A Monte Carlo Approach to External Dose Uncertainty

Timothy D Taulbee MS, CHP James W. Neton PhD, CHP

National Institute for Occupational Safety and Health Office of Compensation Analysis and Support

- Elements of External Dose Reconstruction
- Organ Dose Conversion Factors
- Development of Organ Dose Uncertainty using Monte Carlo Sampling

Dosimeter Dose

Summation of dosimeter readings in a given year

 $D_D = D_1 + D_2 + D_3 + \dots D_n$

• Uncertainty $\sigma_D^{2=} \sigma_1^{2+} \sigma_2^{2+} \sigma_3^{2+} \cdots \sigma_n^{2}$

Mean = 8.05 ± 1.44 *mSv*

Missed Dose Determination

Critical Components

- Limit of Detection (LOD)
- Number of zero recordings (n)

Conversion to Organ Dose

Primary Factor

Target organ – primary cancer

Additional factors effecting conversion

- Monitoring device (Film or TLD)
- Energy of emission
- Exposure geometry

Monitoring Device

100 keV – AP Geometry

Data from ICRP 74 (1996)

CDC

Energy Banding

DCF for Hp(10) to Lung Dose – AP Geometry

Exposure Geometry

Photon Energy (MeV)

Data from ICRP 74 (1996)

Likeliest Dose Conversion Factor

Weighted approach based on job and or interview

$$DCF(D_{M}, E_{\gamma})_{W} = w_{AP}DCF(D_{M}, E_{\gamma})_{AP} + w_{PA}DCF(D_{M}, E_{\gamma})_{PA} + w_{ROT}DCF(D_{M}, E_{\gamma})_{ROT} + w_{ISO}DCF(D_{M}, E_{\gamma})_{ISO}$$

Example: 90% AP geometry and 10% ROT Geometry

 $DCF_{W} = 0.90(DCF_{H_{p}(10), E_{\gamma, 30-250 \, keV}, AP}) + 0.10(DCF_{H_{p}(10), E_{\gamma, 30-250 \, keV}, ROT})$ = 0.90(0.695) + 0.10(0.552) = 0.680

Exposure Geometry Uncertainty

Data from ICRP 74 (1996)

DCF Triangular Distribution

Development of the Organ Dose Uncertainty Distribution

Organ dose uncertainty is determined using Monte Carlo sampling from each of the dose component distributions and the associated dose conversion factor uncertainty.

Recall

- Dosimeter Dose Normal
- Missed Dose Lognormal
- Dose Conversion Factor Triangular

Uncertainty Distribution

Organ Dose Distribution

- Normal Distribution
 - 7.49 ± 2.23 mSv
 - $\chi^2 = 425$, KS = 0.435
- Lognormal Distribution
 - GM = 7.15 mSv
 - GSD = 1.36
 - $\chi^2 = 283$, KS = 0.349

Total Organ Dose (mSv)

Summary Organ Dose Uncertainty

- Laboratory Uncertainty
 - Dosimeter Reading
 - Missed Dose Uncertainty
- Field Uncertainty
 - Photon Energy
 - Exposure Geometry

