

ORAU TEAM Dose Reconstruction Project for NIOSH

Oak Ridge Associated Universities I Dade Moeller I MJW Technical Services

Page 1 of 83

DOE Review Release 04/09/2013

Document Title: Internal Coworke Savannah River Subject Expert(s):	er Dosimetry Data for the Site Matthew G. Arno and Nancy Cha	Document Number: Revision: Effective Date: Type of Document: Supersedes: Imers	ORAUT- 01 04/01/20 OTIB Revision	
Approval:	Signature on File	Approva	al Date:	03/26/2013
Concurrence:	Matthew G. Arno, Document Owner Signature on File John M. Byrne, Objective 1 Manager		ence Date:	03/26/2013
Concurrence:	Signature on File Edward F. Maher, Objective 3 Manager	Concur	ence Date:	03/26/2013
Concurrence:	Vickie S. Short Signature on Fil Kate Kimpan, Project Director	le for Concur	ence Date:	03/26/2013
Approval:	Signature on File James W. Neton, Associate Director for S	Approva	al Date:	04/01/2013
Ne	w 🗌 Total Rewrite	Revision	Page C	hange

FOR DOCUMENTS MARKED AS A TOTAL REWRITE, REVISION, OR PAGE CHANGE, REPLACE THE PRIOR REVISION AND DISCARD / DESTROY ALL COPIES OF THE PRIOR REVISION.

PUBLICATION RECORD

EFFECTIVE DATE	REVISION NUMBER	DESCRIPTION
02/08/2013	00	New technical information bulletin to provide internal coworker data for the Savannah River Site. Incorporates formal internal and NIOSH review comments. Training required: As determined by the Objective Manager. Initiated by Matthew Arno.
04/01/2013	01	Revision initiated to correct the values provided in Tables 5-6, Type S uranium intake rates for 1968 through 2007, 5-10, changed end date from 2006 to 2007, A-3, plutonium bioassay data for 1955 through 2007, and A-8, neptunium bioassay data for 1991 through 2007. Incorporates formal internal review comments. No changes were made as a result of formal NIOSH review. No sections were deleted. Training required: As determined by the Objective Manager. Initiated by Matthew G. Arno.

TABLE OF CONTENTS

SEC ¹	ΓΙΟΝ	TITLE	PAGE
Acror	nyms an	d Abbreviations	
1.0	Introd	uction	
2.0	Purpo	se	
3.0	-	Overview	
0.0	3.1	Bioassay Data Selection	
	0.1	3.1.1 NOCTS Urinalysis Data	
		3.1.2 NOCTS Whole-Body Count Data	
		3.1.3 SRS HPRED Database	
		3.1.4 Neptunium Logbook Data	
		3.1.5 Americium Logbook Data	
	3.2	Analysis	
	3.3	Tritium	
	3.3 3.4	Plutonium	
	3.4		
		3.4.1 NOCTS-Based Analysis	
	0.5	3.4.2 HPRED-Based Analysis	
	3.5		
		3.5.1 NOCTS-Based Analysis	
		3.5.2 HPRED-Based Analysis	
	3.6	Americium/Curium/Californium	
		3.6.1 Logbook-Based Analysis	
		3.6.2 HPRED-Based Analysis	
	3.7	Neptunium	
	3.8	Fission/Activation Products	
		3.8.1 Strontium	
		3.8.2 Cesium-137	
		3.8.3 Cobalt-60	
	3.9	Thorium	
4.0	Intake	Modeling	
	4.1	Assumptions	21
	4.2	Bioassay Fitting	
	4.3	Tritium	
	4.4	Plutonium	
	4.5	Uranium	
	4.6	Americium/Curium/Californium	
	4.7	Neptunium	
	4.8	Strontium	
	4.9	Cesium-137	
	4.10	Cobalt-60	
	4.11	Thorium	
5.0	Assia	nment of Intakes and Doses	25
5.0	5.1	Tritium	
	5.1	Plutonium	
	5.2 5.3	Uranium	-
	5.3 5.4	Americium/Curium/Californium	
	5.4 5.5	Neptunium	
		I	
	5.6	Fission/Activation Products 5.6.1 Strontium	
		0.0.1 SUUHUUH	

Do	cument N	No. ORA	UT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 4 of 83
	5.7	5.6.3	Cobalt-60			
6.0	Attribu	utions a	nd Annotations .			
Refer	ences					
ΑΤΤΑ	CHMEN	NT A, BI	OASSAY DATA	TYPES AND STAT	STICAL ANALYSIS RESU	LTS 32
ΑΤΤΑ	CHMEN	NT B, C	OWORKER DAT	A FIGURES		

LIST OF TABLES

<u>TITLE</u>

<u>TABLE</u>

PAGE

3-1	SRS HPRED data import format	15
5-1	Tritium annual doses and GSDs	25
5-2	Type M plutonium intake rates	26
5-3	Type S plutonium gross alpha intake rates	26
5-4	Type F uranium intake rates	
5-5	Type M uranium intake rates	
5-6	Type S uranium intake rates	
5-7	Type M americium intake rates	
5-8	Type M curium intake rates	
5-9	Type M californium intake rates	
5-10	Type M neptunium intake rates	
5-11	Type F strontium intake rates	
5-12	Type F ¹³⁷ Cs intake rates	
5-13	Type M ⁶⁰ Co intake rates	
5-14	Type S ⁶⁰ Co intake rates	
5-15	Type M thorium intake rates	
5-16	Type S thorium intake rates	
A-1	NOCTS radionuclide type matrix	
A-2	HPRED radionuclide type matrix	
A-3	50th- and 84th-percentile urinary excretion rates of plutonium gross alpha, 1955 to	07
710	2007	37
A-4	50th- and 84th-percentile urinary excretion rates of uranium, 1953 to 2007	-
A-5	50th- and 84th-percentile urinary excretion rates of americium, 1963 to 2007	
A-6	50th- and 84th-percentile urinary excretion rates of curium, 1995 to 2007	
A-7	50th- and 84th-percentile urinary excretion rates of californium, 1995 to 2007	
A-8	50th- and 84th-percentile urinary excretion rates of neptunium, 1961 to 1969 and 1991	
~0	to 2007	42
A-9	50th- and 84th-percentile whole body burdens of neptunium, 1971 to 1989	
A-10	50th- and 84th-percentile urinary excretion rates of strontium, 1955 to 1965 and 1991	···· 72
// 10	to 2006	43
A-11	50th- and 84th-percentile whole body burdens of cesium, 1961 to 1989	
A-12	50th- and 84th-percentile urinary excretion rates of ⁶⁰ Co, 1955 to 1970	
B-12	Summary of ⁶⁰ Co type F intake rates and dates	45
B-1	Summary of plutonium type M intake rates and dates	
B-2	Summary of plutonium type S intake rates and dates	
B-3	Summary of uranium type F intake rates and dates	
B-4	Summary of uranium type M intake rates and dates	
B-5	Summary of uranium type S intake rates and dates	
B-6	Summary of americium type M intake rates and dates	
B-7	Summary of curium type M intake rates and dates	
B-8	Summary of californium type M intake rates and dates	
B-9	Summary of neptunium type M intake rates and dates	
B-10	Summary of strontium type F intake rates and dates	
B-11	Summary of cesium type F intake rates and dates	
B-12	Summary of ⁶⁰ Co type F intake rates and dates	70
B-13	Summary of ⁶⁰ Co type S intake rates and dates	78
B-14	Summary of thorium type M intake rates (dpm/d) and dates	
B-15	Summary of thorium type S intake rates and dates	

LIST OF FIGURES

FIGURE

<u>TITLE</u>

<u>PAGE</u>

B-1	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates compared with bioassay results, 50th percentile, 1955–1990, type M	49
B-2	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates compared with bioassay results, 50th percentile, 1991-2007, type M	49
B-3	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
20	rates compared with bioassay results, 84th percentile, 1955–1990, type M	50
B-4	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
U Ŧ	rates compared with bioassay results, 84th percentile, 1991–2007, type M	50
B-5	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
D-3	rates compared with bioassay results, 50th percentile, all intake periods, type M	50
B-6	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
D-0		E1
D 7	rates compared with bioassay results, 84th percentile, all intake periods, type M	
B-7	Predicted plutonium bioassay results calculated using IMBA-derived uranium intake	- 4
-	rates compared with bioassay results, 50th percentile, 1955–1990, type S	51
B-8	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates compared with bioassay results, 50th percentile, 1991–2007, type S	52
B-9	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates compared with bioassay results, 84th percentile, 1955–1990, type S	52
B-10	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates compared with bioassay results, 84th percentile, 1991-2007, type S	52
B-11	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates compared with bioassay results, 50th percentile, all intake periods, type S	53
B-12	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates compared with bioassay results, 84th percentile, all intake periods, type S	53
B-13	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 50th percentile, type F	54
B-14	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 84th percentile, type F	54
B-15	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
2.0	rates compared with bioassay results, 50th percentile, type M	55
B-16	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
010	rates compared with bioassay results, 84th percentile, type M	55
B-17	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
D-17	rates compared with bioassay results, 50th percentile, 1953, type S	56
B-18	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
D-10	rates compared with bioassay results, 50th percentile, 1954, type S	56
D 10		
B-19	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	50
	rates compared with bioassay results, 50th percentile, 1955–1956, type S	50
B-20	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 50th percentile, 1957–1967, type S	57
B-21	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 50th percentile, 1968–1980, type S	57
B-22	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 50th percentile, 1981–1990, type S	57
B-23	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 50th percentile, 1991–2000, type S	58
B-24	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 50th percentile, 2001–2007, type S	58

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 7 of 83

B-25	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 84th percentile, 1953, type S	58
B-26	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 84th percentile, 1954, type S	. 59
B-27	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 84th percentile, 1955-1956, type S	. 59
B-28	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
	rates compared with bioassay results, 84th percentile, 1957-1967, type S	. 59
B-29	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	~ ~
D 00	rates compared with bioassay results, 84th percentile, 1968–1980, type S	. 60
B-30	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	~~
	rates compared with bioassay results, 84th percentile, 1981–1990, type S	. 60
B-31	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	~~
	rates compared with bioassay results, 84th percentile, 1991–2000, type S	. 60
B-32	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	~4
	rates compared with bioassay results, 84th percentile, 2001–2007, type S	.61
B-33	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	~
	rates compared with bioassay results, 50th percentile, all intake periods, type S	.61
B-34	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	~4
	rates compared with bioassay results, 84th percentile, all intake periods, type S	.61
B-35	Predicted americium bioassay results calculated using IMBA-derived americium intake	~~
	rates compared with bioassay results, 50th percentile, 1963–1967, type M	. 62
B-36	Predicted americium bioassay results calculated using IMBA-derived americium intake	~~
	rates compared with bioassay results, 50th percentile, 1968–1972, type M	. 62
B-37	Predicted americium bioassay results calculated using IMBA-derived americium intake	~~
	rates compared with bioassay results, 50th percentile, 1973–1994, type M	. 63
B-38	Predicted americium bioassay results calculated using IMBA-derived americium intake	~~
	rates compared with bioassay results, 50th percentile, 1995–2007, type M	. 63
B-39	Predicted americium bioassay results calculated using IMBA-derived americium intake	~~
D 40	rates compared with bioassay results, 84th percentile, 1963–1967, type M	. 63
B-40	Predicted americium bioassay results using IMBA-derived americium intake rates	64
	compared with bioassay results, 84th percentile, 1968–1972, type M	. 64
B-41	Predicted americium bioassay results calculated using IMBA-derived americium intake	64
D 40	rates compared with bioassay results, 84th percentile, 1973–1994, type M	. 64
B-42	Predicted americium bioassay results calculated using IMBA-derived americium intake	64
D 42	rates compared with bioassay results, 84th percentile, 1995–2007, type M	. 64
B-43	Predicted americium bioassay results calculated using IMBA-derived americium intake	GE
	rates compared with bioassay results, 50th percentile, all intake periods, type M	. 65
B-44	Predicted americium bioassay results calculated using IMBA-derived americium intake	с.
	rates compared with bioassay results, 84th percentile, all intake periods, type M	. 65
B-45	Predicted curium bioassay results calculated using IMBA-derived curium intake rates	66
D 46	compared with bioassay results, 50th percentile, all intake periods, type M	. 00
B-46	Predicted curium bioassay results calculated using IMBA-derived curium intake rates	66
D 47	compared with bioassay results, 84th percentile, all intake periods, type M	. 00
B-47	Predicted californium bioassay results calculated using IMBA-derived californium	67
	intake rates compared with bioassay results, 50th percentile, all intake periods, type M	. 07
B-48	Predicted californium bioassay results calculated using IMBA-derived californium	67
D 40	intake rates compared with bioassay results, 84th percentile, all intake periods, type M	.0/
B-49	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	60
B.50	rates compared with bioassay results, 50th percentile, 1961–1964, type M Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	. 00
B-50		60
	rates compared with bioassay results, 50th percentile, 1965–1967, type M	. 08

