
World Trade Center (WTC) Health Program

WTCHP Research Grant Project Details and Data Center Outputs

Number of Projects Awarded by Fiscal Year. (The budget filter reflects the total project funds distributed to date for all projects awarded in a given fiscal year.)

WTC Health Program

orld Trade Center (WTC) Health Progra

9.11
WTC Health Program

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

Table 5 Contents

Pathogenesis and Consequences of OSA in WTC Responders Jag Sunderram, MD Professor of Medicine Interim Chief Division of Pulmonary and Critical Care Medicine
Impact of Sleep and Sleep Disorders on Memory and Cognition-Implications for the WTC responder population Andrew W. Varga, MD, PhD Mount Sinai Integrative Sleep Center Friedman Brain Institute
PTSD and Sleep Among World Trade Center Responders Camilo Ruggero, Ph.D. Brett Messman, MS University of North Texas, Department of Psychology
World Trade Center Health Registry Opioid Studies Robert M Brackbill, PhD, MPH Research Director Wednesday, June 28th NIOSH PI Meeting 2023
The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. Polygenic risk scores for asthma and allergic disease associate with COVID-19 severity in 9/11 responders. Assessment and Characterization of Cognitive Decline in SARS-CoV-2 Infection Zennur Sekendiz MD MPH Department of Medicine-WTCHP Stony Brook Medicine, Stony Brook, NY
LAST MINUTE PRESENTATION ORDER CHANGE
Association of Rheumatoid Arthritis (RA) with Opioid Pain Medication Overuse among Persons Exposed to the 9/11 World Trade Center (WTC) Disaster Ananya Sarker Dhanya, MBBS, MPH WTCHR, NYC DOH&MH Wednesday, June 28th
Association of Lung Function Decline with All-Cause and Cancer-Cause Mortality after World Trade Center Dust Exposure David Goldfarb, PhD, MPH
Survival among World Trade Center Rescue and Recovery Workers David Prezant, MD
On overview of cancers in Survivors in the WTC EHC with a focus on breast cancer Joan Reibman, MD Professor of Medicine and Environmental Medicine, NYU Langone Medical Center Medical Director, H+H WTC Environmental Health Center 231
Cognitive Function among WTC-Exposed Community Members with Mental Health Symptoms Rebecca Rosen, Ph.D. Director of Mental Health WTC EHC Clinical Center of Excellence H+H: Bellevue, Gouverneur, Elmhurst Clinical Associate Professor of Psychiatry Grossman School of Medicine June 28, 2023

Disclaimer: Funding for this conference was made possible (in part) by the Centers for Disease Control and Prevention. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

WTC Health Program

Robert Wood Johnson Medical School

Pathogenesis and Consequences of **OSA** in **WTC** Responders

Jag Sunderram, *MD*Professor of Medicine

Interim Chief

Division of Pulmonary and Critical Care Medicine

Rutgers, The State University of New Jersey

Disclaimer: Funding for this conference was made possible (*in part*) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

Pathogenesis and Consequences of OSA in WTC Responders Jag Sunderram, MD Professor of Medicine Interim Chief Division of Pulmonary and Critical Care Medicine

Robert Wood Johnson Medical School

Pathogenesis and Consequences of **OSA** in **WTC** Responders

Jag Sunderram, MD
Professor of Medicine
Interim Chief
Division of Pulmonary and Critical Care Medicine

Rutgers, The State University of New Jersey

WTC Dust and Health Consequences

- Large dust cloud of particles consist of a mixture of highly alkaline crushed concrete, gypsum and synthetic fibers.
- Upper and lower airway injury.

Lioy PJ et.al., Environ Health Perspect, 2002

Clinical Manifestation

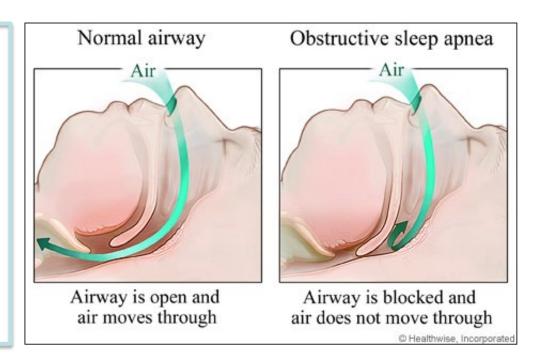
Upper Airway involvement

- Chronic Rhinosinusitis
- Obstructive Sleep Apnea
- GERD

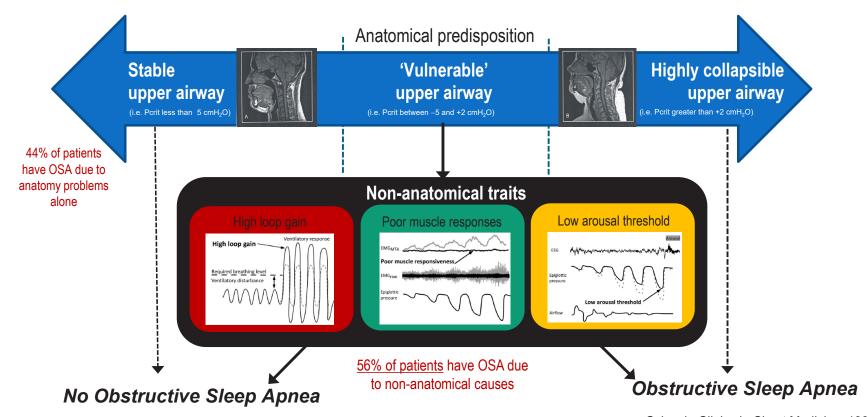
Lower Respiratory Involvement

- Chronic Cough-Asthma
- Sarcoid like granulomas
- Constrictive bronchiolitis
- Peribronchiolar emphysematous changes

Cognitive Issues

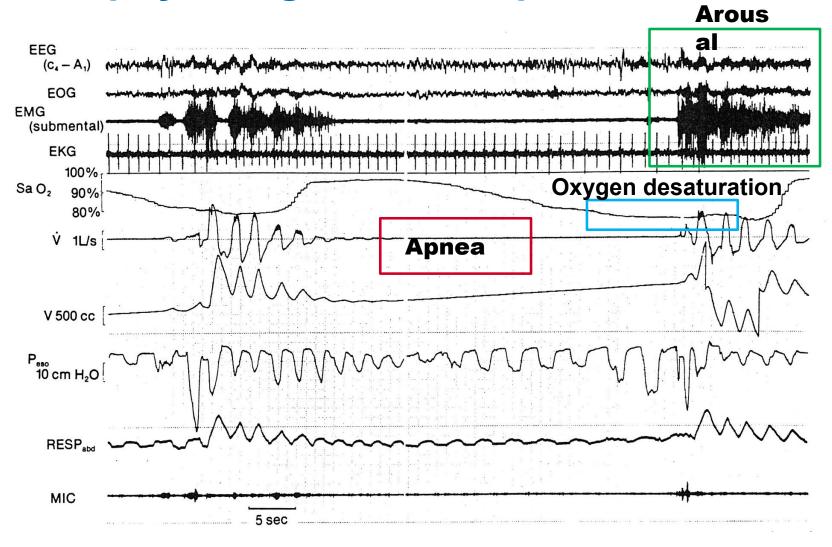

- Mild Cognitive Impairment
- PTSD

Guidotti, et.al., Am.J.Ind.Med. 2011


Obstructive Sleep Apnea

Obstructive Sleep Apnea (OSA) is characterized by repeated closure of the upper airway during sleep.

Anatomical, mechanical and sleep factors lead to airway obstruction in **OSA**.


Understand the mechanisms causing OSA in an individual

Schwab. Clinics in Chest Medicine, 1998 Owens et al. SLEEP, 2015 Carberry et al. Chest, 2017 Eckert et al, ARJCCM, 2013

Patients do not all get OSA for the same reason

Pathophysiological consequences of OSA

Cardiometabolic Consequences of Chronic Intermittent Hypoxia (CIH)

- Hypertension
- CAD
- CHF
- Atrial Fibrillation

- Stroke
- Diabetes
- Metabolic Syndrome

Neurocognitive Consequences of Sleep Fragmentation

- Excessive daytime sleepiness
- Reduced Attention
- Increased MVAs
- Depression
- Impaired quality of life
- Cognitive Impairment

Diagnosis and Classification of severity of OSA

- Diagnosis is based on number of Apnea+Hypopnea
 - AHI (Apneas+ Hypopneas/total sleep time in hours)
- Severity classification
 - Mild: AHI of 5-14.9 events per hour of sleep
 - Moderate: AHI: 15-29.9 events per hour of sleep
 - Severe: AHI: >30 events per hour of sleep of sleep

WTC SNORE STUDY

Examine the relationship between nasal pathology and OSA.

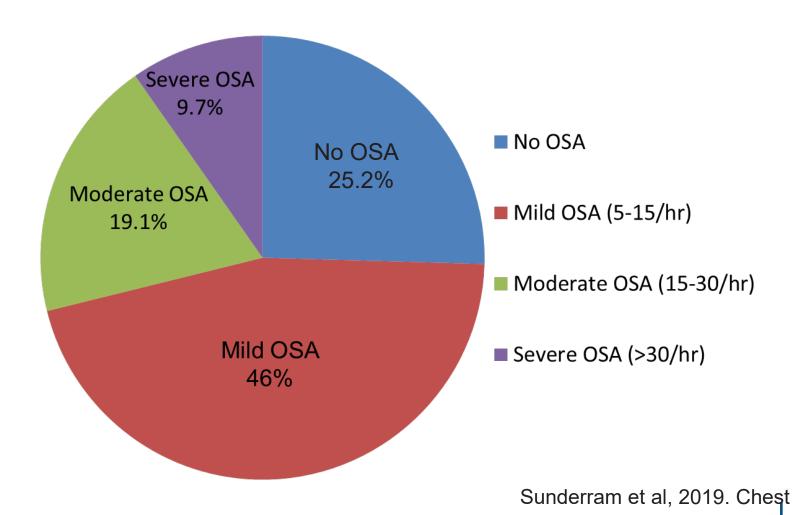
Hypothesis: nasal inflammation leads to CRS and predisposes to
 OSA either directly or

Upper airway Increased Nasal Resistance
s to
Chronic Rhinosinusitis
OSA

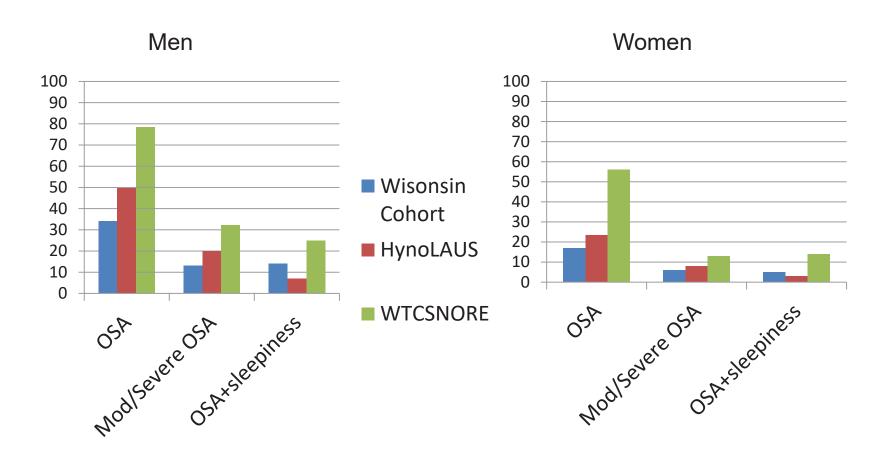
WTC Dust Exposure

mediated by an increase in nasal resistance in this population.

U010H010415 CDC/NIOSH


WTCSNORE Cohort

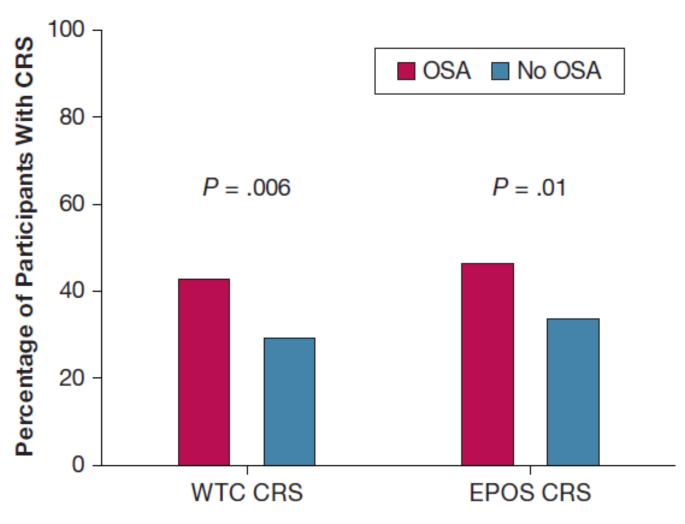
- Recruited subjects from WTCHP at Rutgers, NYU and ISMMS
- Inclusion:
 - No snoring or OSA prior to 9/11/2001
 - Not currently on OSA treatment
 - Efforts to recruit current non-snorers


Demographics of the study participants

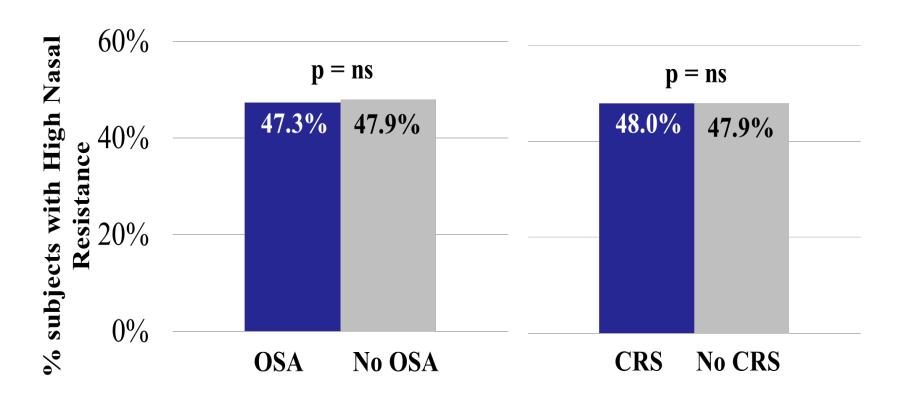
Variable	N of Valid Data	Summary
Age (years, Mean \pm SD)	626	52.8 ± 8.6
BMI (kg/m ^{2,} Mean \pm SD)	626	29.9 ± 5.5
Female (%)	626	109 (17.3%)
Sleep Duration (h, Mean \pm S	D) 588	6.4 ± 1.3
≥7 h (%)		42.6%
6–6.99 h (%)		30.9%
<6 h (%)		26.5%
Snoring (Yes, %)	626	312 (49.8%)
Quality of Life (FOSQ) (Mean	± SD)566	17.4 ± 2.6
Good, ≥17 (%)		62.0%
Poor, <17 (%)		38.0%
Sleepiness (ESS, Mean \pm SI	0) 620	8.3 ± 4.8
Sleepy, >10 (%)		31.3%
Not Sleepy, ≤10	(%)	68.7%
Poor Sleep Quality (Yes,	%) 623	441(70.8%)
Sleep Onset Insomnia (Y	es, %) 609	296 (48.6%)
Sleep Maintenance Insor	nnia (Yes, %)622	116 (18.7%)

Prevalence of OSA in the WTC Responder population is 75%

OSA Prevalence: Comparison to other cohorts



CRS is a risk factor for OSA


TABLE. 6 Unadjusted and Adjusted OR (95% CI) for OSA in Subjects with New-Onset or Worsening CRS using the WTC and the EPOS Definition for CRS

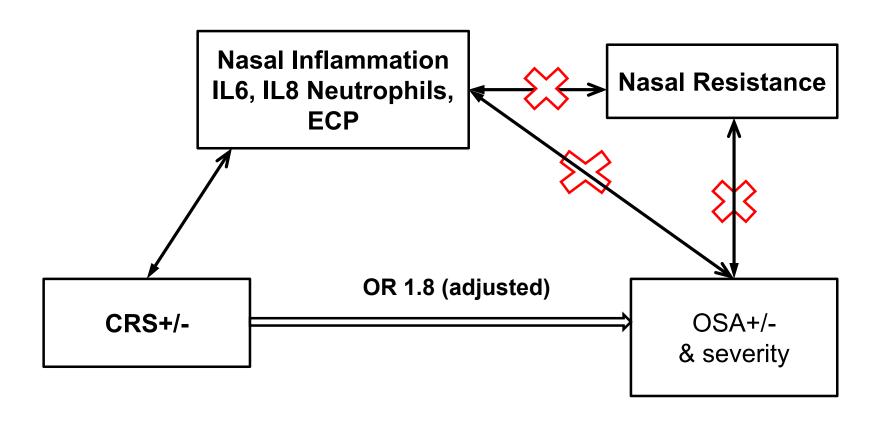
Nasal Symptom Score	Unadjusted OR (95% CI)	Adjusted for Age, Sex, and BMI (Model 1)	Adjusted for Age, Sex, BMI, and GERD (Model 2)	Adjusted for Age, Sex, BMI, GERD, and Regular Alcohol Use (Model 3)
No CRS	1.0	1.0	1.0	1.0
WTC CRS	1.8 (1.18-2.73)	1.69 (1.08-2.65)	1.76 (1.09-2.85)	1.76 (1.08-2.88)
P value	.006	.02	.02	.02
EPOS CRS	1.69 (1.12-2.53)	1.56 (1.01-2.4)	1.59(1-2.5)	1.52 (0.95-2.4)
P value	.01	< .05	.05	.08

OSA and CRS

OSA and CRS not related to an increase in nasal resistance

Relationship of nasal inflammation to CRS and OSA

CRS	+ vs CRS-		OSA-	+ vs OSA-	
OR	95% CI	p-value	OR	95%CI	p-value
1.34	(1.14, 1.59)	0.001	1.24	(1.03, 1.49)	0.025
1.17	(1.06, 1.29)	0.002	1.12	(1.01, 1.25)	0.030
1.14	(1.01, 1.28)	0.035	1.07	(0.94 ,1.22)	ns
1	-	-	1	-	-
1.08	(0.64, 1.85)	ns	1.36	(0.77, 2.42)	ns
0.94	(0.55,1.61)	ns	1.59	(0.88, 2.87)	ns
2.00	(1.17, 3.41)	0.011	2.08	(1.12, 3.86)	0.021
	OR 1.34 1.17 1.14 1 1.08 0.94	OR 95% CI 1.34 (1.14, 1.59) 1.17 (1.06, 1.29) 1.14 (1.01, 1.28) 1 - 1.08 (0.64, 1.85) 0.94 (0.55, 1.61)	OR 95% CI p-value 1.34 (1.14, 1.59) 0.001 1.17 (1.06, 1.29) 0.002 1.14 (1.01, 1.28) 0.035 1 1.08 (0.64, ns 1.85) 0.94 (0.55,1.61) ns	OR 95% CI p-value OR 1.34 (1.14, 1.59) 0.001 1.24 1.17 (1.06, 1.29) 0.002 1.12 1.14 (1.01, 1.28) 0.035 1.07 1 - - 1 1.08 (0.64, 1.85) ns 1.36 0.94 (0.55, 1.61) ns 1.59 2.00 (1.17, 3.41) 0.011 2.08	OR 95% CI p-value OR 95%CI 1.34 (1.14, 1.59) 0.001 1.24 (1.03, 1.49) 1.17 (1.06, 1.29) 0.002 1.12 (1.01, 1.25) 1.14 (1.01, 1.28) 0.035 1.07 (0.94, 1.22) 1 - 1 - - 1.08 (0.64, 1.85) ns 1.36 (0.77, 2.42) 0.94 (0.55, 1.61) ns 1.59 (0.88, 2.87)


AJRCCM in review

Relationship of nasal inflammation to CRS and OSA

	CR	S+ vs CRS-		OSA+	vs OSA-	
	OR	95% CI	p-value	OR	95%CI	p-value
	1.33	(1.12, 1.58)	0.001	1.09	(0.89, 1.34	
ECP	1.16	(1.05, 1.28)	0.003	1.08	(0.97, 1.22)	
	1.13	(1.00, 1.27)	0.052	1.04	(0.90,1.19)	
IL6 Quartiles						
	1	-	-	1	-	
Q2	1.03	(0.59, 1.77)	ns	0.98	(0.52, 1.83)	
	0.87	(0.50, 1.51)	ns	1.34	(0.70, 2.56)	
Q4	1.90	(1.10, 3.25)	0.021	1.68	(0.87, 3.27)	

AJRCCM in review

Nasal Inflammation is associated with CRS but not OSA

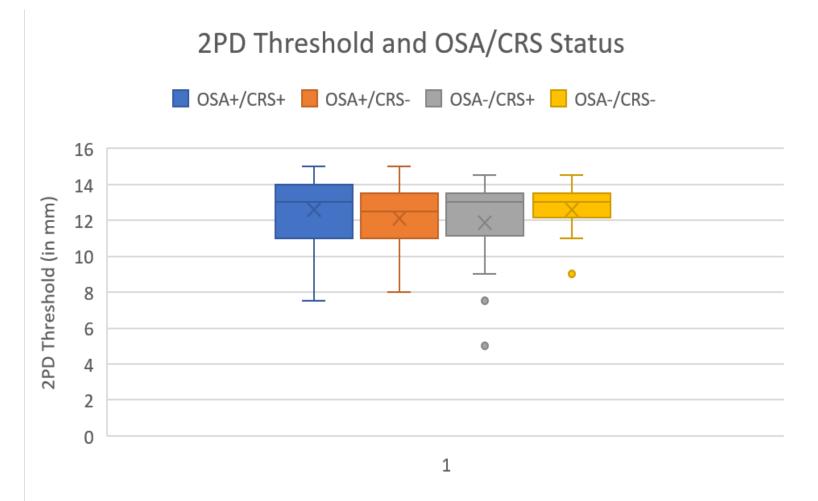
AJRCCM in review

Conclusions

- Consistent with previous data, we found a high proportion of OSA and chronic rhinosinusitis in WTC responders.
- Chronic rhinosinusitis is an <u>independent</u> risk factor for OSA.
- However, an increase in awake nasal resistance did not explain this relationship.
- Nasal inflammation is associated with CRS but not with OSA.

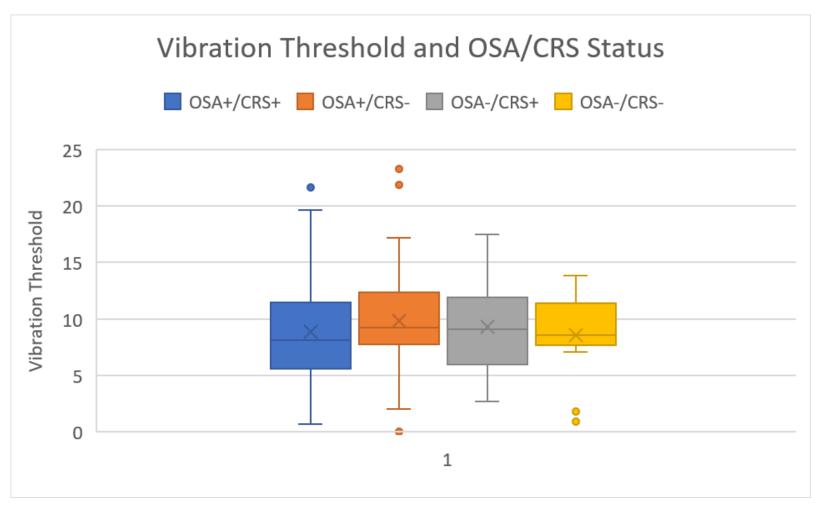
What is the mechanism of increased risk of OSA with CRS?

- An impaired afferent limb of upper airway reflexes impairs the ability to perceive and/or process upper airway loading and contributes to failure of upper airway stiffening
- Subjects with both CRS and OSA will have decreased sensation in the upper airway compared to control subjects with neither CRS nor OSA.

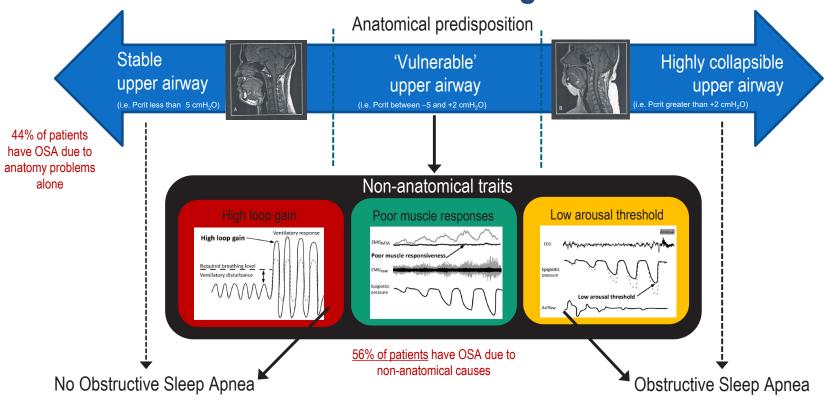


Grant Info: U010H011481 CDC/NIOSH

Methods


- Upper Airway sensory testing
 - vibration sensitivity threshold
 - 2-point discrimination
- OSA diagnosis by in laboratory or home sleep test
- CRS status: questionnaire
- 4 groups of 50 subjects with and without OSA and with and without CRS

No difference in 2PD and OSA/CRS status

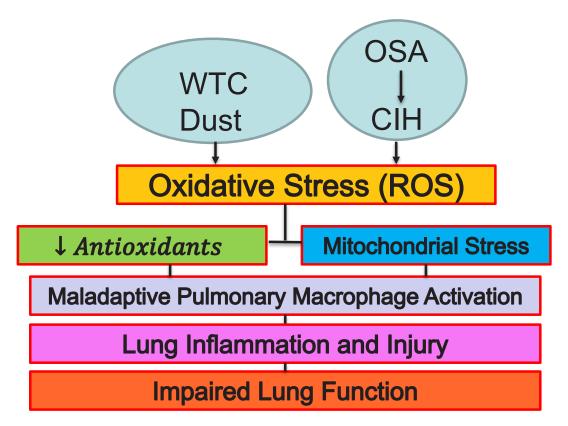

U010H011481 CDC/NIOSH

No difference in vibration threshold in OSA/CRS status

U010H011481 CDC/NIOSH

Understand the mechanisms causing OSA in an individual

Schwab. Clinics in Chest Medicine, 1998 Owens et al. SLEEP, 2015 Carberry et al. Chest, 2017 Eckert et al, ARJCCM, 2013

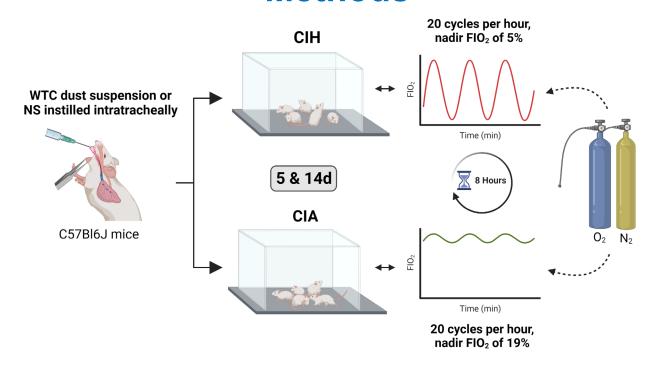

OSA Endotypes and CRS

- Examine the relationship of the mechanistic OSA endotypes to CRS in WTC responders.
- Test if upper airway muscle compensation is lower in subjects with CRS diagnosed with OSA compared to those without CRS.
- Examine differences in OSA endotypes in WTC responders and matched patients from a sleep clinic population without exposure to WTC dust.

