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Abstract
 
The obesity epidemic has grown rapidly into a major 

public health challenge, in the United States and world-
wide. The scope and scale of the obesity epidemic motivate 
an urgent need for well-crafted policy interventions to 
prevent further spread and (potentially) to reverse the 
epidemic. Yet several attributes of the epidemic make it an 
especially challenging problem both to study and to com-
bat. This article shows that these attributes — the great 
breadth in levels of scale involved, the substantial diver-
sity of relevant actors, and the multiplicity of mechanisms 
implicated — are characteristic of a complex adaptive sys-
tem. It argues that the obesity epidemic is driven by such 
a system and that lessons and techniques from the field of 
complexity science can help inform both scientific study of 
obesity and effective policies to combat obesity. The article 
gives an overview of modeling techniques especially well 
suited to study the rich and complex dynamics of obesity 
and to inform policy design.

The Obesity Epidemic as a Complex System
 
The obesity epidemic has grown rapidly over the last few 

decades into a major public health challenge in the United 
States and, increasingly, worldwide. Between 1970 and 
2000, the percentage of obese Americans doubled to almost 
30% (1), with two-thirds of Americans now overweight (2). 

Similar obesity epidemics are under way across the globe 
(3-8). Worldwide, nearly half a billion were overweight or 
obese in 2002 (9).

 
The growth of the obesity epidemic has significant impli-

cations for public health (10) and health care costs (11). 
Obesity in children is also growing rapidly (9,12), present-
ing immediate health risks and suggesting the potential 
for even larger future increases in adult obesity unless 
the epidemic is contained. One public health researcher 
argues that obesity may become “the gravest and most 
poorly controlled public health threat of our time” (13). 
Both the scope and the scale of the obesity epidemic 
motivate an urgent need for well-crafted interventions to 
prevent further spread and to (potentially) lower current 
rates of overweight and obesity.

 
Yet 3 attributes of the obesity epidemic make it an espe-

cially challenging problem — both to study and to combat. 
First is the huge range in the levels of scale involved (14). 
Empirical evidence suggests important (and potentially 
interconnected) effects at levels including genes (15-18), 
neurobiology (19-22), psychology (23-28), family structure 
and influences (29-32), social context and social norms (33-
45), environment (46,47), markets (11,48,49), and public 
policy (50,51). Not only do these levels entail very different 
pathways of effect and diverse methodologies for measure-
ment, they are also usually the province of very different 
fields of science (from genetics to neuroscience to econom-
ics and political science).

 
A second challenging characteristic is the diversity of 

actors who potentially affect individual energy balance 
(and thus population levels of obesity). These might include 
families, schools, retailers, industry, government agencies, 
the media, health care providers, city planners, archi-
tects, employers, insurance companies, and many others. 
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Each of these actors has different goals, motivations, con-
straints, sources of information, modes of decision making, 
and types of connection to other actors. Interventions may 
affect each differently, and each has a different sphere of 
potential influence as an agent of change. Interventions 
that do not take into account the diversity of these actors 
cannot leverage potential synergies. They also run the risk 
that successful interventions in one area may be counter-
acted by responses of other actors.

 
A third challenge is the multiplicity of mechanisms at 

work in the obesity epidemic. For example, the role of 
dopamine-mediated reward and the mesocorticolimbic 
pathway in eating is well documented (52,53). Genes 
such as the dopamine-4 (DRD4) and dopamine-2 (DRD2) 
receptors can influence the dopamine system and affect 
feeding and reward (15-17). Individual choices about 
food are also influenced by neurobiological systems, such 
as executive control and the dopamine-striatal system 
(19-22), and by measurable psychological factors such as 
dietary disinhibition (23-25) and sensitivity to reward 
(26-28). Early childhood and prenatal family influence 
can play a strong role in subsequent obesity through 
several mechanisms (29-32). Social norms and social 
contextual influences affect food consumption directly 
(33-36) and indirectly via body image (39-43) and social 
capital (44,45). Obesity is known to spread through social 
networks (37-38) by an as-yet-unidentified mechanism. 
Prices can strongly influence food choice (11,48,49), as 
can built environment (46,47).

 
Even where mechanisms of effect are clear, the linkages 

and feedback between these mechanisms are not well stud-
ied or well understood. Furthermore, no single mechanism 
appears able to account for all that we know about the 
obesity epidemic. For example, markets and prices provide 
a compelling explanation of the overall upward trend in 
obesity rates but do not explain the important dispari-
ties in incidence by sociodemographic groups (54,55), nor 
provide insight into why obesity appears to move through 
social networks (37-38). Neurobiological and genetic mech-
anisms help explain the resilience of obesity at both the 
social and individual levels but have difficulty explaining 
the timing and speed of the epidemic and its spatial clus-
tering. Environmental explanations capture the spatial 
and demographic variability in obesity incidence but can-
not explain its apparent spread across longer distances 
through networks or its variation within spatially coher-
ent demographic groups.

