Biomonitoring Summary

Dioxin-Like Chemicals: Polychlorinated Dibenzo-p-dioxins, Polychlorinated Dibenzofurans, and Coplanar and Mono-ortho-substituted Polychlorinated Biphenyls


Of the dioxins and furans measured in the U.S. representative subsamples of NHANES 1999-2000, 2001-2002, and 2003-2004, octachlorodibenzo-p-dioxin typically was present in the highest concentration, but contributed little to the TEQ, with the other commonly detected dioxin and furan congeners being more than eight-fold lower in concentration. Levels of octachlorodibenzo-p-dioxin that were similar to slightly higher than those in these NHANES subsamples were seen in a representative pooled sampling New Zealander residents aged 15 years and older obtained during 1997-1998 and also in a small convenience sample of German residents aged 18-71 years in 1996 (Bates et al., 2004; Papke et al., 1998; CDC, 2013). Similar levels were also found in 232 Belgian blood donors in 2000 (Debacker et al., 2007).


The three major hexachlorodibenzo-p-dioxins are assigned equal TEF values, but the 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin often demonstrated multifold higher concentrations than the other two hexachlorodibenzo-p-dioxins; about six times higher in the NHANES 2001-2002 subsample (CDC, 2013). The unadjusted geometric mean levels of 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin in 2003-2004 and in 2001-2002 were 34.6 vs. 17.2 pg/g of lipid, respectively. The geometric mean levels of 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin in the 2001-2002 subsample were slightly higher than levels in either the German or New Zealand study mentioned above (Bates et al., 2004; Papke et al., 1998). A convenience sample of Japanese men and women aged 20-76 years studied during 1996-1997 also showed lower median levels than levels in the NHANES 2001-2002 subsample (Arisawa et al., 2003; CDC, 2013).


In prior NHANES surveys, 1,2,3,7,8-pentachlorodibenzo-p-dioxin concentrations werenearly 60-fold lower than octachlorodibenzo-p-dioxin levels (at the comparable percentiles) (CDC, 2013), but because of a 10,000-fold greater TEF (equal to that of TCDD), the contribution of 1,2,3,7,8-pentachlorodibenzo-p-dioxin to the total TEQ would be about 160 times greater than the octachlorodibenzo-p-dioxin. Levels of 1,2,3,7,8-pentachlorodibenzo-p-dioxin for the total population at the 95th percentile in the NHANES 2001-2002 and 2003-2004 subsamples were 15.8 pg/g and 11.0 pg/g lipid, respectively. In 1996, a convenience sample of German residents aged 18-71 years showed that levels of 1,2,3,7,8-pentachlorodibenzo-p-dioxin at the 95th percentile were 9.9 pg/g lipid (Papke et al., 1998). The 95th percentile of a group of workers with distant past trichlorophenol exposure was about twice as high as the 95th percentile for adults in NHANES 2001-2002 (CDC, 2013; Collins et al., 2006).


TCDD is considered the most potent of the dioxin-like chemicals and environmental exposure usually results in very low serum concentrations. In the NHANES 2003-2004 subsample, the 95th percentile for the total population (12 years and older) was 5.2 picograms/gram (pg/g) of lipid. In 1996, the 95th percentile for lipid-adjusted serum TCDD levels in 139 Germans aged 18-71 years was 4.3 pg/g of lipid, with that percentile comprising mainly older individuals (Papke, 1998). In contrast, the most highly exposed females following the Seveso, Italy, factory explosion had median lipid adjusted levels of 272 pg/g lipid in 1976 (Eskenazi et al., 2004). TCDD levels in chemical plant workers with higher exposures have ranged as high as 2,000 pg/g lipid (IARC, 1997). Median serum TCDD levels measured in chemical production workers 15 years after workplace exposure ended were 68 pg/g of lipid (Calvert et al., 1996; Calvert et al., 1999). TCDD levels in the U.S. general population were also lower than workers with past trichlorophenol exposure (Collins et al., 2006) and lower than Vietnam veterans 20 years after duty-related exposure to Agent Orange (median serum TCDD concentration was 12.2 pg/g of lipid) (Henriksen et al., 1997).