Desument No. ODALIT OTID 0004 Devision No. 04 Effective Date: 04/01/2012 Date: 0. of 02				
Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 8 of 83	Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 8 of 83

B-51	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates compared with bioassay results, 50th percentile, 1968–1969, type M	68
B-52	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1970–1974, type M	69
B-53	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1975–1979, type M	69
B-54	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1980–1990, type M	69
B-55	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1991–2007, type M	70
B-56	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1961–1963, type M	70
B-57	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1964–1965, type M	70
B-58	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1966–1967, type M	71
B-59	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1968–1969, type M	71
B-60	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1970–1974, type M	71
B-61	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1975–1979, type M	72
B-62	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1980–1990, type M	72
B-63	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1991–2007, type M	72
B-64	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1961-2007 cumulative, type M,	
	urinalysis data	73
B-65	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1961–2007 cumulative, type M,	
	whole-body count data	73
B-66	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1961–2007 cumulative, type M,	
	urinalysis data	73
B-67	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1961-2007 cumulative, type M,	
_	urinalysis data, whole-body count data	74
B-68	Predicted strontium bioassay results calculated using IMBA-derived strontium intake	
	rates compared with bioassay results, 50th percentile, 1955–1965, type F	74
B-69	Predicted strontium bioassay results calculated using IMBA-derived strontium intake	
	rates compared with bioassay results, 50th percentile, 1991-2006, type F	75
B-70	Predicted strontium bioassay results calculated using IMBA-derived strontium intake	
_	rates compared with bioassay results, 84th percentile, 1955–1965, type F	75
B-71	Predicted strontium bioassay results calculated using IMBA-derived strontium intake	
	rates compared with bioassay results, 84th percentile, 1991–2006, type F	75
B-72	Predicted cesium bioassay results calculated using IMBA-derived cesium intake rates	— -
B - -	compared with bioassay results, 50th percentile, type F	76
B-73	Predicted cesium bioassay results calculated using IMBA-derived cesium intake rates	
□ - 4	compared with bioassay results, 84th percentile, type F	76
B-74	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	
	compared with bioassay results, 50th percentile, type M	17

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 9 of 83				
	Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 9 of 83

B-75	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	
	compared with bioassay results, 84th percentile, type M	.77
B-76	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	
	compared with bioassay results, 50th percentile, type S	. 78
B-77	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	
	compared with bioassay results, 84th percentile, type S	. 78
B-78	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, 1972, type M	. 79
B-79	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, 1973 through 1989, type M	. 79
B-80	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, 1972, type M	. 79
B-81	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, 1973 through 1989, type M	. 80
B-82	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, all intakes periods, type M	. 80
B-83	Predicted thorium bioassay results calculated using IMBA-derived thorium intake	
	rates.compared with bioassay results, 84th percentile, all intakes periods, type M	. 80
B-84	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, 1972, type S	. 81
B-85	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, 1973 through 1989, type S	. 81
B-86	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, 1972, type S	. 82
B-87	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, 1973 through 1989, type S	. 82
B-88	Predictedthorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, all intakes periods, type S	. 82
B-89	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, all intake periods, type S	. 83

ACRONYMS AND ABBREVIATIONS

cm cpm	centimeter counts per minute
d DOE dpm DU	day U.S. Department of Energy disintegrations per minute depleted uranium
EU	enriched uranium
g GSD	gram geometric standard deviation
hr	hour
ia Id Imba	Insufficient Amount identification Integrated Modules for Bioassay Analysis
keV	kilo-electron volt
L LIP	liter Lost in Process
m MDA MFP MFPG mL mrem	meter minimum detectable activity Mixed Fission Product Mixed Fission Product - Gamma milliliter milliliter
nCi NIOSH NOCTS NT	nanocurie National Institute for Occupational Safety and Health NIOSH OCAS Claims Tracking System natural uranium
OCAS OPOS ORAU	Office of Compensation Analysis and Support (NIOSH) one person, one sample Oak Ridge Associated Universities
pCi	picocurie
QA	quality assurance
ROI	region of interest
SRS	Savannah River Site
TIB	technical information bulletin
U.S.C.	United States Code

_				
	Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 11 of 83

WBC Whole-Body Count

- μg μm
- microgram micrometer
- § section or sections

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 12 of 83

1.0 INTRODUCTION

Technical information bulletins (TIBs) are not official determinations made by the National Institute for Occupational Safety and Health (NIOSH) but are rather general working documents that provide historical background information and guidance to assist in the preparation of dose reconstructions at particular sites or categories of sites. They will be revised in the event additional relevant information is obtained about the affected site(s). TIBs may be used to assist NIOSH staff in the completion of individual dose reconstructions.

In this document the word "facility" is used as a general term for an area, building, or group of buildings that served a specific purpose at a site. It does not necessarily connote an "atomic weapons employer facility" or a "Department of Energy [DOE] facility" as defined in the Energy Employees Occupational Illness Compensation Program Act of 2000 [42 U.S.C. § 7384I(5) and (12)].

Analysis of Coworker Bioassay Data for Internal Dose Assignment (ORAUT 2005a) describes the general process used to analyze bioassay data for the assignment of doses to individuals based on coworker results. Coworker Data Exposure Profile Development (ORAUT 2004a) describes the approach and processes to develop reasonable exposure profiles based on available dosimetric information for workers at DOE sites.

Bioassay results were obtained directly from the Savannah River Site (SRS) for 1991 through 2007. For the period before 1991, SRS does not have an electronic database of bioassay results. For years before 1991, the bioassay data in the NIOSH OCAS Claims Tracking System (NOCTS) for SRS employees was used to develop a representative database of coworker bioassay data (ORAUT 2009).

A statistical analysis of the data was performed according to *Analysis of Coworker Bioassay Data for Internal Dose Assignment* (ORAUT 2005a) and its implementing procedure, *Generating Summary Statistics for Coworker Bioassay Data* (ORAUT 2006). The results were entered in the Integrated Modules for Bioassay Analysis (IMBA) Expert[™] Oak Ridge Associated Universities (ORAU)-Edition computer software to obtain intake rates for the assignment of dose distributions.

2.0 <u>PURPOSE</u>

Some employees at DOE sites were not monitored for potential intakes of radioactive material, or the records of such monitoring are incomplete or unavailable. In such cases, data from monitored coworkers can be used to assign an internal dose to address potential intakes of radioactive material. The purpose of this TIB is to provide monitored coworker information for calculating and assigning occupational internal doses to employees at SRS for whom no or insufficient monitoring records exist.

3.0 DATA OVERVIEW

This section provides information on the general selection characteristics of the data and methods of analysis. More detailed radionuclide-specific information is provided in Section 4.0.

3.1 BIOASSAY DATA SELECTION

Bioassay results were obtained directly from SRS in the form of an electronic database for 1991 through 2007. For the period before 1991, SRS does not have an electronic database of bioassay results. For years before 1991, the bioassay data in NOCTS for SRS employees were used to develop a representative database of coworker bioassay data (ORAUT 2009). In addition, neptunium and americium urinalysis bioassay data were obtained from SRS laboratory notebooks (DuPont

	Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 13 of 83
--	------------------------------	-----------------	----------------------------	---------------

1961–1969, 1963–1970, 1969, 1969–1973, 1970–1973, 1973–1978, 1973–1979, 1978–1983, 1979–1980, 1980–1981a,b, 1981–1986, 1986–1989).

3.1.1 NOCTS Urinalysis Data

NOCTS data were used for this coworker study in the absence of a database of usable data from SRS for the period before 1991 as the best available compilation of data in a usable (i.e., electronic spreadsheet or database) form. The NOCTS database was queried on May 7, 2008, to generate a list of all claimants who worked at SRS before 1991. This list amounted to 1,421 individuals. Data for six additional individuals that became available during the data entry process were added for a total of 1,427 individuals. The NOCTS identification (ID) numbers of the specific individuals are listed in Arno (2011). The *in vitro* bioassay data for these individuals were entered in spreadsheets (some already existed in this form after the completion of dose reconstructions for those individuals) and subjected to a 100% verification review by a second person.

Records with results or units of "LIP" (Lost In Process) or "IA" (Insufficient Amount) were excluded from the evaluation because those records represent instances in which samples were collected but not analyzed. Records with units of per-unit-volume were adjusted to "per-1.5L" based on an assumed 1.5 L/d of urinary excretion. Volumes greater than 1 L were assumed to represent a full day's voiding and were not adjusted. Volumes less than or equal to 1 L were normalized to 1.5 L.

3.1.2 NOCTS Whole-Body Count Data

NOCTS Whole-Body Count (WBC) data were used for ¹³⁷Cs and ²³⁷Np analyses. WBC data were used for ²³⁷Np only for the period during which urinalysis data were not available (i.e., 1970–1989). The NOCTS ID numbers of the specific individuals identified are listed in Arno (2011).

Cesium-137 Data

Cesium-137 results in nanocuries are commonly reported for WBCs in the NOCTS data. Some of the results are reported as a positive value, an uncensored value, a "<" value, or "<MDA" with a quantified count-specific minimum detectable activity (MDA) provided. Depending on the WBC reporting format, the MDA at the 95% confidence level is also available.

Neptunium-237 Data

Unlike ¹³⁷Cs, most WBC reports in NOCTS do not quantify the ²³⁷Np body burdens or report an MDA in units of activity. However, some of the reporting methods used provide sufficient information to determine or estimate the ²³⁷Np body burden. Methods were developed to estimate ²³⁷Np for three of the different reporting forms used. These methods use the fact that a region of interest (ROI) used to report activity for radionuclides other than ²³⁷Np would also be reporting activity from ²³⁷Np or its decay product, ²³³Pa. Protactinium-233, with a 27 day half-life, reaches equilibrium with Np-237 in approximately 9 months (10 half-lives) and is assumed to be in equilibrium with Np-237 for the basis of calculating chronic intakes with a minimum duration of one year.

The first form, "Whole Body Counter Data," was in use from approximately 1960 through the mid-1970s and was used with the 40-cm arc geometry (Taylor et al. 1995, p. 64). Other than ¹³⁷Cs and ⁴⁰K, the amounts of radionuclides present are not quantified in units of activity. The results are presented as net counts per minute ("net cpm"). This form reports activities for ¹³¹I based on the number of counts in the ROI from 300 to 400 keV. Protactinium-233 has several gammas that fall totally or partially in that energy range – 300 keV (6.6%), 312 keV (38.6%), 340 keV (4.5%), 375 keV (0.6%), and 399 keV (1.27%) (Kocher 1981). The 300- and 399-keV peaks would fall half out and half in of the ROI, so in effect those abundances are only half of the stated values. Thus, the total gamma abundance in the 300- to 400-keV ROI for ²³³Pa is 47.6%. It is possible to use the reported net cpm for ¹³¹I to estimate the ²³⁷Np body burden by assuming that ²³³Pa is in equilibrium with ²³⁷Np. The

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 14 of 83

conversion factor from net counts in the ¹³¹I ROI to nanocuries of ²³⁷Np is 0.243 nCi/cpm. This conversion factor was determined by adjusting the ¹³⁷Cs calibration factor of 0.136 nCi/cpm (Watts1962–1967, p. 33) for the gamma abundances of ¹³⁷Cs and ²³³Pa in their respective ROIs: (0.136)(0.85) \div 0.476. To refine the estimate, it is necessary to account for the Compton continuum contribution to the ¹³¹I ROI from the ⁴⁰K body burden. The ⁴⁰K contribution to the ¹³¹I ROI is 0.389 count per ⁴⁰K ROI net count (Watts 1962, p. 33). Thus, the ²³⁷Np body burden can be calculated as:

$$nCi^{237}Np = 0.243 \times \left[\left({}^{131}I \text{ net cpm} \right) - 0.389 \times \left({}^{40}K \text{ net cpm} \right) \right]$$