 In sum, the obesity epidemic is a particularly challeng-
ing problem because it results from a system containing 
a diverse set of actors, at many different levels of scale, 
with differing individual motivations and priorities. This 
system has many moving parts and operative pathways, 
which interact to produce rich variation in outcomes that 
cannot be reduced to a single mechanism. Taken together, 
these features are classic characteristics of a complex 
adaptive system (CAS).

 
A CAS is one composed of many heterogeneous pieces, 

interacting with each other in subtle or nonlinear ways 
that strongly influence the overall behavior of the sys-
tem. The CAS perspective has proved enlightening in the 
study of economic, political, social, physical, and biological 
systems (56-58). CASs share many general properties, 
including:

• Individuality: CASs are often multilevel but are usually 
driven by decentralized, local interaction of constituent 
parts. Each level is composed of autonomous actors who 
adapt their behavior individually. Actors can be people 
but also larger social units such as firms and govern-
ments, and smaller biological units such as cells and 
genes.

• Heterogeneity: Substantial diversity among actors at 
each level — in goals, rules, adaptive repertoire, and 
constraints — can shape dynamics of a CAS in impor-
tant ways.

• Interdependence: CASs usually contain many interde-
pendent interacting pieces, connected across different 
levels. System dynamics are often characterized by feed-
back and substantial nonlinearity.

• Emergence: CASs are often characterized by emergent, 
unexpected phenomena — patterns of collective behav-
ior that form in the system are difficult to predict from 
separate understanding of each individual element.

• Tipping: CASs are also often characterized by “tipping.” 
Nonlinearity means that the impacts caused by small 
changes can seem hugely out of proportion. The system 
may spend long periods in a state of relative stability, 
yet be easily “tipped” to another state by a disturbance 
that pushes it across a threshold.
 
These characteristics make the study and manage-

ment of complex systems especially challenging. Valuable 
insights about such systems, along with strategies for 
intervention, can be gained from the relatively new, inter-
disciplinary field of complexity science.
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Implications for Science and Policy Design
 
The complexity of the systems underlying the obesity 

epidemic has important implications for scientific study of 
obesity, for policy and the design of interventions aimed at 
changing the course of the obesity epidemic, and for model-
ing to facilitate both of these goals.

Scientific study
 
Linkages and feedback between mechanisms (and 

between levels of analysis) are often important determi-
nants of dynamics in complex systems. In the case of obe-
sity, these links are not well understood, although many 
individual mechanisms operating at a single level have 
been identified. Because no one mechanism appears able 
to completely explain all important aspects of the obesity 
epidemic (its timing, scope, variance, distribution, etc), 
greater understanding may require approaches that com-
bine mechanisms and explore their interplay. This means 
that division of scientific study by traditional disciplinary 
boundaries may be hampering a full understanding of the 
problem — new insight can come from cross-disciplin-
ary approaches. Similarly, methods and approaches that 
are systems oriented and multilevel in scope are needed 
(14,59,60) to capture linkages between mechanisms at dif-
ferent levels. See below for discussion of suitable methods.

Policy and intervention design
 
Complexity can be a significant challenge for policy mak-

ers and for the design of interventions. The interconnected 
dynamics of a complex system may lead policy design 
to overlook potential synergies, and successful interven-
tions in a single area may be counteracted by responses 
elsewhere in the system. Policies that do not take into 
account the full set of actors and their responses can even 
backfire dramatically, as illustrated by the Lake Victoria 
catastrophe (61,62). In 1960, a nonnative species of fish 
(the Nile perch) was introduced into Lake Victoria, with 
the policy goal of improving the health and wealth of the 
communities of people surrounding the lake in Kenya, 
Tanzania, and Uganda through this new source of protein. 
But the policy did not take into account the other actors in 
the system — specifically, the other organisms that formed 
the complex ecosystems of the lake. Although the perch 
initially appeared to be a success, its introduction into the 
lake set off a chain reaction in the lake ecosystem. The 
perch wiped out the native cichlid species of fish, which 

were crucial in controlling a species of snail living in the 
lake. The snails flourished, and with them the larvae of 
schistosomes, to whom they play host. Schistosomes are 
the cause of the often-fatal disease of bilharzia in humans, 
and their exploding numbers created a public health and 
economic crisis. Thus, the original policy goal (improving 
the health of the surrounding communities of humans) 
backfired because the reaction of another set of actors in 
the system was not anticipated. Efforts to reduce obesity 
might face similar difficulties if systemic diversity is not 
factored into policy design.