Polychlorinated dibenzofurans

Of the polychlorinated dibenzofurans, the following could be characterized at the 95th percentiles (or lower) in the NHANES 1999-2000, 2001-2002 and 2003-2004 subsamples:1,2,3,4,6,7,8-heptachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,6,7,8-hexachlorodibenzofuran, and 2,3,4,7,8-pentachlorodibenzofuran. Generally, these levels are similar to other large population studies.In 237 workers with past exposure to trichlorophenol, where little polychlorinated dibenzofuran exposure would be expected, higher percentiles values were similar to a referent population and to the NHANES 1999-2000 and 2001-2002 subsamples (Collins et al., 2007; CDC, 2013). In 232 Belgian blood donors from the year 2000, the geometric mean level of 1,2,3,4,6,7,8-heptachlorodibenzofuran was several times lower than the geometric mean value in the NHANES 2001-2002 subsample of adults and the other dibenzofurans examined in the Belgian donors were lower than the limits of detection in NHANES 2000-2001 (CDC, 2013; Debacker et al., 2007). In Yucheng rice oil contamination victims when examined 15 years after their exposure, levels of the polychlorinated dibenzofurans were still hundreds of times higher than in levels for the U.S. population observed in the NHANES subsamples (Hsu et al., 2005).

Coplanar PCBs

The coplanar PCBs typically contribute less than about 15% to the total TEQ in the U.S. population (Ferriby et al., 2007). In the NHANES 2001-2002 subsample, the geometric mean levels of PCBs 126 and 169 for adults aged 20 years and older were similar or slightly lower than those reported from a representative pooled sample of New Zealanders in 1996-1997 (Bates et al., 2004; CDC, 2013) and from a smaller sample of non-occupationally exposed men and women aged 20-76 years in Japan in 1999 (Arisawa et al., 2003). Higher levels of these PCBs have been reported for persons consuming sport fish caught in the Great Lakes region (Turyk et al., 2006).In 311 residents of northern Italy, serum PCB 126 and 169 were not detectable, though other PCBs tended to be higher than in the recent NHANES subsamples (Apostoli et al., 2005; CDC, 2013).

Mono-ortho-substituted PCBs

Of the mono-ortho-substituted PCB congeners, the most frequently detected in general population studies are PCBs 118 and 156. Of these, PCB 118 levels were higher than levels of PCB 156 in the NHANES 1999-2000, 2001-2002, and 2003-2004 subsamples, although PCB 156 contributes more to the TEQ because its TEF is five-fold greater than the TEF of PCB 118. Although these PCBs are relatively less potent (i.e., lower TEFs), their contribution to the total TEQ in the U.S. population is about 25% (Ferriby et al., 2007) since they are present in much higher concentrations than are the coplanar PCBs, dioxins, and furans. In a convenience sample of the U.S. population in 1988 (Patterson et al., 1994), levels of PCB 118 were five-fold higher than in the NHANES 1999-2002 subsamples (CDC, 2013). Comparable levels of PCB 156 levels in NHANES 1999-2000 were slightly lower than those reported for a Canadian population study in 1994 (Longnecker et al., 2000). In a referent population of 311 residents in northern Italy during 2001-2003, the 95th percentile levels of PCB 156 and PCB 118 were two to three times higher than for the NHANES 1999-2002 subsamples (Apostoli et al., 2005; CDC, 2013). Levels of PCB 156 and PCB 118 were slightly higher in a Swedish study of 150 men than in the NHANES 1999-2000 subsample, possibly due to higher fish intake in the Swedish population (Glynn et al., 2000; CDC, 2013). However, in fish-consuming Japanese men and women studied during 1996-1997, PCB 118 levels at the 75th percentile were similar to levels in the NHANES 2001-2002 subsample (Arisawa et al., 2003).