U010H011481 CDC/NIOSH

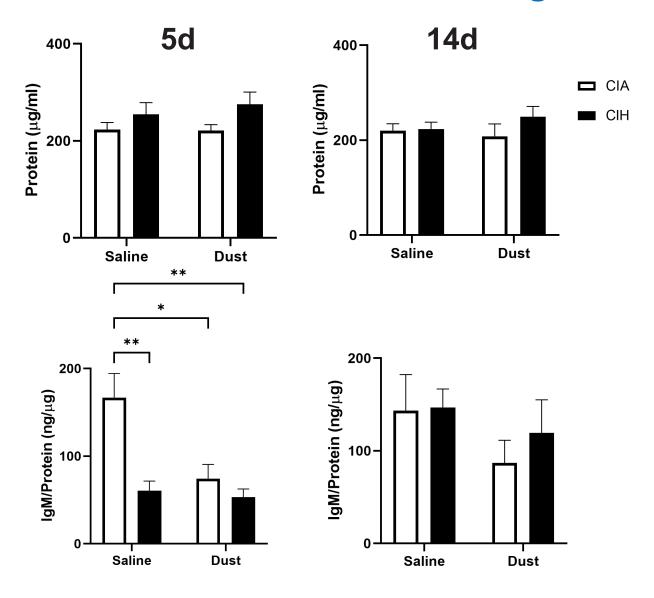
Consequences of OSA

Does the double hit of WTC Dust and chronic intermittent hypoxia
 (CIH) from OSA result in lung injury ?

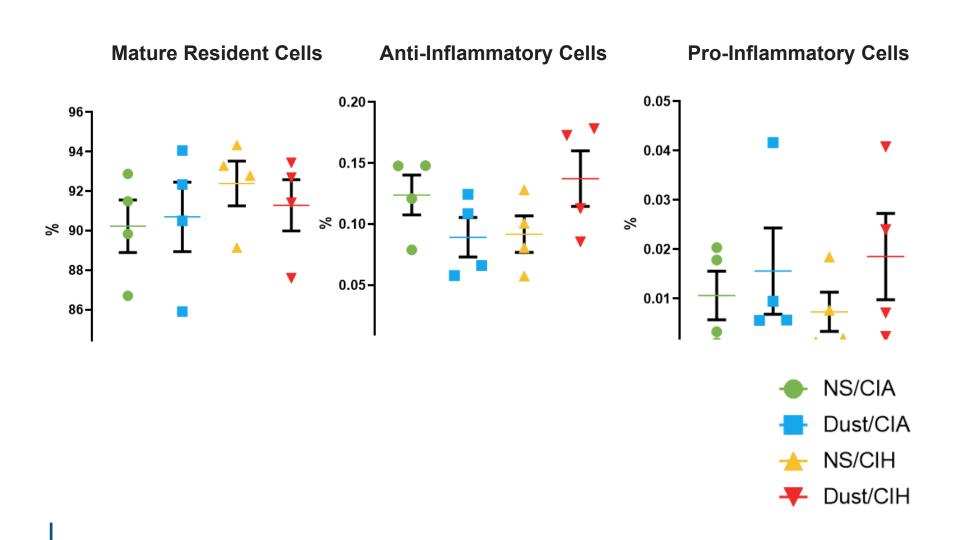


U01 OH012072-CDC/NIOSH

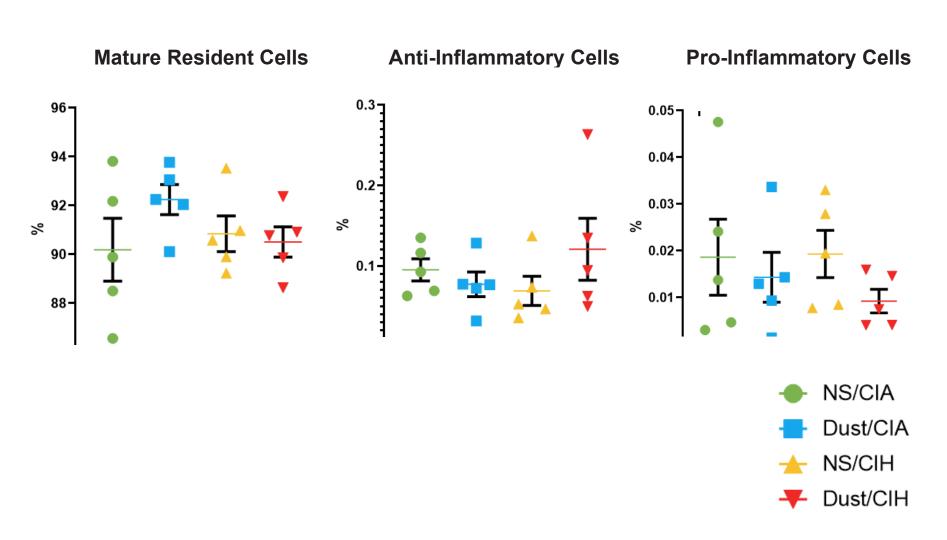
Hypothesis

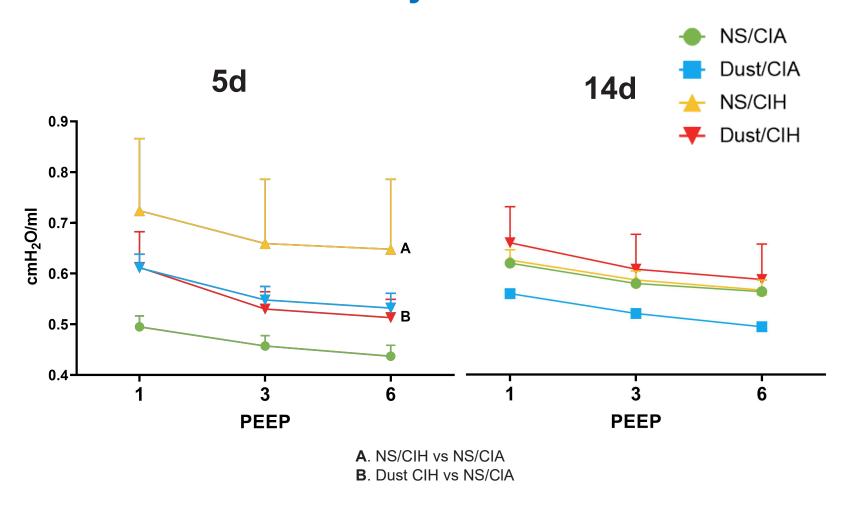

- CIH will exacerbate WTC dust induced lung oxidative stress, and inflammation with resultant lung remodeling and aberrations in lung function over the time course of CIH exposure.
- To test this hypothesis, C57Bl6J mice were exposed to 5 and 14 days of chronic intermittent hypoxia (CIH) or chronic intermittent air (CIA) after being instilled with WTC dust or control.

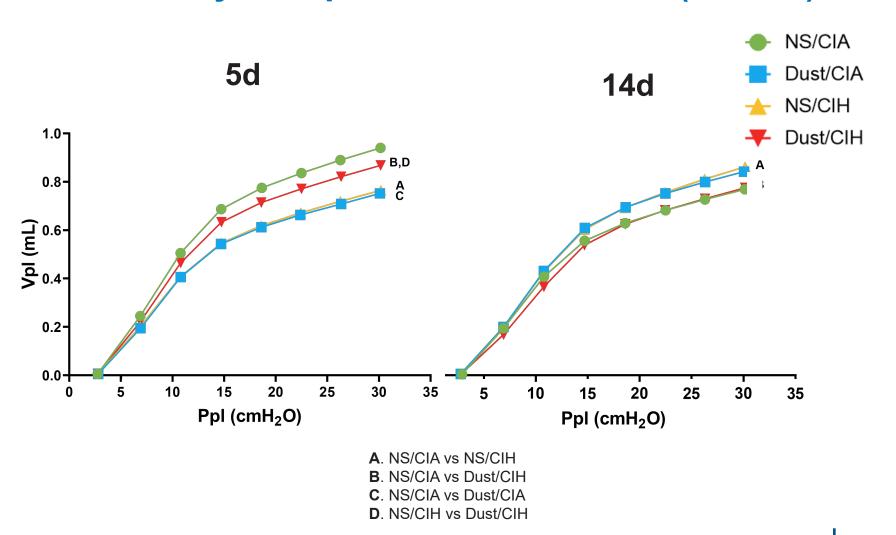
Methods

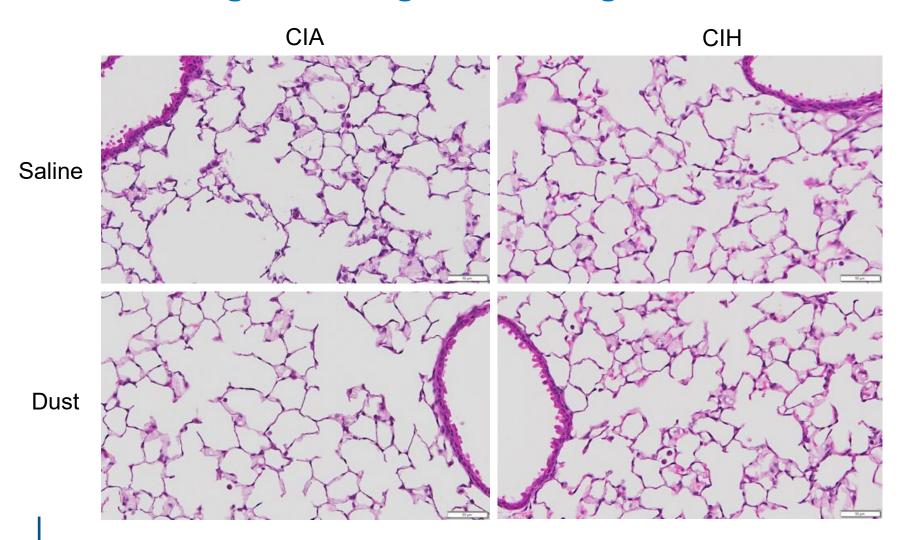


- BAL for protein, IgM, cell count and flow cytometry
- Histology
- Pulmonary mechanics: Flexivent
- Immunohistochemistry: Hemoxygenase-1 (HO-1) and proliferating cell nuclear antigen (PCNA)

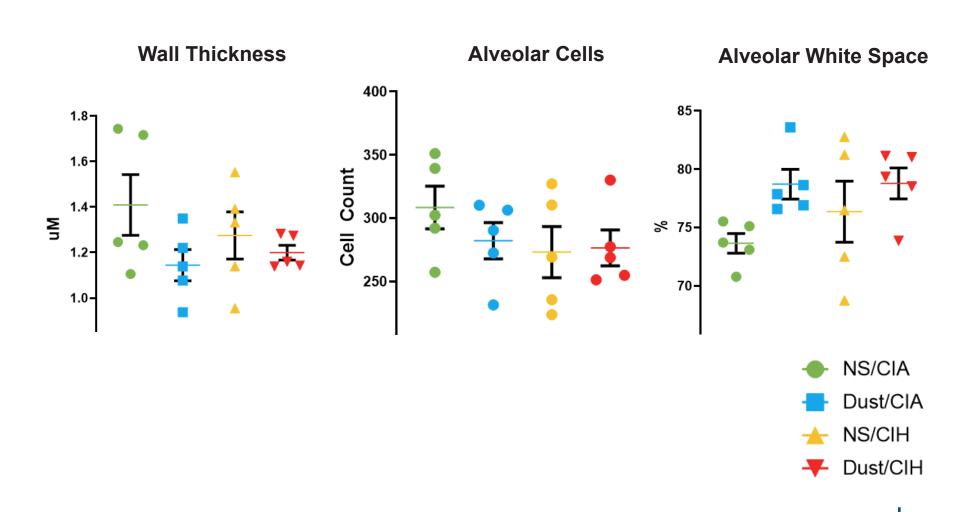

Bronchioalveolar Fluid Protein and IgM Levels


Bronchioalveolar fluid Flow Cytometry (5d)

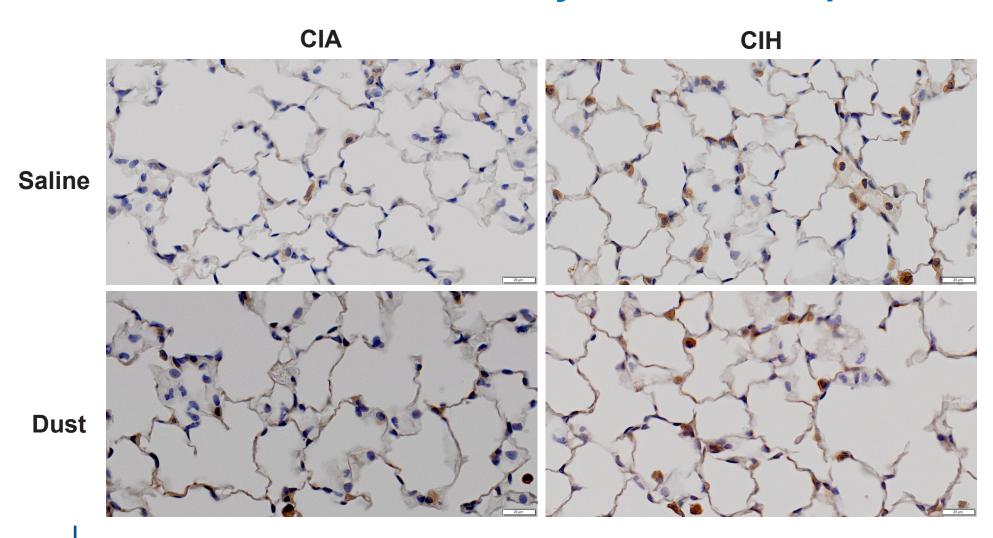

Bronchioalveolar fluid Flow Cytometry (14d)


Pulmonary Resistance

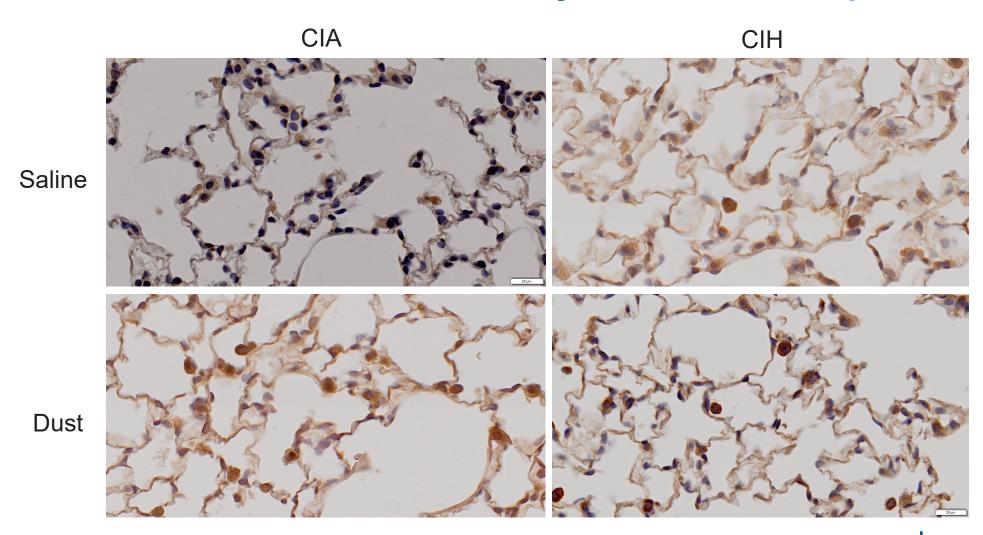
Pulmonary Compliance at low PEEP (PEEP3)

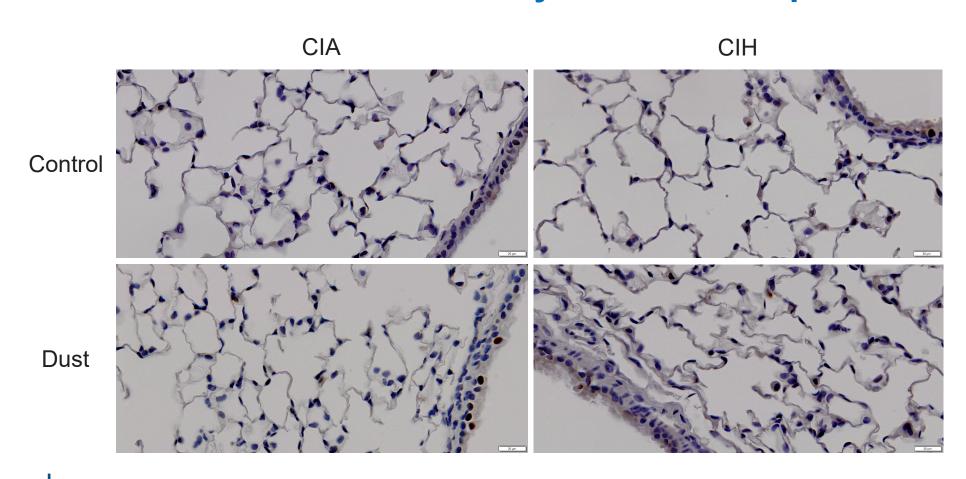


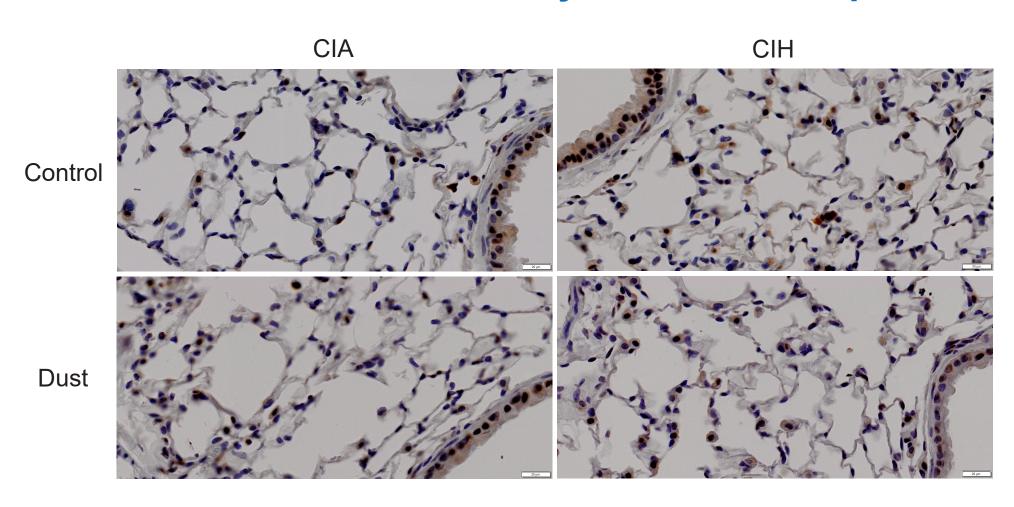
Histological Changes Following 14d of CIH



JTGERS


Quantitative Changes in Histology Following 14d of CIH


HO-1 Immunohistochemistry: 5d of CIH Exposure


HO-1 Immunohistochemistry: 14d of CIH Exposure

PCNA Immunohistochemistry: 5d of CIH Exposure

PCNA Immunohistochemistry: 14d of CIH Exposure

Conclusion

- In our model of dust instillation and following 5 days of CIH
 exposure there is evidence of increase levels of BAL protein
 but with a concomitant reduction in BAL IGM suggesting an
 absence of a loss of alveolar epithelial barrier dysfunction.
- 5 Days of CIH exposure leads to increased oxidative stress that results in a loss of surfactant function and impaired pulmonary mechanics.
- However, the injury level is insufficient to produce significant epithelial proliferation although there is evidence of type 2 pneumocyte dysfunction.
- No significant increases in pro or anti-inflammatory cells were observed following either 5 or 14 days of CIH exposure.
- There is evidence of persistent oxidative stress by day 14 and changes in pulmonary mechanics and lung structure suggesting an emphysematous phenotype.

Future Direction

- Does continued oxidative stress from prolonged period of CIH exposure to lead to activation of factors that may result in fibrosis or worse emphysema?
- Metabolomic analysis will help determine biomarkers of future changes in lung structure and function.
- Consider single cell data points as there may be significant changes in small population of cells that significantly alter the disease process.

Acknowledgements

Rutgers Robert Wood Johnson Medical School

Kathleen Black, PhD
Iris Udasin, MD
Shou-en Lu, PhD
Andrew Gow, PhD
Debra Laskin, PhD
Vasanthi Sunil, PhD

Robert Laumbach, MD Theresa Le Hoang

Adriana De Resende Kinal Vayas Alicia Legard Perin Rose Carlos Osorio, MD Jason Hua

Clarimel Cepeda Sun Jae Lee

Icahn School of Medicine at Mount Sinai

David M. Rapoport, M.D. Horacio Romero Castillo, MS

Rafael De la Hoz, M.D. David Kim, BS

Akosua Twumasi, B.S. Haley Sanders, BS

Ankit Parekh, PhD

NYU

Priya Agarwala, MD,
Susan Richman,
Nishay Chitkara, MD,
Denise Harrison, MD,

Tyler Gumb

Acknowledgements (continued from previous slide)

Funding from NIOSH/CDC

U010H010415

U010H011481

U010H012072

This Page Internationally Left Bilamik

Impact of Sleep and Sleep Disorders on Memory and Cognition- Implications for the WTC responder population

Andrew W. Varga, MD, PhD

Mount Sinai Integrative Sleep Center Friedman Brain Institute

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

Impact of Sleep and Sleep Disorders on Memory and Cognition- Implications for the WTC responder population

Andrew W. Varga, MD, PhD Mount Sinai Integrative Sleep Center Friedman Brain Institute

Impact of Sleep and Sleep Disorders on Memory and Cognition-Implications for the WTC responder population

Andrew W. Varga, MD, PhD

Mount Sinai Integrative Sleep Center Friedman Brain Institute

Disclosures:

- Merck: consultant, grant support (MISP)
- Eisai: consultant
- Jazz: consultant
- None relevant to the current presentation

Disclosures:

- This presentation focuses on OSA in memory and AD risk
- Sleep duration is important

Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer's disease

©Brendan P. Lucey, ^{1,2} Julie Wisch, ¹ ©Anna H. Boerwinkle, ¹ Eric C. Landsness, ¹ Cristina D. Toedebusch, ¹ Jennifer S. McLeland, ¹ Omar H. Butt, ¹ Jason Hassenstab, ^{1,2,3} John C. Morris, ^{1,2,3} Beau M. Ances ^{1,2,†} and David M. Holtzman ^{1,2,3,†}

Too little or too much sleep predicts poorer cognition longitudinally

Disclosures:

- This presentation focuses on OSA in memory and AD risk
- Sleep architecture is important

SLEEP AND AGING

Reduced Slow-Wave Sleep Is Associated with High Cerebrospinal Fluid Aβ42 Levels in Cognitively Normal Elderly

Andrew W. Varga, MD, PhD¹; Margaret E. Wohlleber, BA²; Sandra Giménez, MD³; Sergio Romero, PhD³, '; Joan F. Alonso, PhD⁴, 's, 'Emma L. Ducca, BA¹; Korey Kam, PhD²; Clifton Lewis, BA¹, 'Emily B. Tanzi, MSc²; Samuel Tweardy, BA², Akifumi Kishi, PhD®; Ankit Parekh, PhD®; Esther Fischer, MD²; Tyler Gumb, BA¹, 'S, Daniel Alcolea, MD, PhD³, 'Juan Fortea, MD, PhD³, 'Alberto Lleó, MD, PhD³, 'Kaj Blennow, MD, PhD¹¹; Henrik Zetterberg, MD, PhD¹¹; Lisa Mosconi, PhD²; Lidia Glodzik, MD, PhD²; Elizabeth Pirraglia, MA²; Omar E. Burschtin, MD¹; Mony J. de Leon, EdD²; David M. Rapoport, MD¹; Shou-en Lu, PhD¹²; Indu Ayappa, PhD¹; Ricardo S. Osorio, MD²

Kam et al. Molecular Neurodegeneration https://doi.org/10.1186/s13024-019-0309-5 (2019) 14:10

Molecular Neurodegeneration

RESEARCH ARTICLE

Open Access

Sleep oscillation-specific associations with Alzheimer's disease CSF biomarkers: novel roles for sleep spindles and tau

Korey Kam^{1†}, Ankit Parekh^{1†}, Ram A. Sharma², Andreia Andrade², Monica Lewin³, Bresne Castillo¹, Omonigho M. Bubu², Nicholas J. Chua¹, Margo D. Miller², Anna E. Mullins¹, Lidia Glodzik², Lisa Mosconi⁴, Nadia Gosselin⁵, Kulkarni Prathamesh², Zhe Chen², Kaj Blennow^{6,7}, Henrik Zetterberg^{6,7,8,9}, Nisha Bagchi¹, Bianca Cavedoni², David M. Rapoport¹, Indu Ayappa¹, Mony J. de Leon³, Eva Petkova^{2,10}, Andrew W. Varga^{1*†} and Ricardo S. Osorio^{2,3*†}

Hypothesis

 Induction of OSA exclusively in REM sleep will negatively affect spatial navigational memory consolidation that occurs across sleep

Subjects

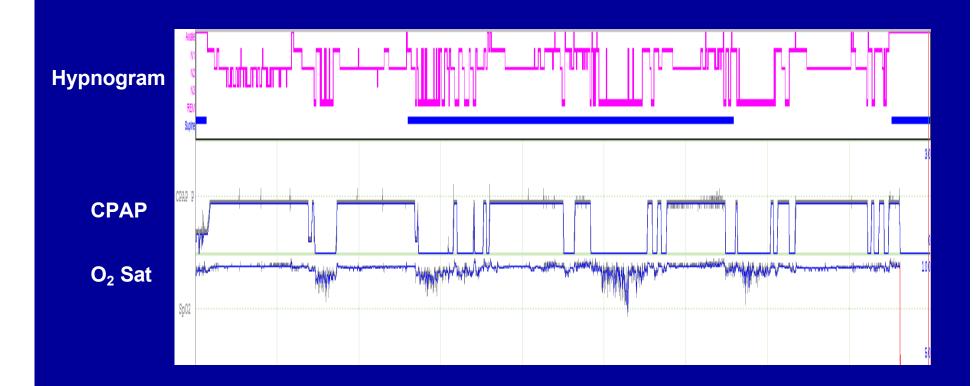
- Subjects with severe OSA recruited (AHI4% > 30 /hr) who are highly compliant with therapeutic CPAP
- 18 subjects recruited (14 men, 4 women)
- Average age is 53.6 +/- 10.5 years (range 31 to 70 years)

Methods

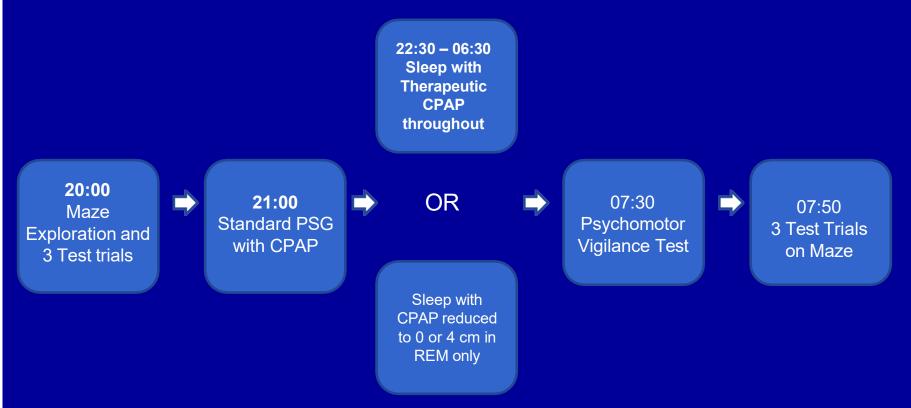
• Subjects explore one of two **3D** computer-generated spatial mazes and then complete **3** timed trials before and after sleep, capped at **10** minutes/trial.