 
Other characteristics of complex systems pose challeng-

es for policy design as well. Nonlinearity makes prediction 
difficult — multiple forces shape the future, and their 
effects do not aggregate simply. Heterogeneity means that 
any given intervention may not work equally well across 
all contexts or subgroups. Decentralized dynamics can 
be a challenge because many conventional policy levers 
and intervention implementations are centralized or “top-
down.”

 
Yet despite the challenges it poses, complexity can also 

be a source of great opportunity for policy makers and for 
intervention design. Nonlinearity is an opportunity, since 
a coincidence of several small events can generate a large 
systemic effect. Near the right thresholds, even very small 
interventions can have a big impact on the system, “tip-
ping” it to a new state. Understanding heterogeneity in 
a system can also create an opportunity because it allows 
interventions to be very closely targeted for maximum 
impact. And decentralized dynamics are an advantage if 
they can be harnessed to allow interventions to dissemi-
nate on their own through direct imitation or interaction 
between actors in the system. Tools developed for the 
study of complex systems can help uncover their underly-
ing dynamics, identifying which areas will be most ame-
nable to policy intervention and where leverage may best 
be applied for any particular policy goal.

Modeling Techniques for Complex Systems
 
An especially valuable tool, both for scientific study and 

for policy design, is modeling. There are many benefits 
to constructing explicit models, or representations, of a 
system’s behavior (63). Unlike implicit (“mental”) models, 
assumptions in an explicit model are easily testable and 
boundary conditions can be identified, making them a 
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more reliable basis for decision making. Models can help 
reduce the list of plausible hypotheses about a system, 
ruling out those that produce dynamics very different 
from the real behavior of the system (64). They can lead to 
surprising or counterintuitive insights about the underly-
ing mechanisms at work in a system and can help focus 
empirical inquiry by identifying the most critical gaps in 
data. Finally, models can help test the potential effect of 
interventions and identify the points of maximum leverage 
in the system.

 
A wide array of techniques for modeling exist and are 

used for many different purposes in many different fields. 
The complexity of obesity means that the most suitable 
modeling techniques will have several particular charac-
teristics. First, because of the great breadth in scale of 
the obesity epidemic, models of obesity may provide the 
most insight if they capture multiple levels of analysis 
(14,59,60). Modeling a single level at a time does not per-
mit examination of linkages and feedback between levels, 
nor determination of the relative degree of influence of 
each level on obesity outcomes. Second, in order to fully 
capture the dynamics of a complex system, models must 
also be able to incorporate individual heterogeneity and 
adaptation over time (see above). Finally, there is a great 
need for models that provide not just better understanding 
of the problem and the mechanisms behind it, but that aid 
design of new and better interventions to slow and reverse 
the epidemic (65). Therefore, the most useful models will 
be those that can serve as policy “laboratories,” modeling 
the potential effect of interventions on system dynamics.

 
Given these criteria, a set of particularly promising tools 

can be found in computational and simulation techniques 
drawn from complexity science.

Agent-based computational modeling
 
One methodology often used to study complex systems 

is agent-based computational modeling (ABM), a powerful 
and relatively new approach made feasible by advances 
in computing. In ABM, complex dynamics are modeled 
by constructing “artificial societies” on computers. Every 
individual actor (or “agent”) in the system is explicitly 
represented in computer code. The agents are placed in a 
spatial context, with specified initial conditions, and given 
a set of adaptive rules that govern their interaction with 
each other and with their environment. The interactions 
and decision processes of the agents produce output at 

both the individual and aggregate system levels. In this 
way, the computer simulation “grows” macro-level pat-
terns and trends from the bottom up (64), making it espe-
cially well-suited for the study of complex systems. The 
macro-level patterns generated by the model (eg, changes 
in distribution of body mass index [BMI], eating patterns, 
health outcomes) can be directly compared with data to 
calibrate the model.

 
Agent-based models maintain a high degree of ana-

lytical rigor but offer several particular advantages for 
modeling complex systems (such as the obesity epidemic). 
First, ABM allows for substantial diversity among agents 
— because every individual is explicitly modeled, no “rep-
resentative agents,” compartments, homogeneous pools, or 
other forms of aggregation are required. Thus agent-based 
models can easily incorporate both diversity in the types of 
actors in a system (doctors, patients, insurers) and hetero-
geneity within each type (in sociodemographics, physiol-
ogy, genetics, networks, location, psychology, etc). Taking 
such diversity into account is often critical in designing 
successful interventions into complex systems.