The second reporting form is an untitled form used in the mid- and late 1970s. It is distinguishable by having the date, time, and name on successive lines on the left margin at the top. This form reports counts in the 300- to 400-keV ROI but does not associate this ROI with a particular radionuclide. For each ROI, gross, background, net, "CALC," and "DIFF" values are reported. The CALC and DIFF values correct the net counts to account for Compton scatter, with the CALC value being the Compton scatter contribution and the DIFF value being the net counts minus CALC. Therefore, when using these data, there is no need to apply a ⁴⁰K Compton scatter as with the Whole-Body Counter Data form. When the 40-cm arc geometry was being used, assumed to be the period before February 1974, the ²³⁷Np body burden can be calculated as:

 $nCi^{237}Np = 0.243 \times (DIFF \text{ counts for 300- to 400-keV ROI})$

After January 1974, when the stretcher geometry was in use, the conversion factor changes (Fleming 1973–1979, p. 162) and the ²³⁷Np body burden can be calculated as:

 $nCi^{237}Np = 0.0125 \times (DIFF \text{ counts for } 300\text{- to } 400\text{-keV ROI})$

The third reporting form is the "In-Vivo Count Results" form, which was in use from the late 1970s through the late 1980s. The ROI on this form applicable to determining ²³⁷Np is the ⁵¹Cr ROI covering the energy range from 290 to 349 keV. This form also reports DIFF values. In addition to the DIFF value, it reports the MDA in units of both nanocuries and counts. Having the MDA reported in both manners permits the determination of a count-specific conversion factor from counts to nanocuries. The remaining step is the ratio of the conversion factor for ⁵¹Cr to that for ²³³Pa, which is 0.211 (based on the ratio of gamma abundances in the ⁵¹Cr ROI: 0.098 to 0.465). The 0.469 abundance is based on 100% of the 312 keV gamma at 38.6% abundance, 95% of the 340 keV gamma at 4.5% abundance, and 55% of the 300 keV gamma at 6.6% abundance. Percentages are reduced from 100% to account for the fact that a portion of the gamma peak is outside of the region of interest. Therefore, the ²³⁷Np body burden can be calculated as:

 $nCi^{237}Np = 0.211 \times ({}^{51}Cr \text{ DIFF counts}) \times ({}^{51}Cr \text{ MDA } nCi) \div ({}^{51}Cr \text{ MDA counts})$

3.1.3 SRS HPRED Database

In vitro data for 1991 through 2007 were obtained from the SRS HPRED database in the form of a text file named "NIOSH_SRS.txt." Review of the text file revealed that it was in a fixed-width format. The text file was imported into MSAccess[™] according to the convention in Table 3-1. In a few instances, these field widths varied, resulting in the first character of the "result" field at the end of the "isotope" field. The instances were manually corrected.

From these data, the following records were excluded from further analysis:

• "type" = "baseline"

- "type" = "fecal" or any variation of the word fecal
- "units" = "IA" but not "IA followup"
- "type" = "QC"

No. Field title Start Field width Field type 1 OUO 18 Text 1 2 SSN 19 10 Long integer 3 Sort date 29 11 Text 4 Sort time 40 10 Text 5 Isotope 50 10 Text Result 6 60 7 Double 11 7 67 Units Text 8 Type 78 21 Text 9 Date received 99 11 Text 10 Time received 110 10 Text Date added 120 11 11 Text 12 Time added 131 10 Text 13 Batch 141 10 Text Sample # 151 7 14 Text 15 Activity 158 10 Text Critical level 168 10 16 Text 17 Error 178 13 Text

Table 3-1. SRS HPRED data import format.

Additional evaluation of the data resulted in modification as follows:

- If the "sort date" field was blank or before January 1, 1990, the "date received" was used instead.
- If the "activity" field was blank, the "result" field was used instead. Further, if the "result" was positive (i.e., greater than zero), it was used as is; if the "result" was negative, it was assumed to be a "<" value, i.e. "-1.5" would be assumed to be "<1.5" [1].
- Values with units of "per sample" were assumed to represent 24-hour samples.
- Records with units of per-unit-volume were adjusted to "per-1.5L" based on an assumed 1.5 L/d for urinary excretion.

3.1.4 Neptunium Logbook Data

Neptunium urinalysis bioassay data were obtained from SRS laboratory notebooks (DuPont 1961– 1969, 1969) and from NIOSH Claims Tracking System (NOCTS) records for years after 1969. The laboratory notebook data were transferred to a spreadsheet and subjected to a 100% verification review by a second person. Records with results or units of LIP or IA were excluded from the evaluation because those records represent instances in which samples were collected but not analyzed. It was assumed that all records are in units of dpm/1.5L. Many records were only partially legible, but contained enough information to infer the results; in particular, data indicated as "<0.0X" or "<0.XX" was assumed to be "<0.05", a common reporting level. Similarly, results indicated as "<1" due to an illegible decimal place were changed to "<0.1," the actual reporting level for the period.

3.1.5 Americium Logbook Data

The americium data from the logbooks were transferred to a spreadsheet and subjected to a quality assurance (QA) verification in accordance with MIL-STD-105E, *Sampling Procedures and Tables for*

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 16 of 83

Inspection by Attributes (DOD 1989). A total of 315 out of 17449 records were randomly picked and reviewed for accuracy of the data transcription. The first round of verification identified generic issues, which were corrected; a second round of verification indicated an acceptable error rate. In the second round, 15 errors were identified, 7 of which were classified as critical errors (i.e., errors that would affect subsequent data analysis). Seven errors of a sample of 315 records equates to a 1% error rate in the full data set. Per MIL-STD-105E, for a lot between 10,001 and 35,000 items, fewer than 8 errors results in lot acceptance based on the statistical variability of sampling. The errors that were identified during the QA process were corrected. In addition, other errors were discovered during subsequent statistical analyses of the data, usually as a result of identification of outliers in the dataset. The most common error was omission of the decimal due to legibility issues, resulting in higher than actual bioassay results. These corrections were made and documented before further analysis.

A single americium urine sample was commonly counted multiple times, usually twice but as many as 10 times was noted. The data in the logbooks consisted of one or more count rate results for each urine sample in units of dpm per disc, depending on how many times a sample was counted (this information was not used) and count-specific results in units of net dpm/1.5 L (this information was used). Further, a reported value for each sample, also in units of dpm/1.5 L, was usually provided. The result in dpm/1.5 L for each count of a sample was generally recorded as an uncensored value (i.e., the calculated result was recorded regardless of its value). In contrast, the "reported" values were generally censored (i.e., results less than some level, typically the detection or reporting limit were reported as a "less than" result). Some dpm/1.5 L data that were less than zero were reported as zero.

Not all sample records included all this information, and in some instances the count-specific results were censored. If count-specific results were available, the valid results were averaged by the ORAU Team to determine the sample result. This value was generally uncensored. If count-specific results were not available, the reported values were used, many of which were censored. Excluded samples included those marked as LIP, those marked "DTPA" to indicate chelation, or those that lacked sufficient identifying information (e.g., sample date or worker ID number).

Three sample results were excluded as false positives because the subsequent samples had no detected activity. In addition, all results for three individuals were excluded for an entire year due to an ingestion intake, a plutonium wound intake, and an incident that resulted in the highest assigned intake of ²⁴⁴Cm in the history of SRS. These incidents and intakes were characterized by an extremely high number of bioassay results, many of which were orders of magnitude higher than the bioassay data for other individuals and were considered unrepresentative of the potential exposure to an unmonitored worker.

3.2 ANALYSIS

Bioassay data were analyzed by year or multiyear span, depending on the amount of data available for each radionuclide during a given period and the expected biokinetics of each radionuclide. A lognormal distribution was assumed. After the data were log-transformed, the 50th and 84th percentiles were determined for each period through the use of the method described in ORAUT (2005a). A large fraction of the data for every radionuclide was entered as zero bioassay results. These zeros were retained in the analysis to rank the results.

In ORAUT-OTIB-0075 (ORAUT 2009), arguments were presented to support the practice of treating a claimant dataset as a simple random sample from the population of all monitored workers. One potential problem posed by using a claimant dataset is that workers involved in incidents usually submit more samples than workers who submit only routine (non-incident-related) samples. This is problematic because a small number of workers involved in incidents can dominate the claimant

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 17 of 83

sample in a given year through the sheer number of samples submitted and because the samples in the dataset are no longer independent of each other. At SRS, the small population of workers subject to bioassay testing results in a similar problem. To compensate for the unequal number of samples submitted by workers, the "one person, one sample" (OPOS) technique is used, in which only one result is used for each person for each radionuclide for a given year. The OPOS statistic is calculated using the maximum possible mean methodology (ORAUT 2012a).

3.3 TRITIUM

Claimant tritium urine bioassay data for 1954 to 1990 were obtained from the NOCTS dataset. This dataset contained 260,607 bioassay results for samples submitted by 1,520 workers between 1954 and 1990. Tritium urine bioassay data for all workers from 1991 to 2007 were obtained from the HPRED dataset. This dataset contained 881,561 bioassay results for samples submitted by 21,320 workers between 1991 and 2007. All bioassay results are reported in units of microcuries per liter.

3.4 PLUTONIUM

3.4.1 NOCTS-Based Analysis

NOCTS data were used for 1955 through 1990. Records with an isotope type identified in the "Pu" column of Table A-1 in Attachment A were tagged as plutonium data and used for this analysis. Records reporting gross plutonium results were assumed to be in units of dpm/1.5 L if no units were provided based on an examination of contemporaneous records. Isotope-specific results without units were assumed to be in units of dpm/1.0 L for the same reason. When isotopic data were reported, only the ²³⁹Pu measurements were used and were corrected to be plutonium gross alpha equivalent assuming at 12% (fuel grade) 10-year-aged plutonium mixture. Any records with mass units or in units of nanocuries or microcuries were assumed to be fecal samples and were excluded. Records within 60 days of chelation for an individual were also excluded.

3.4.2 HPRED-Based Analysis

HPRED was used for 1991 through 2007. HPRED records with an isotope type identified in the "Pu" column of Table A-2 in Attachment A were tagged as plutonium data and used for this analysis. Only the ²³⁹Pu measurements were used. The results were converted to plutonium gross alpha data assuming a 12% (fuel grade) 10-year-aged plutonium mixture for intake modeling.

3.5 URANIUM

3.5.1 NOCTS-Based Analysis

In the NOCTS data, uranium urinalysis results are recorded in units of both mass (micrograms) and activity (disintegrations per minute). For the coworker study, the mass-based measurements were converted to equivalent activity assuming natural uranium (0.683 pCi/g) through 1967 and depleted uranium (DU; 0.372 pCi/g) thereafter and merged with the activity-based data before statistical analysis. Records with an isotope type identified in the "U (all)" column of Table A-1 in Attachment A were tagged as uranium data and used for this analysis. Assumptions used to provide missing units and volumes were based on an examination of contemporaneous records.

- Designation of missing units: If the results field was "<5", mass (µg) units assumed If the results field was "<1", activity (dpm) units assumed If the results field was not "<5" or "<1",
 - Activity (dpm) units assumed if the Isotope =

- EU (enriched uranium)
- Eu
- U234
- U235
- U238
- Otherwise mass (micrograms) units were assumed
- Assembly of mass data:

From the above selected records, records with mass units were selected, including:

- ug/L
- µg/L
- ug/1.5L
- μg/1.5L
- ?g/L
- ?g/1.5L
- Those assigned mass units in the previous step

From start of data through July 10, 1961, results were assumed to be "per liter" and converted to "per 1.5 liter" regardless of stated volume.

From July 11, 1961, through December 31, 1990, all results were assumed to be "per 1.5 liter" regardless of stated volume.

• Assembly of activity data:

Records with activity units were selected, including:

- dpm/ 1.5 L
- dpm/1.5L
- dpm/1.5l
- dpm/750ml
- dpm/L
- Records with missing units assigned activity units. (A volume of 1.5 L was assumed for these records.)

3.5.2 HPRED-Based Analysis

HPRED was used for 1991 through 2007. HPRED records with an isotope type identified in the "U" column of Table A-2 in Attachment A were tagged as uranium data and used for this analysis. For mass-based uranium measurements, the specific activity of depleted uranium (0.372 pCi/g) was assumed (ORAUT 2005b). If isotopic data were reported, the ²³⁴U, ²³⁵U, and ²³⁸U results for the same person ("SSN" field) and date (using "sort date" or "date received" per the above instructions) were summed to yield a gross uranium activity. If all three measurements were based on the "result" field rather than the "activity" field and are negative (i.e., <MDA measurements), the sum was treated as a <MDA measurement; otherwise, it was treated as a real measurement. Non-isotopic measurements [EU, (NT)/DU] were assumed to represent all uranium present.