Finding a measurable amount of one or more of the polychlorinated dibenzo-p-dioxins, dibenzofurans, coplanar or mono-ortho-substituted biphenyls in serum does not mean that the level of one or more of these chemicals causes an adverse health effect. Biomonitoring studies of serum polychlorinated dibenzo-p-dioxins, dibenzofurans, coplanar or mono-ortho-substituted biphenyls provide physicians and public health officials with reference values so that they can determine whether or not people have been exposed to higher levels of polychlorinated dibenzo-p-dioxins, dibenzofurans, coplanar or mono-ortho-substituted biphenyls than levels found in the general population. Biomonitoring data can also help scientists plan and conduct research on exposure and health effects.


Anderson HA, Falk C, Hanrahan L, Olson J, Burse VW, Needham LL, et al. Profiles of Great Lakes critical pollutants: a sentinel analysis of human blood and urine. The Great Lakes Consortium. Environ Health Perspect 1998;106(5):279-89.

Apostoli P, Magoni M, Bergonzi R, Carasi S, Indelicato A, Scarcella C, et al. Assessment of reference values for polychlorinated biphenyl concentration in human blood. Chemosphere 2005;61(3):413-21.

Arisawa K, Takeda H, Mikasa H. Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: a review of epidemiologic studies. J Med Invest. 2005;52(1-2):10-21.

Arisawa K, Matsumura T, Tohyama C, Saito H, Satoh H, Nagai M, et al. Fish intake, plasma omega-3 polyunsaturated fatty acids, and polychlorinated dibenzo-p-dioxins/ polychlorinated dibenzo-furans and co-planar polychlorinated biphenyls in the blood of the Japanese population. Int Arch Occup Environ Health 2003;76(3):205-15.

Aylward LL, Hays SM. Temporal trends in human TCDD body burden: decreases over three decades and implications for exposure levels. J Expo Anal Environ Epidemiol. 2002;12(5):319-28.

Baccarelli A, Mocarelli P, Patterson DG Jr, Bonzini M, Pesatori AC, Caporaso N, et al. Immunologic effects of dioxin: new results from Seveso and comparison with other studies. Environ Health Perspect 2002;110:1169-73.

Bates MN, Buckland SJ, Garrett N, Ellis H, Needham LL, Patterson DG Jr, et al. Persistent organochlorines in the serum of the non-occupationally exposed New Zealand population. Chemosphere 2004;54:1431-43.

BeckH, Dross A, Mathar W. PCDD and PCDF exposure and levels in humans in Germany. Environ Health Perspect 1994;102 Suppl 1:173-85.

Calvert GM, Willie KK, Sweeney MH, Fingerhut MA, Halperin WE. Evaluation of serum lipid concentrations among U.S. workers exposed to 2,3,7,8-tetrachlorodibenzo-p dioxin. Arch Environ Health 1996;51(2):100-7.

Calvert GM, Sweeney MH, Deddens J, Wall DK. Evaluation of diabetes mellitus, serum glucose, and thyroid function among United States workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occup Environ Med 1999;56(4):270-6.

Carpenter DO. Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Rev Environ Health 2006;21(1):1-23.

Centers for Disease Control and Prevention (CDC). Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables. September 2013. [online] Available at URL: 9/15/13

Collins JJ, Bodner K, Burns CJ, Budinsky RA, Lamparski LL, Wilken M, et al. Body mass index and serum chlorinated dibenzo-p-dioxin and dibenzofuran levels. Chemosphere 2007;66(6):1079-85.

Collins JJ, Budinsky RA, Burns CJ, Lamparski LL, Carson ML, Martin GD, et al. Serum dioxin levels in former chlorophenol workers. J Expo Sci Environ Epidemiol 2006;16(1):76-84.

