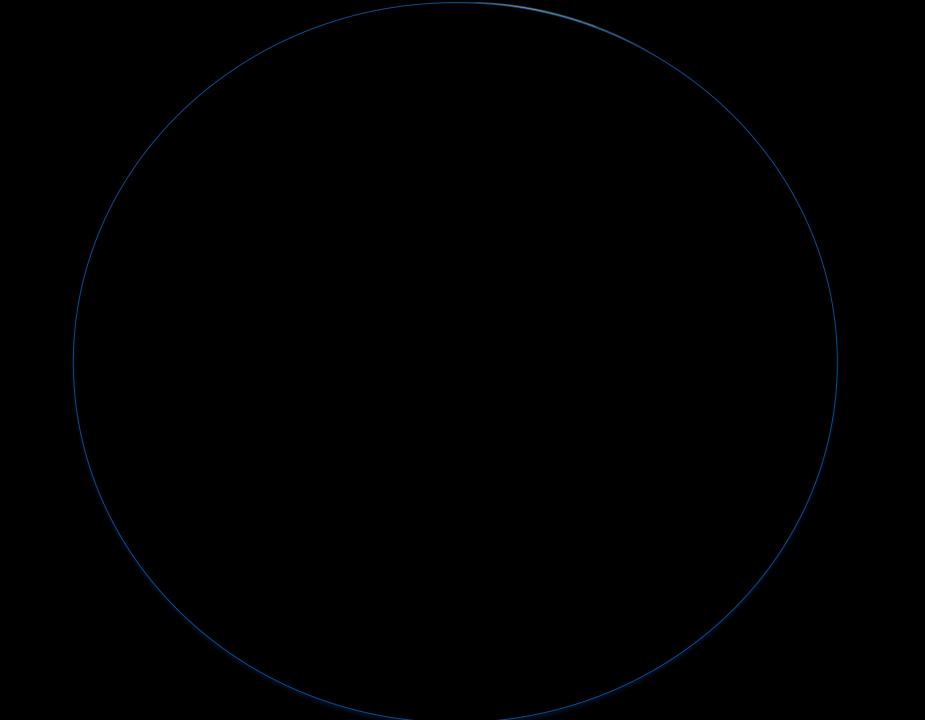
July 1999

Workload and Workday

Screening Workload

• Clinical Practice:

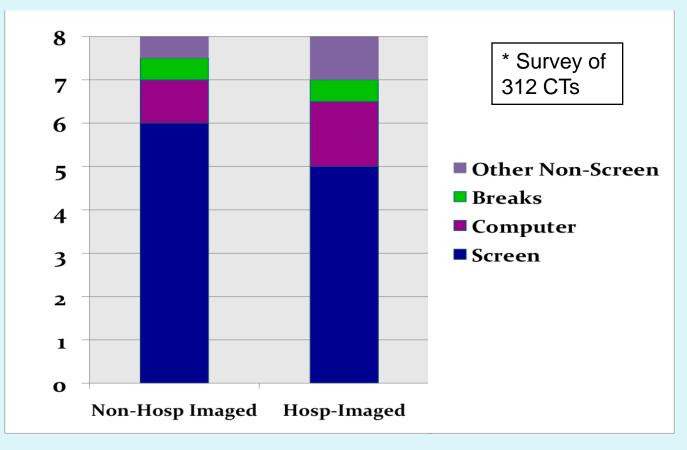

- 1. Double check clinical information in laboratory information system (LIS)- excludes batch data entry
 - Patient name, DOB, SSN, menstrual Hx, specimen type, high risk Hx, orders for reflex HPV/STD testing
 - Investigate and resolve discrepancies
- 2. Review FOVs
- 3. Record Results in LIS


Research setting:

Workload studies, including FDA trials, did NOT include detailed review of clinical info/history or entry of results into LIS

Calculation of Screening Time

- Handling & aligning slide= 48 sec/slide
 LIS time: 43 sec/slide
- Total screen time at FDA limit of 200 slide/day = 144 sec/slide
 - Non-microscopic time = 91 sec/slide
 - -FOV review = 53 sec/slide (2.4 sec/FOV)



Estimated FOV times, Based on Calculating Screening Rates with and without LIS Time