3.6 AMERICIUM/CURIUM/CALIFORNIUM

Bioassay techniques for americium, curium, and californium varied as a function of time at SRS. Of the techniques used, the most significant feature is that differentiation between americium, curium, and californium was not possible until the use of alpha spectroscopy began in 1995. Before 1995, regardless of the notation placed in an individual's bioassay record, the analytical technique was the same. Therefore, americium, curium, and californium are considered collectively before 1995 and evaluated as americium. Beginning in 1995, each radionuclide was evaluated separately.

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 19 of 83

3.6.1 Logbook-Based Analysis

Americium logbook data were used for 1966 through 1989. Records reporting gross americium/ curium/californium results were assumed to be in units of dpm/1.5 L if no units were provided, based on an examination of contemporaneous records. Records with units of "per unit mass" were assumed to be fecal samples and excluded.

Examination of the data revealed occasions during which individuals were involved in incidents that resulted in large intakes and excretions. These data were judged to be unrepresentative of coworkers and were removed. The incidents were:

- One individual was involved in an incident on March 9, 1970. This person's bioassay data were excluded for the remainder of 1970.
- One individual was involved in an incident on March 16, 1972. This person's bioassay data were excluded for the remainder of 1972.
- One individual had a plutonium wound intake on May 8, 1986, which affected the americium bioassay results. This person's bioassay data were excluded for the remainder of 1986.
- Three individuals had false positive results, which were excluded.

3.6.2 HPRED-Based Analysis

HPRED data were used for 1991 through 2007. HPRED records with an isotope type identified in the "AmCmCf" column of Table A-2 in Attachment A were tagged as americium/curium/californium data and used for this analysis for 1991 through 1994. Beginning in 1995, each radionuclide was evaluated separately based on the isotope types identified in the "Am," "Cm," and "Cf" columns of Table A-2 and tagged as americium, curium, and californium, respectively.

3.7 NEPTUNIUM

For neptunium, the NOCTS urinalysis data contained insufficient data for a coworker model for the period before the era for which HPRED data were available. However, bioassay laboratory logbook data were located that provided results for 1961 through 1969 (DuPont 1961–1969, 1969). These data are assumed to be a complete dataset for this period.

NOCTS WBC data were used for 1970 through 1989.

For 1991 through 2007, HPRED data were used in the normal manner. HPRED records with an isotope type identified in the "Np" column of Table A-2 in Attachment A were tagged as neptunium data and used for this analysis for 1991 through 2007.

3.8 FISSION/ACTIVATION PRODUCTS

Fission and activation products are evaluated in accordance with ORAUT-OTIB-0054 (ORAUT 2007) or subsequent revisions, using either ⁹⁰Sr or ¹³⁷Cs as the indicator radionuclide. The indicator radionuclide used varies as a function of time based on the available data. For the period before 1991, urinalysis bioassay of beta-emitting radionuclides is available for 1955 through 1965 and of gamma-emitting radionuclides for 1966 through 1989, referred to as Mixed Fission Product (MFP) and Mixed Fission Product - Gamma (MFPG) data respectively. WBC results for ¹³⁷Cs are also available in this period. Starting in 1991, ⁹⁰Sr-specific urinalysis results from the HPRED data are available and are used as the preferred indicator radionuclide.

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 20 of 83

3.8.1 <u>Strontium</u>

NOCTS data were used for 1955 through 1965. Records with an isotope type identified in the "MFP" column of Table A-1 in Attachment A were tagged as MFP data and used for this analysis. If no units or sample volume were provided, results were assumed to be in units of dpm/750 mL for 1955 through 1959. For 1960 through 1965, the units were assumed to be dpm/500 mL if the result was "<30" or "<50", and dpm/1.5 L if the result was "<100," "<60," or positive.

HPRED data were used for 1991 and after. HPRED records with an isotope type identified in the "Sr" column of Table A-2 in Attachment A were tagged as strontium data and used for this analysis for 1991 through 2006.

3.8.2 <u>Cesium-137</u>

Cesium-137 is evaluated only for the period from 1961 through 1989 based on WBC data. In 1990, a limited amount of ¹³⁷Cs data was available due to a change in WBC methods, equipment, and reporting formats (use of the ABACOS system). The available data in a usable format for 1990 were inconsistent with the data for 1989 and potentially biased and were, therefore, not used. Uncensored data were used as is. Censored data or records for which an MDA but no result was provided were used as count-specific censoring levels. The MFPG data was evaluated but determined to be less sensitive than the WBC data and therefore was not used for this coworker study. Any contribution of fallout to ¹³⁷Cs whole body burdens and calculated intake rates has been ignored. After 1990, ⁹⁰Sr based on HPRED data was used to evaluate the intake of mixed fission products.

3.8.3 <u>Cobalt-60</u>

Cobalt-60 was evaluated for 1955 through 1970. During this time period, some workers handled pure or relatively pure ⁶⁰Co. The bioassay method used to monitor intakes from this work was MFP and MFPG analysis.

Cobalt-60 data are available in the form of MFP data for 1955 through 1965 and in the form of MFPG data from 1966 through 1970. Records with an isotope type identified in the "MFP" column of Table A-1 in Attachment A were tagged as MFP data and used for this analysis for 1955 through 1965. If no units or sample volume were provided, results were assumed to be in units of dpm/750 mL for 1955 through 1959. For 1960 through 1965, the units were assumed to be dpm/500 mL if the result was "<30" or "<50," and dpm/1.5 L if the result was "<100," "<60," or positive.

Records with an isotope type identified in the "MFPG" column of Table A-1 in Attachment A were tagged as MFPG data and used for this analysis for 1966 through 1970. All records were assumed to be in units of nCi/1.5 L. In addition, records with an isotope type identified in the "MFP" column of Table A-1 for 1966 through 1970 were tagged as MFPG data if the recorded units were nCi/1.5 L, or if there were no units given and the result was less than 30 and "FPIA Beta" was not recorded in the "isotope" field. All the MFPG data were divided by 2 to account for the fact that ⁶⁰Co has two strong gamma rays emitted per disintegration.

3.9 THORIUM

The separation technique used for americium, curium, and californium prior to 1990 also captured thorium (ORAUT 2012b, Butler and Hall 1970, Taylor et al 1995). Therefore, the americium, curium, and californium bioassay data discussed above in Section 3.6.1 has also been used to model thorium intakes for 1972 through 1989.

	Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 21 of 83
--	------------------------------	-----------------	----------------------------	---------------

4.0 INTAKE MODELING

This section discusses intake modeling assumptions, intake fitting, and intake materials.

4.1 ASSUMPTIONS

Each result used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. The IMBA program requires results to be in units of activity per day; therefore, all urinalysis results were normalized as needed to 24-hour samples using 1,500 mL (the volume of urine assumed by SRS to be excreted in a 24-hour period).

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5- μ m activity median aerodynamic diameter particle size distribution.

For intake modeling purposes, all uranium activity was assumed to be ²³⁴U. This assumption does not affect the fitting of the data for intake determination because all uranium isotopes have the same biokinetic behavior and the isotopes considered in this analysis all have long half-lives in relation to the assumed intake period. International Commission on Radiological Protection Publication 68 dose coefficients (also referred to as dose conversion factors) for ²³⁴U are 7% to 31% larger than the dose coefficients for ²³⁵U, ²³⁶U, and ²³⁸U (ICRP 1995). Therefore, the assumption that the intake is 100% ²³⁴U provides a result that is favorable to claimants.

4.2 BIOASSAY FITTING

IMBA was used to fit the bioassay results to a series of inhalation intakes. Data from 1953 through 2007 were fit as a series of chronic intakes. The intake assumptions were based on patterns observed in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1953 through 2007 were divided independently into multiple chronic intake periods for each radionuclide.

4.3 TRITIUM

Tritium was evaluated differently that the other radionuclides in this coworker study. The OPOS methodology is not used. For tritium, the protocol in *Technical Information Bulletin: Tritium Calculated and Missed Dose Estimates* (ORAUT 2004b) was used to calculate the dose for each individual with the following rules concerning the elapsed time between consecutive samples:

- If there was a single urine sample in a calendar year and it was a nondetect, that result was excluded from the analysis because this was assumed to not be part of routine monitoring.
- Samples on the same date were ordered from lowest to highest.
- All dose is assigned as if it occurred on the bioassay date.
- Type 1 calculations were performed for samples separated by 40 or fewer days.
- Type 3 calculations were performed if there were no other samples within the following 90 days after a sample.

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 22 of 83
------------------------------	-----------------	----------------------------	---------------

• Type 2 calculations were performed in all other situations.

The doses for a period were then plotted on a lognormal probability plot and the typical parameters [geometric mean, geometric standard deviation (GSD), and R^2] determined from a linear regression. Individuals that received less than 0.001 rem at three significant digits (i.e. less than 0.0005 rem), were excluded from the statistical analysis. The plotting positions were calculated with i/n - 1/(2n) convention specified in ORAUT-PROC-0095 (ORAUT 2006). Doses for 1954 to 1990 were calculated from the NOCTS dataset, which is considered a random sample of the complete dataset (ORAUT 2009). Doses for 1991 to 2001 were calculated from the HPRED dataset, which is considered a complete dataset.

4.4 PLUTONIUM

Because the plutonium isotopes at SRS have very long radiological half-lives, and because the material is retained in the body for long periods, excretion results are not independent. For example, an intake in the 1950s could contribute to urinary excretion in the 1980s and later. To avoid potential underestimation of intakes for people who worked at SRS for relatively short periods, each chronic intake was fit independently using only the bioassay results from the single intake period for type M and S solubility. This method results in an overestimate of intakes for exposures that extended through multiple assumed intake periods. Only the results in the intake period were selected for use in the fitting of each period. Excluded results are shown in light gray or red in the figures in Attachment B; included results are shown in dark gray or blue. The results of the plutonium statistical analysis used to calculate the intakes are provided in Table A-3.

Plutonium Type M: The solid lines in Figures B-1 to B-4 in Attachment B show the individual fits to the 50th- and 84th-percentile excretion rates for type M materials. Figures B-5 and B-6 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type M intakes. Table B-1 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the plutonium urinalysis.

Plutonium Type S: The solid lines in Figures B-7 to B-10 in Attachment B show the individual fits to the 50th- and 84th-percentile excretion rates for type S materials. The same intake periods were applied for both percentiles because the values followed a similar pattern. Figures B-11 and B-12 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type S intakes. Table B-2 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the plutonium urinalysis.

4.5 URANIUM

Because the uranium isotopes at SRS have very long radiological half-lives, and because the material is retained in the body for long periods for type S solubility, excretion results are not independent. For example, an intake in the 1950s could contribute to urinary excretion in the 1980s and later. To avoid potential underestimation of intakes for people who worked at SRS for relatively short periods, each chronic intake was fit independently using only the bioassay results from the single intake period for type S solubility. This method results in an overestimate of intakes for exposures that extended through multiple assumed intake periods. Only the results in the intake period were selected for use in the fitting of each period. Excluded results are shown in light gray or red in the figures in Attachment B; included results are shown in dark gray or blue. For type M and F solubility, this approach was not used.

The 50th-percentile result for 1989 was excluded from the intake modeling due to the abnormally low result for that year in comparison with contemporaneous years. This action results in a slight increase

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 23 of 83

in the calculated intake rate. The results of the uranium statistical analysis used to calculate the intakes are provided in Table A-4.

Uranium Type F: The solid lines in Figures B-13 and B-14 in Attachment B show the fit to the 50thand 84th-percentile excretion rates, respectively, for type F materials. Table B-3 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the uranium urinalysis.

Uranium Type M: The solid lines in Figures B-15 and B-16 in Attachment B show the fit to the 50thand 84th-percentile excretion rates, respectively, for type M materials. Table B-4 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the uranium urinalysis.

Uranium Type S: The solid lines in Figures B-17 to B-32 in Attachment B show the individual fits to the 50th- and 84th-percentile excretion rates for type S materials. The same intake periods were applied for both percentiles because the values followed a similar pattern. Figures B-33 and B-34 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type S intakes. Table B-5 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the uranium urinalysis.

4.6 AMERICIUM/CURIUM/CALIFORNIUM

As for plutonium, americium intake periods were independently fit using only the bioassay results from the single intake period. This method results in an overestimate of intakes for exposures that extended through multiple assumed intake periods. Only the results in the intake period were selected for use in the fitting of each period. Excluded results are shown in light gray or red in the figures in Attachment B; included results are shown in dark gray or blue. For curium and californium, only a single intake period was used. The results of the americium statistical analysis used to calculate the intakes are provided in Table A-5, curium in Table A-6, and californium in Table A-7.