Debacker N, Sasse A, van Wouwe N, Goeyens L, Sartor F, van Oyen H. PCDD/F levels in plasma of a belgian population before and after the 1999 Belgian PCB/DIOXIN incident. Chemosphere 2007;67(9):S217-23.

Dhooge W, van Larebeke N, Koppen G, Nelen V, Schoeters G, Vlietinck R, et al. Serum dioxin-like activity is associated with reproductive parameters in young men from the general Flemish population. Environ Health Perspect 2006;114(11):1670-6.

Egeland GM, Sweeney MH, Fingerhut MA, Wille KK, Schnorr TM, Halperin WE. Total serum testosterone and gonadotropins in workers exposed to dioxin. Am J Epidemiol 1994;139(3):272-281.

Eskenazi B, Mocarelli P, Warner M, Chee WY, Gerthoux PM, Samuels S, et al. Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect 2003;111(7):947-53.

Eskenazi B, Mocarelli P, Warner M, Needham L, Patterson DG Jr, Samuels S, et al. Relationship of serum TCDD concentrations and age at exposure of female residents of Seveso, Italy. Environ Health Perspect 2004;112(1):22-7.

Eskenazi B, Mocarelli P, Warner M, Samuels S, Vercellini P, Olive D, et al. Serum dioxin concentrations and endometriosis: a cohort study in Seveso, Italy. Environ Health Perspect 2002;110(7):629-34.

Everett CJ, Frithsen IL, Diaz VA, Koopman RJ, Simpson WM Jr, Mainous AG 3rd. Association of a polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with diabetes in the 1999-2002 National Health and Nutrition Examination Survey. Environ Res 2007;103(3):413-8.

Falk C, Hanrahan L, Anderson HA, Kanarek MS, Draheim L, Needham LL. Body burden levels of dioxin, furans, and PCBs among frequent consumers of Great Lakes sport fish. The Great Lakes Consortium. Environ Res 1999;80(2 Pt 2):S19-25.

Ferriby LL, Knutsen JS, Harris M, Unice KM, Scott P, Nony P, et al. Evaluation of PCDD/F and dioxin-like PCB serum concentration data from the 2001-2002 National Health and Nutrition Examination Survey of the United States population. J Expo Sci Environ Epidemiol 2007;17(4):358-71.

Fierens S, Mairesse H, Heilier JF, De Burbure C, Focant JF, Eppe G, et al. Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium. Biomarkers 2003;8(6):529-34.

Fujiyoshi PT, Michalek JE, Matsumura F. Molecular epidemiologic evidence for diabetogenic effects of dioxin exposure in U.S. Air Force veterans of the Vietnam war. Environ Health Perspect 2006;114(11):1677-83.

Gao X, Son DS, Terranova PF, Rozman KK. Toxic equivalency factors of polychlorinated dibenzo-p-dioxins in an ovulation model: validation of the toxic equivalency concept for one aspect of endocrine disruption. Toxicol Appl Pharmacol 1999;157(2):107-16.

Geyer HJ, Schramm KW, Feicht EA, Behechti A, Steinberg C, Bruggemann R, et al. Half-lives of tetra-, penta-, hexa-, hepta-, and octachlorodibenzo-p-dioxin in rats, monkeys, and humans—a critical review. Chemosphere 2002;48(6):631-44.

Glynn AW, Wolk A, Aune M, Atuma S, Zettermark S, Maehle-Schmid M, et al. Serum concentrations of organochlorines in men: a search for markers of exposure. Sci Total Environ 2000; 263(1-3):197-208.

Gray LE Jr, Ostby JS. In utero 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters reproductive morphology and function in female rat offspring. Toxicol Appl Pharmacol 1995;133(2):285-94.

Gupta A, Ketchum N, Roehrborn CG, Schecter A, Aragaki CC, Michalek JE. Serum dioxin, testosterone, and subsequent risk of benign prostatic hyperplasia: a prospective cohort study of Air Force veterans. Environ Health Perspect 2006;114(11):1649-54.