	Workload rate/8 hrs			
	200 slides	150 slides	100 slides	
22 FOV (1 FOV) with LIS	53 (2.4)	101 (4.6)	197 (8.9)	
22 FOV (1 FOV) without LIS	96 (4.3)	144 (6.5)	240 (10.9)	

- * Time measured in seconds
- ** Slides counted as 1.0 not 0.5

Actual Workday- Lab Survey/Literature Review

- Computer time: 1-1.5 hrs/day
- Actual screening time: 5-6 hrs/day
- Literature: A full 8-hr shift contains closer Davey 2007 to 6.5-7 hrs of actual screening Davey 2007 *Miller ASC* 2010 *Elsheikh* 2010

American Society of Cytopathology Task Force Productivity and Quality Assurance in the Era of Automated Screening

Recommendations (evidence-based):

- CT workday not include > 7 hrs of GYN screening in an 8 hr shift. Breaks should be mandatory
- Future studies of CT workload should use actual # of screening hours
- 3. Average laboratory gynecologic CT workload should NOT exceed **70** slides/day (2010 FDA count)
- 4. Full manual review at least 15% of screened slides
- 5. ECA-adjusted workload: monitor CT productivity
- 6. Quality indicators for evaluating CT perfoseptember 2011

ASC Task force Recommendations #1. Cytotechnologist Workday

- CT workday should not include more than 7 hours of GYN (Pap test) screening in a 24-hr period, provided there are no additional duties or distractions
- An 8-hr shift must include at least 2 paid breaks of 15 minutes + 30-min lunch break

• Literature:

- Performance of most CTs decreases after 4 hrs (lower sensitivity and accuracy)
- Breaks necessary to maintain concentration and avoid fatigue NHSCSP publication No 14, 2003; CBWG 1997; Elsheikh 2010

ASC Task force Recommendations #1. Cytotechnologist Workday (cont.)

- Breaks = complete break from microscopy
 - May NOT include other activities such as data entry, QA, non-GYN screening, or immediate evaluation
 - Time allotted for breaks is intended for mental and muscular rest, so it can not be "worked through"

ASC Task force Recommendations #2. Future Studies of Workload

- Extrapolation is not an acceptable method for determining reliable workload limits
- Future studies examining CT workload should use actual hours of screening

ASC Task force Recommendations #3. CT Workload Limits- Image Assisted

- FDA upper limits are extremely high and maybe associated with significant reduction in sensitivity
 - <u>Average laboratory</u> workload for CT should NOT exceed **70** slides/day (140 FOV only slides)

(FDA count: FOV only= 0.5, FMR=1, FOV+ FMR= 1.5)

ASC Task force Recommendations #4. Full Manual Review

 The % of imaged slides that undergo FMR should be at least either 15% or twice (2x) the epithelial cell abnormality (ECA) rate, whichever is greater CT Workload Limits- Image Assisted (cont.)

Example:

- 100 slides screened with a 20% FMR→
 Calculated as follows (per 2010 FDA bulletin):
 - 80 slides FOV only (calculated as 80 x 0.5 =
 40)
 - + 20 slides FOV+FMR (calculated as 20 x 1.5= 30)

* Further look at developing models to help with the confusion of counting

Summary

- Minimization of the # of false negative cases, coupled with high specificity, are keys to a successful screening program
- Higher screening rates proportionally cancel out the increased sensitivity gained by imaging
- ASC task force recommendations <u>apply</u>
 <u>only to GYN cytology specimens</u>

Summary²

- Current maximum workloads limits for image guided screening are certainly too high for most CTs to achieve
- Workload limits should take into account microscopic screening time, LIS time, and necessary breaks; and should not be based on extrapolated numbers

Cytotechnologists are not machines

"Since screening excessive # of slides may present a danger to the public, perhaps professional societies should pursue this issue with the appropriate governmental agencies"

> Cytology benchmarking working group, CMLTO 1997

References

1. Allen KA. Ctyologist shortage harms patient health. ASCT News 2002;22:33-35.

2. Biscotti CV, Dawson AE, Dziura B, Galup L, Darragh T, Rahemtulla A, et al. Assisted primary screening using the automated ThinPrep Imaging System. Am J Clin Pathol 2005;123(2):281-7. 3. Operation summary and clinical information, ThinPrep imaging system. Cytyc corporation, Part No. 86093-001 Rev. E00, 2006.