Americium Type M: The solid lines in Figures B-35 to B-42 in Attachment B show the individual fits to the 50th- and 84th-percentile excretion rates for type M materials. Figures B-43 and B-44 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type M intakes. Table B-6 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the americium urinalysis.

Curium Type M: The solid lines in Figures B-45 and B-46 in Attachment B show the fit to the 50thand 84th-percentile excretion rates for type M materials, respectively. Table B-7 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the curium urinalysis.

Californium Type M: The solid lines in Figures B-47 and B-48 in Attachment B show the fit to the 50th- and 84th-percentile excretion rates, respectively, for type M materials. Table B-8 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the californium urinalysis.

4.7 NEPTUNIUM

As for plutonium, neptunium intake periods were independently fit using only the bioassay results from the single intake period. This method results in an overestimate of intakes for exposures that extended through multiple assumed intake periods. Only the results in the intake period were selected for use in the fitting of each period. Excluded results are shown in light gray or red in the figures in Attachment B; included results are shown in dark gray or blue. The results of the neptunium statistical analysis used to calculate the intakes are provided in Tables A-8 and A-9. The intake rate for 1989 was extrapolated to 1990 as a measure that is favorable to claimants.

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 24 of 83

The solid lines in Figures B-49 to B-63 in Attachment B show the individual fits to the 50th- and 84thpercentile excretion rates for 1961 through 1989 and the combined fit for 1991 to 2007. The solid lines in Figures B-64 to B-67 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type M intakes. Table B-9 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the neptunium urinalysis for all years.

4.8 STRONTIUM

Strontium data, in the form of MFP data, are available for 1955 through 1965 and as ⁹⁰Sr data for 1991 through 2007. No strontium data are available for 1966 through 1990. These two periods were fit independently. The results of the strontium statistical analysis used to calculate the intakes are provided in Table A-10. The solid lines in Figures B-68 through B-71 in Attachment B show the individual fits to the 50th- and 84th-percentile excretion rates, respectively, for type F strontium. Table B-10 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the strontium urinalysis. Because it was inconsistent with the contemporaneous results, 1996 was excluded from the fit. This results in a higher intake being assigned for 1996, which is favorable to the claimant.

4.9 CESIUM-137

The solid lines in Figures B-72 and B-73 in Attachment B show the fits to the 50th- and 84th-percentile whole-body burdens respectively for type F materials. Table B-11 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the ¹³⁷Cs whole-body counts. The results of the cesium statistical analysis used to calculate the intakes are provided in Table A-11.

4.10 COBALT-60

The solid lines in Figures B-74 and B-75 in Attachment B show the fits to the 50th- and 84th-percentile excretion rates respectively for type M materials. Table B-12 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the ⁶⁰Co type M excretion rates. The solid lines in Figures B-76 and B-77 in Attachment B show the fits to the 50th- and 84th-percentile excretion rates respectively for type S materials. Table B-13 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the ⁶⁰Co type S excretion rates. The results of the cobalt statistical analysis used to calculate the intakes are provided in Table A-12.

4.11 THORIUM

Thorium intake periods were fit in the same manner as americium with the exception that both solubility type M and S were evaluated. Intake periods were independently fit using only the bioassay results from the single intake period. This method results in an overestimate of intakes for exposures that extended through multiple assumed intake periods. Only the results in the intake period were selected for use in the fitting of each period. Excluded results are shown in light gray or red in the figures in Attachment B; included results are shown in dark gray or blue. The results of the americium statistical analysis used to calculate the thorium intakes are provided in Table A-5.

Thorium Type M: The solid lines in Figures B-78 to B-81 in Attachment B show the individual fits to the 50th- and 84th-percentile excretion rates for type M materials. Figures B-82 and B-83 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type M intakes. Table B-14 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the thorium urinalysis.

Thorium Type S: The solid lines in Figures B-84 to B-87 in Attachment B show the fit to the 50thand 84th-percentile excretion rates for type S materials, respectively. Figures B-88 and B-89 show

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 25 of 83
------------------------------	-----------------	----------------------------	---------------

the 50th- and 84th-percentile predicted excretion rates, respectively, from all type S intakes. Table B-15 lists the 50th- and 84th-percentile intake rates along with the associated GSDs determined from the thorium urinalysis.

5.0 ASSIGNMENT OF INTAKES AND DOSES

This section describes the derived intake rates and provides guidance for assigning doses. For the calculation of doses to individuals from bioassay data, a minimum GSD of 3 has been used to account for biological variation and uncertainty in the models. It was considered inappropriate to assign a value less than 3 for the coworker data. Therefore, a GSD of at least 3 was assigned for each intake period. The GSDs for different intake periods have been conservatively adjusted for consistency between intake periods for calculational efficiency. The 95th-percentile values are based on the adjusted GSD for the intake period. The original GSDs are provided in the tables for each element in Attachment B. For input into IREP, use the adjusted GSDs provided in the tables in Section 5 when assigning the 50th percentile intakes. For cases where there is justification that the individual may have had larger intakes than the 50th-percentile intake rates, dose reconstructors should use the 95th-percentile intake rates input into IREP as a constant.

The following subsections list the intake rates that should be used for each radionuclide and the period of applicability of each intake rate except for tritium. For tritium, the actual dose that should be used is provided.

Coworker intakes of fission and activation products are based on application of ORAUT-OTIB-0054 (ORAUT 2007) using ⁹⁰Sr or ¹³⁷Cs as indicator radionuclides. The ⁹⁰Sr data should be used for years in which it is available (1955 through 1965 and 1991 through 2006) and the ¹³⁷Cs data used for the remainder of the years.

5.1 TRITIUM

Table 5-1 lists the tritium doses and GSDs to be used for each year of potential tritium exposure.

			95th-percentile		50th-percentile		95th-percentile
Year	dose	GSD	dose	Year	dose	GSD	dose
1954	0.008	3.00	0.047	1981	0.017	3.00	0.105
1955	0.010	3.00	0.064	1982	0.015	3.00	0.092
1956	0.014	3.00	0.085	1983	0.012	3.00	0.076
1957	0.019	3.00	0.115	1984	0.013	3.00	0.081
1958	0.024	3.00	0.146	1985	0.014	3.00	0.083
1959	0.025	3.41	0.187	1986	0.007	3.26	0.051
1960	0.036	3.45	0.275	1987	0.007	3.35	0.050
1961	0.034	3.52	0.273	1988	0.006	3.12	0.041
1962	0.036	3.17	0.238	1989	0.005	3.00	0.029
1963	0.034	3.00	0.205	1990	0.005	3.00	0.029
1964	0.046	3.33	0.333	1991	0.003	3.00	0.019
1965	0.041	3.51	0.326	1992	0.003	3.00	0.015
1966	0.031	3.38	0.227	1993	0.002	3.00	0.014
1967	0.032	3.00	0.197	1994	0.003	3.00	0.017
1968	0.033	3.24	0.229	1995	0.003	3.00	0.016
1969	0.035	3.02	0.215	1996	0.003	3.00	0.017
1970	0.028	3.23	0.195	1997	0.003	3.00	0.018
1971	0.034	3.00	0.205	1998	0.003	3.00	0.017
1972	0.032	3.38	0.234	1999	0.003	3.00	0.016
1973	0.028	3.40	0.209	2000	0.003	3.00	0.017

Table 5-1. Tritium annual doses (rem) and GSDs.

	Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 26 of 83
--	------------------------------	-----------------	----------------------------	---------------

Year	50th-percentile dose	GSD	95th-percentile dose	Year	50th-percentile dose	GSD	95th-percentile dose
1974	0.031	3.30	0.221	2001	0.002	3.00	0.015
1975	0.033	3.13	0.215	2002	0.003	3.00	0.016
1976	0.031	3.17	0.207	2003	0.003	3.00	0.016
1977	0.032	3.06	0.205	2004	0.002	3.00	0.015
1978	0.031	3.00	0.192	2005	0.002	3.00	0.012
1979	0.030	3.00	0.184	2006	0.001	3.00	0.008
1980	0.028	3.00	0.172	2007	0.002	3.00	0.010

5.2 PLUTONIUM

Tables 5-2 and 5-3 list the plutonium gross alpha intakes and associated GSDs to be used for each year of potential plutonium exposure.

Table 5-2.	Type M plu	tonium gr	ross alpha	a intak	e rates (dpm/d).
-						

Start	End	50th percentile	GSD	95th percentile
1/1/1955	12/31/1990	1.77	3.00	10.8
1/1/1991	12/31/2007	0.930	3.00	5.67

Table 5-3. Type S plutonium gross alpha intake rates (dpm/d).

Start	End	50th percentile	GSD	95th percentile
1/1/1955	12/31/1990	20.69	3.00	126
1/1/1991	12/31/2007	13.6	3.00	82.9

5.3 URANIUM

Tables 5-4 to 5-6 list the uranium intakes and associated GSDs to be used for each year of potential uranium exposure.

Start End		50th percentile	GSD	95th percentile
1/1/1953	12/31/1953	15.15	3.00	92.3
1/1/1954	12/31/1954	6.762	3.00	41.2
1/1/1955	12/31/1956	3.489	3.00	21.3
1/1/1957	12/31/1967	1.407	3.35	10.3
1/1/1968	12/31/1980	0.686	4.27	7.48
1/1/1981	12/31/1990	1.559	3.00	9.5
1/1/1991	12/31/2000	0.8747	3.00	5.33
1/12001	12/31/2007	0.1384	3.00	0.843

Table 5-4. Type F uranium intake rates (dpm/d).

Table 5-5. Type M uranium intake rates (dpm/d).

Start End		50th percentile	GSD	95th percentile
1/1/1953	12/31/1953	73.3	3.00	447
1/1/1954	12/31/1954	20.78	3.00	127
1/1/1955	12/31/1956	13.08	3.00	79.7
1/1/1957	12/31/1967	5.623	3.40	42.2
1/1/1968	12/31/1980	2.731	4.34	30.5
1/1/1981	12/31/1990	6.473	3.00	39.4
1/1/1991	12/31/2000	3.575	3.00	21.8
1/1/2001	12/31/2007	0.4823	3.00	2.94

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 27 of 83

Start End 50th p		50th percentile	GSD	95th percentile			
1/1/1953	12/31/1953	2,293	3.00	13,972			
1/1/1954	12/31/1954	1,050	3.00	6,398			
1/1/1955	12/31/1956	407.8	3.00	2,485			
1/1/1957	12/31/1967	89.4	3.25	623			
1/1/1968	12/31/1980	41.24	4.24	443			
1/1/1981	12/31/1990	107.1	3.00	653			
1/1/1991	12/31/2000	58.73	3.00	358			
1/1/2001	12/31/2007	10.89	3.00	66.4			

Table 5-6. Type S uranium intake rates (dpm/d).

5.4 AMERICIUM/CURIUM/CALIFORNIUM

Tables 5-7 to 5-9 list the americium, curium, and californium intakes and associated GSDs to be used for each year of potential americium, curium, and californium exposure.

Table 5-7.	Type M	americium	intake	rates ((dpm/d)).
------------	--------	-----------	--------	---------	---------	----

Start	End	50th percentile	GSD	95th percentile
1/1/1963	12/31/1967	70.7	3.00	431
1/1/1968	12/31/1972	18.9	3.00	115
1/1/1973	12/31/1994	0.826	6.23	16.7
1/1/1995	12/31/2007	0.599	3.00	3.65

Table 5-8. Type M curium intake rates (dpm/d).

Start	End	50th percentile	GSD	95th percentile
1/1/1995	12/31/2007	0.291	3.00	1.77

Table 5-9. Type M californium intake rates (dpm/d).

Start	End	50th percentile	GSD	95th percentile
1/1/1995	12/31/2007	1.55	3.00	9.45

5.5 NEPTUNIUM

Table 5-10 lists the neptunium intakes and associated GSDs to be used for each year of potential neptunium exposure.

Table 5-10. Type M neptunium Intake rates (dpm/d).					
Start	End	50th percentile	GSD	95th percentile	
1/1/1961	12/31/1963	0.528	3.02	3.24	
1/1/1964	12/31/1964	0.528	12.37	33.0	
1/1/1965	12/31/1965	4.84	3.00	29.5	
1/1/1966	12/31/1967	4.84	3.08	30.9	
1/1/1968	12/31/1969	1.79	3.21	12.2	
1/1/1970	12/31/1974	93.5	3.00	570	
1/1/1975	12/31/1979	38.7	4.25	418	
1/1/1980	12/31/1990	2.90	5.46	47.2	
1/1/1991	12/31/2007	0.336	3.00	2.05	

Table 5-10. Type M neptunium intake rates (dpm/d).