First Person View of Maze

Birds Eye View of Maze


Methods

- Metrics of performance include completion time (CT), total distance traveled (DT), and distance spent backtracking (BT)
- Performance across sleep is defined as:


(Average CT_{pre-sleep} – Average CT _{post-sleep}) / Average CT_{pre-sleep}

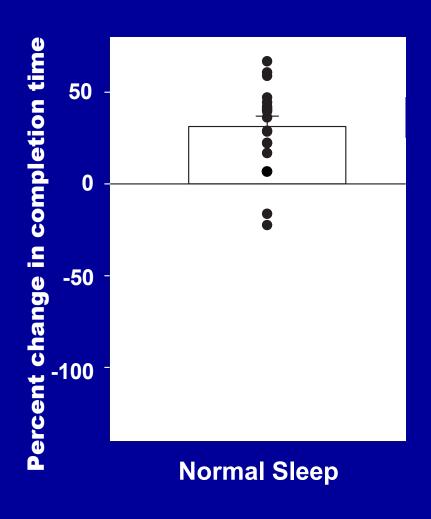
- Subjects perform maze trials across 2 nights:
 - -Therapeutic CPAP throughout
 - CPAP dropped to 4 cm or 0 cm in REM, returned to therapeutic CPAP in all NREM stages

OSA Induced by CPAP Withdrawal in REM

Experimental Timeline

- Subjects counterbalanced for maze encountered and condition encountered first
- Conditions separated by ~2 weeks

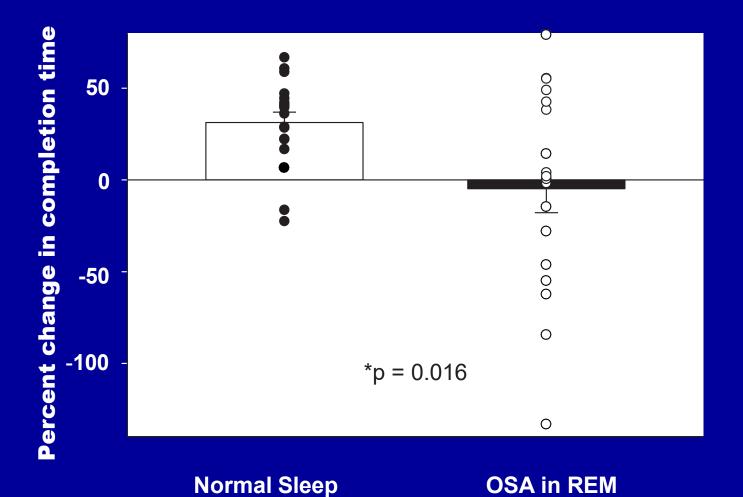
Sleep Measures

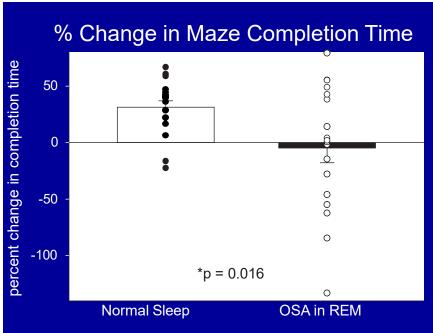

Sleep Measure	Normal Sleep on CPAP	REM Disrupted	
Total Sleep Time	366.4 min +/- 76	380.0 min +/- 68	
Sleep Efficiency	81.4% +/- 14	82.6% +/- 9	
% NREM 1	23.1% +/- 10	29.5% +/- 11	**
% NREM 2	39.7% +/- 8	42.4% +/- 7	*
% NREM 3	16.7% +/- 10	16.6% +/- 11	
NREM AHI4%	0.65 /hr <i>(median)</i>	3.9 /hr <i>(median)</i>	*
NREM AHI-all	5.7 /hr <i>(median)</i>	12.4 /hr <i>(median)</i>	*

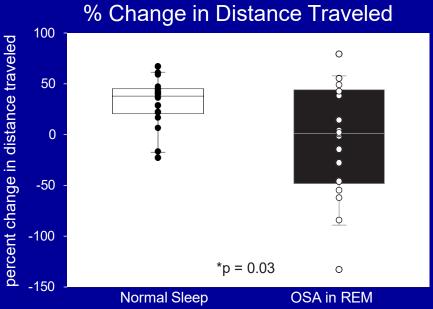
$$* = p < 0.05, ** = p < 0.001$$

Sleep Measures

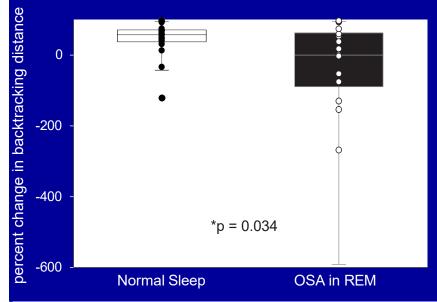
Sleep Measure	Normal Sleep on CPAP	REM Disrupted	
Total Sleep Time	366.4 min +/- 76	380.0 min +/- 68	
Sleep Efficiency	81.4% +/- 14	82.6% +/- 9	
% NREM 1	23.1% +/- 10	29.5% +/- 11	**
% NREM 2	39.7% +/- 8	42.4% +/- 7	*
% NREM 3	16.7% +/- 10	16.6% +/- 11	
NREM AHI4%	0.65 /hr (median)	3.9 /hr (median)	*
NREM AHI-all	5.7 /hr (median)	12.4 /hr (median)	*
% REM Sleep	20.5% +/- 5	11.5% +/- 6	**
REM AHI4%	1.2 /hr +/- 1.5	29.9 /hr +/- 18	**
REM AHI-all	9.3 /hr +/- 4	46.1 /hr +/- 15	**
# Arousals in REM	8.0 (median)	19.0 (median)	**


Normal Sleep Helps Consolidate Spatial Memory

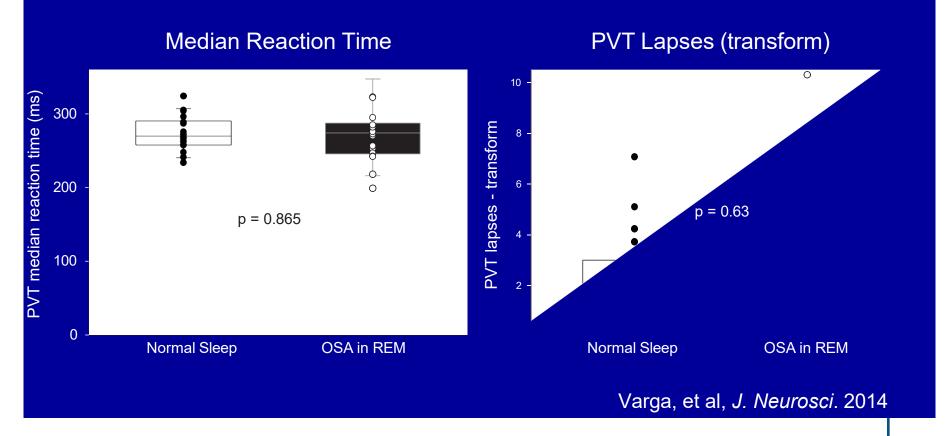

31.3%
Improvement across sleep


OSA in REM Varga, et al, *J. Neurosci*. 2014

REM OSA Results in Worsened Maze Performance



OOA III ILLIII



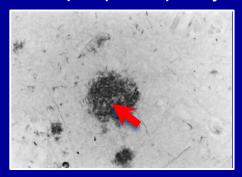
% Change in Distance Spent Backtracking

Varga, et al, J. Neurosci. 2014

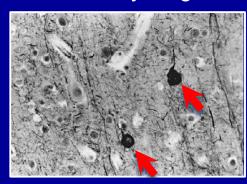
No Difference in PVT Reaction Time or Lapses

OSA can negatively impact prospective memory acutely

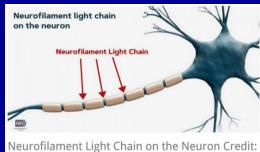
 OSA may also have a chronic effect on modulating Alzheimer's disease risk


Alzheimer's Disease

Clinically characterized by progressive loss of memory and executive dysfunction


- Deterioration in ability to form new memories prospectively (affected earlier)
- Deterioration of remote, established memories

Neuropathologic/Biomarker Hallmarks


Neuritic plaques - βAmyloid

Neurofibrillary tangles - tau

Neurofilament Light (NfL)

Pashtun Shahim, M.D., Ph.D NIH Clinical Center

JAMA Neurology | Original Investigation

Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease

Alexis Moscoso, PhD; Michel J. Grothe, PhD; Nicholas J. Ashton, PhD; Thomas K. Karikari, PhD; Juan Lantero Rodríguez, MSc; Anniina Snellman, PhD; Marc Suárez-Calvet, MD, PhD; Kaj Blennow, MD, PhD; Henrik Zetterberg, MD, PhD; Michael Schöll, PhD; for the Alzheimer's Disease Neuroimaging Initiative

Ricardo Osorio, MD

PSG, brain imaging, Amyloid PET, blood/CSF evaluation,

Table 1: Baseline demographic characteristics of the subjects in CNE cohort					
Characteristics	All	Normal	Mild OSA	Moderate-Severe OSA	
No. of Participants (%)	208 (100)	97 (46.63)	76 (36.53)	35 (16.82)	
Female sex, number (%)	129 (62)	67 (69.1)	44 (57.9)	18 (51.4)	
BMI (Kg/m2), median (IQ range)	25.79 (22.7,29.87)	24.61 (22.32,28.17)	26.89 (23.32,29.9)	29.76 (23.49,33.51)	
Age, years, mean ±	68.46 ± 7.38	67.56 ± 7.32	68.60 ± 7.19	70.68 ± 7.69	
ESS, median (IQ range)	5 (3,8)	4 (3,7)	6 (3.5,8.5)	6 (4,9)	
TST,hours, median (IQ range)	7 (6.5, 8)	7.48 (6.75,8)	7.00 (6.5,8)	7.50 (6.5,8)	

PSG, brain imaging, Amyloid PET, blood/CSF evaluation

Ricardo Osorio, MD

Table 1: Baseline demographic characteristics of the subjects in CNE cohort					
Characteristics	All	Normal	Mild OSA	Moderate-Severe OSA	
No. of Participants (%)	208 (100)	97 (46.63)	76 (36.53)	35 (16.82)	
Female sex, number (%)	129 (62)	67 (69.1)	44 (57.9)	18 (51.4)	
BMI (Kg/m2), median (IQ range)	25.79 (22.7,29.87)	24.61 (22.32,28.17)	26.89 (23.32,29.9)	29.76 (23.49,33.51)	
Age, years, mean ±	68.46 ± 7.38	67.56 ± 7.32	68.60 ± 7.19	70.68 ± 7.69	
ESS, median (IQ range)	5 (3,8)	4 (3,7)	6 (3.5,8.5)	6 (4,9)	
TST,hours, median (IQ range)	7 (6.5, 8)	7.48 (6.75,8)	7.00 (6.5,8)	7.50 (6.5,8)	

Ricardo Osorio, MD

PSG.	brain	imaging.	Amyloid	PET.	blood/0	CSF 6	evaluation
,		,		,			

Table 1: Baseline demographic characteristics of the subjects in CNE cohort						
Characteristics	All	Normal	Mild OSA	Moderate-Severe OSA		
No. of Participants (%)	208 (100)	97 (46.63)	76 (36.53)	35 (16.82)		
Female sex, number (%)	129 (62)	67 (69.1)	44 (57.9)	18 (51.4)		
BMI (Kg/m2), median (IQ range)	25.79 (22.7,29.87)	24.61 (22.32,28.17)	26.89 (23.32,29.9)	29.76 (23.49,33.51)		
Age, years, mean ±	68.46 ± 7.38	67.56 ± 7.32	68.60 ± 7.19	70.68 ± 7.69		
ESS, median (IQ range)	5 (3,8)	4 (3,7)	6 (3.5,8.5)	6 (4,9)		
TST,hours, median (IQ range)	7 (6.5, 8)	7.48 (6.75,8)	7.00 (6.5,8)	7.50 (6.5,8)		

Ricardo Osorio, MD

PSG, brain imaging, Amyloid PET, blood/CSF evaluation

Table 1: Baseline demographic characteristics of the subjects in CNE cohort					
Characteristics	All	Normal	Mild OSA	Moderate-Severe OSA	
No. of Participants (%)	208 (100)	97 (46.63)	76 (36.53)	35 (16.82)	
Female sex, number (%)	129 (62)	67 (69.1)	44 (57.9)	18 (51.4)	
BMI (Kg/m2), median (IQ range)	25.79 (22.7,29.87)	24.61 (22.32,28.17)	26.89 (23.32,29.9)	29.76 (23.49,33.51)	
Age, years, mean ±	68.46 ± 7.38	67.56 ± 7.32	68.60 ± 7.19	70.68 ± 7.69	
ESS, median (IQ range)	5 (3,8)	4 (3,7)	6 (3.5,8.5)	6 (4,9)	
TST,hours, median (IQ range)	7 (6.5, 8)	7.48 (6.75,8)	7.00 (6.5,8)	7.50 (6.5,8)	

Ricardo Osorio, MD

PSG. brain	imaging. Am	yloid PET, blood/CSF evaluation
,		<i>J </i>

Table 1: Baseline demographic characteristics of the subjects in CNE cohort					
Characteristics	All	Normal	Mild OSA	Moderate-Severe OSA	
No. of Participants (%)	208 (100)	97 (46.63)	76 (36.53)	35 (16.82)	
Female sex, number (%)	129 (62)	67 (69.1)	44 (57.9)	18 (51.4)	
BMI (Kg/m2), median (IQ range)	25.79 (22.7,29.87)	24.61 (22.32,28.17)	26.89 (23.32,29.9)	29.76 (23.49,33.51)	
Age, years, mean ±	68.46 ± 7.38	67.56 ± 7.32	68.60 ± 7.19	70.68 ± 7.69	
ESS, median (IQ range)	5 (3,8)	4 (3,7)	6 (3.5,8.5)	6 (4,9)	
TST,hours, median (IQ range)	7 (6.5, 8)	7.48 (6.75,8)	7.00 (6.5,8)	7.50 (6.5,8)	

98 subjects, age 69.6, 63% female, cognitively normal and community-dwelling

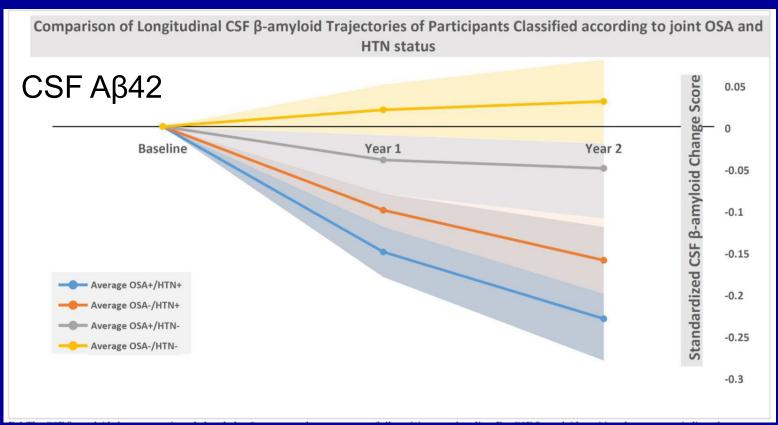
CSF Ab42 and Neurocognitive battery, 2.65 year average f/u interval

OSA+/HTN+ [n=23]

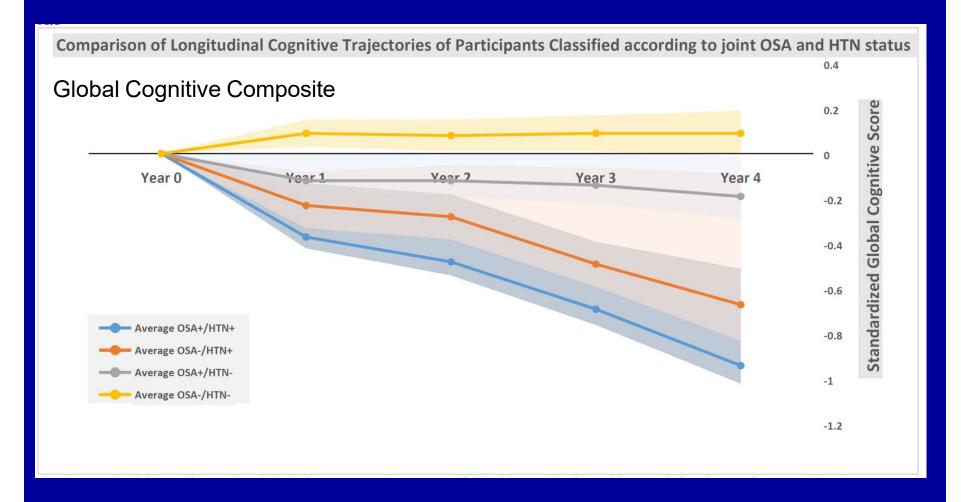
OSA+/HTN- [n=24]

OSA-/HTN+ [n=20]

OSA-/HTN- [n=31]



Michael Bubu, PhD


HTN = (SBP >140 mm Hg AND DBP > 90 mm Hg) OR antihypertensive medication use OR self-reports HTN diagnosis

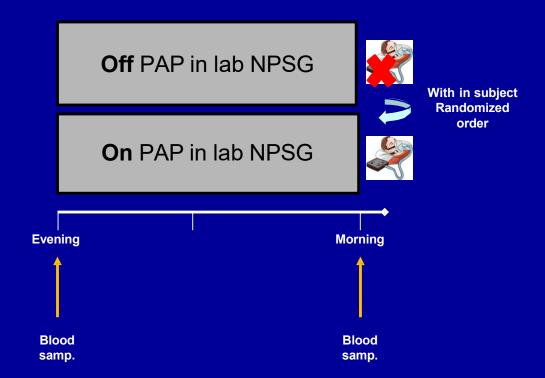
All analyses controlled for age, sex, BMI, years of education, Apolipoprotein E4

Outcome	Model Term	Standardized Estimate (95% CI)	P Value
Annual rate of change of CSF-Aβ42	OSA*time	-1.28 (-1.78 to -0.78)	<.01
	Hypertension*time	-2.82 (-3.29, -2.35)	<.01
	OSA*Hypertension*time	-3.11 (-3.71 to -2.51)	<.01


Bubu. et al. AJRCCM 2022

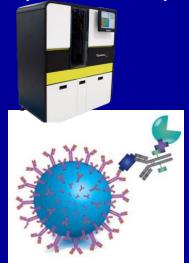

Annual decline in Executive Function (DSST, Trail	OSA*time Hypertension*time	-0.037 (-0.052 to -0.022) -0.058 (-0.092 to - 0.024)	0.01 <.01
Making A and B composite)	OSA*Hypertension*time	-0.048 (-0.063 to -0.033)	<.001
Annual decline in	OSA*time	-0.025 (-0.036 to -0.014)	0.03
Language(Verbal and	Hypertension*time	-0.034 (057 to -0.011)	0.04
Animal Fluency and BNT composite)	OSA*Hypertension*time	-0.054 (-0.094 to -0.013)	<.001
Annual decline in Episodic	OSA*time	-0.026 (-0.052 to 0.019)	0.43
Memory (Logic-1 and 2	Hypertension*time	-0.019 (-0.038 to 0.008)	0.34
composite)	OSA*Hypertension*time	-0.037 (-0.076 to 0.021)	0.33

SAAB3: Sleep Apnea and Alzheimer disease Blood-based Biomarkers


30 subjects with severe OSA, adherent to PAP 2 PSG's: 1 on PAP, 1 OFF PAP (3rd night off) Pre- and Post-sleep blood samples analyzed for AD biomarkers

Korey Kam, PhD

Jonathan Jun, MD


SAAB3: Sleep Apnea and Alzheimer disease Blood-based Biomarkers

30 subjects with severe OSA, adherent to **PAP 2 PSG's**: 1 on **PAP**, 1 OFF **PAP** (3rd night off)
Pre- and Post-sleep blood samples analyzed for **AD** biomarkers

Korey Kam, PhD

Method*: SIMOA (single molecule array) assay of T-tau, Aβ42, Aβ40, NfL.

Jonathan Jun, MD

Samples run in duplicate

Samples with CoV >20%

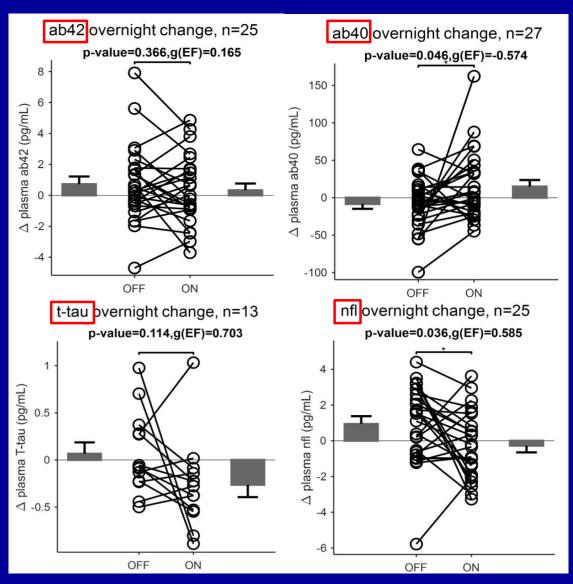
were excluded:

25 subjects for Aβ4227 subjects for Aβ4013 subjects for T-tau25 subjects for NfL

SAAB3: Sleep Apnea and Alzheimer disease Blood-based Biomarkers

Characteristic	n = 30 total	Expressed as mean (95% CI)
----------------	---------------	----------------------------

Age	51.5 (47.3-55.6)
Sex, F, n (%)	8 (27%)
BMI	35.4 (33.2-37.7)


Polysomnographic measure	OFF CPAP night	ON CPAP night	p-value
TST, min	381 (365-398)	388 (372-404)	0.344
SE (%)	79 (76-82)	81 (78-84)	0.235
N3, (%)	6.1 (3.7-8.5)	15.1 (10.6-19.6)	< 0.001
REM, (%)	11.8 (8.8-14.7)	20.6 (18.3-22.9)	< 0.001
Arousal index, evt/hr	53 (44-62)	12 (9-14)	< 0.001
Sleep-state transitions, total	194 (159-230)	121 (104-139)	< 0.001
AHI4, evt/hr	63 (54-72)	3 (2-4)	< 0.001
AHI3, evt/hr	74 (65-82)	7 (5-9)	< 0.001
SpO2 <90%, min	20 (14-26)	1 (0-3)	< 0.001
O2 min, %	77 (74-80)	88 (86-90)	< 0.001
ODI4, evt/hr	58 (49-66)	3 (2-3)	< 0.001

Korey Kam, PhD

Jonathan Jun, MD

No significant difference in evening levels of any biomarker between conditions

Linear mixed effects modeling of overnight change in NfL

LME-Model 1: outcome overnight ΔNfL (pg/mL)				
Fixed effects	β coefficient	95% CI	Р	
SE, %	-0.025	(-0.097, 0.047)	0.491	
Arousal Index, events/h	0.018	(-0.014, 0.051)	0.276	
Sleep stage transitions, #	0.009	(0.002, 0.016)	0.012*	
NREM 3, %	-0.020	(-0.083, 0.043)	0.521	
REM, %	-0.075	(-0.158, 0.006)	0.069	
AHI4%, events/h	0.022	(-0.010, 0.055)	0.179	
O₂min, %	-0.054	(-0.141, 0.031)	0.209	
T90, min	0.071	(0.016, 0.125)	0.011*	
ODI4%, events/h	0.021	(-0.014, 0.057)	0.232	

Linear mixed effects modeling of overnight change in Aβ40

LME-Model 2: outcome ov	: outcome overnight ΔAβ40 (pg/mL)			
Fixed effects	β coefficient	95% CI	P	
SE, %	0.410	(-0.764, 1.585)	0.485	
Arousal Index, events/h	0.303	(-0.25021, 0.856)	0.276	
Sleep stage transitions, #	0.039	(-0.091, 0.170)	0.546	
NREM 3, %	-0.560	(-1.759, 0.638)	0.352	
REM, %	0.210	(-1.318, 1.739)	0.782	
AHI4%, events/h	0.376	(-0.172, 0.926)	0.174	
O₂min, %	-0.899	(-2.358, 0.559)	0.221	
T90, min	-0.111	(-0.941, 0.719)	0.789	
ODI4%, events/h	0.324	(-0.280, 0.929)	0.286	

Summary

Acute induction of **OSA** during **REM** sleep negatively impacts prospective spatial navigational memory, without change in psychomotor vigilance

OSA acts synergistically with HTN to cause greater longitudinal decreases in CSF Aβ42 and longitudinal decreases in executive function and language domains

Acute induction of **OSA** via **PAP** withdrawal alters the overnight change in **Aβ40** and NfL measured in plasma

Overnight change in **NfL** is predicted by **T90** and sleep stage transitions

NIOSH U01 OH011852: Role of Sleep Apnea in Cognition and **Alzheimer's Disease Biomarkers in WTC Responders**

- 64 WTC responders (60-75 yrs) with OSA (untreated for >5 years) and non-OSA subjects will complete baseline and 2-year followup visits
- In-lab PSG with pre- and post-sleep spatial navigation testing and blood draw
- Brain MRI and Tau PET imaging 18F-MK-6240, Full UDS-3 **Neurocognitive Battery**
- Aim 1: Determine whether OSA severity is correlated with (i) changes in plasma tau and (ii) with greater longitudinal intracerebral tau burden using Tau PET-MR imaging
- Aim 2: Test the hypothesis that OSA severity at baseline predicts longitudinal decline in spatial navigational memory

Thank you!

Mount Sinai Integrative Sleep Center:

David M. Rapoport, M.D. Indu Ayappa, Ph.D.
Bresne Castillo, RPSGT Haley Sanders, B.A.
Akosua Twumasi, B.A.
Omar Burschtin, M.D.
Zachary Roberts, RPSGT Masrai Williams, MS-II Korey Kam, Ph.D.
Ankit Parekh, Ph.D.
Anna Mullins, Ph.D.

Ricardo Osorio, M.D.
Esther Fisher, M.D.
Ram Sharma, M.D.
Viachaslau Koushyk, M.D.
Akifumi Kishi, Ph.D.
Antonio Convit, M.D.

Johns Hopkins:

Jonathan Jun, M.D.

Rutgers:

Jag Sunderram, M.D.

Thank you!

Mount Sinai Integrative Sleep Center:

David M. Rapoport, M.D. Indu Ayappa, Ph.D. Bresne Castillo, RPSGT Ahmad Fakhoury, M.A. Natasha Berryman, M.A. Omar Burschtin, M.D. Zachary Roberts, RPSGT Masrai Williams, MS-IV Korey Kam, Ph.D. Ankit Parekh, Ph.D. Anna Mullins, Ph.D.

Sponsored by:

Korey Kam, PhD

Ankit Parekh, PhD

NYU Center for Brain Health:

Ricardo Osorio, M.D.
Esther Fisher, M.D.
Ram Sharma, M.D.
Viachaslau Koushyk, M.D.
Akifumi Kishi, Ph.D.
Antonio Convit, M.D.
Michael Bubu, Ph.D.

Anna Mullins, PhD

Michael Bubu, PhD

- Alzheimer's Association
- American Sleep Medicine Foundation Junior Faculty Awards
- American Thoracic Society Foundation

NIH – National Institute on Aging

Friedman Brain Institute

Masrai Williams, MD

Sinai + NYU Sleep Research Team

Contact: andrew.varga@mssm.edu

Sleep Medicine Family!