4. Lozano R. Comparison of computer-assisted and manual screening of cervical cytology. Gynecol Oncol 2007;104(1):134-8.

5. Schledermann D, Hyldebrandt T, Ejersbo D, Hoelund B. Automated screening versus manual screening: a comparison of the ThinPrep imaging system and manual screening in a time study. *Diagn Cytopathol* 2007;35(6):348-52.

6. Elsheikh TM, Kirkpatrick JL, Fischer D, Herbert KD, Renshaw AA. Does the time of day or weekday affect screening accuracy? A Correlation study with Cytotech Workload and Abnormal Rate Detection Utilizing the ThinPrep Imaging System. Cancer Cytop2010

7. Renshaw AA, Lezon KM, Wilbur DC. The human false-negative rate of rescreening Pap tests. Measured in a two-arm prospective clinical trial. Cancer 2001;93(2):106-10.

8. Practice guidelines for medical laboratory technologists practicing in cytology.

http://www.cmlto.com/quality_assurance/MLT_practice_guidelines/learning/10_cyto_gdlne.pdf 2008.

9. Davey E, d'Assuncao J, Irwig L, Macaskill P, Chan SF, Richards A, et al. Accuracy of reading liquid based cytology slides using the ThinPrep Imager compared with conventional cytology: prospective study. BMJ 2007;335(7609):31.

10. Dziura B, Quinn S, Richard K. Performance of an imaging system vs. manual screening in the detection of squamous intraepithelial lesions of the uterine cervix. Acta Cytol 2006;50(3):309-11.

11. Miller FS, Nagel LE, Kenny-Moynihan MB. Implementation of the ThinPrep imaging system in a high-volume metropolitan laboratory. *Diagn* Cytopathol 2007;35(4):213-7.

12. Pacheco MC, Conley RC, Pennington DW, Bishop JW. Concordance between original screening and final diagnosis using imager vs. manual screen of cervical liquid-based cytology slides. Acta Cytol 2008;52(5):575-8.

13. Papillo JL, St John TL, Leiman G. Effectiveness of the ThinPrep Imaging System: clinical experience in a low risk screening population. Diagn Cytopathol 2008;36(3):155-60.

14. Duby JM, Difurio MJ. Implementation of the Thinprep imaging system in a tertiary military medical center. Cancer Cytopathol 2009.

15. Davey E, Irwig L, Macaskill P, Chan SF, D'Assuncao J, Richards A, et al. Cervical cytology reading times: a comparison between ThinPrep Imager and conventional methods. Diagn Cytopathol 2007;35(9):550-4.

16. Dawson AE. Clinical experience with the thinPrep Imager System. Acta Cytol 2006;50(5):481-2.

17. Bolger N, Heffron C, Regan I, Sweeney M, Kinsella S, McKeown M, et al. Implementation and evaluation of a new automated interactive image analysis system. Acta Cytol 2006;50(5):483-91.

18. Roberts JM, Thurloe JK, Bowditch RC, Hyne SG, Greenberg M, Clarke JM, et al. A three-armed trial of the ThinPrep Imaging System. Diagn Cytopathol 2007;35(2):96-102.

19. Zhang FF, Banks HW, Langford SM, Davey DD. Accuracy of ThinPrep Imaging System in detecting low-grade squamous intraepithelial lesions. Arch Pathol Lab Med 2007:131(5):773-6.

20. Elsheikh T, Kirkpatrick JL, Cooper MK, Johnson ML, Hawkins AP, Renshaw AA. Increasing Cytotech workload above 100 slides/day using the ThinPrep Imaging system leads to significantly worse screening accuracy. Cancer Cytopathol. 2010;118:75-82.

21. Levi A, SChofield K, Elsheikh TM, Harigopal M, Chhieng D. Effects of increasing cytotechnologist workload using the location guided imaging system FocalPoint GS on Surepath Pap tests (abstract). Cancer Cytopathol. 2010;118:307.

22. Gill G.The laboratory In. The art and science of cytopahtology. Demay. 2011.

23. Halford JA, et al. Comparison of the sensitivity of conventional cytology and the ThinPrep imagin system. Diagn Ctyopath 2010;38:318-26.