Halperin W, Vogt R, Sweeney MH, Shopp G, Fingerhut M, Petersen M. Immunological markers among workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occup Environ Med 1998;55(11):742-9.

Hanrahan LP, Falk C, Anderson HA, Draheim L, Kanarek MS, Olson J. Serum PCB and DDE levels of frequent Great Lakes sport fish consumers—a first look. The Great Lakes Consortium. Environ Res 1999;80(2 Pt 2):S26-37.

Heilier JF, Nackers F, Verougstraete V, Tonglet R, Lison D, Donnez J. Increased dioxin-like compounds in the serum of women with peritoneal endometriosis and deep endometriotic (adenomyotic) nodules. Fertil Steril 2005;84(2):305-12.

Henriksen GL, Ketchum NS, Michalek JE, Swaby JA. Serum dioxin and diabetes mellitus in veterans of Operation Ranch Hand. Epidemiology 1997;8(3):252-8.

Henriksen GL, Michalek JE, Swaby JA, Rahe AJ. Serum dioxin, testosterone, and gonadotropins in veterans of Operation Ranch Hand. Epidemiology 1996;7(4):352-7.

Hoffman MK, Huwe J, Deyrup CL, Lorentzsen M, Zaylskie R, Clinch NR, et al. Statistically designed survey of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and co-planar polychlorinated biphenyls in U. S. meat and poultry, 2002 2003: results, trends, and implications. Environ Sci Technol 2006;40(17):5340-6.

Hoffman CS, Small CM, Blanck HM, Tolbert P, Rubin C, Marcus M. Endometriosis among women exposed to polybrominated biphenyls. Ann Epidemiol. 2007;17(7):503-10.

Hsu JF, Guo YL, Yang SY, Liao PC. Congener profiles of PCBs and PCDD/Fs in Yucheng victims fifteen years after exposure to toxic rice-bran oils and their implications for epidemiologic studies. Chemosphere 2005;61(9):1231-43.

International Agency for Research in Cancer (IARC). IARC Monographson the Evaluation of Carcinogenic Risks to Humans. Volume 69. Polychlorinated Dibenzo-Para-Dioxins and Polychlorinated Dibenzofurans. 1997. Available at URL: iconexternal icon. 3/15/13

Institute of Medicine (IOM). Veterans and Agent Orange: Update 2004. Committee to Review the Health Effects in Vietnam Veterans of Exposure to Herbicides (Fifth Biennial Update). Division of Health Promotion and Disease Prevention. Washington (DC): National Academy Press; 2005. Available at URL: icon. 3/15/13

Jacobson JL, Jacobson SW. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 1996;335:783-9.

Johansson N, Hanber A, Wingfors H, Tysklind M.PCB in building sealant is influencing PCB levels in blood of residents.Organohalogen Compounds, Volumes 60-65, Dioxin 2003.Boston, MA.

Johnson E, Shorter C, Bestervelt L, Patterson D, Needham L, Piper W, Lucier G,

et al. Serum hormone levels in humans with low serum concentrations of 2,3,7,8 TCDD. Toxicol Ind Health 2001;17(4):105-12.

Jung D, Berg PA, Edler L, Ehrenthal W, Fenner D, Flesch-Janys D, et al. Immunologic findings in workers formerly exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and its congeners. Environ Health Perspect 1998;106(Suppl 2):689-95.

Kang HK, Dalager NA, Needham LL, Patterson DG Jr, Lees PS, Yates K, Matanoski GM. Health status of Army Chemical Corps Vietnam veterans who sprayed defoliant in Vietnam. Am J Ind Med 2006;49(11):875-84.

Kang D, Tepper A, Patterson DG Jr. Coplanar PCBs and the relative contribution of coplanar PCBs, PCDDs, and PCDFs to the total 2,3,7,8-TCDD toxicity equivalents in human serum. Chemosphere 1997;35(3):503-11.