Thank You

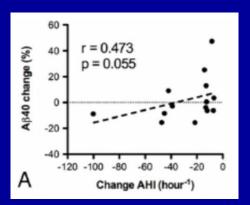
Contacts:

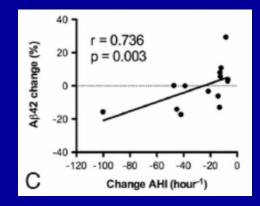
Email: andrew.varga@mssm.edu

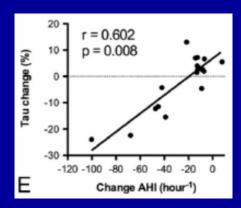
Mount Sinai Integrative Sleep Center

11 East 26th St., 13th Floor | 212-481-1818

Questions?

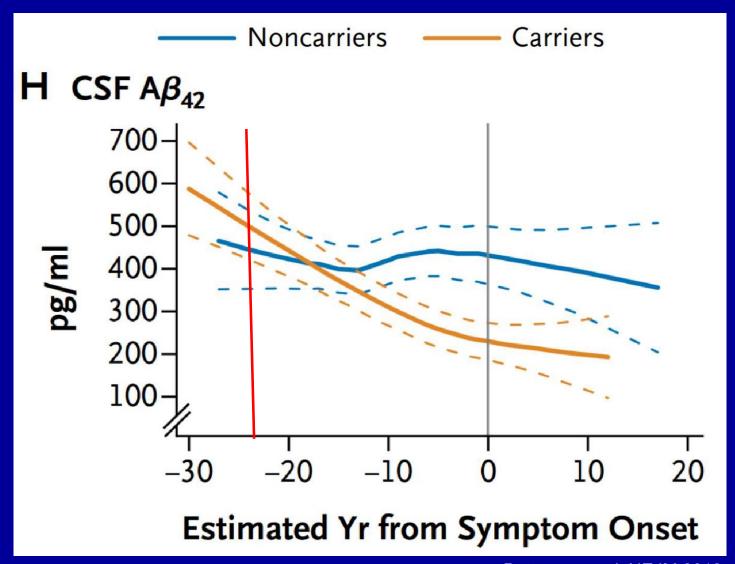

Outline

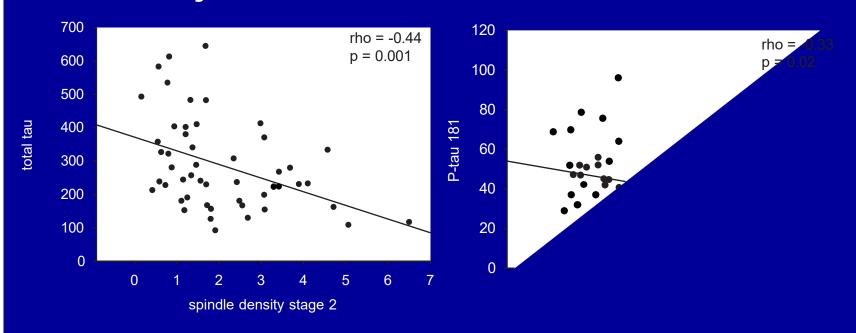

- 1. Evidence that **OSA** impacts memory
- 2. Evidence that **OSA** impacts **AD** biomarkers
- 3. Evidence that **OSA** treatment can impact both memory and **AD** biomarkers


How does chronic OSA treatment impact AD fluid biomarkers?

35 adults age **35**-65 (mean **57**) with **OSA** (AHI4% > 5/hour) prescribed **PAP CSF** collected pre-treatment and **1-4** months post-treatment Analysis limited to "**PAP** adherent" subjects

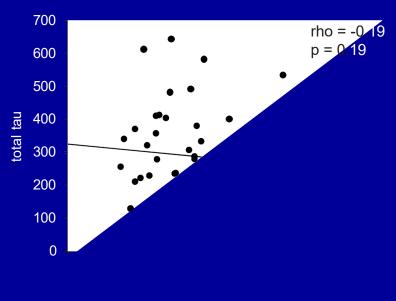
TABLE 1. Effect of Positive Airway Pressure Treatment				
	Pretreatment	Post-treatment	p	
CSF				
Aβ40, pg/ml	$12,033 \pm 3,972$	$12,059 \pm 3,560$	0.944	
Aβ42, pg/ml	987 ± 329	977 ± 319	0.733	
Tau, pg/ml	184 ± 96	182 ± 102	0.602	
Protein, mg/ml	0.857 ± 0.279	0.912 ± 0.235	0.197	

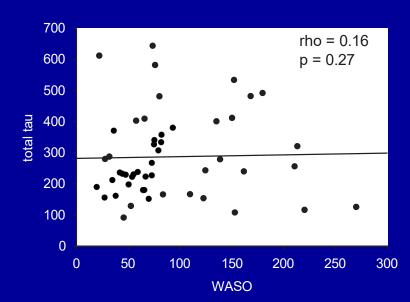


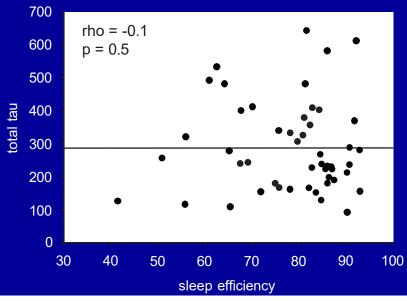

Ju, et al, Annals of Neurology 2019

Is elevated CSF $A\beta_{42}$ good or bad?

Bateman, et al, NEJM 2012


High spindle density in stage 2 sleep is associated with low total tau and phosphorylated tau concentrations in cerebrospinal fluid (CSF) in older subjects without OSA

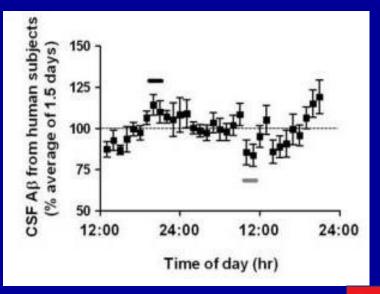



Correlation remains significant when controlling for age and sex

Correlations also present but weaker between tau and spindles in stage 3 or all NREM

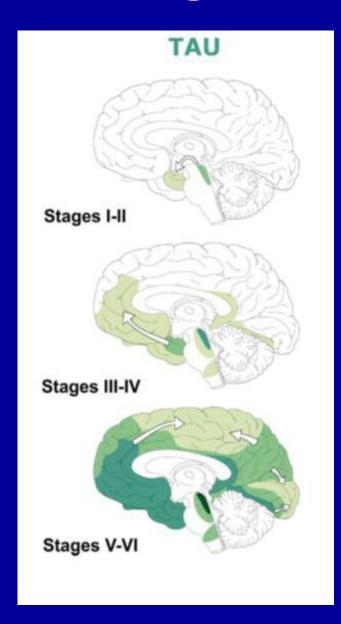
CSF tau does not correlate with general measures of sleep quality





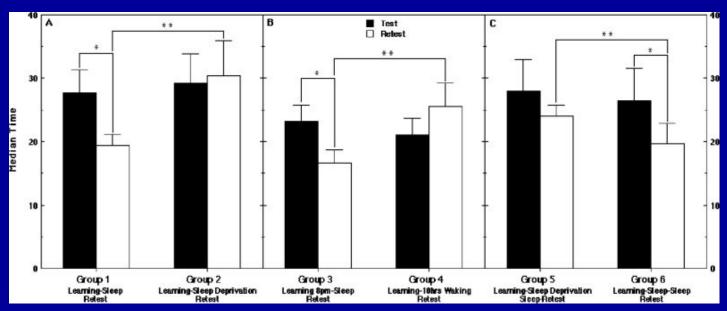
The diurnal fluctuation of Aβ:

- Neuronal activity regulates Aβ deposition
- There is decreased neuronal activity in SWS
- Aβ shows a diurnal fluctuation in mice/humans

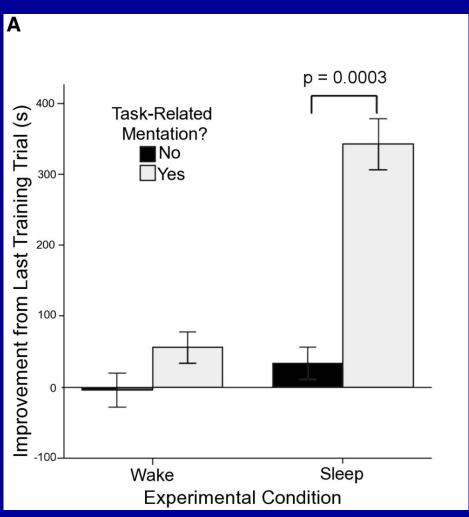


J Kang et al. Science 2009;326:1005-1007

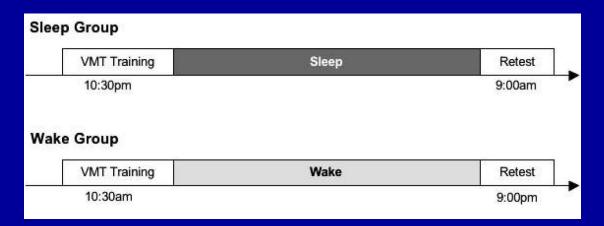
AD neurodegenerative process disrupts sleep (ii):


- Tau pathology is seen in LC in over 90% of individuals under 30 years of age.
- Severity of tau pathology in the LC significantly increases with increasing NFT Braak stages
- Better sleep consolidation attenuates the development of neurofibrillary tangles
- Loss of neurons in the intermediate nucleus neurons is accompanied by sleep fragmentation
- AD patients have less intermediate nucleus neurons than those without

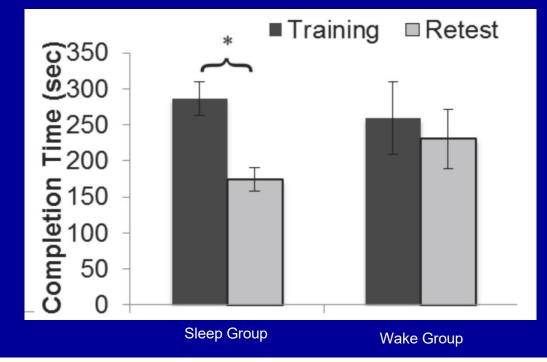
- Using a partial correlation to control for age, we showed a continued significant positive partial correlation between medial prefrontal cortical volume and average relative frontal slow wave activity (r = 0.52, p = 0.004), suggesting that controlling for age had little effect on the strength of the relationship between these variables
- A partial correlation controlling for age demonstrated a reduced strength of association between average relative frontal slow wave activity and the overnight percent change in maze completion time (rho = 0.3, p = 0.056), suggesting that age has some mediating effect on the relationship between relative frontal slow wave activity and spatial navigational memory


Human Spatial Memory

Ferrara, M, et al, *Hippocampus* 2008

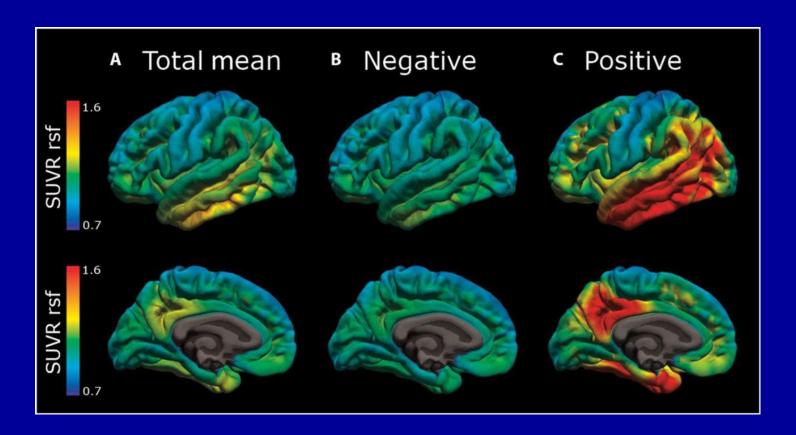


Spatial Navigation Performance is Improved When Subjects Dream About the Maze

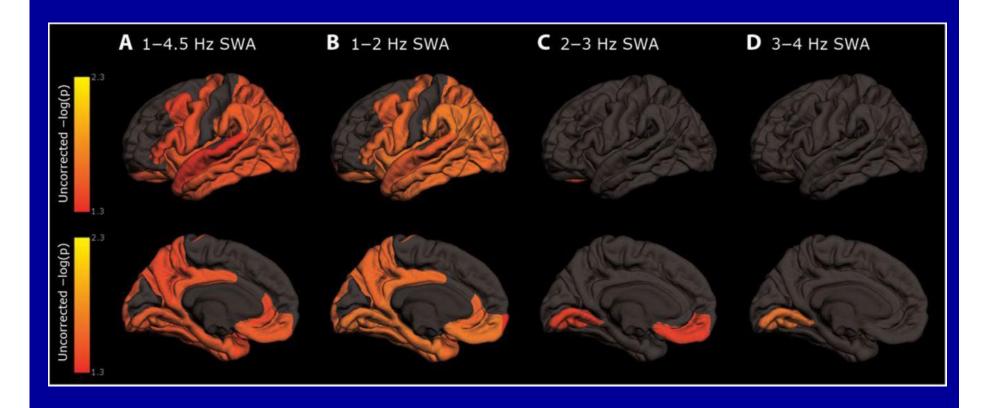


Wamsley, et al, Curr. Bio. 2010

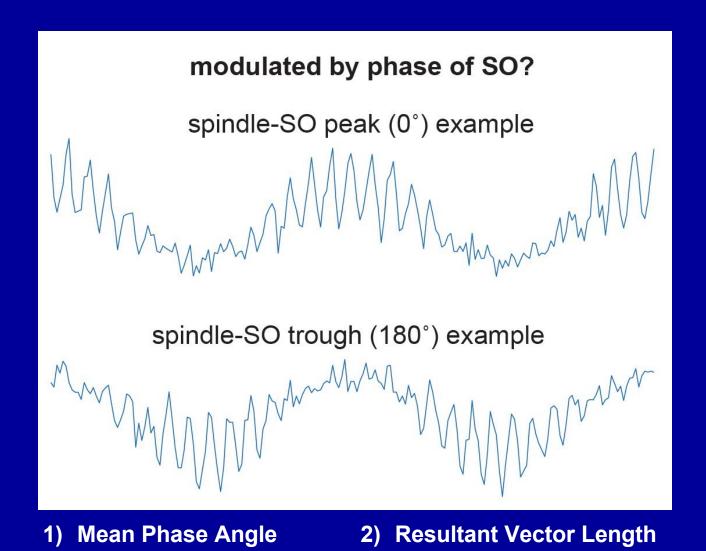
Overnight Sleep Enhances Spatial Navigational Memory Versus Equal Wake



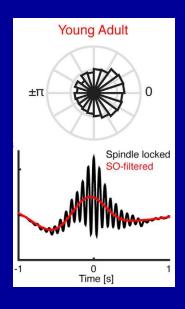
34.7 % Improvement across sleep


Nguyen, N, et al, Sleep 2013

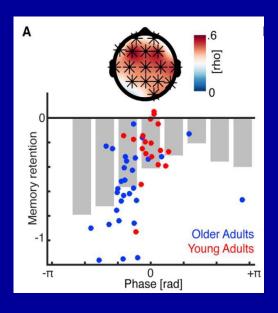
Distribution of tau by PET in cognitively normal elderly


Lucey, et al, Sci Trans. Med 2019

Tau associations with SWA



Lucey, et al, Sci Trans. Med 2019


Spindle-SO coupling

Spindle-SO coupling changes with aging and predicts memory retention

Helfrich, et al, Neuron 2018

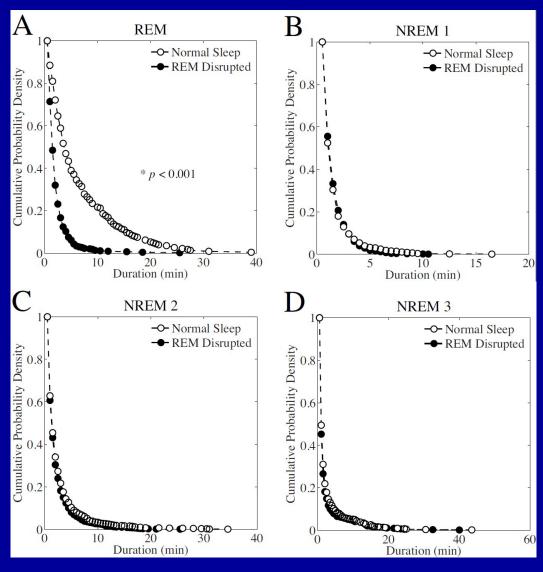
Summary

OSA negatively impacts the prospective formation of memories (declarative, spatial navigational)

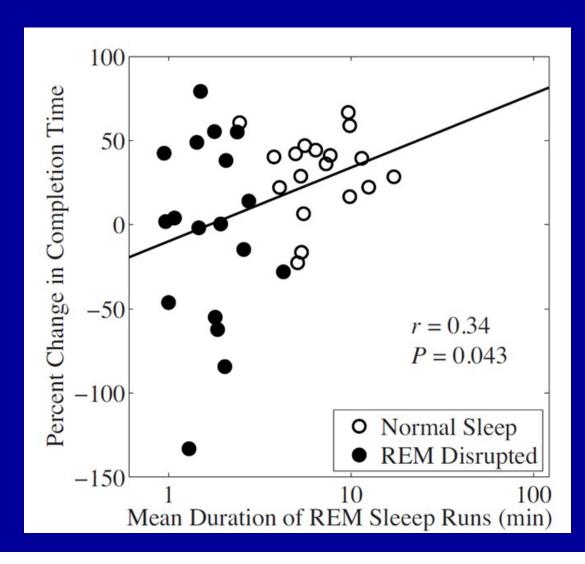
Mechanism may be related to be reduction/impairment in cortical slow oscillations

Presence of **OSA** is associated with an earlier age of onset of mild cognitive impairment (**MCI**) – impairment of prospective memory and established memories

Greater **OSA** severity is associated with longitudinal decreases in **CSF** Aβ42 and increases in cortical amyloid deposits, thought to increase risk for **MCI** and **AD**

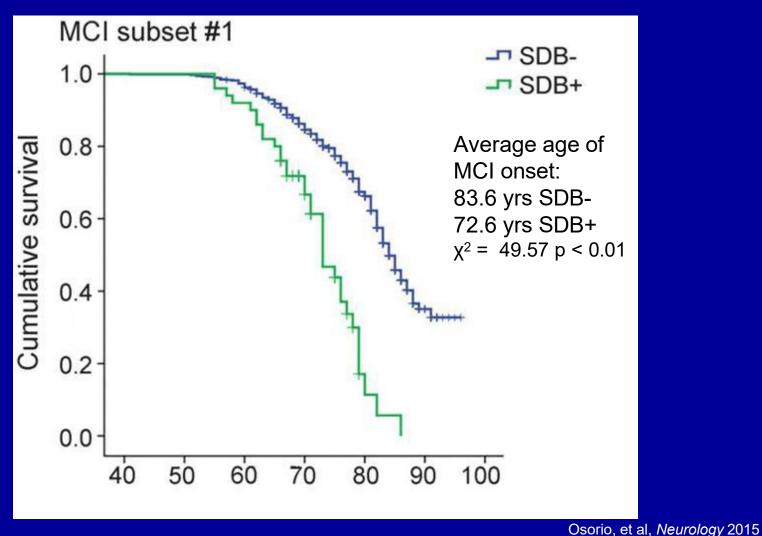

Acute induction of **OSA** via **PAP** withdrawal alters the overnight change in Aβ40 and NfL measured in plasma

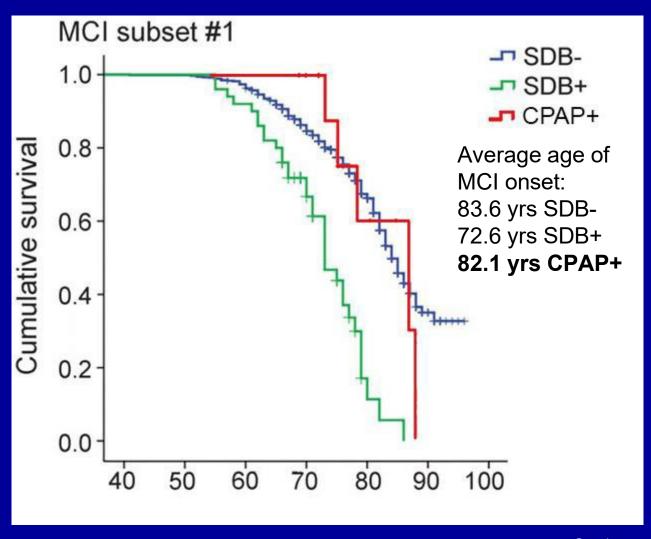
Chronic subjective **PAP** use is associated with a later age of onset of MCI (similar to individuals without **OSA**)


Chronic objective **PAP** use can restore prospective declarative memory formation

Magnitude of change in AHI from chronic **PAP** use correlates with improvements in **CSF** measures of amyloid and tau

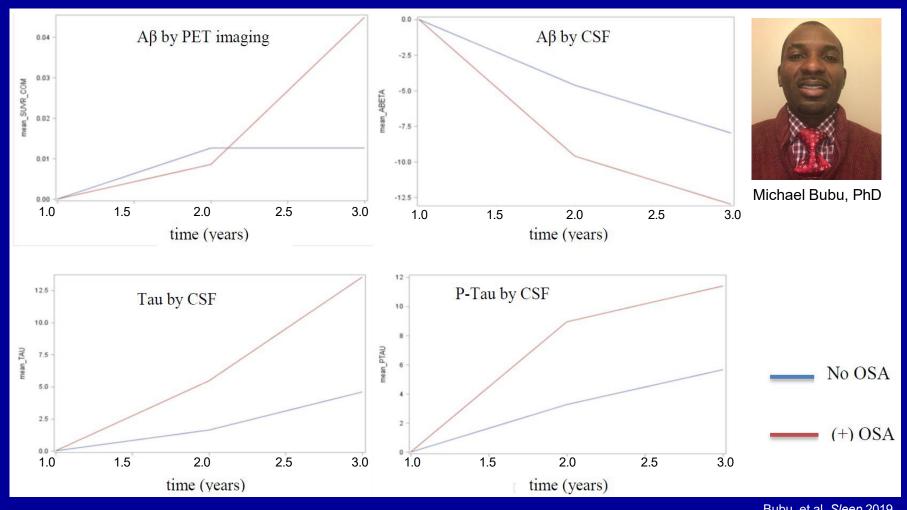
OSA in REM increases fragmentation of REM sleep, but not non-REM sleep


Mean REM run duration correlates with overnight completion time improvement


Mining the Alzheimers Disease Neuroimaging Initiative (ADNI) Cohort

- Active cohort, 2470 subjects at time of analysis, average follow-up 2-3 years, data publicly available
- Subset of 767 subjects for sleep analysis
 - -Subjects completed sleep questionnaires
 - -Sleep apnea (yes / no?)
 - -If yes, do you use CPAP (yes / no?)
 - –Age of mild cognitive impairment (MCI) diagnosis could be determined

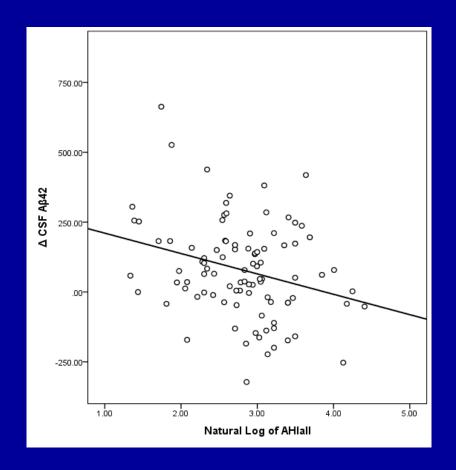
The age of onset of mild cognitive impairment (MCI) is reduced in older subjects with sleep disordered breathing (SDB)...

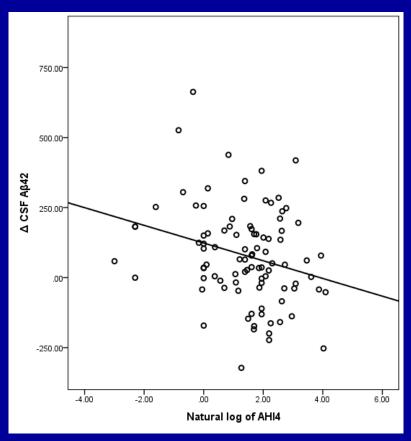


But returns to baseline in subjects with SDB treated with CPAP

Osorio, et al, Neurology 2015

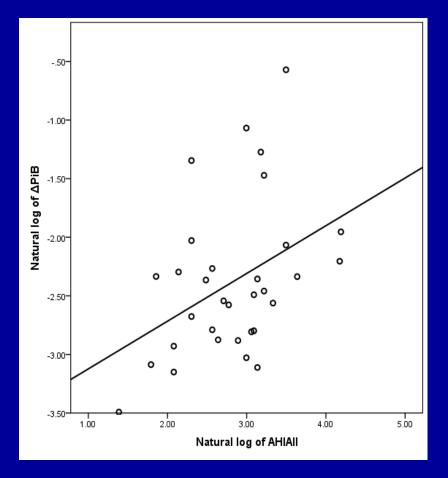
ADNI: Self-reported OSA presence is associated with increased longitudinal burden of both Aß and tau

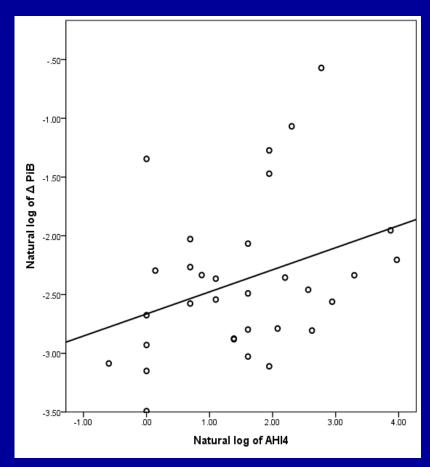



Longitudinal Change in CSF and Imaging AD Biomarkers

- Of the 208 cognitively normal elderly:
 - Subset of 109 subjects completed 2nd LP 2.42
 years (± 0.88 years)
 - Subset of 34 subjects completed 2nd amyloid
 PET scan

2.50 years (± 0.39 years)


Higher **OSA** severity at baseline is associated with a longitudinal decrease in soluble **CSF** Aβ42



Sharma*, Varga*, et al, Am. Journal Resp. Crit. Care Med. 2018

Higher **OSA** severity at baseline is associated with a longitudinal increase in cortical amyloid deposits by **PET** imaging (**PiB**)

Sharma*, Varga*, et al, Am. Journal Resp. Crit. Care Med. 2018 *equal contributions

This Page Imitentillomally Left Blamk

Manhattan

Houston Street

PTSD and Sleep Among World Trade Center Responders

Camilo Ruggero, Ph.D.

Brett Messman, MS

University of North Texas, Department of Psychology

Site of WTC

Brooklyn

Disclaimer: Funding for this conference was made possible (*in part*) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

This Page Imitentillomally Left Blamk

PTSD and Sleep Among World Trade Center Responders

Camilo Ruggero, Ph.D.

