Real-time phylogenetics with UShER

COVID-19 Genomic Epidemiology Toolkit: Module 3.3

Russ Corbett-Detig, PhD
Assistant Professor
Department of Biomolecular Engineering
University of California, Santa Cruz

cdc.gov/coronavirus
Part 1: Introduction
1.1 What is genomic epidemiology?
1.2 The SARS-CoV-2 genome
1.3 How to read phylogenetic trees
1.4 Emerging variants of SARS-CoV-2

Part 2: Case Studies
2.1 SARS-CoV-2 sequencing in Arizona
2.2 Healthcare cluster transmission
2.3 Community transmission

Part 3: Implementation
3.1 Getting started with Nextstrain
3.2 Getting started with MicrobeTrace
3.3 Phylogenetics with UShER
Tracking viral evolution

Images from nextstrain.org
UShER: Real-time phylogenetic placement

- **Ultrafast Sample placement on Existing Trees**

- Designed to take user sequences and
 1. Accurately place them onto global phylogeny
 2. Construct new subtrees
 3. Enable easy visualization

- Runs quickly (<1 second) to facilitate genomic epidemiology
Constant flow and huge datasets overwhelm typical phylogenetics approaches

- Typical phylogenetic workflow:
 1. Gather data
 2. Calculate tree
Constant flow and huge datasets overwhelm typical phylogenetics approaches

- Typical phylogenetic workflow:
 1. Gather data
 2. Calculate tree
 3. More data!
 4. Recalculate tree?
Constant flow and huge datasets overwhelm typical phylogenetics approaches

- Typical phylogenetic workflow:
 1. Gather data
 2. Calculate tree
 3. More data
 4. Recalculate tree
 5. More data!
 6. Recalculate tree?

Repeat... forever
The UShER approach for phylogenetics

UShER takes as input:

1. **phylogenetic tree**
2. **list of mutations in each sample**

Sample A: A U C U U G A G U C
Sample B: A U C U U A U G U C
Sample C: A U C G U A A G C C
Sample D: A C C G U A A G U U

Options:

A. 2U, 4U, 6G
B. 2U, 4U, 7U
C. 2U, 9C
D. 10U
The UShER approach for phylogenetics

Using parsimony, UShER maps mutations onto the existing tree.

- A. 2U, 4U, 6G
- B. 2U, 4U, 7U
- C. 2U, 9C
- D. 10U
The UShER approach for phylogenetics

UShER stores this **mutation annotated tree**.
The UShER approach for phylogenetics

New samples are added using maximum parsimony by checking every possible placement.

Sample E: 10U, 14G
UShER placements are highly accurate

UShER finds the correct placement in 97% of cases.

When incorrect, placements are still usually very close to the true site.
UShER outputs a subtree of 50 most closely related samples to a user’s sample.

User’s sample in red

This subtree can be visualized and explored using the Nextstrain platform.
UShER’s quality control metrics

The parsimony score - Number of mutations unique to a user’s sample branch.

<table>
<thead>
<tr>
<th>Fasta Sequence</th>
<th>Size</th>
<th>#Ns</th>
<th>#Mixed</th>
<th>Bases aligned</th>
<th>Insertions</th>
<th>Deletions</th>
<th>#SNVs used for placement</th>
<th>#Masked SNVs</th>
<th>Neighboring sample in tree</th>
<th>Lineage of neighbor</th>
<th>#Imputed values for mixed bases</th>
<th>#Maximally parsimonious placements</th>
<th>Parsimony score</th>
<th>Subtree number</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypothetical_uploaded_sequence_1</td>
<td>29903</td>
<td>0</td>
<td>0</td>
<td>29903 (?)</td>
<td>0</td>
<td>0</td>
<td>37 (?)</td>
<td>2 (?)</td>
<td>B.1.5</td>
<td>England/CAMC-AEAAD7/2020</td>
<td>0</td>
<td>2</td>
<td>32</td>
<td>1 (view in Nextstrain)</td>
</tr>
</tbody>
</table>

1. 6G
2. 4U
3. 7U
4. 2U
5. 9C
6. 10U
UShER’s quality control metrics

The number of equally parsimonious placements for an added sample.

<table>
<thead>
<tr>
<th>Fasta Sequence</th>
<th>Size</th>
<th>#Ns</th>
<th>#Mixed</th>
<th>Bases aligned</th>
<th>Insertions</th>
<th>Deletions</th>
<th>#SNVs used for placement</th>
<th>Neighboring sample in tree</th>
<th>Lineage of neighbor</th>
<th>#Imputed values for mixed bases</th>
<th>#Maximally parsimonious placements</th>
<th>Parsimony score</th>
<th>Subtree number</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypothetical_uploaded_sequence_1</td>
<td>29903</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37 (?)</td>
<td>2 (?)</td>
<td>England/CAMC-AEAAD7/2020</td>
<td>20-10-26</td>
<td>2</td>
<td>32</td>
<td>1 (view in Nextstrain)</td>
</tr>
</tbody>
</table>

Sample E: 2N, 4N, 6N, 7N, 9N, 10N...
Uploading data

sequences.fasta

>genome_01
AUGAUGCAUGCUGCAUGAUG
CGUCAUGACACUGAUCG

>genome_02
AUGAUGCAUGCUGCAUGAUG
CGUCAUGACACUGAUCG

...
Summary

- UShER places samples onto a global phylogeny of SARS-CoV-2 genomes.
 - Learning about relationships among user samples, e.g., the number of unique introductions in an area.
 - Rapid sequence quality control.

- UShER resources:
 - Hands-on example data: https://github.com/russcd/USHER_DEMO
 - The UShER source code: https://github.com/yatisht/usher
 - Manuscript: https://www.biorxiv.org/content/10.1101/2020.09.26.314971v1
 - UShER’s web resource: https://genome.ucsc.edu/cgi-bin/hgPhyloPlace
Acknowledgements - The UShER Team and Funding

Angie Hinrichs, UCSC
Yatish Turakhia, UCSC

Nicola DeMaio, EBI

Landen Gozashti, UCSC

Bryan Thornlow, UCSC
Rob Lanfear, ANU

David Haussler, UCSC

Pat & Rowland Rebele
Learn More

▪ Other modules
 – Getting started with Nextstrain – Module 3.1
 – Getting started with MicrobeTrace – Module 3.2

▪ COVID-19 Genomic Epidemiology Toolkit
 – Find further reading
 – Subscribe to receive updates on new modules as they are released
 – go.usa.gov/xAbMw
For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.