 
The agent-based approach also allows great flexibility in 

cognitive assumptions about individual decision making 
and information processing. Agents in simulation models 
need not be “optimizing” but can be simply goal oriented in 
the context of limited and changing information. This kind 
of “bounded rationality” is often more plausible for model-
ing real-world decision making (66) and is an important 
source of diversity as well.

 
In addition, agent-based models can incorporate complex 

feedback dynamics and explicit spatial contexts. At the 
individual level, they can model multiple interdependent 
sources of influence on health outcomes. At the aggregate 
level, they can model the interaction of actors and environ-
ments across multiple levels of analysis, as agents can be 
implemented at multiple levels of scale simultaneously. 
Agent-based models can include explicit representations of 
geography from geographic information systems data (67), 
as well as detailed social network structures and complex 
neighborhood effects (68). Such representations of space 
are often difficult to incorporate into standard analytic 
approaches (69).

 
A particular advantage of the ABM approach for study-

ing CASs is its focus on mechanisms and ability to study 
nonequilibrium dynamics. Since complex systems are 
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rarely in equilibrium and are often susceptible to “tip-
ping,” this flexibility is especially important. Because of its 
focus on mechanisms, ABM allows adaptation (evolution, 
learning, imitation) to be modeled explicitly and drivers 
of “emergent” social level phenomena to be uncovered. 
Because it is rule-based, agent modeling has also proven 
particularly transparent, facilitating research in cross-
disciplinary teams (of particular interest for the study of 
obesity, as argued above) (67,70).

 
Finally, agent-based models are especially useful as 

computational laboratories” for policy. With an agent-
based model, researchers can systematically explore the 
potentially complex impacts of each item on the existing 
menu of policy interventions — and can even uncover 
novel ones. Agent-based models have been used to study 
a wide variety of topics in social science and public health 
(67,68,71-81) and have been able to provide important 
guidance to policy making and intervention design in sev-
eral instances (80,81).

 
An ABM approach to obesity would permit modeling 

of multiple mechanisms simultaneously, across several 
levels of scale, with inclusion of important sources of diver-
sity. For example, one set of “agents” might be individual 
consumers, placed in an environment with opportunities 
for eating and for physical activity. Within each of these 
agents could be contained a representation of metabolic 
mechanisms, genetics, or neurobiology, with the appropri-
ate degree of population diversity reflected in variation 
between agents. These agents could be embedded in a 
social and environmental structure with multiple sources 
of influence from other agent types — peers, parents, 
media, prices set by markets, etc. Individual behaviors 
would then adapt over time through interaction with 
“above the skin” environment and society and would 
simultaneously be shaped by “below the skin” genetics, 
metabolism, and neurobiology. This would allow interac-
tion of many different levels and mechanisms (82). Such 
an approach could offer deeper understanding of the full 
complexity of the obesity epidemic and permit experimen-
tation with different forms of policy intervention.

Other simulation methods
 
Several other powerful computational and simulation 

techniques are widely used for studying complex sys-
tems. System Dynamics (83-86) is a technique in which a 
system is modeled using 3 core components: stocks (key 

variables, like population BMI, that increase or decrease 
over time), flows (rates of change in a stock), and feedback 
loops (which can connect stocks and flows over time). Once 
a diagrammatic model of the system is developed, imple-
mented in computer software, and filled in with data for 
each of the relationships between variables, the dynamics 
of the system can be explored under many scenarios and 
sets of assumptions. This technique is particularly effec-
tive at giving insight into large systems for which good 
data exist for most relationships between aggregate vari-
ables and makes sensitivity analysis very straightforward. 
Commercial software for system dynamic modeling is also 
quite standardized and well-documented. Because it is a 
more “top-down” approach, however, and key objects are 
generally represented at a macro level, it does not easily 
give insight into the individual actor level or incorporate 
extensive agent heterogeneity, adaptation, or emergence.