Brett Messman, MS

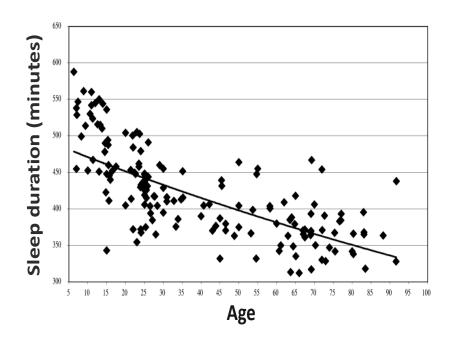
University of North Texas, Department of Psychology

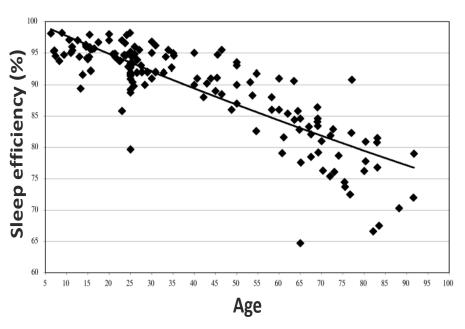
Problem:

Disrupted sleep implicated across psychopathology and **PTSD**Little work understanding long-term pattern among **WTC** responders

Study:

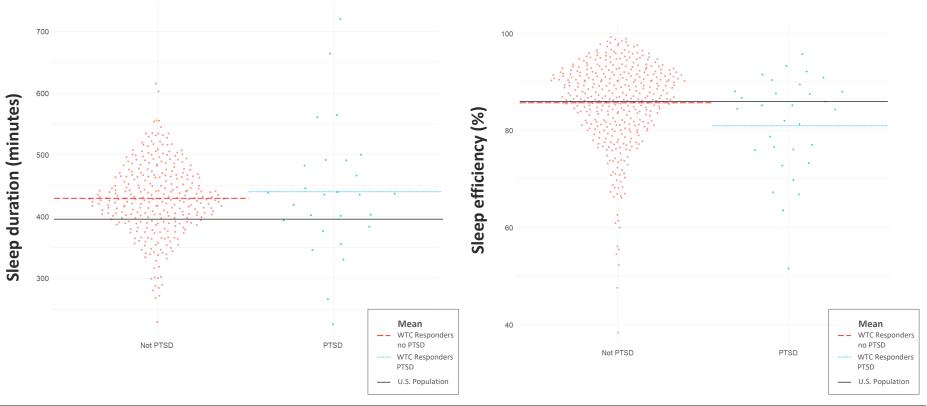
452 responders (8% with PTSD)

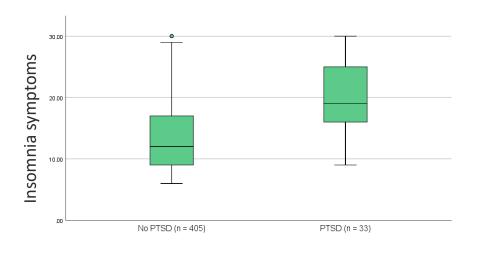

Annual assessment across 4 waves

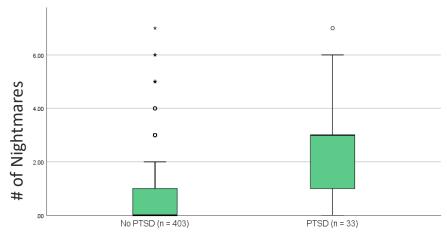

Survey + 2-week sleep diary

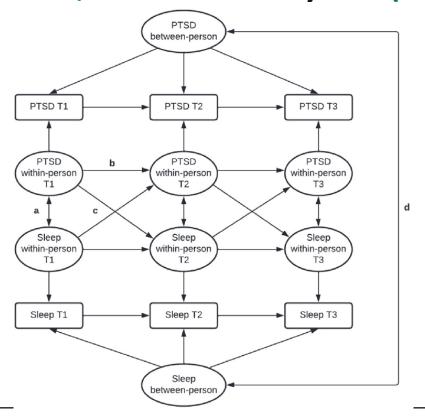
Results from first 3 waves

Random intercept cross-lagged panel model (RI-CLPM) (Stable, trait-like patterns versus change across time from person's own average)

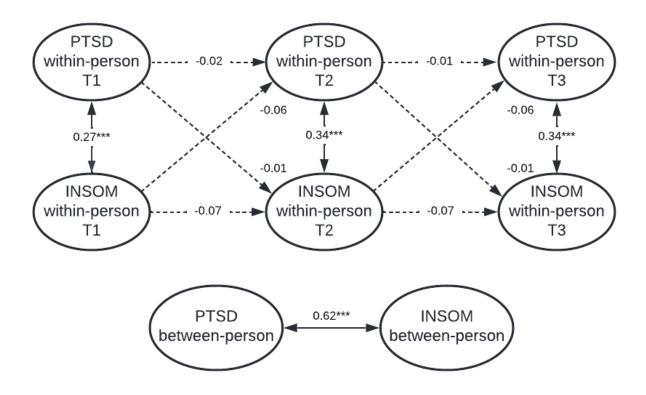

Sleep in US population

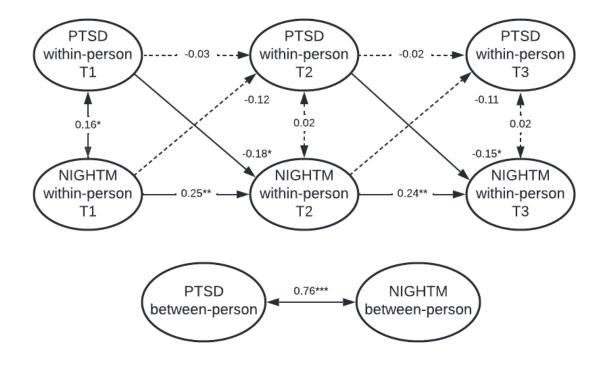

3


Sleep in WTC responders (with and without PTSD)

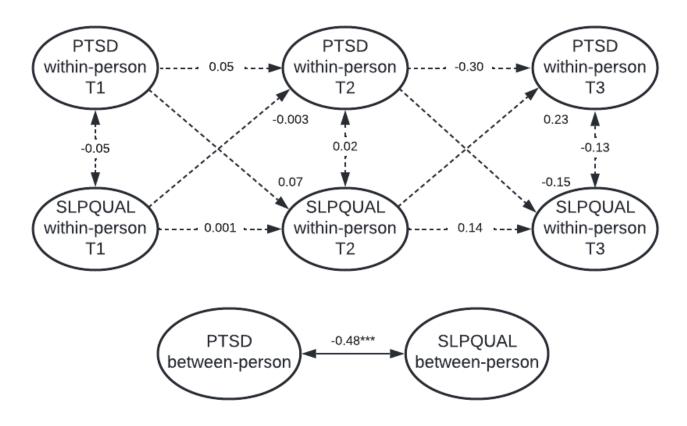

Probable Insomnia (with and without PTSD)

About 5% (with PTSD: >30%)



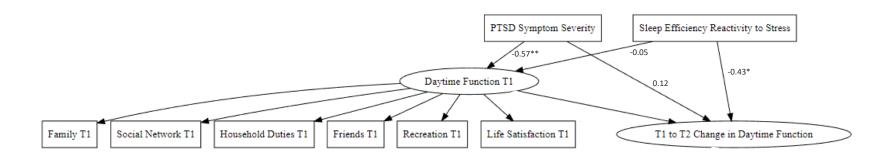

Sleep disturbances, PTSD across 2 years (N = 452)

PTSD and insomnia



PTSD and nightmares

8


PTSD and sleep quality

(Slavish et al., 2023)

9

PTSD and sleep-stress reactivity

Summary

Between-person **PTSD** and disrupted sleep:

Very comorbid: ↑ PTSD = ↑ disrupted sleep, nightmares
Highly stable pattern across waves (i.e., difficult to disrupt)

Within-person PTSD and disrupted sleep:

Within-person \uparrow disrupted sleep, nightmares = \uparrow PTSD concurrently Within person \uparrow PTSD = \downarrow nightmares

Sleep *reactivity* to daytime stress = ↓ functioning across time

Three key finding takeaways

- 1. Sleep disturbances and **PTSD** symptoms are highly **stable and persist** across time without intervention. Earlier intervention is key to preventing **long-term impact**.
- 2. More sleep disturbances are associated with more severe PTSD. Those with this comorbidity are in greatest need of care.
- 3. Strong **sleep reactivity** and fluctuations are a marker for poorer social functioning. Helping address reactivity may promote resilience and prevent onset of other problems.

Impact and Implications

Effects of PTSD treatment on disordered sleep

Small-to-moderate reduction in insomnia symptoms

Moderate-to-large reduction in nightmares

Residual insomnia symptoms and nightmares exist post-treatment

PTSD
Interventions
(PE, CPT, CBT)

Disordered Sleep Interventions (CBT-I, IRT)

Combined Sleep and PTSD Treatments

Treating sleep prior to treating **PTSD** improves overall treatment outcomes

Sleep treatment has less stigma

Effects of disordered sleep treatment on PTSD

Weak-moderate reduction in PTSD symptoms when treating co-occurring insomnia

Mixed findings in nightmare-specific treatment

Untreated OSA can interfere with PTSD treatment

13

129

Future Research

Additional research into treatment sequencing (sleep versus PTSD) versus integrative approaches

Advancing **ecological momentary interventions (EMI)** and targeting reactivity

Deploying sleep **treatment at-scale**: efficacy of virtual/mobile interventions

Better identification of at-risk status for early intervention

Biopsychosocial mechanisms linking sleep/PTSD and long-term health impacts

Acknowledgements

- Danica C. Slavish, Department of Psychology, University of North Texas
- Jiaju Miao, Department of Psychiatry and Behavioral Health, Stony Brook University
- Benjamin J. Luft, Department of Medicine, Stony Brook University
- Roman Kotov, Department of Psychiatry, Stony Brook University

Funding from NIOSH (1U010H010712)

This Page Imitentillomally Left Blamk

Robert M Brackbill, PhD, MPH
Research Director
Wednesday, June 28th
NIOSH PI Meeting 2023

ttan

Street

Brooklyn

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

World Trade Center Health Registry Opioid Studies *Robert M Brackbill, PhD, MPH | Research Director | Wednesday, June 28th NIOSH PI Meeting 2023*

World Trade Center Health Registry Opioid Studies

Robert M Brackbill, PhD, MPH
Research Director
Wednesday, June 28th
NIOSH PI Meeting 2023

Outline

- Background
- WTCHR Opioid use questions
- 3 Two papers on Opioid use
- 4 Al and Opioid Use

World Trade Center Health Registry Opioid Studies

WTCHR Wave 4 Opioid questions

For the next few questions, please think about prescription pain relievers such as Oxycodone (e.g., Percocet, Endocet, OxyContin) or Hydrocodone (e.g., Vicodin, Norco, Lortab). Do not include "over the counter" medications.

During the last 12 months, has a doctor or other health professional given you a prescription for a pain reliever?

☐ Yes ☐ No

When was the most recent time you took the pain reliever that you were prescribed?

- a. Within the last 30 days
- b. More than 30 days ago
- c. Never I did not take the pain reliever

Have you ever - even once - taken more of the pain reliever than you were prescribed? This includes taking a higher dosage or taking it more often than directed.

- a. Yes, within the last 30 days
- Ob. Yes, more than 30 days ago but within the last 12 months
- Oc. No

During the last 12 months, have you ever - even once - taken a prescription pain reliever that was not prescribed to you?

- a. Yes, within the last 30 days
- b. Yes, more than 30 days ago but within the last 12 months?

Have you ever stayed overnight or longer at a hospital, rehabilitation facility, or mental health center so you could receive treatment or counseling for alcohol or drug use?

- a. Yes, before 9/11
- b. Yes, after 9/11
- c. Yes, both before and after 9/11?
- o d. No

World Trade Center Health Registry Opioid Studies

WTCHR Wave 5 Opioid Use Questions

For the next few questions, please think about prescription pain relievers such as oxycodone (e.g., Percocet, Endocet, OxyContin) or hydrocodone (e.g., Vicodin, Norco, Lortab). Do not include "over the counter" medications.

a. During the last 12 months, has a doctor or other health professional given you a prescription for a pain reliever? No	
During the last 12 months, have you ever – even once – taken the pain reliever that you were prescribed? Yes No	
During the last 12 months, have you ever – even once – taken more of the pain reliever than you were prescribed? This includes taking a higher dosage or taking it more often than directed. ☐ Yes ☐ No	
d. During the last 12 months, have you ever – even once – taken a prescription pain reliever that was not prescribed to you? ☐ Yes ☐ No	
 During the last 12 months, on average, how often have you taken a prescription pain reliever that was not prescribed to you? More than once a week Once a week Two or three times a month Once a month Less than once a month 	

WORLD TRADE CENTER

2023

Wave 5 Opioid questions (cont'd)

Now think about the last time you used a prescription pain reliever in any way a doctor did not direct you to use. What were the reasons you used the prescription pain reliever the last time? Select all that apply.

□ To relieve physical pain	
■ To relax or relieve tension	
■ To experiment or to see what it's like To feel good or get high	
■ To help with my sleep To help with my feelings or emotions	
☐ To increase or decrease the effect(s) of some other drug Because I am "hooked" I I have to have it I used it for	some other
reason	

Have you ever stayed overnight or longer at a hospital, rehabilitation facility, or mental health center so you could receive treatment or counseling for alcohol or drug use?

Yes

■ No

☐ When did your stay(s) occur?

□ Before 9/11

☐ After 9/11 Both before and after 9/11 100.

Registry publications using the Opioid data

- Takemoto E, Brackbill R, Martins S, Farfel M, Jacobson M. Post-traumatic stress disorder and risk of prescription opioid use, over-use, and misuse among World Trade Center Health Registry enrollees, 2015-2016. Drug and Alcohol Dependence, 2020
- Garry S, Locke S, Pollari C, Li J, Takemoto E. Post-traumatic stress disorder and risk of first-time and recurrent opioid-related hospitalizations among World Trade Center Registry enrollees. Submitted to Psychiatric Research (2023)
- Dhanya A, Yung J, Cone JE, Li J. Association of rheumatoid arthritis with Opioid pain medication overuse among persons exposed to the **9/11** World Trade Center disaster. International Journal of Environmental Research and Public Health, **2023**

Post-traumatic stress disorder and risk of opioid use

- Investigate the association between PTSD and use and misuse of opioids
 - Is 9/11-related PTSD associated with recent, overuse, or misuse
 - Are certain symptom clusters associated with opioid use
- Recent use was 49% higher among persons with past PTSD, 83% higher among persons with current PTSD
- Persons with current PTSD were 178% higher risk to overuse compared to never and 204% higher to misuse prescribed opioids
- Arousal symptom cluster had the highest risk for each outcome compared to avoidance and re-experiencing cluster

PTSD and opioid hospitalizations

- Extend the previous study on opioid to objectively define an outcome for assessing a burden through hospitalization
- NYS Statewide Planning and Research Cooperative System *(SPARCS)* for patient level opioid hospitalization among **WTCHR** enrollees *(209 Opioid related hospitalizations; 379 total hospitalizations)*
- An individual with PTSD had four times the risk of opioid-related hospitalization and recurrent hospitalization

Association of Rheumatoid Arthritis (RA) with Opioid Pain Medication Overuse among Persons Exposed to the 9/11 World Trade Center (WTC) Disaster

IJERPH 2023, 20(5), 4166

(Special Issue: 9/11 Disaster and Other Man-Made Trauma Events and Their Health Effects)

Ananya Sarker Dhanya, MBBS, MPH
WTCHR, NYC DOH&MH
Wednesday, June 28th
NIOSH PI Meeting 2023

Brooklyn

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

Association of Rheumatoid Arthritis (RA) with Opioid Pain Medication Overuse among Persons Exposed to the 9/11 World Trade Center (WTC) Disaster

IJERPH 2023, 20(5), 4166

(Special Issue: 9/11 Disaster and Other Man-Made Trauma Events and Their Health Effects)

Ananya Sarker Dhanya, MBBS, MPH

WTCHR, NYC DOH&MH

Wednesday, June 28th

NIOSH PI Meeting 2023

Background & Rationale

- Various health conditions due to exposure to harmful environmental contaminants and toxic substances in the WTC disaster:
 - Acute traumatic injuries, airway & digestive Disorders, cancers, mental Health conditions, musculoskeletal disorders
- Systemic autoimmune diseases (SADs) is a potentially emerging WTC-related condition, comprised of several diseases (i.e., RA, SLE, etc.)
- RA is the most common SAD associated with WTC disaster exposure (Miller-Archie et al, 2020), while PTSD is the most common mental health problem
- Opioids are the common alternative/supplemental treatment modalities for joint pain (40% of all RA patients, Dayet al, 2019), one of the main complaints of SADs/RA.
- Long-term opioid use results in dependency causing Opioid overuse, which is the initial phase of Opioid overuse disorder (OUD)

• Is there any association of **post-9/11**Rheumatoid Arthritis *(RA)* diagnosis with opioid pain medication overuse among **WTCHR** enrollees?

NIOSH PI MEETING 2023

Methods: Study Sample

> Inclusion:

- Enrollees who participated in either wave 4 or wave 5 or both.
- Aged 18 or older on 9/11
- <u>Being prescribed</u> any pain-relieving opioid medication (e.g., oxycodone or hydrocodone) in the preceding **12** consecutive months, which were reported in **W4/W5**

Exclusion:

- **Self**-reported **RA** in wave **3**, not confirmed by medical records or treating physicians
- Self-reported **RA** for the first time in either wave **4** or **5** without prior physician's validation
- RA diagnosis year: prior to 9/11 or unknown
- Missing value in any of the covariates

- Total analytic sample (N=10,196):
 - Clinically confirmed RA (N=46)
 - Non-RA group (N=10,150)

Methods: RA Status (exposure of interest)

> RA cases:

- Used data from the Autoimmune disease in-depth survey conducted in 2013-2014, after wave 3 survey
- Met at least one of the following three criteria:
 - The American College of Rheumatology (ACR) score-based algorithm with a score of 6/10 based on the categories of joint involvement, serology, acute-phase reactants, and the duration of symptoms
 - 2. received a prescription for medication consistent with an autoimmune disease
 - 3. received a RA diagnosis by a board-certified rheumatologist
- Positive responses were reviewed independently by Registry research staffs (SM-A, JEC (medical director))
- Unclear diagnoses were reviewed independently by two board-certified rheumatologists
- Non-RA: Enrollees who never reported having a diagnosis of RA in any of the follow-up surveys

Methods (cont'd)

➤ Outcome – Opioid pain medication overuse:

• Overuse: defined if they reported "Ever taken that prescribed pain medication at a higher dosage or more often than directed in the last 12 months"

Covariates:

- From the latest survey response (either W4 or W5)
 - Sociodemographic (Age, sex, race/ethnicity, marital status, educational attainment, smoking history)
 - Active **9/11** related **PTSD** symptoms
 - Assessed from enrollees' latest response (wave 5 or wave 4), using DSM-V criteria (a score of 33 or higher out of a total of 80).
 - In case of wave 4 response (responses originally taken in DSM-IV criteria), adaptation method was used to correspond DSM-IV response to DSM-V

➤ Data analysis:

Multivariable log-binomial regression

Results

Table 1. Characteristics by RA status

	Enrollees with post-9/11 RA	Enrollees without post-9/11 RA
	N (%)	N (%)
Total	46	10150
Age at 9/11, years		
18-39	14 (30.4)	3941 (38.8)
40-49	22 (47.8)	3595 (35.4)
50-79	10 (21.7)	2614 (25.8)
Gender		
Male	14 (30.4)	6324 (62.3)
Female	32 (69.6)	3826 (37.7)
Race/Ethnicity		
Non- Hispanic White	27 (58.7)	7433 (73.2)
Educational attainment		
>High school graduate	35 (76.1)	8569 (84.4)
Active PTSD symptoms		
Yes	13 (28.3)	1504 (14.8)
No	33 (71.7)	8646 (85.2)
Opioid pain medication overuse		
Yes	13(28.3)	1128 (11.1)
No	33 (71.7)	9022 (88.9)

Results - Regression Analysis

Association of RA with opioid pain medication overuse

	Unadjusted Risk Ratio	95% CI	Adjusted Risk Ratio*	95% CI
Post-9/11 RA				
Yes	2.54	1.60,4.04	2.13	1.44,3.17
No	referent		referent	
Active PTSD symptoms				
Yes	2.67	2.39,2.99	2.27	2.03,2.56
No	ref	erent	re	ferent

^{*} Adjusted for age, sex, race/ethnicity, marital status, educational attainment, smoking history, and active PTSD symptoms

Discussion

- Main findings: RA was independently associated with opioid pain medication overuse, after adjusting for covariates
- RA patients had at least 4 years of the illness, as they were diagnosed before wave 3
- Long-term opioid usage could increase pain perception due to sensitization of the pain modulation system in the central nervous system
- PTSD may influence the development of RA or worsening of the disease progression by disrupting the hypothalamic-pituitary-adrenal (HPA) axis
- A higher prevalence of PTSD in our population may lead to a higher rate of opioid medication use for pain management among those with RA

Limitations

- Attrition bias due to 63% of enrollees with self-reported RA did not participate in the indepth survey or not provided consent for the providers' survey
- Underestimation of study findings due to no clinical validation was done among non-RA comparison group
- Low statistical power due to small number of RA enrollees
- Information bias due to no data on compliance of prescribed pain medication use and reasons for overuse
- Other confounders due to lack of data:
 - family history of RA
 - personal history of substance misuse, including alcohol, tobacco, and marijuana

Conclusion

- ➤ Given the serious consequences of opioids overuse and the vulnerability among RA patients with prior exposure to traumatic events, i.e., WTC-disaster:
 - Closely monitoring the risk of prescribed opioids overuse
 - Clinicians: PTSD screening during routine health exam
 - Periodic evaluation and more research on long-term use and management of prescribed opioids
 - Interventions targeting opioid-related harm reduction, such as proper guidelines for prescribing opioids for the providers, education program at patient and public level, prescription Monitoring Program (PMP)

Research Gaps

- Types of Opioids
 - Naturally derived (morphine), Semisynthetic (Oxycodone, hydrocodone), Fully synthetic (Fentanyl)
- Uses of these types are associated with conditions covered by the WTC Health Program
- Morphine, fentanyl (mostly in hospital setting, infrequent self intake prescription) Severe pain (post-operative, advanced stage cancer, serious injury, bone fracture, etc.)
- Oxycodone, hydrocodone (self intake prescription drug)- moderate to severe pain (back pain, osteoarthritis, rheumatoid arthritis, some types of cancer, etc.)
- Are various prescription opioid drugs overuse or misuse patterns (oxycodone/hydrocodone) secondary consequences of treatment for 9/11 conditions?

Acknowledgements

> Co-authors

- Janette Yung
- James Cone
- Jiehui Li

➤ New York City Department of Health & Mental Hygiene (NYC DOHMH)

- Alice Welch
- Alex Harocopos
- Hannah Helmy

→ City University of New York (CUNY) Graduate School of Public Health & Health Policy (SPH)

- Jennifer Trinier
- Saba Qasmieh

> This study was supported by:

- NIOSH/CDC (2U50/OH009739 & 5U50/OH009739)
- ATSDR/CDC (U50/ATU272750)
- NYC DOHMH

NYC Health

This Page Imitentillomally Left Blamk

Manhattar

Association of Lung Function Decline with All-Cause and CancerCause Mortality after World Trade Center Dust Exposure

June 2023 WTCHP Research Meeting
David Goldfarb, PhD, MPH

Brooklyn

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

Association of Lung Function Decline with All-Cause and CancerCause Mortality after World Trade Center Dust Exposure

June 2023 WTCHP Research Meeting David Goldfarb, *PhD*, *MPH*

Background

- World Trade Center (WTC) exposures caused lung injury with an immediate decline in forced expiratory volume in one second (FEV₁) in Fire Department of the City of New York (FDNY) rescue/recovery workers
- For about 11% of the cohort lung function continued to decline at greater than 64 mL/y (accelerated FEV₁ decline)
- Other population-based studies have evaluated reported increased risk of all-cause mortality among those with accelerated lung function decline
- Joint modeling of longitudinal exposures/predictors and survival outcomes has distinctive advantages over traditional approaches
 - All longitudinal measurements are considered when evaluating the survival event, such that the temporal order of exposure preceding the outcome is preserved
 - Allows for estimation of the association of baseline values and changes from baseline with survival outcomes of interest

 Montefiore
 9.11

Objective

 To evaluate the association of longitudinal lung function with all-cause and cause-specific mortality after exposure to the WTC disaster

- Study population
 - WTC-exposed Firefighter and EMS providers
 - Active-duty on 9/11 and responded or worked on the WTC rescue/recovery effort between the morning of the attacks and the time which the site closed 7/2002
 - Informed written consent

Pulmonary Function Testing (PFT): Spirometry

- As part of their monitoring exams, participants had spirometry every 12 to 18 months, on average, to assess lung function
- FEV₁ was used for all analyses because of its reproducibility and is the most commonly used spirometry measurement in longitudinal analyses
- Baseline FEV₁ was defined as the first measurement after 9/11/2001

Mortality data

 Death dates and causes of death were ascertained using data from the National Death Index (NDI)

Study outcomes

- Primary
 - all-cause mortality
- Secondary
 - o cancer-cause mortality
 - o cardiovascular-cause mortality
 - o respiratory-cause mortality

Statistical Methods

- Joint longitudinal survival models
 - Using this this method allowed us to evaluate the impact of FEV₁ and change in FEV₁ independently in a longitudinal survival analysis
 - Longitudinal sub-model (evaluating lung function)
 - Baseline FEV₁ and change in FEV₁ were estimated, separately.
 - Change in FEV₁ was evaluated as a function of years since a participants' first post-9/11 PFT
 - Survival sub-model (evaluating mortality)
 - Piecewise exponential
 - Controlled for age on September 11, 2001, race/ethnicity, smoking, work assignment on September 11, 2001, height and WTC arrival time

Statistical methods

- Sensitivity analyses
 - 1. Removing PFT measurements within 3 years of the end of the follow-up for an individual to eliminate the potential bias incurred from reverse causality (i.e., removing measurements that were possibly after the onset of impaired lung function caused by incident cancer or other serious disease)
 - 2. Requiring at least three PFT measurements to assess the extent to which selection bias affected results in the full models

Statistical methods

- Additional analyses: Mortality by accelerated FEV₁ decline
 - Rates of decline were stratified by participants who had accelerated lung function decline, defined as ≥64 ml/year
 - Piecewise exponential survival models controlling for age on 9/11; race/ethnicity; sex; smoking; and WTC arrival time were used to estimate mortality hazard ratios
 (HRs) of participants with accelerated decline compared with the rest of the cohort
 - Outcomes: All-cause, cancer-cause, cardiovascular disease-cause, and respiratorycause of death

Cohort characteristics

Variable	Overall (N = 12,264)
Age on 9/11/2001, yr PFT examinations Post-9/11 follow-up, yr Race/ethnicity White Black Hispanic	39.7 ± 7.8 11.2 ± 4.1 19.1 ± 2.6 $10,756 (87.7)$ $696 (5.7)$ $812 (6.6)$
Sex Male Female	11,862 (96.7) 402 (3.3)
Smoking status Never Current/former WTC exposure	7,819 (63.8) 4,445 (36.2)
9/11 A.M. 9/11 P.M. 9/11 P.M. to 9/12 9/13–9/24 9/25 to site close Unknown	2,076 (16.9) 6,028 (49.2) 2,050 (16.7) 1,793 (14.6) 275 (2.2) 42 (0.3)

FEV₁% predicted at baseline and final exam

	Baseline PFT	Last PFT
Strata of FEV ₁ % predicted	N (%)	N (%)
0-59	79 (0.6)	309 (2.5)
60-69	204 (1.7)	502 (4.1)
70-79	1011 (8.2)	1457 (11.9)
80-89	2606 (21.3)	2823 (23.0)
90-99	3652 (29.8)	3391 (27.7)
100-109	2822 (23.0)	2422 (19.8)
110-119	1307 (10.7)	1023 (8.3)
120-140	583 (4.8)	337 (2.8)