Kern PA, Said S, Jackson WG Jr, Michalek JE. Insulin sensitivity following agent orange exposure in Vietnam veterans with high blood levels of 2,3,7,8-tetrachlorodibenzo-p dioxin. J Clin Endocrinol Metab 2004;89(9):4665-72.

Kohler M, Tremp J, Zennegg M, Seiler C, Minder-Kohler S, Beck M, et al. Joint sealants: an overlooked diffuse source of polychlorinated biphenyls in buildings. Environ Sci Technol 2005 Apr 1;39(7):1967-73.

Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MA, Van der Paauw CG, Tuinstra LG, Sauer PJ. Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants’ mental and psychomotor development. Pediatrics. 1996;97(5):700-6.

Lawson CC, Schnorr TM, Whelan EA, Deddens JA, Dankovic DA, Piacitelli LA, et al. Paternal occupational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and birth outcomes of offspring: birth weight, preterm delivery, and birth defects. Environ Health Perspect 2004;112(14):1403-8.

Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, Jacobs DR Jr. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care 2006;29(7):1638-44.

Link B, Gabrio T, Zoellner I, Piechotowski I, Paepke O, Herrmann T, et al. Biomonitoring of persistent organochlorine pesticides, PCDD/PCDFs and dioxin-like PCBs in blood of children from South West Germany (Baden-Wuerttemberg) from 1993 to 2003. Chemosphere 2005;58(9):1185-201.

Longnecker MP, Ryan JJ, Gladen BC, Schecter AJ. Correlations among human plasma levels of dioxin-like compounds and polychlorinated biphenyls (PCBs) and implications for epidemiologic studies. Arch Environ Health 2000;55(3):195-200.

Longnecker MP, Wolff MS, Gladen BC, Brock JW, Grandjean P, Jacobson JL, et al. Comparison of polychlorinated biphenyl levels across studies of human neurodevelopment. Environ Health Perspect 2003;111(1):65-70.

Lorber M. A pharmacokinetic model for estimating exposure of Americans to dioxin-like compounds in the past, present, and future. Sci Total Environ. 2002;288(1-2):81-95.

Lundqvist C, Zuurbier M, Leijs M, Johansson C, Ceccatelli S, Saunders M, et al. The effects of PCBs and dioxins on child health. Acta Paediatr Suppl 2006;95(453):55-64.

Luotamo M, Jarvisalo J, Aitio A. Assessment of exposure to polychlorinated biphenyls: analysis of selected isomers in blood and adipose tissue. Environ Res 1991;54(2):121-34.

Masuda Y. Fate of PCDF/PCB congeners and change of clinical symptoms in patients with Yusho PCB poisoning for 30 years. Chemosphere 2001:43(4-7):925-30.

Masuda Y, Schecter A, Papke O. Concentrations of PCBs, PCDFs and PCDDs in the blood of Yusho patients and their toxic equivalent contribution. Chemosphere 1998;37(9-12):1773-80.

Michalek JE, Akhtar FZ, Kiel JL. Serum dioxin, insulin, fasting glucose, and sex hormone-binding globulin in veterans of Operation Ranch Hand. J Clin Endocrinol Metab 1999;84(5):1540-3.

Michalek JE, Ketchum NS, Tripathi RC. Diabetes mellitus and 2,3,7,8 tetrachlorodibenzo-p-dioxin elimination in veterans of Operation Ranch Hand. J Toxicol Environ Health A. 2003;66(3):211-21.

Mocarelli P, Needham LL, Marocchi A, Patterson DG Jr, Brambilla P, Gerthoux PM, et al. Serum concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin and test results from selected residents of Seveso, Italy. J Toxicol Environ Health 1991;32(4):357-66.

Papke O. PCDD/PCDD: human background data for Germany, a 10-year experience. Environ Health Perspect 1998;106 (Suppl 2):723-31.

