What is genomic epidemiology?

COVID-19 Genomic Epidemiology Toolkit: Module 1.1

Nancy Chow, PhD
Bioinformatics and Informatics Lead
Centers for Disease Control and Prevention
Part 1: Introduction

1.1 What is genomic epidemiology?
1.2 The SARS-CoV-2 genome
1.3 How to read phylogenetic trees

Part 2: Case Studies

2.1 SARS-CoV-2 sequencing in Arizona
2.2 Healthcare cluster transmission
2.3 Community Transmission

Part 3: Implementation

3.1 Getting started with Nextstrain
3.2 Getting started with MicrobeTrace
3.3 Linking epidemiologic data
Genomic epidemiology

- **Epidemiology**: study of the distribution and determinants of health-related outcomes in a specified population *and* the application of this study to control health problems

- **Genomic epidemiology**: use of pathogen genomic data to determine the distribution and spread of an infectious disease in a specified population *and* the application of this information to control health problems
Rationale for Sequencing of SARS-CoV-2

- Monitor trends at the national level
 - Monitor emergence of important new strains
 - Monitor trends after interventions such as vaccination

- Better understand epidemiology at the local level
 - Investigate clusters for transmission in a variety of settings (healthcare, workplace, bar, etc.)
 - Provide evidence for or against suspected transmission
 - Reveal important, unsuspected clusters
SARS-CoV-2 sequencing: A powerful tool for epidemiologic investigation

Adapted from The Washington Post article: https://www.washingtonpost.com/graphics/2020/health/coronavirus-genetic-code/
SARS-CoV-2 sequencing: A powerful tool for epidemiologic investigation

Identify hotspots of transmission

Adapted from The Washington Post article: https://www.washingtonpost.com/graphics/2020/health/coronavirus-genetic-code/
SARS-CoV-2 sequencing: A powerful tool for epidemiologic investigation

Identify multiple introductions – dispel transmission

Adapted from The Washington Post article: https://www.washingtonpost.com/graphics/2020/health/coronavirus-genetic-code/
SARS-CoV-2 sequencing:
A powerful tool for epidemiologic investigation

Supplement to contact tracing

Adapted from The Washington Post article: https://www.washingtonpost.com/graphics/2020/health/coronavirus-genetic-code/
Additional ways to use SARS-CoV-2 sequencing data

- Identify introductions and sources
- Identify superspreading events
- Predict severity and size of future outbreak seasons
Utility of sequencing

- Sequencing generates a genomic fingerprint
- Mutations demonstrate a change in that genomic fingerprint
- Sequencing allows us compare the genomic fingerprints to see how they are related
RNA whole-genome sequencing (WGS)

Step 1: Patient Sample

Step 2: RNA Extraction

Step 3: Sequencing Library Preparation
- Purified Viral RNA
- Reverse Transcription
- Multiplex PCR
- End Repair
- Indexing
- Motor Protein Ligation

Step 4: Sequence Genomes

Step 5: Global Sharing
Common sequencing platforms

Short-read technology
- More accurate, short reads
- High throughput
- Relatively high up-front equipment costs
- Most widely used platform currently in US public health system

Long-read technology
- Less accurate, long reads
- Generates data more rapidly
- Low capital costs
- Portable
- In US public health system, used for specific applications

Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
Epidemic process

All cases in transmission network represented over time

Image adapted from Trevor Bedford Group: https://docs.nextstrain.org
Sample individuals

Genomic sequences are available for only some cases

Image adapted from Trevor Bedford Group: https://docs.nextstrain.org
Sequence

By sequencing, connections can be made
Determine phylogeny

These are then represented in a phylogenetic tree
Inferring relatedness

Infers relatedness among the cases
Monitor national trends

Images from Trevor Bedford Group: https://docs.nextstrain.org
Monitor national trends – UK example

- Led by COVID-19 Genomics UK (COG-UK) consortium involving Public Health Agencies, universities, sequencing centers, & Wellcome Sanger Institute

- Since March 2020, the United Kingdom has used SARS-CoV-2 sequence data for 120 live and retrospective public health outbreak investigations
 - Captured disappearance of specific lineage after Scotland lockdown in spring 2020
 - Captured sudden expansion of a specific lineage linked to relaxation of control measures
 - Performed association studies to see if disease severity varied by lineage
Understand local epidemiology

Facility A

Lehnertz N. Minnesota Department of Health
Trees drawn with Nextstrain
Understand local epidemiology – US examples

- In a Washington state skilled nursing facility, SARS-CoV-2 sequence data helped demonstrate¹:
 - Widespread transmission in the facility
 - Sole focus on symptomatic residents is not sufficient to prevent transmission

- Working with Major League Baseball, public health identified²:
 - A superspreading event within Team A where interactions outside of game play were the likely source of transmission

Learn more

- **Other introduction modules**
 - The SARS-CoV-2 genomes – Module 1.2
 - How to read a phylogenetic tree – Module 1.3

- **COVID-19 Genomic Epidemiology Toolkit**
 - Find further reading
 - Subscribe to receive updates on new modules as they are released
 - go.usa.gov/xAbMw
For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.