Joint longitudinal survival models

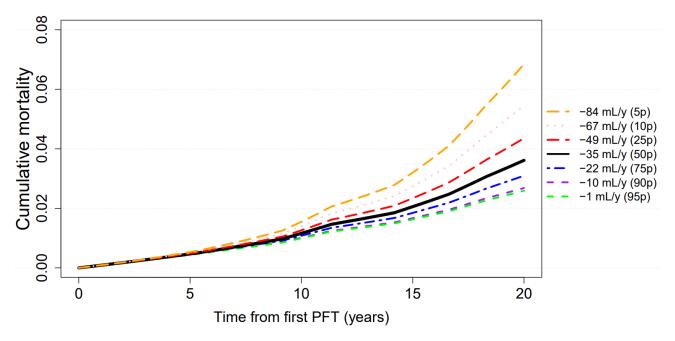
Evaluating the association between baseline FEV₁ and mortality

Cause of death (Category)*	HR (95% CI)	Worse with lower baseline FEV1 ────
All deaths (1-28)	2.32 (1.98, 2.72)	⊢ ◆-1
Cancer (2-10)	1.99 (1.49, 2.66)	├
Heart disease (16)	3.12 (2.23, 4.35)	├
Respiratory disease (18)	5.67 (3.08, 10.44)	├
	1	.0 10.0

^{*}category corresponds with NIOSH life table analysis system major categories

Joint longitudinal survival models

Evaluating the association between change in FEV₁ and mortality[‡]


Cause of death (Category)*	HR (95% CI)	Worse with greater longitudinal FEV1 decline →
All deaths (1-28)	1.11 (1.06, 1.15)	⊢
Cancer (2-10)	1.07 (1.00, 1.15)	├ ──
Heart disease (16)	1.10 (1.01, 1.20)	├ ── ├
Respiratory disease (18)	1.26 (1.10, 1.44)	├
	-	1.0 1.5

^{*}category corresponds with NIOSH life table analysis system major categories

[‡]Change in FEV1 was analyzed as a continuous variable

Adjusted all-cause mortality

The model controls for age on 9/11 (centered at 40 years), race (centered at White), smoking (centered at never), work assignment on 9/11 (centered at firefighters), height (centered at 180 cm), and WTC arrival time (centered at initial arrival between September 13, 2001, and July 25, 2002)

Accelerated lung function decline and mortality by cause of death

	FEV ₁ <64 mL/y n=10,457	Decline ≥64 mL/y n=1,244		Mana wish was say
Cause of death (Category)	* n (%)	n (%)	HR (95% CI)	Worse with greater accelerated FEV ₁ decline
All deaths (1–28)	332 (3.17)	140 (11.25) 2.91 (2.37, 3.56)	⊢♦ -
Cancer (2-10)	116 (1.11)	48 (3.86)	2.68 (1.90, 3.79)	├
Heart disease (16)	68 (0.65)	26 (2.09)	2.59 (1.63, 4.12)	├ ──
Respiratory disease (18)	15 (0.14)	13 (1.05)	4.74 (2.20, 10.24)	⊢——
			T 1.	0 10.0

^{*}category corresponds with NIOSH life table analysis system major categories

Strengths

- Large sample size, cohort retention, repeated measurements for 20 years of follow-up
- Excellent mortality capture
- Rigorous quality assurance, standardization, and consistency for pulmonary function testing procedures
- Joint longitudinal survival methodology accounted for dependencies between the longitudinal exposure process (*lung function*) and the time-to-event outcome process (*death*)
- Further, joint modeling also preserves temporality by allowing each repeated FEV₁ measurement in the longitudinal model to predict mortality at each respective time interval, thereby reducing biases produced by informative censoring

Limitations

- Underpowered to detect an association between lung function decline and mortality from specific cancer types or other less common causes of death
- Unmeasured confounding, particularly related to continued workplace exposures among firefighters and EMS providers who remained active in the years following 9/11/2001, could not be discounted
- Cannot fully rule out informative missingness in the PFT data
 - However, the short amount of average time elapsed from the last PFT to the end of follow-up (<2 years) demonstrates that it would have not introduced substantial bias
 Montefiore

Take-home messages

- Evidence that lung function decline is associated with all-cause mortality and cancer cause mortality after controlling for important confounders.
- Baseline FEV₁ and change in FEV₁ over time are associated with all-cause mortality, cancer-cause mortality, and mortality from heart and lung disease.
- Although aspects of the WTC exposure are unique, our study design could benefit the monitoring of other cohorts with occupational/environmental exposures.

Acknowledgements

- FDNY
 - Yang Liu
 - Anna Nolan
 - David Prezant
 - Michael Weiden

- Montefiore
 - David Appel
 - Madeline Cannon
 - Krystal Cleven
 - Allison Halpren
 - Nadia Jaber
 - Alex Mueller
 - Joke Salako
 - Ankura Singh
 - Theresa Schwartz
 - Brandon Vaeth
 - Mayris Webber
 - Rachel Zeig-Owens

- Albert Einstein College of Medicine
 - Jaeun Choi
 - Hillel Cohen
 - Charles Hall

Equations for Joint Longitudinal Survival Models

 $m_i(t) = \beta_0 + \beta_1 t + \sum_{i=1}^{j=m} \delta_j z_{ji} + b_{0i} + b_{1i} t$ This defines a linear mixed model

$$h_{i}(t) = h_{0}(t) \exp \left\{ \sum_{l=1}^{l=q} \gamma_{l} x_{li} + \alpha_{0} m_{i}(0) + \alpha_{1} \left[m_{i}(t) - m_{i}(0) \right] \right\}$$

 $h_0(t) = \sum_{k=1}^{k=7} h_k$ This defines a piecewise exponential survival model with seven periods

 $\tau_{k-1} < t \le \tau_k$

 $\tau_0 = 0$, the time of first FEV₁

 τ_{τ} is maximum follow up

t is follow-up time

 z_{ji} are covariates in the longitudinal model: height, race, age, smoking status, service (firefighter vs. EMS), arrival time at site for participant i

 x_{li} are covariates in the survival model (same as in the longitudinal model) for participant i

 β_0 is the expected value of FEV₁ at the first observed pulmonary function test for a participant 180 cm high, White, 40 years old, never-smoker firefighter who arrived at the site 9/13/2001 or later

 β_1 is the expected rate of change of FEV₁ over the follow-up period

 b_{0i} is a random effect for FEV₁ at the first observed pulmonary function test for participant i

 b_{1i} is a random effect for rate of change of FEV_1 over the follow-up period for participant i

 α_0 is the relative hazard for mortality as a function of first FEV₁

 $\alpha_{\rm l}$ is the relative hazard for mortality as a function of change in ${\rm FEV_l}$ over the follow-up period

Manhattar

Survival among World Trade Center Rescue and Recovery Workers

June 2023 WTCHP Research Meeting David Prezant, MD

Brooklyr

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

Survival among World Trade Center Rescue and Recovery Workers

June 2023 WTCHP Research Meeting
David Prezant, MD

Background

We know that cancer rates are increased in the cohorts and also know there is a high prevalence of other chronic conditions

Despite increased prevalence of certain illnesses, studies have shown that mortality rates are not necessarily higher than the US population. This raises several questions:

- Is the comparison group appropriate?
- Is it too Early?
- Is it because of the Healthy Worker Effect?
- Is it because of Improved Healthcare access?

These questions are complex.

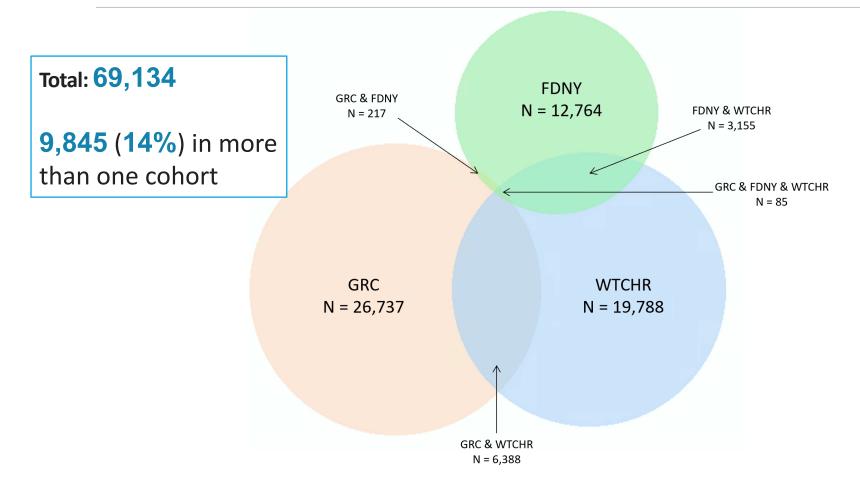
Two studies we have worked on aim to investigate mortality rates further

Cancer and Mortality Rates

- 1. WTC Responder Combined Cohort Study
- 2. Career Firefighter Health Study

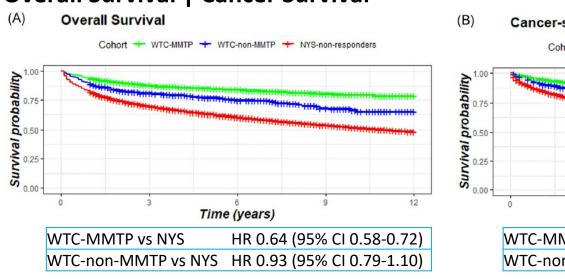
WTC Responder Combined Cohort

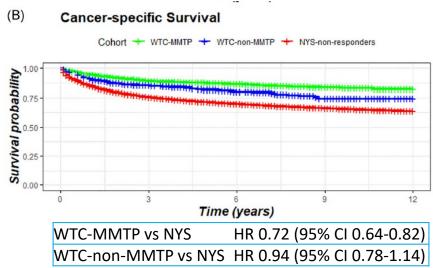
- Cooperative agreement U01 OH011315/U01 OH011932
- Collaboration between FDNY, GRC, WTC Health Registry, NYS DOH
- Joint Labor-Management-Government (NIOSH) Initiative
- Investigators included: Charles Hall, Paolo Boffetta, Robert Brackbill, James Cone, Chris Dasaro, Mark Farfel, David Goldfarb, Amy Kahn, Dana Kristjansson, Jiehui Li, David Prezant, Baozhen Qiao, Maria Schymura, Moshe Shapiro, Ankura Singh, Andy Todd, Janette Yung, and Rachel Zeig-Owens


WTC Responder Combined Cohort (continued from the previous)

- NYS DOH Combined and de-duplicated the 3 responder cohorts
- •Total of 69,134 WTC-exposed rescue/recovery responders
- Uses previously described combined WTC exposure definitions
- Uses the same reference population as comparison

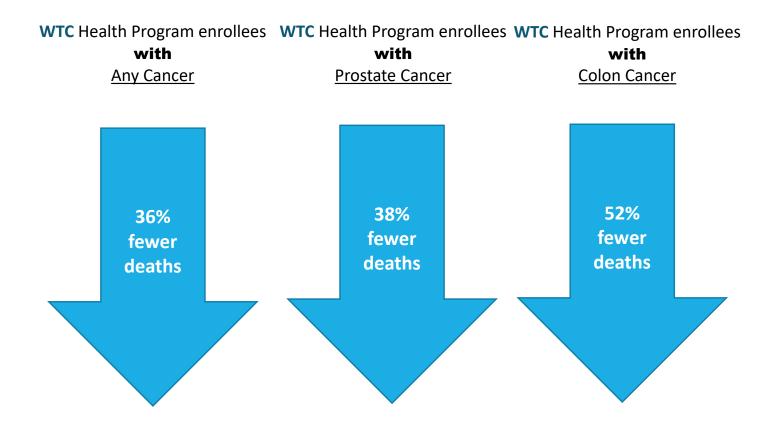
Primary research questions:


- •To compare overall cancer incidence, and incidence of specific cancer sites, in WTC rescue/recovery workers to that of the general US population
- •To estimate the time after exposure at which the relative risk for specific cancer subtypes significantly increases (or decreases)
- To study mortality rates in WTC rescue/recovery workers with cancer


WTC Responder Cohort Overlap

WTC Responder Cancer Survival

Overall Survival | Cancer Survival


Ref: Goldfarb, Zeig-Owens et al AJIM 2021

WTC Responder Cancer Survival (continued from previous page)

TABLE 2 All-cause mortality risk among cases of selected cancers

	WTC non-MMTP versus				
ponders	NYS-non-responders				
	HR (95% CI)				
(A) All-cause mortality risk by cancer site: Follow-up time starts at diagnosis date					
88)	0.92 (0.54, 1.55)				
97)	0.88 (0.60, 1.28)				
18)	1.15 (0.55, 2.43)				
74)	1.11 (0.60, 2.06)				
10)	0.50 (0.16, 1.54)				
.39)	1.18 (0.61, 2.27)				
76)	0.87 (0.42, 1.83)				
22)	1.00 (0.50, 2.01)				
08)	0.82 (0.20, 3.27)				
79)	1.23 (0.51, 2.96)				
	te .88) .97) .18) .74) .10) .39) .76) .22)				

WTC Responder Cancer Survival

Lower All-cause Mortality Risk in WTC Health Program Responders (FDNY & GRC) compared to NYS population with same Cancer

All-cause Mortality by cancer site	WTC MMTP vs. NYS non responders		
by carreer site	HR (95%CI)		
Prostate	0.62 (0.44, 0.88)		
Lung and bronchus	0.74 (0.56, 0.97)		
Esophagus	0.65 (0.36, 1.18)		
Colon and rectum	0.48 (0.31, 0.74)		
Myeloma	0.49 (0.22, 1.10)		
Pancreas	1.66 (1.15, 2.39)		
Brain and other nervous system	1.11 (0.70, 1.76)		
Liver	0.74 (0.44, 1.22)		
Melanoma of the skin	0.54 (0.27, 1.08)		
Kidney and renal pelvis	0.36 (0.16, 0.79)		

	WTC MMTP (n=2,037)	NYS non-responders (n=574,075)
Deaths n (%)	303 (14.9)	224,040 (39.0)
Cancer deaths n (%)	248 (12.2)	158,645 (27.6)
Survival rate n (%)		
1 year survival	1,916 (94.1)	474,895 (82.7)
3 year survival	1,346 (88.3)	326,959 (69.6)
5 year survival	919 (86.1)	228,933 (62.8)

Follow-up time starts at diagnosis date, males only, adjusted for age and date of diagnosis Combining Three Cohorts of WTC Rescue/Recovery Workers for Assessing Cancer Incidence and Mortality. Int. J. Environ. Res. Public Health. 2021

Cancer survival among WTC Rescue/Recovery Workers: a collaborative cohort study. Am J Ind Med. 2021

WTC Responder Cancer Survival (continued on next Slide)

For WTC Health Program Responders –

Does Improved Healthcare Access Improve Survival?

WTC Responder Cancer Survival (continued from previous Slide)

While it would seem that the WTC Health Program does improve survival rates there remain potential confounders:

- Is the comparison appropriate?
- All WTC Responders are Not Equal
 - Healthy Worker Effect is not identical across all WTC Responders
 - FDNY has the most stringent health standards
 - Non-WTC Exposures (pre-, post-WTC) are not identical across all WTC Responders
- Healthcare Disparities
 - Socioeconomic and Racial/ethnic Disparities
 - Education, Health-specific education
 - Employer Health Care Programs
 - Non-WTC Healthcare insurance
 - WTC Health Program surveillance bias

Career Firefighter Health Study (continued from previous Slide)

- Cooperative agreement U01 OH011309/U01 OH011934
- Collaboration between FDNY, Chicago, Philadelphia and San Francisco
- Joint Labor-Management-Government (NIOSH) Initiative
- Aims
 - Identify prevalence and mortality rates in career firefighters
 - Provide a more appropriate comparison control group for WTC firefighter studies
 - Thereby differentiating the impact of WTC exposure from usual firefighter exposures
 - "Eliminating" the Healthy Worker Effect
 - Reducing the impact healthcare disparities, access and possibly surveillance bias
- Investigators include: Robert D Daniels, Charles B Hall, David G Goldfarb, David J Prezant,, Joke Salako, Ankura Singh, Suzanne Triplett, Mayris P Webber, and Rachel Zeig-Owens

Career Firefighter Health Study (continued from previous Slide)

Original **NIOSH** cohort of **29,992** professional firefighters employed any time between **1950-2009** from the San Francisco **(5,313)**, Chicago **(15,184)**, and Philadelphia **(9,495)** fire departments.

- Originally assembled by NIOSH to study cancer and mortality.
 - Daniels RD et al., Occup Environ Med, 2014
- Now includes FDNY firefighters
 - **13,833 WTC**-exposed
 - Will soon add ~10,000 non-WTC exposed

Totals over **50,000** firefighters

Linkages (State tumor registries, National Death Index Registry) Web-based survey for health characteristics & self-reported diseases

Career Firefighter Health Study Cancer Results

Updates original **NIOSH** study and adds **FDNY** WTC firefighters

Adds a Web-based survey for firefighters to report health characteristics and self-report health conditions

Focused on cancers diagnosed between **9/11/2001-12/31/2016** in male firefighters who were **actively employed on 9/11/2001**.

Received confirmed cancer data from 15 state tumor registries

Compared cancer rates in WTC-exposed & non-WTC-exposed firefighters to US males

• Standardized Incidence Ratios (SIRs) presented: Observed number of cancer cases in the firefighter population vs. number of cases expected based on the **US** male cancer rates.

Cancer Incidence in World Trade Center-Exposed and Non-Exposed Male Firefighters, as Compared with the US Adult Male Population: 2001 – 2016. Occup Environ Med, 2021

	Male WTC-exposed FDNY firefighters actively employed on 9/11/2001	Male non-FDNY, non-WTC- exposed firefighters actively employed on 9/11/2001			
Total N	10,786	8,813			
Age on 9/11, mean ± SD	40.4±7.5	43.9±9.2			
Race/ethnicity, N (%)					
Non-Hispanic White	10,121 (93.8)	6,117 (69.4)			
Non-Hispanic Black	282 (2.6)	1,589 (18.0)			
Hispanic	353 (3.3)	736 (8.3)			
Othera	30 (0.3)	371 (4.2)			
Smoking status, N (%)					
Current	373 (3.5)b	189 (6.6)c			
Former	3,233 (30.2)b	1,056 (37.0)c			
Never	7,117 (66.4)b	1,611 (56.4)c			
WTC exposure/site arrival time, N (%)					
Morning of 9/11	1,741 (16.1)				
Afternoon of 9/11	5,683 (52.7)				
9/12/2001	1,873 (17.4)				
9/13-9/24/2001	1,315 (12.2)				
After 9/24/2001	174 (1.6)				
Deceased by 12/31/16, N (%)	261 (2.4)	605 (6.9)			
Follow-up years, mean ± SD	15.2 ± 1.1	14.9 ± 2.0			
Total follow-up years	163,583.4	130,971.0			
A Includes Asian and Native American race categories;					

19,599 Firefighters employed on 9/11/2001

Note: throughout this presentation **CFHS** includes only males due to low numbers of females.

Next phase should enable their inclusion

A Includes Asian and Native American race categories;

B N=10,723 who self-reported smoking status;

C N=2,856 who completed Career Firefighter Health Study survey

Career Firefighter Health Study Cancer Results

Standardized Incidence Ratios (SIRs) of cancers in male WTC-exposed and non-WTC-exposed firefighters vs. US males

	Observed			Observed	
	case count			case count	
All cancer sites ^{ab}					
idney	39	0.93	(0.67-1.28)	55	
on-Hodgkin Lymphoma	55	1.39	(1.06-1.83)	43	
lelanoma (skin)	96	1.59	(1.30-1.96)	70	
Γhyroid	46	2.37	(1.78-3.17)	15	

^aAll malignant cancers (multiple primaries), and in situ bladder cancers;

bExcludes non-melanoma skin cancers

Career Firefighter Health Study Cancer Results WTC vs. Non-WTC

•We compared incidence rates in FDNY WTC-exposed male firefighters to incidence rates to the non-WTC-exposed male firefighters (CFD, PFD, SFFD)

	FDNY WTC-exposed vs CFD PFD & SFFD non-exposed		
	Webber et al, 2021 Data through 2016		
All cancer	1.13 (1.02-1.25)		
Thyroid	2.53 (1.37-4.70)		
Prostate	1.39 (1.19-1.63)		
Lung	0.87 (0.57-1.33)		
Skin Melanoma	1.12 (0.80-1.57)		

[•]WTC-exposed male firefighters had significantly <u>higher</u> rates of cancers especially thyroid, and prostate compared to Non-WTC male Firefighters

Ref: Webber et al OEM 2021

Career Firefighter Health Study Cancer Results

For cancers diagnosed between 9/11/01 and 12/31/2016

WTC-exposed **FDNY** male firefighters had <u>higher</u> rates of cancer **(15%)** when compared with similar **US** males.

- Site-specific cancers that were statistically elevated include:
 - Thyroid, Prostate, Melanoma, and Non-Hodgkin Lymphoma
- Lung cancer was significantly decreased

WTC-exposed FDNY male firefighters had <u>higher</u> rates of cancers (13%) when compared with **Non-WTC** male **Firefighters** from the **3** collaborating cities

- Site-specific cancers that were statistically elevated include:
 - Thyroid and Prostate

Career Firefighter Health Study Mortality Rates

Both **WTC**-exposed and non-exposed male firefighters had lower than expected all-cause mortality compared with **US** males.

Standardized Mortality Ratios (SMRs) of all-cause and cause-specific mortality in male WTC-exposed FDNY and PFD firefighters vs. US males active on 9/11/2001

Cause of death (NIOSH major		FDN	ΙΥ	3 City		
category)	N	SMR	95% CI	N	SMR	95% CI
All	261	0.30	0.26-0.34	191	0.64	0.55-0.73
All cancers	86	0.40	0.32-0.49	32	0.45	0.31-0.63
Heart diseases	52	0.27	0.20-0.35	62	0.72	0.55-0.92

Cancer incidence in WTC-exposed and non-exposed male firefighters, compared with the US adult male population: 2001-2016. Occup Environ Med. 2021 Oct;78(10):707-714

All-cause and cause-specific mortality in a cohort of WTC-exposed and non-WTC-exposed firefighters. Occup Environ Med. 2023 Mar 27:oemed-2022-108703. doi: 10.1136/oemed-2022-108703

Career Firefighter Health Study Mortality Rates

Table 2: Standardized Mortality Ratios (SMRs) of all-cause and cause-specific mortality in male WTC-exposed FDNY and non-WTC-exposed non-FDNY firefighters vs. US males, 9/11/2001-/12/31/2016

Cause of death	FDNY count	FDNY SMR	95% CI	Non-FDNY count	Non-FDNY SMR	95% CI -
All	261	0.30	0.26-0.33	605	0.60	0.55-0.65
All cancer	86	0.40	0.32-0.49	206	0.73	0.65-0.83
Oral cancer	1	0.15	0.07-0.36	5	0.65	0.25-1.70
Digestive cancer	37	0.54	0.43-0.68	57	0.65	0.53-0.80
Respiratory cancer	12	0.19	0.08-0.44	55	0.63	0.55-0.74
Male genital cancer	4	0.54	0.28-1.02	12	0.91	0.60-1.39
Kidney or bladder cancer	3	0.25	0.13-0.50	15	1.01	0.66-1.54
Other/unspecified cancer	15	0.40	0.30-0.53	37	0.87	0.66-1.15
Blood cancers	14	0.74	0.39-1.38	25	1.03	0.80-1.33
Diabetes	4	0.14	0.06-0.35	14	0.38	0.27-0.53
Heart disease	52	0.27	0.21-0.34	120	0.51	0.43-0.59
Other circulatory disease	8	0.18	0.10-0.31	24	0.38	0.25-0.57
Respiratory disease	14	0.31	0.22-0.42	36	0.57	0.45-0.72
Digestive diseases	8	0.13	0.06-0.28	24	0.42	0.29-0.61
Intentional self-harm (suicide)	17	0.36	0.20-0.65	31	1.01	0.76-1.34

Career Firefighter Health Study Mortality Rates

 We compared mortality rates in WTC-exposed firefighters to rates in non-WTC-exposed firefighters

Cause of death	Adj. RR (95% CI)
All cause	0.54 (0.49-0.59)
All cancers	0.72 (0.65-0.79)
Diseases of the heart	0.61 (0.55-0.67)
Diseases of the respiratory system	0.69 (0.62-0.77)
Diseases of the digestive system	0.54 (0.48-0.60)
Other injury	0.90 (0.81-1.01)

Ref: Singh A et al OEM 2023

Summary:

WTC Responder Combined Cohort Study:

- Confirms that Cancer rates are increased and that this is driven by specific sites
- Cancer Survival benefit from being in the WTC Health Program
- Not able to dissect influence of multiple confounders

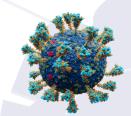
Career Firefighter Health Study: WTC-exposed vs Non-WTC exposed

- Not just a healthy worker effect
 - Confirms that Cancer rates are increased and that this is driven by specific sites
 - Is this due to increased surveillance (Thyroid and Prostate)
 - Cancer Mortality is lower than other career firefighters
 - Lower mortality rates is not just due to cancer
 - See this also for Cardiac and Respiratory

Next Steps:

- 1. Update cancer and mortality rates for the WTC Responder Combined Cohort
- 2. Include diseases other than Cancers.
- 3. Update and Expand Relevant Comparison Groups
- 3A. Career Firefighter Health Study Cohort
- Already reached out to current cities Chicago, Philadelphia, San Francisco, FDNY
- Expand to include firefighters hired after 12/31/2009
 - Employees post 2009 are likely different
- Expand to include firefighters from other cities
- Ongoing negotiations with Miami-Dade County, Boston, Indiana
- Demographics more females, more persons of color
- Even lower smoking rates, other health characteristics may be different?
- Firefighters exposed to new toxins PFAS, etc.

3B. Career Law Enforcement – Buffalo Police Department


Manhattar

WORLD TRADE CENTER HEALTH PROGRAM COVID-19 STUDIES

The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. Polygenic risk scores for asthma and allergic disease associate with COVID-19 severity in 9/11 responders.

Assessment and Characterization of Cognitive Decline in SARS-CoV-2 Infection.

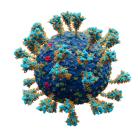
ZENNUR SEKENDIZ MD MPH ITE OF WILL
DEPARTMENT OF MEDICINE-WTCHP
STONY BROOK MEDICINE, STONY BROOK, NY

Brooklyn

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. Polygenic risk scores for asthma and allergic disease associate with COVID-19 severity in 9/11 responders. Assessment and Characterization of Cognitive Decline in SARS-CoV-2 Infection | Zennur Sekendiz MD MPH | Department of Medicine-WTCHP | Stony Brook Medicine, Stony Brook, NY

WORLD TRADE CENTER HEALTH PROGRAM COVID-19 STUDIES


The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. Polygenic risk scores for asthma and allergic disease associate with COVID-19 severity in 9/11 responders.

Assessment and Characterization of Cognitive Decline in SARS-CoV-2 Infection.