5.6 FISSION/ACTIVATION PRODUCTS

Fission and activation products are evaluated in accordance with ORAUT-OTIB-0054 (ORAUT 2007), using either ⁹⁰Sr or ¹³⁷Cs as the indicator radionuclide. The indicator radionuclide used varies as a function of time based on the available data. Strontium should be used for 1955 through 1965, ¹³⁷Cs for 1966 through 1989, and strontium again for 1991 through 2007. Cobalt-60 intake rates are also

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 2	Document No. ORAUT-OTIB-0081	013 Page 28 of 83
--	------------------------------	-------------------

provided for workers potentially exposed to purified ⁶⁰Co (not as a part of a fission/activation product mixture).

5.6.1 <u>Strontium</u>

Table 5-11 lists the strontium intakes and associated GSDs to be used for each year of potential strontium exposure. For application of ORAUT-OTIB-0054 (ORAUT 2007), the gross beta data (1955 through 1965) should be treated as chemically processed beta samples and the ⁹⁰Sr data should be treated as strontium-specific data.

Start	End	50th percentile	GSD	95th percentile		
	Gross beta data					
1/1/1955	12/31/1962	58.93	3.00	359		
1/1/1963	12/31/1964	168	3.00	1,024		
1/1/1965	12/31/1965	349.9	3.00	2,132		
Strontium-90 data						
1/1/1991	12/31/1993	0.0393	3.00	0.239		
1/1/1994	12/31/1998	1.98	3.00	12.07		
1/1/1999	12/31/2001	0.177	8.79	6.31		
1/1/2002	12/312006	0.517	4.72	6.64		

Table 5-11. Type F strontium intake rates (dpm/d).

5.6.2 <u>Cesium-137</u>

Table 5-12 lists the ¹³⁷Cs intakes and associated GSDs to be used for each year of potential ¹³⁷Cs exposure. The intake rate calculated for 1979 through 1989 has been extended to include 1990 as a measure that is favorable to claimants because no data is available for 1990. Only the years for which ¹³⁷Cs should be used as the indicator radionuclide are included in Table 5-12.

	Table 5-12. Type F CS Intake fates (pCl/d).						
Start	End	50th percentile	GSD	95th percentile			
1/1/1966	12/31/1967	224.1	3.00	1366			
1/1/1968	12/31/1971	80.89	3.00	493			
1/1/1972	12/31/1978	30.76	3.00	187			
1/1/1979	12/31/1990	7.979	3.68	68.1			

Table 5-12. Type F ¹³⁷Cs intake rates (pCi/d).

5.6.3 <u>Cobalt-60</u>

Tables 5-13 and 5-14 lists the ⁶⁰Co intakes and associated GSDs to be used for each year of potential ⁶⁰Co exposure.

Start	End	50th percentile	GSD	95th percentile	
1/1/1955	12/31/1962	169.4	3.00	1,032	
1/1/1963	12/31/1964	499.7	3.00	3,045	
1/1/1965	12/31/1965	1,050	3.00	6,398	
1/1/1966	12/31/1966	4,743	3.00	28,901	
1/1/1967	12/31/1968	13,290	3.00	80,982	
1/1/1969	12/31/1970	3,189	3.00	19,432	

Table 5-13. Type M⁶⁰Co intake rates (pCi/d).

Document No. ORAUT-OTIB-0081 Revision No. 01 Effective Date: 04/01/2013 Page 29 of 83

Start	End	50th percentile	GSD	95th percentile
1/1/1955	12/31/1962	667	3.00	4,064
1/1/1963	12/31/1964	2,004	3.00	12,211
1/1/1965	12/31/1965	4,221	3.00	25,721
1/1/1966	12/31/1966	18,150	3.00	110,596
1/1/1967	12/31/1968	53,580	3.00	326,488
1/1/1969	12/31/1970	11,680	3.00	71,172

Table 5-14. Type S ⁶⁰Co intake rates (pCi/d).

5.7 THORIUM

Tables 5-15 and 5-16 list the ²³²Th intake rates and associated GSDs to be used for each year of potential thorium exposure. Include intakes of ²²⁸Th and ²²⁸Ra with activities equal to the ²³²Th intake rate.

L

 Table 5-15.
 Type M ²³²Th intake rates (dpm/d).

Start	End	50th percentile	GSD	95th percentile
1/1/1972	12/31/1972	15.31	3.34	111.4
1/1/1973	12/31/1989	1.149	8.49	38.8

Table 5-16. Type S ²³²Th intake rates (dpm/d).

10010 0 10		III IIIdatto Tatoo (
Start	End	50th percentile	GSD	95th percentile
1/1/1972	12/31/1972	725.5	3.34	5,281
1/1/1973	12/31/1989	15.90	8.41	527.9

6.0 ATTRIBUTIONS AND ANNOTATIONS

Where appropriate in this document, bracketed callouts have been inserted to indicate information, conclusions, and recommendations provided to assist in the process of worker dose reconstruction. These callouts are listed here in the Attributions and Annotations section, with information to identify the source and justification for each associated item. Conventional References, which are provided in the next section of this document, link data, quotations, and other information to documents available for review on the Project's Site Research Database (SRDB).

Tom LaBone served as the initial Subject Expert for this document. Mr. LaBone was previously employed at SRS and his work involved management, direction or implementation of radiation protection and/or health physics program policies, procedures or practices related to atomic weapons activities at the site. Preparation of this document has been overseen by a Document Owner who is fully responsible for the content, including all findings and conclusions. In all cases where such information or prior studies or writings are included or relied upon by Mr. LaBone, those materials are fully attributed to the source. Mr. LaBone's Disclosure Statement is available at <u>www.oraucoc.org</u>.

[1] Arno, Matthew G. Foxfire Scientific, Inc. Principal Health Physicist. January 2009. This is based on communications with Tom LaBone indicating "<" values were recorded as negative results in the HPRED database.

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 30 of 83
------------------------------	-----------------	----------------------------	---------------

REFERENCES

- Arno, M., 2011, "NOCTS ID numbers used in the SRS Internal Coworker Study." Oak Ridge Associated Universities, Oak Ridge, Tennessee, February 24. [SRDB Ref ID: 92815]
- Butler, F.E., Hall, R.M., 1970, Determination of Actinides in Biological Samples with Bidentate Organophosphorus Extractant, Analytical Chemistry, Vol. 42 No. 9, 1073-1076, August. [SRDB Ref ID: 119808]
- DOD (U.S. Department of Defense), 1989, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, Washington, D.C., May 10. [SRDB Ref ID: 24964]
- DuPont (E. I. du Pont de Nemours and Company), 1961-1969, Special Project Log Records 2-16-1961 to 10-13-1969, Savannah River Laboratory, Aiken, South Carolina. [SRDB Ref ID: 51953]
- DuPont (E. I. du Pont de Nemours and Company), 1963–1970, *Am., Cm Record Book, 5-29-1963 thru 5-26-1970*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 52008]
- DuPont (E. I. du Pont de Nemours and Company), 1969, *Pu & Np Record Book*, Savannah River Laboratory, Aiken, South Carolina, April 8. [SRDB Ref ID: 51973]
- DuPont (E. I. du Pont de Nemours and Company), 1969–1973, *Pu-AmCm Record Book, 5-14-1969 thru 10-19-1973*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 53271]
- DuPont (E. I. du Pont de Nemours and Company), 1970–1973, *Am., Cm Record Book, 5-27-1970 thru 2-9-1973*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 52006]
- DuPont (E. I. du Pont de Nemours and Company), 1973–1978, *Am., Cm Record Book, 2-10-1973 thru 4-30-1978*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 52010]
- DuPont (E. I. du Pont de Nemours and Company), 1973–1979, *Pu-Am Record Book, 10-22-1973 thru 2-1-1979*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 51970]
- DuPont (E. I. du Pont de Nemours and Company), 1978–1983, *Am., Cm Record Book, 5-1-1978 thru 11-29-1983*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 52019]
- DuPont (E. I. du Pont de Nemours and Company), 1979–1980, *Pu-Am Record Book, 2-2-1979 thru 7-7-1980*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 52018]
- DuPont (E. I. du Pont de Nemours and Company), 1980–1981a, *Am-Cm #5 Record Book, 8-12-1980 thru 6-9-1981*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 52012]
- DuPont (E. I. du Pont de Nemours and Company), 1980–1981b, *PU-Am #3 Record Book, 8-3-80 thru 8-22-81*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 52015]
- DuPont (E. I. du Pont de Nemours and Company), 1981–1986, *Pu-Am Record Book, 10-23-1981 thru 6-9-1986*, Savannah River Plant, Aiken South Carolina. [SRDB Ref ID: 53283]
- DuPont (E. I. du Pont de Nemours and Company), 1986–1989, *Pu-Am Record Book, 6-25-1986 thru 8-9-1989*, Savannah River Site, Aiken South Carolina. [SRDB Ref ID: 52022]
- Fleming, R. R., 1973-1979, "R. R. Fleming Lab Notebook," DPSTN-2011, E. I. Du Pont de Nemours and Company, Savannah River Laboratory, Aiken, South Carolina. [SRDB Ref ID: 61649]

Document No. ORAUT-OTIB-0081	Revision No. 01	Effective Date: 04/01/2013	Page 31 of 83

- ICRP (International Commission on Radiological Protection), 1995, *Dose Coefficients for Intakes of Radionuclides by Workers*, Publication 68, Pergamon Press, Oxford, England.
- Kocher, D. C., 1981, Radioactive Decay Data Tables: A Handbook of Decay Data for Application to Radiation Dosimetry and Radiological Assessments, DOE/TIC-11026, U.S. Department of Energy, Office of Scientific and Technical Information, Washington, D.C. [SRDB Ref ID: 32563]
- ORAUT (Oak Ridge Associated Universities Team), 2004a, *Coworker Data Exposure Profile Development*, ORAUT-PLAN-0014, Rev. 00, Oak Ridge, Tennessee, November 24.
- ORAUT (Oak Ridge Associated Universities Team), 2004b, Technical Information Bulletin: *Tritium Calculated and Missed Dose Estimates*, ORAUT-OTIB-0011, Rev. 00, Oak Ridge, Tennessee, June 29.
- ORAUT (Oak Ridge Associated Universities Team), 2005a, *Analysis of Coworker Bioassay Data for* Internal Dose Assignment, ORAUT-OTIB-0019, Rev. 01, Oak Ridge, Tennessee, October 7.
- ORAUT (Oak Ridge Associated Universities Team), 2005b, Savannah River Site, ORAUT-TKBS-0003, Rev. 03, Oak Ridge, Tennessee, April 5.
- ORAUT (Oak Ridge Associated Universities Team), 2006, *Generating Summary Statistics for Coworker Bioassay Data*, ORAUT-PROC-0095, Rev. 00, Oak Ridge, Tennessee, June 5.
- ORAUT (Oak Ridge Associated Universities Team), 2007, *Fission and Activation Product Assignment* for Internal Dose-Related Gross Beta and Gross Gamma Analyses, ORAUT-OTIB-0054, Rev. 00 PC-1, Oak Ridge, Tennessee, November 19.
- ORAUT (Oak Ridge Associated Universities Team), 2009, Use of Claimant Datasets for Coworker Modeling, ORAUT-OTIB-0075, Rev 00, Oak Ridge, Tennessee, May 25.
- ORAUT (Oak Ridge Associated Universities Team), 2012a, *Analysis of Stratified Coworker Datasets*, ORAUT-RPRT-0053, Rev. 01, Oak Ridge, Tennessee, July 16.
- ORAUT (Oak Ridge Associated Universities Team), 2012b, SEC Petition Evaluation Report Petition SEC-00103 Addendum #3, Oak Ridge, Tennessee, November 20.
- Taylor, G. A., K. W. Crase, T. R. La Bone, W. H. Wilkie, 1995. A History of Personnel Radiation Dosimetry at the Savannah River Site, WSRC-RP-95-234, Westinghouse Savannah River Company, Aiken, South Carolina, May. [SRDB Ref ID: 10931]
- Watts, J. R., 1962-1967, "J. R. Watts Lab Notebook," E. I. Du Pont de Nemours and Company, Savannah River Laboratory, Aiken, South Carolina. [SRDB Ref ID: 61711]