Patterson DG Jr, Todd GD, Turner WE, Maggio V, Alexander LR, Needham LL. Levels of non-ortho-substituted (coplanar), mono- and di-ortho-substituted polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans in human serum and adipose tissue. Environ Health Perspect 1994;102 (Suppl 1):195-204.

Patterson DG Jr, Hoffman RE, Needham LL, Roberts DW, Bagby JR, Pirkle JL, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin levels in adipose tissue of exposed and control persons in Missouri. An interim report. JAMA 1986;21;256(19):2683-6.

Patterson DG Jr, Wong LY, Turner WE, Caudill SP, Dipietro ES, McClure PC, et al.

Levels in the U.S. population of those persistent organic pollutants (2003-2004)

included in the Stockholm Convention or in other long range transboundary air

pollution agreements. Environ Sci Technol 2009;43(4):1211-8.

Rogan WJ, Gladen BC, Hung KL, Koong SL, Shih LY, Taylor JS, et al. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science 1988;241:334-6.

Roman BL, Timms BG, Prins GS, Peterson RE. In utero and lactational exposure of the male rat to 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs prostate development. 2. Effects on growth and cytodifferentiation. Toxicol Appl Pharmacol 1998;150(2):254-70.

Schnorr TM, Lawson CC, Whelan EA, Dankovic DA, Deddens JA, Piacitelli LA, et al. Spontaneous abortion, sex ratio, and paternal occupational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect 2001;109(11):1127-32.

Sonne C, Leifsson PS, Dietz R, Born EW, Letcher RJ, Hyldstrup L, et al. Xenoendocrine pollutants may reduce size of sexual organs in East Greenland polar bears (Ursus maritimus). Environ Sci Technol 2006;40(18):5668-74.

Steenland K, Bertazzi P, Baccarelli A, Kogevinas M. Dioxin revisited: developments since the 1997 IARC classification of dioxin as a human carcinogen. Environ Health Perspect 2004;112(13):1265-8.

Sweeney MH, Calvert GM, Egeland GA, Fingerhut MA, Halperin WE, et al. Review and update of the results of the NIOSH medical study of workers exposed to chemicals contaminated with 2,3,7,8-tetrachlorodibenzodioxin. Teratog Carcinog Mutagen 1997-1998;17(4-5):241-7.

Theobald HM, Peterson RE. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-rho-dioxin: effects on development of the male and female reproductive system of the mouse. Toxicol Appl Pharmacol 1997;145(1):124-35.

Turyk M, Anderson HA, Hanrahan LP, Falk C, Steenport DN, Needham LL, et al. Relationship of serum levels of individual PCB, dioxin, and furan congeners and DDE with Great Lakes sport-caught fish consumption. Environ Res 2006;100(2):173-83.

United States Environmental Protection Agency (U.S.EPA). Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds National Academy Sciences (NAS) Review Draft.2004.Available at URL: icon. 3/15/13

Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 2006;93(2):223-41.

Wang SL, Chang YC, Chao HR, Li CM, Li LA, Lin LY, et al. Body burdens of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls and their relations to estrogen metabolism in pregnant women. Environ Health Perspect 2006;114(5):740-5.

Warner M, Eskenazi B, Olive DL, Samuels S, Quick-Miles S, Vercellini P, et al. Serum dioxin concentrations and quality of ovarian function in women of Seveso. Environ Health Perspect 2007;115(3):336-40.

Warner M, Samuels S, Mocarelli P, Gerthoux PM, Needham L, Patterson DG Jr, et al. Serum dioxin concentrations and age at menarche. Environ Health Perspect 2004;112(13):1289-92.

Yoshida J, Kumagai S, Tabuchi T, Kosaka H, Akasaka S, Oda H. Effects of dioxin on metabolism of estrogens in waste incinerator workers. Arch Environ Occup Health 2005;60(4):215-22.

Page last reviewed: April 7, 2017