ZENNUR SEKENDIZ MD MPH

DEPARTMENT OF MEDICINE-WTCHP

STONY BROOK MEDICINE, STONY BROOK, NY

Introduction

COVID-19

- Caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2)
- Initially identified with respiratory symptoms but effects many organs such as brain, heart and kidney
- Increased mortality with severe disease

Risk Factors for Severe COVID-19

- Older age, Obesity, Male sex, Smoking,
- Chronic Obstructive Pulmonary Disease, Cardiovascular Disease, Immunocompromised Status and Malignancy

Vaccination found to be protective for reinfection and symptomatic disease

Global prevalence of Post-Acute Sequalae of SARS-CoV-2 (PASC) is 43%

According to a systemic review and meta-analysis **poor quality of life experienced** by **59%** of people with **PASC**

COVID-19 Forecasting Team, 2023/Chen et al., 2022/Malik et al., 2022/Wasczuk et al., 2023/Lhuillier et al., 2022

PASC:

Definitions: At least 4 weeks of symptoms after initial **SARS-CoV-2** infection (**CDC**),

Common Symptoms: Fatigue, Dyspnea, and Cognitive impairment

Neurologic Symptoms of PASC (e.g., brain fog, headache, loss of taste and smell)

Risk Factors:

Severity of Acute SASRS-CoV-2, Female sex, BMI,

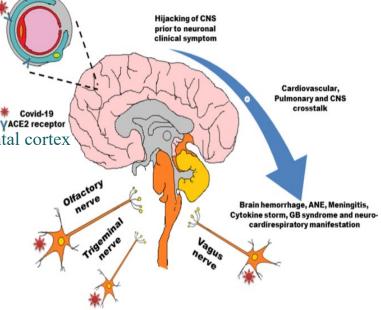
- Asthma, Chronic Obstructive Pulmonary disease, Anxiety, Depression, Diabetes,
- Immunosuppressed Status and Ischemic Heart Disease

Treatment: Symptomatic, there is no effective treatment for Fatigue and Cognitive impairment

Vaccination: Decreasing the risk of PASC and severity of **COVID-19**

Nervous system invasion-SARS-Cov-2

1-The nerve root,


2-The circulatory system,

ACE2

NRP1 and Basigin (BSG); highly expressed in the prefrontal cortex

Purposed Mechanism

- Direct invasion by the virus,
- Indirectly by inflammation, epigenetic changes,
- Autoimmune process or hypercoagulation

Chaudhury et al., 2021

Host genetics in COVID-19

- Genetics contribute to individual differences in COVID-19 outcomes
- Polygenic Risk Scores(PRS) for susceptibility to infection vs COVID-19 severity
- Previous work: COVID-19 severity PRS predicted death and severe respiratory failure in patient population (OR=1.70)
- Null findings using PRS for relevant conditions, e.g., Asthma

World Trade Center First Responders Cohort

- WTC Health Program established in 2002, and
- Monitors more than 13,000 9/11 first responders for WTC exposure related health conditions
- In Long Island, NY, USA

Wasczuk et al.,2023

Some of the Medical Conditions associated with 9/11 events being certified and coded as below;

- adjustment disorder (ADJ),
- anxiety (ANX), depression (DEP), PTSD, substance abuse (SA),
- extremity (EXT), head trauma (HT), spine (SP),
- gastroesophageal reflux disorder (GERD),
- interstitial lung disease (ILD), obstructive airway disease (OAD), sarcoid (SRC), and upper respiratory disease (URD)

Multiple chronic conditions place responders at potential risk for severe COVID-19 and PASC

Lhuillier et al., 2022

Lhuillier et al., 2022

Objective

Examined if WTC related and other health conditions were associated with COVID-19 severity and PASC presence among individuals who endorsed any COVID-19 infection

Wasczuk et al.,2023

Objective

Investigated whether polygenic vulnerabilities to COVID-19 hospitalization, asthma, related allergic diseases, coronary artery disease, and type II diabetes, were associated with COVID-19 severity and PASC

Sekendiz et al., current

Objective

To determine whether cognitive decline emerges with the onset of **COVID-19** and whether it is more pronounced in patients with **PASC** or severe **COVID-19**.

Materials and Methods

Table 1. COVID-19 Severity in 9/11 responders

Asymptomatic

• A positive test result, but no symptoms.

Mild

- At least 1 symptom of **COVID-19**.
- No shortness of breath or difficulty breathing.
- Medically managed mostly at home, with some initial healthcare facility visit a for medical treatment and/or testing.

Moderate

- Shortness of breath and/or diagnosis of lower respiratory disease (pneumonia/bronchitis) during clinical assessment or imaging.
- Maintained SpO2 ≥ 94% on room air at sea level.

Severe

- Proven or endorsed Sp02 < 93% on room air, and/or respiratory rate > 30
 breaths/min, and/or heart rate greater than 100 beats per minute,
- And /or acute respiratory distress syndrome, septic shock, cardiac dysfunction, or an exaggerated inflammatory response in addition to pulmonary disease and/or severe illness causing cardiac, hepatic, renal, central nervous system, or thrombotic disease during COVID-19 illness.
- Hospital admission, supplemental oxygen use, ICU admission, or death

Material and Methods

Lhuillier et al., 2022

Waszczuk et al., 2023

1549 Patients who answered "yes" to indicate a positive test result for COVID-19 between March 2020 and January 2022 ,through PCR testing, antigenic testing, or antibody testing

- COVID-19
- 983 WTC responders with confirmed COVID-19

- Asymptomatic (N = 129), mild (N = 511), moderate (N = 536), and severe (N = 104).
- Asymptomatic (N = 92, 9.4%), mild (N = 378, 38.5%), moderate (N = 408, 41.5%), and severe (N = 75, 7.6%).

Analytic sample 1280, responders with confirmed infection
Statistical Analysis: Logistic regression, Multivariable Poisson Regression Models

Analytic sample 813

European ancestry responders with confirmed infection and available DNA data **Statistical Analysis:** Logistic regression

Sekendiz et al., current

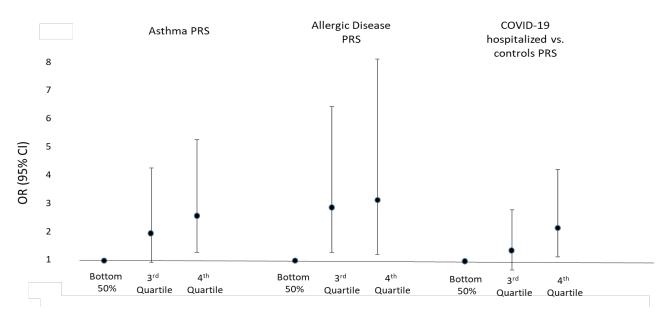
- 614 with cognitive assessments from November 2015 to November 2021 from WTCHP cohort
- 256 Cases: Reported to Have COVID-19 symptoms and a positive COVID-19 Antibody, antigen and PCR test
- 217 controls
- Mild (N = 121, 47.21%), moderate (N = 104, 40.63%), and severe (N = 31, 12%).

Analytic sample 473

256 Cases, 217 controls **Statistical Analysis:** Linear longitudinal mixed models

Lhuillier et al., 2022		Waszczuk et al., 2023		Sekendiz et al., current	
Age		Age		Age	
Mean (SD)	56.9 (7.37)	Mean (SD)	56.06 (7.37)	Mean (SD)	55.75 (6.4)
Gender		Gender		Gender	
Male	91.4%	Male	95%	Male	94.85%
Female	8.6%	Female	5%	Female	5.15%
Race/Ethnicity		Participants with European		Race/Ethnicity	
White	87.3%	ancestry		White	80.88%
Black	5.6%			Black	2.94%
Hispanic	5.3%			Hispanic	6.62%
Other	1.8%			Other	9.56%

Table 2 Correlates of COVID-19 severity using ordinal logistic regression model.


	OR	95% CI	FDR-p
Age ^a	1.21	(1.06, 1.38)	0.015
Female	1.15	(0.78, 1.70)	0.583
Race: Black	2.01	(1.24, 3.27)	0.015
Race: Hispanic	1.22	(0.76, 1.95)	0.583
Race: Other	1.55	(0.72, 3.30)	0.408
Gastroesophageal Reflux Disorder	1.27	(1.00, 1.60)	0.131
Obstructive Airway Disease	1.86	(1.46, 2.38)	<0.001
Upper Respiratory Disease	1.16	(0.91, 1.48)	0.396
Obesity	1.16	(0.94, 1.45)	0.332
Hypertension	1	(0.78, 1.29)	0.999
High Cholesterol	0.94	(0.74, 1.18)	0.615
Heart Disease	1.13	(0.78, 1.62)	0.583
Diabetes	1.15	(0.80, 1.67)	0.583
Depressive Symptoms ^a	1.27	(1.12, 1.43)	< 0.001

Lhuillier et al. (2022) Int JEnviron Res Public Health

Table 3Multivariable-adjusted risk ratios and 95% confidence intervals predicting the presence of **Post-Acute COVID-19** Syndrome in **World Trade Center** responders.

aRR	95% CI	FDR-p	
Severity Asymptomatic	0.13	(0.04, 0.41)	0.002
Severity Moderate	1.82	(1.47, 2.26)	<0.001
Severity Severe	2.87	(2.23, 3.71)	<0.001
COVID-19 Report Status: Incomplete	1.13	(0.95, 1.34)	0.327
Age ^a	0.98	(0.89, 1.08)	0.853
Female	1.12	(0.84, 1.49)	0.615
Race: Black	0.99	(0.70, 1.40)	0.971
Race: Hispanic	1.10	(0.81, 1.50)	0.708
Race: Other	0.71	(0.31, 1.64)	0.615
Gastroesophageal Reflux Disorder	1.22	(1.01, 1.48)	0.128
Obstructive Airway Disease	1.02	(0.85, 1.22)	0.954
Upper Respiratory Disease	1.19	(0.97, 1.46)	0.259
Obesity	1.00	(0.84, 1.19)	0.971
Hypertension	0.98	(0.81, 1.19)	0.954
High Cholesterol	0.91	(0.75, 1.09)	0.490
Heart Disease	1.34	(1.07, 1.67)	0.037
Diabetes	1.2	(0.95, 1.53)	0.295
Depressive Symptoms	1.07	(0.99, 1.16)	0.259

Lhuillier et al. **(2022)** Int J Environ Res Public Health

Covariates included: age, sex, and lower + upper respiratory symptoms associated with 9/11 exposure

Waszczuk et al. (2023) PLOS ONE

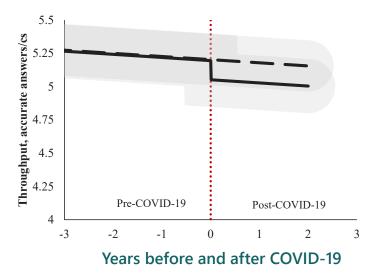


Figure 1. Trajectory plot showing expected reaction speeds before and

after Start of COVID-19 symptoms

Abbreviations: cs, count per second

Conclusion

Lhuillier et al., 2022

COVID-19 severity predicted by:

Older age, male gender,

Black race

Upper Respiratory Disease,

Obstructive Airway Disease

GERD, Obesity, Hypertension,

Diabetes

Depression

Post-acute COVID-19 sequel predicted

by:

Acute COVID Severity

Upper Respiratory Disease,

Obstructive Airway Disease

GERD, Heart Disease

Depression

Not much **COVID-19** symptom-specificity

Waszczuk et al., 2023

COVID-19 severity predicted by:

Asthma Polygenic Risk Score (PRS) (β=.09)

COVID-19 severe category predicted by:

Asthma PRS (OR=1.61, CI: 1.17-2.21)

Allergic Disease PRS (OR=1.97, CI:

1.26-3.07)

COVID-19 Hospitalization PRS

(OR=1.35, CI: 1.01-1.82)

No genetic prediction by $\ensuremath{\textbf{T2D}}\xspace$ $\ensuremath{\textbf{PRS}}\xspace$ and

coronary artery disease $\mbox{\sc PRS}$

No genetic prediction of post-acute

COVID-19

Sekendiz et al., current

 COVID-19-induced neuroinflammation was most likely the cause of the observed cognitive decline

What have we learned

- •Respiratory illness is a key predictor for **COVID** severity, and emerged as the main predictor in terms of genetic risk
- •Other important predictors: heart disease and depression but the effects at genetic level are not detected
- PASC is much harder to predict, main predictors were heart disease and severity of COVID-19
- •COVID-19-induced neuroinflammation was most likely the cause of the observed cognitive decline

Future Directions and Recommendations

- Understanding the pathophysiological mechanisms behind PASC and the SARS-CoV-2induced neurocognitive sequelae
- •Additional research to detect genetically vulnerable individuals for severe **COVID-19** and **PASC**
- Determining the long-term prognosis of cognitive impairment
- People who have a history of severe COVID-19 and PASC should be monitored with more vigilance
- Screening patients for COVID-19 complications based on risk factors

Acknowledgements

Dr. Benjamin Luft, Dr. Sean Clouston, Dr. Olga Morozova, Ashley Fontana, Nikhil Mehta, , Alina Ali, Eugene Jiang & Melissa Carr

The nursing and medical team of WTCHP

References

- $\textbf{1-Chaudhury SS, Sinha K, Majumder R, Biswas A, Mukhopadhyay CD. COVID-19 and central nervous system interplay: A big picture beyond clinical manifestation. \textit{J Biosci. 2021;46(2):47. doi:10.1007/s12038-021-00165-3}$
- 2-Waszczuk MA, Morozova O, Lhuillier E, et al. Polygenic risk scores for asthma and allergic disease associate with COVID-19 severity in 9/11 responders. PLoS One. 2023;18(3):e0282271. Published 2023 Mar 9. doi:10.1371/journal.pone.0282271
- 3- Lhuillier E, Yang Y, Morozova O, et al. The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. Int J Environ Res Public Health. 2022;19(12):6963. Published 2022 Jun 7. doi:10.3390/ijerph19126963
- **4-Malik P, Patel K, Pinto C, et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)**-A systematic review and meta-analysis. *J Med Virol*. 2022;94(1):253-262. doi:10.1002/jmv.27309
- 5-Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J Infect Dis. 2022;226(9):1593-1607. doi:10.1093/infdis/jiac136
- 6-COVID-19 Forecasting Team. Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis. Lancet. 2023;401(10379):833-842. doi:10.1016/S0140-6736(22)02465-5
- 7-Premraj L, Kannapadi NV, Briggs J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;434:120162. doi:10.1016/j.jns.2022.120162
- 8-Global Burden of Disease Long COVID Collaborators, Wulf Hanson S, Abbafati C, et al. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA. 2022;328(16):1604-1615. doi:10.1001/jama.2022.18931
- 9-Gao P, Liu J, Liu M. Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2022;19(19):12422. doi:10.3390/ijerph191912422

This Page Imitentillomally Left Blamk

On overview of cancers in Survivors in the WTC EHC with a focus on breast cancer

Joan Reibman, MD

Professor of Medicine and Environmental Medicine, NYU Langone Medical Center Medical Director, H+H WTC Environmental Health Center

Brooklyn

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

On overview of cancers in Survivors in the WTC EHC with a focus on breast cancer | *Joan Reibman, MD* | *Professor of Medicine and Environmental Medicine, NYU Langone Medical Center Medical Director, H+H WTC Environmental Health Center*

On overview of cancers in Survivors in the WTC EHC with a focus on breast cancer

Joan Reibman, MD

Professor of Medicine and Environmental Medicine, NYU Langone Medical Center Medical Director, H+H WTC Environmental Health Center

Goals of the talk

- Brief description of the WTC Environmental Health Center:
 Survivor Center of Excellence in the WTC Health Program
- WTC EHC Pan Cancer Database what it is and its use as resource
- Describe Cancers in the WTC EHC
- Breast Cancer in the WTC EHC
- Next steps

Diverse area around the WTC towers

Battery part city (West)

Chinatown, NYCHA housing, other (East)

Tribeca (North)

WTC towers sat in the midst of an active residential and working community

- 300,000 local workers/commuters
- 60,000 residents
- 15,000 students
- Major commuter/tourist area

234

Acute exposures

- Dust cloud or heavy dust exposure on 9/1/01
 - Tower evacuees
 - Office building evacuees
 - Store/restaurant workers
 - Tunnels (Brooklyn Battery tunnel)
 - Commuters/passing by
 - Residents

Chronic exposures

- Local workers returned 9/17/01
- Homes/schools/workplaces breached
- Chronic exposures from resuspended dust and fires/fumes

6

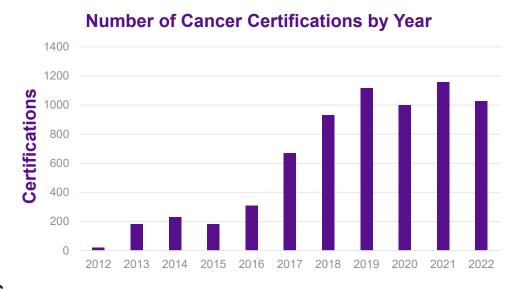
Creation of the WTC Environmental Health Center

- Bellevue Hospital treatment program
 - 2002 community collaborative pilot program for treatment of residents/area workers in the Bellevue Hospital Asthma clinic
- WTC Environmental Health Center treatment and surveillance program
 - Grant 2005 American Red Cross Liberty
 Disaster Relief Fund
 - Grant 2006 funding from City of New York
 - Grant 2008 first Federal funding (CDC-NIOSH)
 - Contract under the WTC Health Program 2011 James
 Zadroga 9/11 Health and Compensation Act

WTC Environmental Health Center – Center of Excellence for Survivors within the WTC Health Program

- Local residents/children, in utero
- Local workers
- Students
- Those passing by on 9/11 (commuters, tourists)
- Clean-up workers

Dr. Stephanie Lau examined Manuel S. Bruno, 82, at the W.T.C. Environmental Health Center at Bellevue Hospital. Nicole Bengiveno/The New York Times


WTC Environmental Health Center – Center of Excellence for Survivors

- Multidisciplinary program for treatment and surveillance of community members with WTC certified conditions
- Very significant differences compared to the Responder Programs
 / WTC Health Registry programs these differences influence our data analyses:
 - Enrollment in the WTC EHC requires the presence of a certified condition, not a screening program for those without illness
 - Treatment in the WTC EHC requires coordination of benefits with the WTC Health Program as the final payor

Yearly cancer certifications in the WTC EHC

- Self-referred population for WTC Health Program certification. As such, cannot assess prevalence
- Goal to understand characteristics within specific cancer groups and across cancer groups

0 Division Name or Footer

WTC EHC Pan Cancer Database

- Demographic/exposure information obtained from IHE and M visits
- Cancers identified from patient self-referral and/or state registry linkages.
 All confirmed with pathology/cytology
- Cancer characteristics obtained from chart review
- Clinical biomarker information obtained from chart review

WTC EHC Pan Cancer Database

Patient
demographic
and exposure
information
IHE and M visits

Cancer characteristics

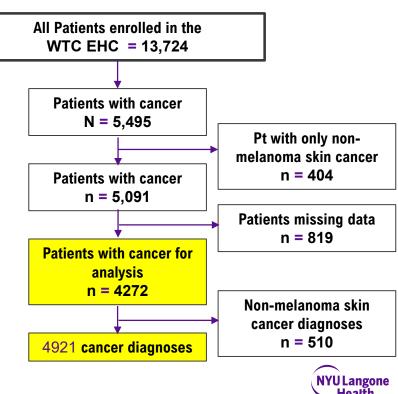
Age at diagnosis
Latency from **9/11**Histologic type
Stage/grade
Cancer specific
stage/grade
Clinical location of
biopsy (virtual biobank)

Cancer Clinical biomarkers

Protein markers (Immunohistochemistry FISH)

> Genetic Markers (Targeted panels Next generation sequencing)

Durmus et al. Int J Environ Res Public Health. **2020 Shao et al.** Int J Environ Res Public Health. **2021**



Overview of cancer patients in the WTC EHC (12/2022)

 We previously presented data on 2561 patients with cancer as of 12/2019

Durmus et al. Int J Environ Res Public Health. 2020 Shao et al. Int J Environ Res Public Health. 2021

- 50% increase in patients with cancer since 2019
- We now report on 4921 patients with complete data (excluding patients with nonmelanoma skin cancer)

2 Division Name or Footer

Most common certified cancers in the WTC EHC (data as of 12/2022, excluding non-melanoma skin cancer)

- Breast cancer is the most common cancer (16 cases in men)
- Frequency distribution does not differ significantly from that reported in Durmus Int J Environ Res Public Health. 2020.
- Rare cancer 5 cases of mesothelioma
 (3 peritoneal mesothelioma)

Demographic characteristics of the WTC EHC with and without cancer as of 12/2022

- 50% women
- 1% of those with cancer were less than 20 on 9/11
- 8% of those with cancer were less than 30 on 9/11
- Diverse race/ethnicity

		Non-Cancer	Cancer
n*		6,228	4,272
Sex, n (%)	F	3159 (51)	2048 (48)
	M	3069 (49)	2224 (52)
Age on 9/11 (years	s), median [IQR]	41.21 [33, 49]	45.94 [39, 53]
Race/Ethnicity, n (%)	Hispanic	1709 (28)	532 (13)
	NH-White	2416 (40)	2215 (53)
	NH-Black	1241 (20)	841 (20)
	Asian	700 (12)	567 (14)
	Native American	17 (0.3)	6 (0.1)
Education, n (%)	High school	2007 (32)	1100 (26)
	> High school	4205 (68)	3165 (74)

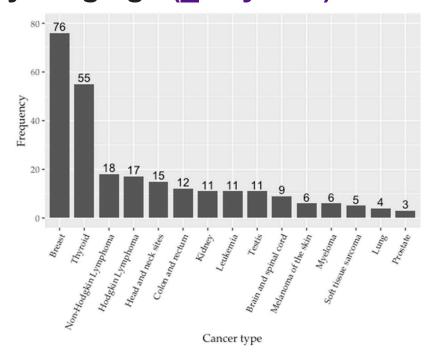
^{*}excludes those who did not sign consent and those with only non-melanoma skin cancer

Cancer risks in the WTC EHC

- Similar distribution of basic cancer risks of BMI with slight increase in tobacco use in those with cancer
- Nearly 50% with acute exposure – similar in both groups
- Most exposed as local workers with many residents

		Non-Cancer	Cancer
BMI, kg/m2, median [IQR])		28 [24, 32]	28 [25, 32]
Tobacco pack-year, n (%)	<5 p-y	4804 (78)	3120 (74)
	>5 p-y	1328 (22)	1120 (26)
Dust cloud exposure, n (%)	No	2916 (47)	2165 (51)
	Yes	3259 (53)	2100 (49)
Type of Survivor, n (%)	Worker	3378 (54)	2817 (67)
	Resident	1441 (23)	1053 (25)
	Student	165 (3)	95 (2)
	Clean-up Worker	670 (11)	49 (1)
	Other	550 (9)	218 (5)

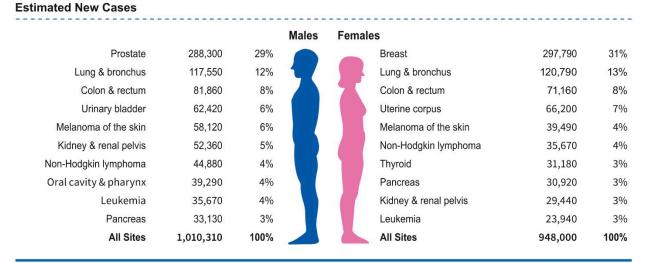
Age at cancer diagnosis in patients in the WTC EHC


- Median age at diagnosis –58
- Most cancers diagnosed at ages 40-70

Age at cancer diagnosis (years), median [IQR]			58 [51,66]
Age at cancer diagnosis (years), n (%)			
		<20	3 (0.1)
		20-29	38 (1)
		30-39	202 (5)
		40-49	655 (17)
		50-59	1224 (32)
		60-69	1183 (31)
		70-79	439 (12)
		>=80	66 (2)

Breast cancer most common cancer in total population and in those exposed at a young age (<30 years)

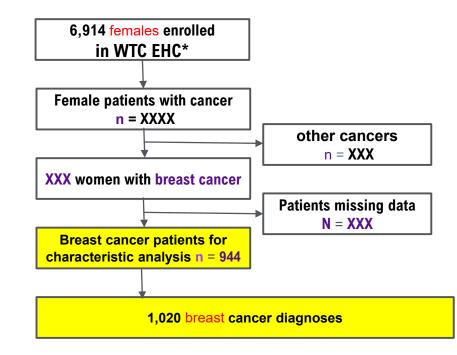
(data as of 7/2021)



Florsheim et al. Int J Environ Res Public Health 2022

Cancer Stats in US population in 2023

by sex


- Breast cancer is most common newly diagnosed cancer in women in the US and in the WTC EHC (Siegel et al. 2023)
- Are there differences in the breast cancer characteristics in women in the WTC EHC?

NYU Langone Health

18

Breast cancer in women in the WTC EHC (12/2022)

- We previously reported on our women as of 2018 (Arslan et al. In J Environ Res Public Health 2021)
- Now report on patients as of 12/2022 with characteristics data
- XXX women enrolled in the WTC EHC
- XXX percent of these have certified breast cancer (ductal, lobular, mixed carcinomas)

*excludes those with incomplete data and those with only non-melanoma skin cancer

Characteristics of women with and without breast cancer the WTC EHC (data as of 12/2022)

- Median age on 9/11 was 42
- High rates of Hispanic and Black/African-American women in both groups, with suggestion of fewer Hispanic women and more Asian women with Breast Cancer

		Non- Cancer	Breast Cancer
n		3159	944
Sex, n (%)	F	3159 (100)	944 (100)
Age on 9/11 (years), median [IQR]		42 [34, 49]	43 [36, 51]
Race/Ethnicity, n (%)	Hispanic	867 (28)	137 (15)
	NH-White	1062 (35)	375 (41)
	NH-Black	829 (27)	258 (28)
	Asian	306 (10)	150 (16)
	Native American	10 (0.3)	0 (0.0)
Education, n (%)	<pre><high pre="" school<=""></high></pre>	918 (29)	230 (24)
	> High school	2235 (71)	713 (76)

Cancer risk and exposure characteristics in women in the WTC EHC with / without breast cancer

- No differences in history of tobacco use or BMI
- No difference in acute dust cloud exposure
- More local worker women with Breast Cancer

		Non-Cancer	Breast Cancer
n		3159	944
BMI, kg/m2, median [IQR])		28 [24,32]	27.35 [24, 32]
Pack year, n (%)	<=5 p-y	2523 (81)	775 (83)
	>5 p-y	588 (19)	162 (17)
Dust cloud exposure, n (%)	No	1476 (47)	479 (51)
	Yes	1662 (53)	462 (49)
Type of community members, n (%)	Worker	1786 (57)	617 (66)
	Resident	759 (24)	251 (27)
	Student	95 (3)	29 (3)
	Clean-up worker	292 (10)	4 (0.4)
	Other	215 (7)	31 (3)

Age of cancer diagnosis in women with breast cancer the WTC EHC (data as of 12/2022)

- Median age of breast cancer dx in the WTC EHC is 55
- No difference in age of breast cancer diagnosis by race/ethnicity (data not shown)

		Breast Cancer with IVQ
n		944
Age at cancer diagnosis (years), median [IQR]		55 [48,63]
Age at cancer diagnosis (years), n (%)	<20	0 (0.0)
	20-29	2 (0.2)
	30-39	57 (6)
	40-49	237 (25)
	50-59	329 (35)
	60-69	231 (25)
	70-79	76 (8)
	>=80	9 (1)

Stage (published data in yellow just included now for our interest)

Most patients diagnosed with Stage 1 Breast cancer

Stage (cancer 1) (%)	0	248 (19)
	I	637 (50)
	II	241 (19)
	III	51 (4)
	IV	14 (1)
	Unknown	95 (7)

Grade of breast cancer in women in the WTC EHC

- Most patients with moderately differentiated Breast cancer
- Large number with poorly differentiated (poorer prognosis)

Grade (cancer 1) (%)	G1. Well-differentiated	171 (13)
	G2. Moderately differentiated	516 (40)
	G3. Poorly differentiated	371 (29)
	G4. Undifferentiated	2 (0.2)
	GX. Grade of differentiation cannot be assessed	36 (3)
	Unknown	190 (15)

Molecular characterization of breast cancer

	ER	PR	Her2	SEER % 2020*	WTC EHC n (%)
Luminal A (Group 1)	pos	pos	neg	82.2	578 (45)
Luminal B (Group 2)	pos	neg	pos	12.6	118 (9)
Her2 (Group 3)	neg	neg	pos	5.1	39 (3)
Group 4 (basal-like)	neg	neg	neg	13.2	114 (8.9)
Unknown				7	287 (22)
Luminal/ missingHer2					150 (11.7)

 Molecular characterization of breast cancer using 4 major subtypes described in the literature, important for therapy – chemotherapy, hormonal therapy, therapy targeting **Her2** receptor

*https://seer.cancer.gov/statfacts/html/breast-subtypes.html

Genome-wide methylation profiles of WTC breast cancer cases and WTC unexposed breast cancer cases

- Increase in global DNA hypermethylation
- Some of the top differentially methylated genes previously implicated in breast cancer
- Promoters of several known tumor suppressor genes all hypermethylated (associated with gene silencing) in WTC-exposed BC cases compared to unexposed.
- Gene pathways enrichment analysis - potential upregulation of several immune and cancer-related pathways in WTC-exposed breast cancer cases compared to the unexposed group, including viral carcinogenesis, T cell receptor signaling, and the B cell receptor signaling pathways.