 
Two other common techniques are Dynamic 

Microsimulation and Markov modeling. Commonly used 
in economics, Dynamic Microsimulation (87,88) is similar 
to ABM in its bottom-up, individual-level focus. Although 
there are many variants of this approach, microsimula-
tions generally assume no interaction between compo-
nents (agents). This simplifies analysis but also makes 
mechanisms such as social influence, imitation, and 
contagion difficult to capture. Markov modeling (89,90) 
also shares several features with ABM, such as its abil-
ity to capture distributions of attributes and model their 
dynamics. In a Markov model, a population of individuals 
may be in one of a fixed number of “states,” with transi-
tion probabilities governing movement from one state to 
the next. Like System Dynamics, and Microsimulation, 
Markov models are straightforward to implement in stan-
dard software packages. However, they are less flexible 
than agent-based models because they generally assume 
low dimensional state space and cannot easily handle 
complex state transition dynamics like path dependence 
and individual learning.

Data Requirements for Models
 
Models advance scientific understanding most effective-

ly and provide the best basis for intervention design and 
policy making when they are empirically sound. Empirical 
data can help make model input assumptions as valid as 
possible and can be used to test the output of models and 
their power to explain real-world phenomena of inter-
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est. Simulation models, of all types described above, are 
capable of producing large amounts of clean output data; 
there is rarely as much empirical data available for com-
parison. A variety of methodologies have been developed 
for the productive use of both real and simulated data in 
modeling. Both microlevel data (about individual decision 
making and biological substrates) and macro-level data 
(about distributions or flows) can inform the assumptions 
that go into a model. In cases where few data are available 
on which to base an individual assumption, comparison 
of model output with empirical data can be used to cali-
brate the model. Models can gain greater corroboration 
when they can “reconstruct” or explain historical cases of 
particular interest. And simulated data on their own can 
be used to perform internal consistency checks on model 
dynamics. For further discussion of these and other strat-
egies for relating data to models, see references 57,67,91, 
and 93. It is important to note that models can also be very 
useful even where few data are available — such models 
can help to build theory, generate hypotheses, and identify 
mechanisms capable of generating key “stylized facts” of 
interest (58,71,73-75,94,95).

Application and Future Directions
 
The most effective models of the obesity epidemic are 

likely to be those that can capture multiple mechanisms 
at multiple levels, integrate micro and macro data and 
dynamics, account for significant heterogeneities, and 
allow for policy experimentation. The computational and 
simulation modeling techniques discussed in the previ-
ous section have great potential to meet all of these goals. 
Their application to the obesity epidemic will be challeng-
ing — there will be important data that are not yet avail-
able, uncertainty about many assumptions, and many key 
mechanisms whose inner workings remain unknown. But 
modeling can still be quite effective. Indeed, modeling and 
empirical study are often most productive when they work 
together iteratively. Modeling can help direct empirical 
inquiry by highlighting the most significant and critical 
gaps in data and by generating theory and hypotheses for 
testing. And new data and evidence can inform a revised 
and updated set of models.

 
One promising strategy for modeling the obesity epidem-

ic may be to make use of a modular approach. Although 
the system driving the obesity epidemic is complex, the 
best models are parsimonious. Modeling all the levels 

of the system simultaneously from the outset can make 
assessment of the relative contributions at each level diffi-
cult and complicate efforts to understand the mechanisms 
at work in any specific level. A modular approach, by con-
trast, would allow separate consideration of each level of 
analysis while still permitting straightforward integration 
to study multilevel feedbacks and interactions. Such an 
approach would begin with a separate “module” (model) 
for each level of analysis (eg, genetics, brain, family, social 
networks, built environment), incorporating the best avail-
able theory regarding mechanisms and pathways of effect. 
The modules would share a common empirical “testbed” 
of outcome data, allowing testing of the ability of each to 
explain variance in outcomes. Various combinations of 
modules could then be explored and tested against the 
same outcome data, building slowly towards a model cov-
ering the full breadth of the system by integrating all of 
the modules. A similar scaling strategy could be used for 
the scope of the “testbed.” Initially, the models might be 
applied to outcomes in a small, relatively homogeneous 
population. Later, the scope could be expanded to a much 
larger, more diverse population.

 
This type of modular modeling has been highly success-

ful in fields such as engineering and ecology (96-98) but 
has not yet been applied using the computational tech-
niques discussed here in a public health context.

Conclusion
 
Several attributes of the obesity epidemic — the great 

breadth in levels of scale involved, the substantial diver-
sity of relevant actors, and the multiplicity of mechanisms 
implicated — make it an especially challenging problem. 
This article has shown that these attributes are character-
istic of a CAS and argued that obesity is indeed driven by 
such a system. Computational and simulation modeling 
techniques drawn from the fields of complexity and sys-
tems science represent an especially promising avenue for 
future study of the rich and complex dynamics of obesity 
and for the design of effective interventions and policies to 
combat it.
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