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 1 of 13

LIST OF TABLES

<u>TABLE</u>

<u>TITLE</u>

PAGE

A-1	NOCTS radionuclide type matrix	32
A-2	HPRED radionuclide type matrix	
A-3	50th- and 84th-percentile urinary excretion rates of plutonium gross alpha, 1955 to	
	2007	37
A-4	50th- and 84th-percentile urinary excretion rates of uranium, 1953 to 2007	38
A-5	50th- and 84th-percentile urinary excretion rates of americium, 1963 to 2007	40
A-6	50th- and 84th-percentile urinary excretion rates of curium, 1995 to 2007	41
A-7	50th- and 84th-percentile urinary excretion rates of californium, 1995 to 2007	41
A-8	50th- and 84th-percentile urinary excretion rates of neptunium, 1961 to 1969 and 1991	
	to 2007	42
A-9	50th- and 84th-percentile whole body burdens of neptunium, 1971 to 1989	42
A-10	50th- and 84th-percentile urinary excretion rates of strontium, 1955 to 1965 and 1991	
	to 2006	43
A-11	50th- and 84th-percentile whole body burdens of cesium, 1970 to 1989	44
A-12	50th- and 84th-percentile urinary excretion rates of ⁶⁰ Co, 1955 to 1970	44

Table A-1. NOCTS radionuclide type matrix.^a

No.	Nuclide	U (all)	Pu	Sr	Np	MFP
1	FP					Х
2	Pu-238/239		Х			
3	Sr90			Х		
4	Pu		Х			
5	Pu238					
6	Pu239		Х			
7	U	Х				
8	FPIA					Х
9	IA					
10	IA beta					Х
11	IA gamma					
12	Pu-239		Х			
13	Pu 238					
14	Pu-238					
15	EU	Х				
16	Pu238/239		Х			
17	Am-Cm					
18	Am					
19	SP				Х	
20	FP gamma					
21	Pu 239		Х			
22	Eu	Х				
23	AmCm					
24	Sr-90			Х		
25	AmCmCf					
26	UR	Х				
27	Ur	Х				
28	Sp				Х	
29	Pu-238/Pu-239		Х			

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 2 of 13

No.	Nuclide	U (all)	Pu	Sr	Np	MFP
30	Pu238-239	, í	Х			
31	Am					
32	LMF	Х				
33	FP					Х
34	F					
35						
36	Cf-252					
37	Am-241					
38	Cm-244					
39	U-234	Х				
40	U-235	X				
41	U-238	X				
42	Np-237	~			Х	
43	239		Х			
44	238		Λ			
45	Np				Х	
40	Po				~	
40	Pu-237					
48	Pu238/Pu239		Х			
40	Th		^			
49 50	P					
50	TH					
52						
	Cr					
53	Fe					
54	IP				V	
55	NP		V		Х	
56	Pu	V	Х			
57	ENU	Х	V			
58	Pu-241	X	Х			
59	EnU	Х				
60	M					X
61	FPIA(PHA)					Х
62	Sr			Х		
63	Pu		Х			
64	AC					
65	Cm244					
66	E				ļ	ļ
67	Thorium					
68	Pm147					
69	Pu239		Х			
70	Pu238					
71	Uranium	Х				
72	FP					Х
73	NT/ D U	Х				
74	PU		Х			
75	PP					
76	Pu 238/239		Х			
77	FPIA					Х
78	Pu 238/Pu 239		Х			

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 3 of 13

No.	Nuclide	U (all)	Pu	Sr	Np	MFP
79	Pu238/Pu-239		Х			
80	FP(IA)					Х
81	CM244					
82	PU238					
83	Sr 90			Х		
84	FP-I					Х
85	PU 239		Х			
86	PU 238					
87	FP-IA					Х
88	PU		Х			
89	AM					
90	AM-CM					
91	FP (IA)					Х
92	CM					
93	Pu 239/239		Х			
94	PU238/239		X			
95	Fp				1	Х
96	PU239	1	Х			
97	Pu/Am		X			
98	Am 241		~			
99	AMCM					
100	AM					
101	H3					
102	D2O					
103	RU	Х				
104	Pu-Am-Cm	~	Х			
105	U 234	Х	~			
106	U 235	X				
107	U 238	X				
108	IA-b	~				Х
109	IA-g					
110	A					
111	PU 238/239		Х			
112	AU	Х	~			
113	FP (Np)	~				
114	AM CM	1				1
115	FP/Pu		Х			1
116	PU238		~			1
117	FU	Х			1	1
118	bg					Х
119	SR90	+ +		Х	1	
120	Pu241	1				1
121	Cf	1				1
122	Pu-239/240	+ +	Х		1	1
123	UO3	Х	~			1
124	PU239/AM		Х		1	1
125	FP & I131	+ +	~		1	Х
126	FP-b	+ +			1	X
127	FP-g	+			<u> </u>	

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 4 of 13

No. 128 129 130 131 132 133 134 135 136	Nuclide Pb IA Am241 NT/D U Unat	U (all)	Pu	Sr	Np	MFP
129 130 131 132 133 134 135	IA Am241 NT/D U					
130 131 132 133 134 135	Am241 NT/D U					1
131 132 133 134 135	NT/D U					1
132 133 134 135		Х				
133 134 135		X				
134 135	Cm-Am					
135	FPIA BETA					Х
	AMCM					<u> </u>
	Am Cm					1
137	PU vomitus					1
138	PU241					
139	NT/DU	Х				
140	U234	X				
141	U235	X X X				
142	U238	X				-
143	Hg	~				-
144	D20					+
145	I-131					Х
146	PU-238/239		Х			
147	PU-238		Λ			+
148	PU-239		Х			+
149	Lead		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
150	Cm242					-
151	AM-241					-
152	Pu FP		Х			-
153	UF	Х	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
154	Pu240	~	Х			
155	Pu242		X			
156	Pu243		X			
157	Pu244		X			
158	Pu245		X			
159	Pu246		X			
160	Pu247		X			
161	Pu248		X			
162	Pu249		X			
163	Pu251		X			
164	Pu252		X			
165	Pu250	1 1	X			1
166	Cf252	1 1				1
167	Merc	1 1				1
168	Np237	1 1			Х	1
169	lodine	1 1				1
170	IA	1 1				Х
171	g	1 1				
172	9 Pu238 & 239	1 1	Х			1
173	FL	1 1				1
174	SR	+ +		Х		1
175	beta-gamma	+ +				Х
176	alpha	+ +				

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 5 of 13

No.	Nuclide	U (all)	Pu	Sr	Np	MFP
177	IAFP				•	Х
178	Pu238, 239		Х			
179	NT/ D U	Х				
180	PU238/PU239		Х			
181	CF252					
182	AM241					
183	NP237				Х	
184	Am/Cm					
185	Mercury					
186	Cm					
187	Po-210					
188	Alpha					
189	IACT					Х
190	ID					
191	Ce144					
192	Zr95/Nb95					
193	Fluoride					
194	FPIA(131I)	1				Х
195	R					
196	HG					
197	Am-CmCf					
198	NP-237				Х	
199	GP					
200	PB					
201	Ru 106					
202	Ce 144					
203	Cm 244					
204	Pu		Х			
205	Cm/Cf					
206	U	Х				
207	Pu238					
208	Pu239		Х			
209	PO210					
210	Po 210					
211	L.M.F.	Х				
212	Beta					
213	Pu (3.00 Am)		Х			
214	DU	Х				
215	Pu-238-239		Х			
216	FP/IA					Х
217	Nat-U	Х				
218	PU238-239		Х			
219	Pa-231					
220	Th-231					
221	A					
222	Cm-Cf					
223	Am-Cm 244					
224	Cs 137					
225	Pu/FP		Х			

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 6 of 13

No.	Nuclide	U (all)	Pu	Sr	Np	MFP
226	NEU	Х				
227	Pa 231					
228	Th 231					

a. Nuclide designations without an "X" were not used in the coworker study.

Table A-2. HPRED radionuclide type matrix.

No.	x	U	Pu	Am/Cm/Cf	Am	Cm	Cf	Sr	Np
1	H3								
2	U-234	Х							
3	U-235	Х							
4	U-238	Х							
5	PU-238		Х						
6	PU-239		Х						
7	NP-237								Х
8	AM-241			Х	Х				
9	CM-244			Х		Х			
10	CF-252			Х			Х		
11	SR90							Х	
12	NT/DU	Х							
13	Pu238		Х						
14	Am241			Х	Х				
15	Pu239		Х						
16	EU	Х							
17	AmCmCf			Х					
18	Sr90							Х	
19	U234	Х							
20	U235	Х							
21	U238	Х							
22	Np237								Х
23	Cm242			Х		Х			
24	Cm244			Х		Х			
25	Cf252			Х			Х		

Table A-3. 50th- and 84th-percentile urinary excretion rates of plutonium gross alpha, 1955 to 2007 (dpm/d).

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1955	0.0273	0.068	203
7/1/1956	0.0106	0.050	314
7/1/1957	0.0263	0.056	312
7/1/1958	0.0371	0.061	286
7/1/1959	0.0307	0.085	337
7/1/1960	0.0188	0.080	350
7/1/1961	0.0074	0.028	367
7/1/1962	0.0430	0.073	398
7/1/1963	0.0049	0.028	338
7/1/1964	0.0134	0.054	327
7/1/1965	0.0295	0.060	414
7/1/1966	0.0291	0.064	376
7/1/1967	0.0240	0.068	355
7/1/1968	0.0147	0.053	384

ATTACHMENT A **BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS**

Page 7 of 13

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1969	0.0272	0.134	279
7/1/1970	0.0295	0.121	266
7/1/1971	0.0144	0.055	339
7/1/1972	0.0320	0.091	358
7/1/1973	0.0235	0.073	356
7/1/1974	0.0244	0.076	369
7/1/1975	0.0194	0.073	341
7/1/1976	0.0093	0.054	394
7/1/1977	0.0240	0.077	389
7/1/1978	0.0168	0.071	260
7/1/1979	0.0173	0.034	357
7/1/1980	0.0360	0.078	312
7/1/1981	0.0150	0.054	408
7/1/1982	0.0122	0.043	406
7/1/1983	0.0109	0.048	296
7/1/1984	0.0163	0.055	267
7/1/1985	0.0536	0.087	241
7/1/1986	0.0134	0.057	299
7/1/1987	0.0420	0.070	271
7/1/1988	0.0159	0.039	296
7/1/1989	0.0111	0.032	282
7/1/1990	0.0086	0.023	303
7/1/1991	2.39E-05	7.5E-04	8,694
7/1/1992	0.0006	0.0037	8,769
7/1/1993	0.0038	0.0121	6,604
7/1/1994	0.0076	0.0235	5,641
7/1/1995	0.0074	0.0237	5,257
7/1/1996	0.0087	0.0250	4,994
7/1/1997	0.0076	0.0263	4,919
7/1/1998	0.0088	0.0296	4,938
7/1/1999	0.0091	0.0258	4,322
7/1/2000	0.0086	0.0222	3,076
7/1/2001	0.0080	0.0205	2,734
7/1/2002	0.0093	0.0228	2,687
7/1/2003	0.0089	0.0229	2,545
7/1/2004	0.0075	0.0180	2,277
7/1/2005	0.0091	0.0223	2,477
7/1/2006	0.0083	0.0209	2,218
7/1/2007	0.0085	0.0213	2,077

Table A-4. 50	th- and 84t	h-percentile	e urinary	<pre>/ excretion</pre>	rates	of uraniur	n, 1953
to 2007 (dpm/	d).		-				

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1953	4.076	7.573	31
7/1/1954	1.867	3.021	93
7/1/1955	0.9926	1.648	277
7/1/1956	0.9515	1.296	390
7/1/1957	0.392	1.370	207
7/1/1958	0.3738	1.388	151
7/1/1959	0.2422	0.807	201

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 8 of 13

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1960	0.2772	0.844	252
7/1/1961	0.1476	0.744	220
7/1/1962	0.3962	1.337	243
7/1/1963	0.7477	1.957	260
7/1/1964	0.7036	1.945	271
7/1/1965	0.4095	1.489	251
7/1/1966	0.4085	1.472	210
7/1/1967	0.3055	1.113	198
7/1/1968	0.1094	0.554	219
7/1/1969	0.1166	0.771	180
7/1/1970	0.09433	0.933	177
7/1/1971	0.1265	0.854	212
7/1/1972	0.1264	0.869	222
7/1/1973	0.1081	0.782	222
7/1/1974	0.1402	0.796	201
7/1/1975	0.2212	0.999	219
7/1/1976	0.3098	0.781	189
7/1/1977	0.1775	0.803	114
7/1/1978	0.4689	1.004	99
7/1/1979	0.3177	0.942	107
7/1/1980	0.2537	0.698	79
7/1/1981	0.07588	0.474	90
7/1/1982	0.3631	1.431	86
7/1/1983	0.7964	2.181	86
7/1/1984	0.2588	1.408	64
7/1/1985	0.4568	1.447	93
7/1/1986	0.08252	0.340	82
7/1/1987	0.6084	1.009	80
7/1/1988	0.2133	0.940	67
7/1/1989	0.02113	0.179	87
7/1/1990	1.048	1.202	36
7/1/1991	0.09117	0.344	2,349
7/1/1992	0.07548	0.274	2,842
7/1/1993	0.3592	0.698	2,952
7/1/1994	0.3419	0.873	2,511
7/1/1995	0.2393	0.569	2,401
7/1/1996	0.3281	0.748	2,193
7/1/1997	0.3409	0.724	2,045
7/1/1998	0.2581	0.573	2,267
7/1/1999	0.2207	0.589	2,116
7/1/2000	0.2388	0.665	1,597
7/1/2001	0.09381	0.422	1,410
7/1/2002	0.03714	0.086	1,411
7/1/2003	0.03625	0.088	1,300
7/1/2004	0.03338	0.080	1,291
7/1/2005	0.03486	0.080	1,473
7/1/2006	0.04674	0.092	1,093
7/1/2007	0.04698	0.091	914

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 9 of 13

Table A-5. 50th- and 84th-percentile urinary excretion rates of americium, 1963 to 2007 (dpm/d).