Tuminello et al. Int J Environ Res Public Health. 2022

Summary

- As cancer case enrollment increases in the WTC Health Program, the WTC EHC Pan-Cancer Database serves as a potential resource for studies of cancer characteristics in the WTC Survivor population, including "virtual biobank."
- In contrast to the Responder populations, breast cancer is the most common cancer in the WTC EHC, consistent with the large number of women in the program
- Age of diagnosis of breast cancer is younger than expected in patients in the WTC EHC
- Early analyses suggest differences in breast cancer characteristics including more advanced grade and molecular subtype
- Pilot genome-wide methylation studies of blood samples suggest differences compared to non-WTC-exposed breast cancers

Conclusion

 Data from the WTC EHC Pan-Cancer database begin to suggest differences in cancer behaviors in WTC exposed Survivors compared to the general population. These differences may have implications for cancer screening and support recent draft revisions in U.S.P.T.F for breast cancer screening reducing the screening age to 40.

Funding

CDC/NIOSH contracts 200-2017-93327 and 200-2017-93427 for the Center of Excellence at WTC EHC Clinical and Data Center

CDC/NIOSH grant R210H012238.

NIH/NCI grant **5P30CA016087**

NIH/NCI grant **1P50CA225450**

NYU Laura & Isaac Perlmutter Comprehensive Cancer Center Support Inter-Disciplinary Population Research Pilot

Grant Program (P30CA016087)

Thanks

Yongzhao Shao Ph.D. Maria Elena Fernandez Beros

Nedim Durmus MD Guy Frazier

Alan Arslan MD Michele Hyde

Yuyan Wang MS Sharon Abbott

Qiao Zhang MS Ramazan Alptekin MD

Yian Zhang **Ph.D.** Muhammed Yilmaz **MD**

Sultan Pehlivan MD Sefa Keserci MD

Stephanie Tuminello MS Community organizations

WTC EHC Steering Committee

Ivialillattali

Cognitive Function among WTC-Exposed Community Members with Mental Health Symptoms

Rebecca Rosen, Ph.D.

Director of Mental Health

WTC EHC Clinical Center of Excellence

H+H: Bellevue, Gouverneur, Elmhurst

Clinical Associate Professor of Psychiatry

Grossman School of Medicine | June 28, 2023

Brooklyn

Disclaimer: Funding for this conference was made possible (in part) by the **Centers for Disease Control and Prevention**. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the **Department of Health and Human Services**, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the **U.S. Government**.

Cognitive Function among WTC-Exposed Community Members with Mental Health Symptoms

Rebecca Rosen, Ph.D.

Director of Mental Health

WTC EHC Clinical Center of Excellence

H+H: Bellevue, Gouverneur, Elmhurst

Clinical Associate Professor of Psychiatry

Grossman School of Medicine | June 28, 2023

Study and Goals of Talk

R. Rosen, Y. Shao, Q. Zhang, J. Bao, Y. Zhang, A. Masurkar, T. Wisniewski, N. Urban and J. Reibman; International Journal of Environmental Research and Public Health, March 2022

- Describe study and its findings
- Discuss impact and where we go from here

Why Study Cognitive Functioning in Survivor Cohort

- Cognitive impairment (CI) has been extensively described and found to be associated with psychopathology and toxic exposure in:
 - First Responder cohort (e.g., Clouston, et al, 2022; Huang et al, 2021; Kritikos et al, 2021)
 - Other populations (e.g., Richard et al, 2013; Patel et al, 2021)
- Cognitive functioning in Survivors not yet systematically described using objective measures.
 - Self reported memory loss/confusion studies on Registry population (Alper et al, 2020 and Seil et al, 2019)

Cognitive impairment in the WTC EHC

- Little is known about cognitive functioning the Survivor population
- Many patient complaints and worries about memory

Study Goals

- Describe cognitive status in subgroup of Survivor cohort referred for mental health evaluation (N-480)
- Examine association of cognitive status with WTC exposures and covariates such as psychopathology screener scores and demographics

Methods

Inclusion criteria

- Signed consent for analysis
- Med/MH IV/MV between 8/2012 12/2018
- Diagnostic evaluation with MoCA administration

Measures - Administered at Screening (IV) and Monitoring (MV):

 Standardized, multi-dimensional interviewer administered questionnaires on: 9/11 Exposures, Medical symptoms, MH symptoms

Standardized evaluations-Initial (IV), Surveillance (MV)

Physical health evaluation

- Physical exam, pulmonary function tests, bloodwork
- Standardized questionnaire with demographic, physical symptom and exposure questions

Mental health evaluations

- PCL 17: PCL+ = ≥ 44 ("Probable PTSD" or "PCL+" or "PTSD")
- Hopkins Symptom Checklist for depression/anxiety: ≥ 1.75 ("Probable Depression/Anxiety" or "depression" / "anxiety")
- CAGE for lifetime alcohol score of 2 positive

Inclusion criteria – Diagnostic Evaluation

Diagnostic evaluation with MoCA administration

- Administered at MH diagnostic evaluation:
 - PCL 17
 - PHQ-9: none (0-4), mild (5-9), moderate (10 14), mod-severe (15-19), severe (20-27)
 - Montreal Cognitive Assessment
 - MoCA≥ 26 probable unimpaired cognition
 - MoCA 26 probable cognitive impairment (CI without probable now)

Reason for Evaluation

- People who had elevated scores on PTSD, dep, and anxiety during monitoring who agreed to be evaluated.
 - Interested in treatment
 - Interested in certification only
- Self referred
- WTC EHC Clinician referred

Salient Demographic Characteristics

Demographic characteristics, n (%)	Total (N= 480)
FEMALE Gender	259 (54)
AGE (Median)	56.4
HISPANIC Race/ethnicity	170 (35)
NON-HISPANIC WHITE Race/ethnicity	187 (39)
SPANISH Language	80 (17)
>HIGH SCHOOL Education	346 (72)
≤\$30k/YEAR Income	234 (49)
POSITIVE PCL-17	347 (72)
MODERATE-SEVERE DEPRESSION PHQ-9	333 (70)
WORKER Exposure Category	318 (66)
YES Dust Cloud	294 (61)

Lower MoCA scores associated with:

Univariate regression

- Age, race/ethnicity, language associated with lower MoCA scores
- As is education, income (not shown)
- And PCL score

Demographic characteristics	MoCA≥ 26 (n=199)	MoCA<26 (n=281)	P-Value
Gender, n (%)			0.56
Female	111 (43)	148 (57)	
Male	88 (40)	133 (60)	
Age			0.02
Median	56.4	56.9	
Race/ethnicity, n (%)			<0.001
Hispanic	54 (32)	116 (68)	
Non-Hispanic white	104 (56)	83 (44)	
Non-Hispanic black	27(30)	64 (70)	
Asian	9 (45)	11 (55)	
Other	2 (40)	3 (60)	
Language, n (%)			<0.001
English	184 (46)	214 (54)	
Spanish	14 (17.5)	66 (82.5)	

11

Lower MoCA scores associated with:

Univariate regression

....PCL score

Demographic characteristics	MoCA≥ 26 (n=199)	MoCA<26 (n=281)	P-Value
PCL-17, n (%)			0.35
Negative	53 (45)	64 (55)	
Positive	138 (40)	209 (60)	
PCL-17 score			0.01
Median	50	55	
PHQ-9, n (%)			0.36
None (0-4)	13 (37)	22 (63)	
Mild (5-9)	48 (46)	56 (54)	
Moderate (10-14)	50 (40)	75 (60)	
Mod. Severe (15-19)	55 (45)	68 (55)	
Severe (20-27)	28 (33)	57 (67)	
PHQ-9			0.16
Median	13	14	

Lower MoCA scores associated with:

Univariate regression

Dust Cloud exposure also associated with lower **MoCA** scores

Demographic characteristics	26	MoCA<2 6 (n=281)	P-Value
Exposure, n (%)			<0.001
Worker	124 (39)	194 (61)	
Resident	54 (61)	35 (39)	
Clean-Up Worker	6 (15)	33 (85)	
Other	15 (45)	18 (55)	
Dust Cloud, n (%)			0.03
No	87 (48)	96 (52)	
Yes	109 (37)	185 (63)	

Multivariate logistic regression on status of MoCA <26

	Odds Ratio	2.5%	97.5%	P-Value
Age	1.04	1.02	1.06	0.001
Race				
Asian	2.38	0.83	6.88	0.11
Hispanic	1.80	1.01	3.19	0.05
NH-Black	3.08	1.68	5.68	0.000
Other	2.36	0.36	15.29	0.37
NH-White (reference)	1.00			
Language				
Spanish	1.59	0.65	3.87	0.31
Education				
≤High school	2.01	1.12	3.63	0.02
Income				
≤\$30k/year	1.76	1.12	2.77	0.01
PHQ 9	0.98	0.93	1.04	0.51
PCL	1.02	1.0	1.04	0.133
Exposure categories				
Worker	1.62	0.93	2.83	0.089
Clean up Worker	3.02	0.78	11.74	0.11
Other	1.40	0.53	3.66	0.50
Resident (reference)	1.00			
Dust Cloud Exposure				
Yes	1.59	1.01	2.49	0.04

MH Symptoms as Mediator?

- Singh et al, 2020: Study of self reported cognitive complaints in Firefighters
 - PCL scores mediated the association between WTC exposures and subjective CI.
- **Survivors:** perhaps mediation, but...
 - Dust cloud exposure seems to be independent risk factor for CI in the presence of PCL and PHQ-9 scores as potential mediators
 - WHY discrepant?
 - Used MoCA rather than self reported subjective CI
 - Exposure profiles are different
 - HEALTH impact is different for Responders and Survivors Responders mostly healthy men of working age, survivors include women, children, elderly, any medical status
 - Referral process enriched with depression/PTSD, potentially reducing the effect

Summary

- High rates of probable CI: 59% of study population.
- Associated with age, race/ethnicity, education, income, depression and PTSD.
- Caught in dust cloud significantly associated with CI even after controlling for all of these.
- Results suggest association of cognitive disfunction with exposure to dust/fumes and psychological stress from attacks.

Limitations

- No unexposed comparison group
- Other Variables:
 - -Pre and **Post 9/11** Trauma
 - -Other med conditions, such as Respiratory Conditions
- **Selection bias:** Help seeking subgroup of help seeking population unknown how representative of larger survivor population
- No baseline cognitive function

Further study needed - Ageing cohort

- 20+ years after 9/11, ageing cohort
- Cognitive decline increasing health concern
- Average age of WTC EHC patient: 63
- Therefore, Important to understand:
 - Rates
- Mechanisms
- Risks
- Modifiable health conditions

Survivor Studies

- Consistent with existing studies of WTC Responders
 - -Support hypothesis that the **WTC** dust toxins and the traumatic experience have had an adverse impact on cognitive function
- Need in-depth, systematic studies on cognitive status of WTC Survivors
 - Salient differences from the General Responder and FDNY populations

Diverse Population

- Potentially different rates and risks of CI as the survivor population is:
 - **50%** female
 - Many races/ethnicities
 - Range of education and socio-economic status
 - Range of ages at time of 9/11
 - Untrained for disasters/emergencies
- **Indeed**, in both univariate and multivariable analysis, age, race/ethnicity, low income and low education attainment remained associated with probable CI.
- This finding is consistent with current research in which these factors are associated with the presence of CI (e.g., Perales-Puchalt et al, 2021; Koster et al, 2005)
- Reinforces the need to include these factors in analysis of **CI** in an exposed race/ethnically diverse population.

Exposures

- Potentially different rates and risks as the survivor population has different exposure profile, e.g., all ages, varying premorbid health status
 - Dust cloud significant in both univariate and multivariate analysis
 - -Chronic exposure of residence **24/7**: We found evidence that **WTC** chemicals from chronic exposures were more detectible in blood **12** years after 9/11 than chemicals from acute dust cloud exposures among affected children (*Khan et al, 2018*)

Medical Conditions/Medications

- Other variables can impact cognitive functioning
 - Comorbid respiratory symptoms asthma (e.g., Rosencranz et al., 2021)
 - -Neurological symptoms (e.g., Marmor et al., 2020)
 - -Cardiovascular disease and diabetes (e.g., Plassman et al, 2010)
 - -Genetic and epigenetic factors such as **ApoE** genotype known to modify risk/rate of cognitive decline; might impact probable **CI** via gene-environment interactions (e.g., Chen et al., 2021)
 - -Medications (van der Meulen et al., 2022)

Larger Survivor Cohort; Control Group

- NON MH-symptomatic survivors in WTC EHC:
 - Univariate analyses: significant association between CI and MH sx.
 - BUT high proportion of patients with elevated mental health scores due to the referral process.
- NON 9/11 exposed group:
 - —to compare the CI in this group with those of a non exposed, ageing cohort.

Longitudinal; Objective Measures

- Longitudinal study
 - -within patient change
 - -is change consistent with other cohorts
- Objective measures; neuropsychological instruments

Cognitive decline among WTC survivors with chronic mental and physical disorders

- **►U01** Funded by the CDC/NIOSH
 - NYU Alzheimer's Disease Research Center:
 - Yongzhao Shao, Ph.D.
 - Thomas Wisniewski, MD
 - WTC EHC:
 - Joan Reibman, MD

 Assess association of WTC exposures, mental health and physical health comorbid conditions and the rate of cognitive decline among WTC EHC Survivors.

- 500 patients
- Assessed 3 Separate occasions –
 12-18 months time lag
- "T-COG" Telephone-based assessment
 - t-MoCA (MOntreal Cognitive Assessment)
 - Craft Story Recall
 - Number Span Forward and Backwards
 - Category Fluency

- Verbal Fluency
- Geriatric Depression Scale (GDS)
- Clinical Dementia Rating Scale (CDR)
- Demographic questionnaire
- PHQ-9

 Assess association of blood-based biomarkers with rate of cognitive decline among WTC EHC Survivors and compare with non-WTC exposed historical control data from NYU ADRC (NYC data) and Alzheimer's Disease Neuroimaging Initiative (ADNI; national data).

- 240 patients
- Assessed in-person
 - Physical Exam
 - Blood samples for biomarkers: Inflammation and neurodegeneration in person assessment
 - MoCA (MOntreal Cognitive Assessment), Craft Story Recall, Number Span Forward and Backwards, Category Fluency, Verbal Fluency, Geriatric Depression Scale (GDS), Clinical Dementia Rating Scale (CDR), Demographic questionnaire, PHQ-9

Summary

- The WTC EHC remains a program for surveillance and treatment of physical and mental health conditions.
- Initial data suggested high rates of PTSD symptoms with comorbid physical symptoms.
- PTSD symptom scores are associated with markers of inflammation (CRP) and
 PTSD mediates the association of the WTC cloud on inflammation.
- Persistent PTSD symptom scores are associated with lower respiratory symptoms and exposures.
- Measure of cognitive impairment associated with demographic characteristics, psychological distress and WTC dust cloud exposure.
- The WTC EHC serves as a resource to further our understanding of environmental, traumatic events and mental health symptoms.

NYU Langone Health

Funding

- CDC/NIOSH Contract 200 2017 93327 HHC WTC Data Center CDC-NIOSH
- CDC/NIOSH Contract 200 2017 93427 HHC CCE
- 1 U01 OH012486-01 Cognitive decline among WTC survivors with chronic mental and physical disorders

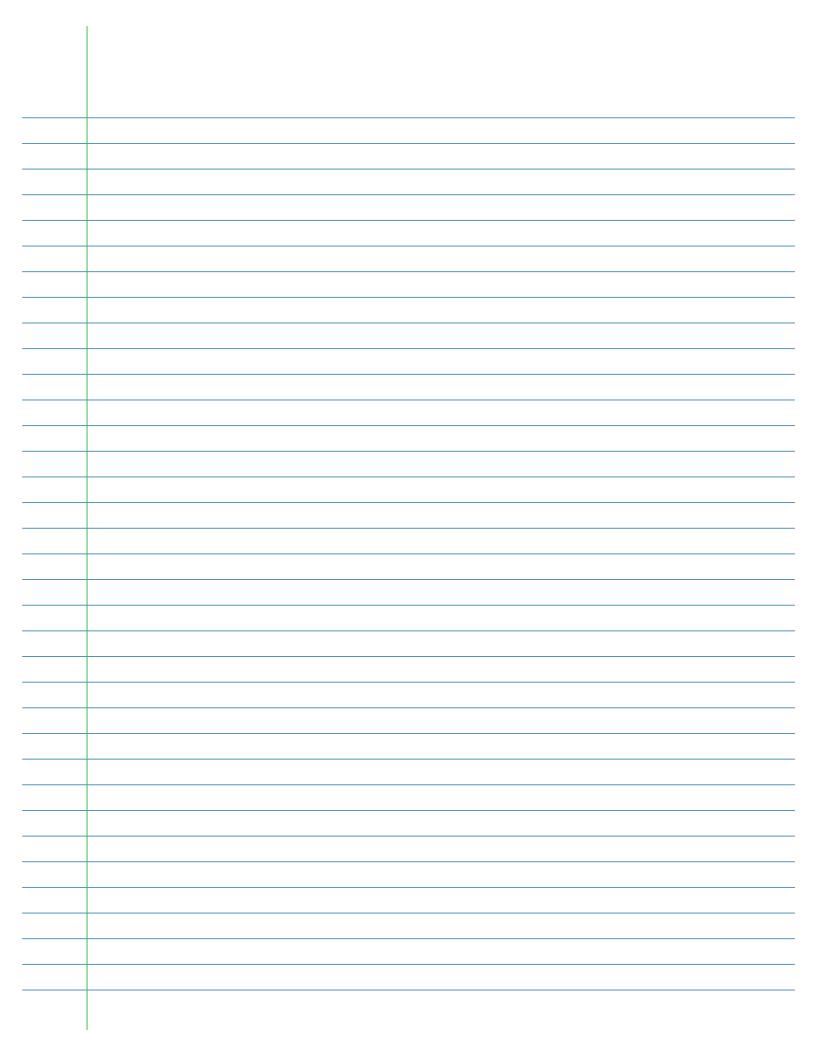
Thanks

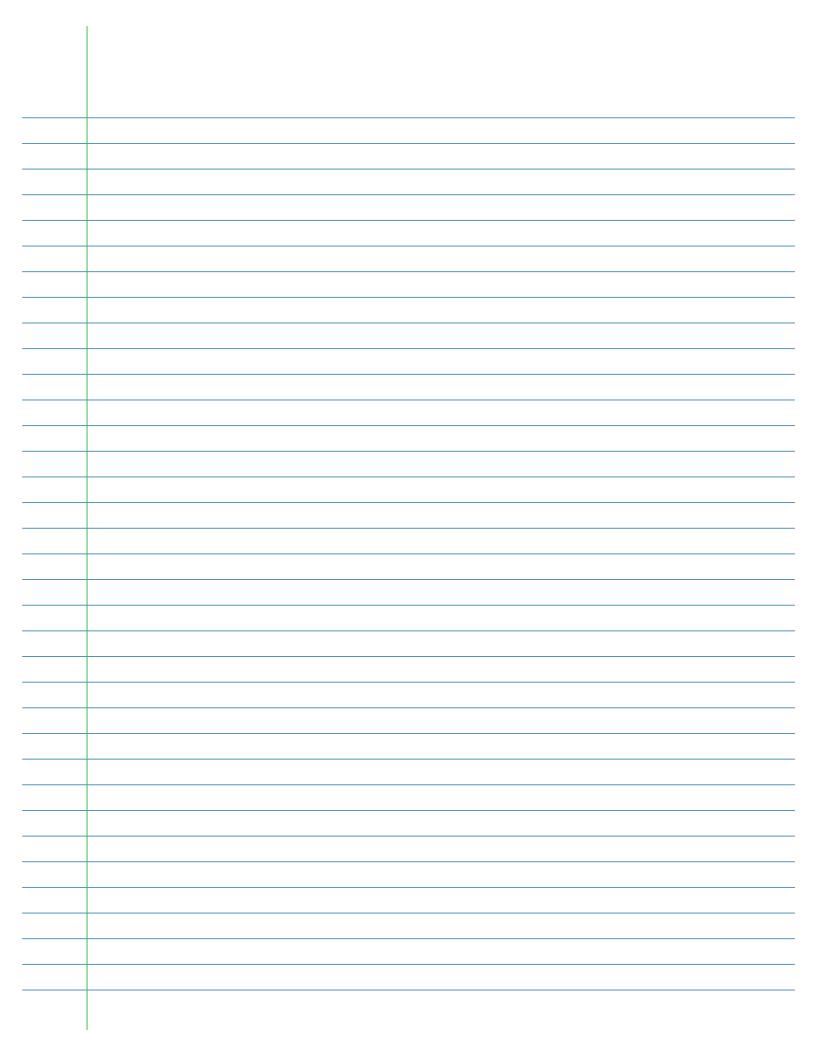
Qiao Zhang, Ph.D.

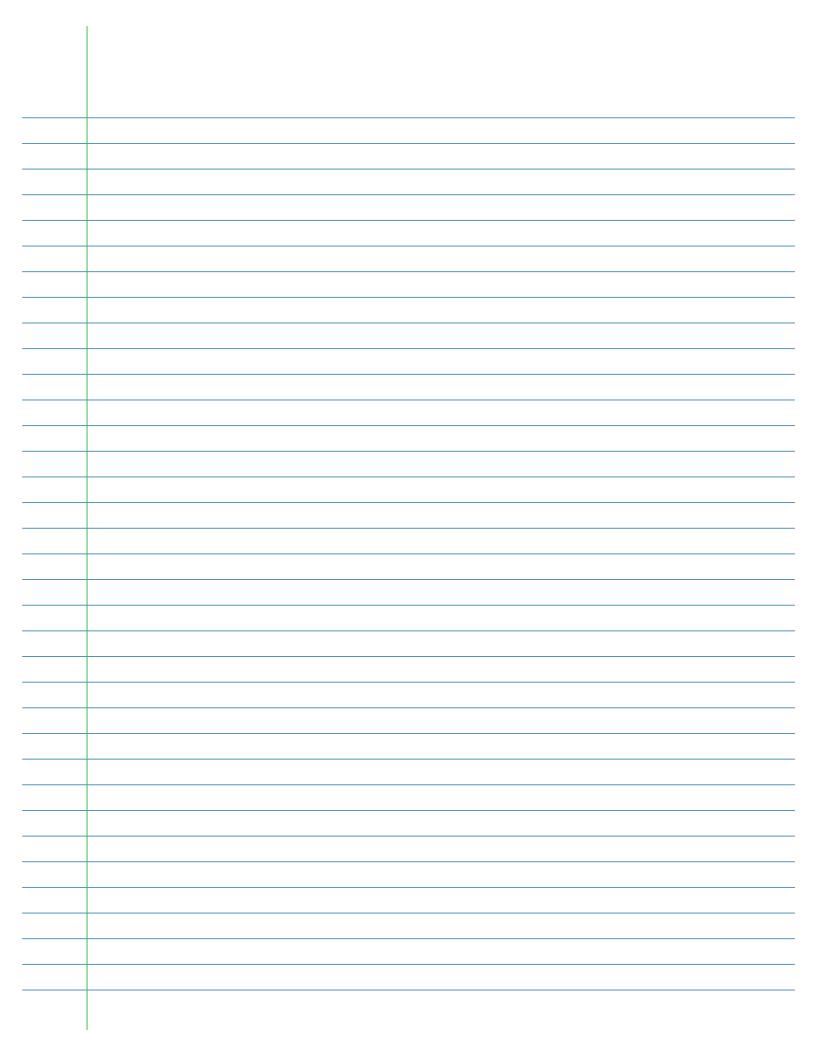
Jia Bao, Ph.D.

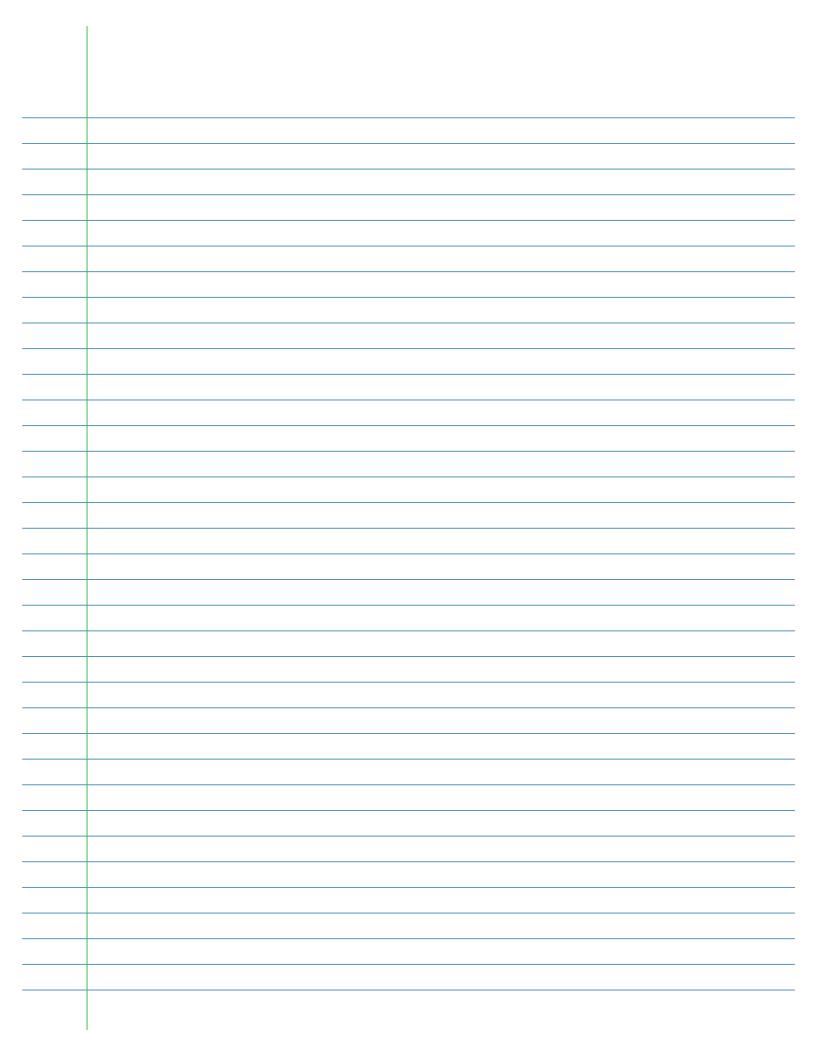
Yian Zhang, Ph.D.

Yongzhao Shao, Ph.D.


Joan Reibman, MD


WTC EHC Clinical and Administrative staff


WTC EHC Research Staff


WTC EHC Data Center staff