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1963	0.8360	1.296	43
7/1/1965	0.3360	0.769	126
7/1/1966	0.8282	2.027	155
7/1/1967	0.9520	1.476	227
7/1/1968	0.2527	0.627	364
7/1/1969	0.3065	0.890	379
7/1/1970	0.2320	0.517	567
7/1/1971	0.1693	0.419	663
7/1/1972	0.0721	0.241	650
7/1/1973	0.0082	0.064	644
7/1/1974	0.0093	0.096	456
7/1/1975	0.0102	0.075	467
7/1/1976	0.0130	0.081	450
7/1/1977	0.0037	0.042	383
7/1/1978	0.0258	0.257	228
7/1/1979	0.0249	0.270	322
7/1/1980	0.0096	0.070	230
7/1/1981	0.0028	0.016	267
7/1/1982	0.0021	0.008	307
7/1/1983	0.0054	0.045	303
7/1/1984	0.0063	0.069	275
7/1/1985	0.0119	0.120	259
7/1/1986	0.0035	0.040	273
7/1/1987	0.0175	0.088	305
7/1/1988	0.0185	0.141	288
7/1/1991	0.0180	0.0568	570
7/1/1992	0.0232	0.0608	373
7/1/1993	0.0156	0.0649	208
7/1/1994	0.0315	0.0951	180
7/1/1995	0.0124	0.0351	226
7/1/1996	0.0118	0.0362	271
7/1/1997	0.0113	0.0302	401
7/1/1998	0.0120	0.0286	681
7/1/1999	0.0121	0.0276	1,499
7/1/2000	0.0111	0.0237	2,130
7/1/2001	0.0094	0.0214	2,305
7/1/2002	0.0082	0.0210	2,473
7/1/2003	0.0072	0.0185	2,313
7/1/2004	0.0060	0.0159	1,985
7/1/2005	0.0058	0.0153	2,242
7/1/2006	0.0058	0.0164	2,103
7/1/2007	0.0062	0.0165	2,030

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 10 of 13

Table A-6. 50th- and 84th-percentile urinary excretion rates of curium, 1995 to 2007 (dpm/d).

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1995	0.00204	0.00651	226
7/1/1996	0.00391	0.00826	271
7/1/1997	0.00710	0.01316	401
7/1/1998	0.00691	0.01350	681
7/1/1999	0.00266	0.00637	1,499
7/1/2000	0.00093	0.00291	2,130
7/1/2001	0.00164	0.00503	2,305
7/1/2002	0.00382	0.00893	2,473
7/1/2003	0.00355	0.00861	2,313
7/1/2004	0.00394	0.00951	1,984
7/1/2005	0.00458	0.01001	2,242
7/1/2006	0.00475	0.01053	2,103
7/1/2007	0.00390	0.00939	2,030

Table A-7. 50th- and 84th-percentile urinary excretion rates of californium, 1995 to 2007 (dpm/d).

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1995	0.00469	0.0144	226
7/1/1996	0.00508	0.0146	271
7/1/1997	0.00684	0.0197	401
7/1/1998	0.00834	0.0215	681
7/1/1999	0.00648	0.0156	1,499
7/1/2000	0.00501	0.0123	2,130
7/1/2001	0.00346	0.0086	2,305
7/1/2002	0.00444	0.0112	2,473
7/1/2003	0.00662	0.0171	2,313
7/1/2004	0.00852	0.0206	1,984
7/1/2005	0.00848	0.0187	2,242
7/1/2006	0.00791	0.0180	2,103
7/1/2007	0.00844	0.0183	2,030

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 11 of 13

Table A-8. 50th- and 84th-percentile urinary excretion rates of neptunium, 1961 to 1969 and 1991 to 2007 (dpm/d).

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1961	0.0216	0.0470	312
7/1/1962	0.0049	0.0291	933
7/1/1963	0.0057	0.0356	459
7/1/1964	0.0201	0.1078	48
7/1/1965	0.0835	0.1625	48
7/1/1966	0.1215	0.3365	32
7/1/1967	0.1205	0.3010	42
7/1/1968	0.0264	0.1401	68
7/1/1969	0.0470	0.1074	29
7/1/1991	0.0131	0.0422	89
7/1/1992	0.0049	0.0195	196
7/1/1993	0.0046	0.0283	266
7/1/1994	0.0150	0.0582	274
7/1/1995	0.0129	0.0385	249
7/1/1996	0.0126	0.0422	253
7/1/1997	0.0116	0.0333	447
7/1/1998	0.0107	0.0327	662
7/1/1999	0.0136	0.0379	825
7/1/2000	0.0128	0.0304	1,026
7/1/2001	0.0117	0.0257	981
7/1/2002	0.0123	0.0264	997
7/1/2003	0.0092	0.0199	971
7/1/2004	0.0086	0.0195	910
7/1/2005	0.0090	0.0199	1,081
7/1/2006	0.0110	0.0234	1,101
7/1/2007	0.0113	0.0248	1,111

Table A-9. 50th- and 84th-percentile whole body burdens of neptunium, 1971 to 1989 (dpm).

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1971	8,026	14,580	42
7/1/1973	4,909	11,512	47
7/1/1974	3,506	10,181	68
7/1/1975	1,155	5,307	85
7/1/1976	3,370	7,535	13
7/1/1977	1,036	5,729	54
7/1/1978	2,317	9,710	92
7/1/1979	1,351	7,717	67
7/1/1980	210	873	106
7/1/1981	150	1,013	122
7/1/1982	193	852	118
7/1/1983	244	1,024	106
7/1/1984	189	1,161	117
7/1/1985	66	693	75
7/1/1986	235	1,265	78
7/1/1987	477	2,299	96
7/1/1988	288	1,592	90
7/1/1989	186	1,162	86

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 12 of 13

Table A-10. 50th- and 84th-percentile urinary excretion rates of strontium, 1955 to 1965 and 1991 to 2006 (dpm/d).

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1955	17.92	33.05	209
7/1/1956	11.37	40.88	285
7/1/1957	12.99	40.06	177
7/1/1958	15.82	44.47	136
7/1/1959	7.88	44.99	191
7/1/1960	25.44	45.26	276
7/1/1961	7.86	20.78	329
7/1/1962	11.38	41.71	391
7/1/1963	35.95	66.57	328
7/1/1964	41.48	66.46	319
7/1/1965	79.70	97.09	314
7/1/1991	0.00529	0.022	3,105
7/1/1992	0.01121	0.013	4,352
7/1/1993	0.005932	0.027	3,711
7/1/1994	0.4736	1.175	3,496
7/1/1995	0.6499	1.287	3,500
7/1/1996	0.02397	0.187	3,445
7/1/1997	0.4553	1.495	3,252
7/1/1998	0.2543	1.163	3,841
7/1/1999	0.08286	0.570	3,600
7/1/2000	0.04699	0.311	2,067
7/1/2001	0.06374	0.384	1,537
7/1/2002	0.1224	0.630	1,274
7/1/2003	0.127	0.611	1,118
7/1/2004	0.0987	0.481	1,001
7/1/2005	0.1327	0.594	1,267
7/1/2006	0.1734	0.703	1,174

ATTACHMENT A BIOASSAY DATA TYPES AND STATISTICAL ANALYSIS RESULTS Page 13 of 13

Table A-11.	50th- and 84th-percentile whole body burdens of cesium, 1961 to
1989 (pCi).	

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1961	4,863	6,337	36
7/1/1962	5,508	8,699	52
7/1/1963	9,692	13,046	27
1/1/1966	15,400	20,361	19
1/1/1970	5,564	9,777	29
7/1/1972	3,457	4,785	32
7/1/1973	2,748	4,348	46
7/1/1974	2,344	4,014	70
7/1/1975	2,037	5,003	87
7/1/1976	1,914	4,126	60
7/1/1977	1,898	4,215	81
7/1/1978	1,749	4,476	94
7/1/1979	948	2,750	94
7/1/1980	600	1,909	109
7/1/1981	556	1,792	120
7/1/1982	468	1,560	119
7/1/1983	343	1,244	113
7/1/1984	397	1,343	115
7/1/1985	385	1,247	78
7/1/1986	1,082	4,014	117
7/1/1987	534	2,048	110
7/1/1988	618	2,701	110
7/1/1989	628	2,412	95

Table A-12. 50th- and 84th-percentile urinary excretion rates of 60 Co, 1955 to 1970.

Effective bioassay date	50th percentile	84th percentile	No. of employees
7/1/1955	17.92	33.05	209
7/1/1956	11.37	40.88	285
7/1/1957	12.99	40.06	177
7/1/1958	15.82	44.47	136
7/1/1959	7.88	44.99	191
7/1/1960	25.44	45.26	276
7/1/1961	7.86	20.78	329
7/1/1962	11.38	41.71	391
7/1/1963	35.95	66.57	328
7/1/1964	41.48	66.46	319
7/1/1965	79.70	97.09	314
7/1/1966	330	511	356
7/1/1967	1,131	1,753	436
7/1/1968	945	1,465	494
7/1/1969	355	551	429
7/1/1970	317	491	471

Page 1 of 39

LIST OF TABLES

<u>TABLE</u>

<u>TITLE</u>

<u>PAGE</u>

B-1	Summary of plutonium type M intake rates and dates	51
B-2	Summary of plutonium type S intake rates and dates	53
B-3	Summary of uranium type F intake rates and dates	54
B-4	Summary of uranium type M intake rates and dates	55
B-5	Summary of uranium type S intake rates and dates	62
B-6	Summary of americium type M intake rates and dates	65
B-7	Summary of curium type M intake rates and dates	66
B-8	Summary of californium type M intake rates and dates	67
B-9	Summary of neptunium type M intake rates and dates	74
B-10	Summary of strontium type F intake rates and dates	76
B-11	Summary of cesium type F intake rates and dates	
B-12	Summary of ⁶⁰ Co type F intake rates and dates	77
B-13	Summary of ⁶⁰ Co type S intake rates and dates	
B-14	Summary of thorium type M intake rates and dates	81
B-15	Summary of thorium type S intake rates and dates	83

LIST OF FIGURES

FIGURE

<u>TITLE</u>

PAGE

B-1	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates compared with bioassay results, 50th percentile, 1955–1990, type M
БО	
B-2	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
	rates compared with bioassay results, 50th percentile, 1991–2007, type M
B-3	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
	rates compared with bioassay results, 84th percentile, 1955–1990, type M 50
B-4	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
	rates compared with bioassay results, 84th percentile, 1991-2007, type M
B-5	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
-	rates compared with bioassay results, 50th percentile, all intake periods, type M
B-6	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
20	rates compared with bioassay results, 84th percentile, all intake periods, type M
B-7	Predicted plutonium bioassay results calculated using IMBA-derived uranium intake
D-1	
-	rates compared with bioassay results, 50th percentile, 1955–1990, type S51
B-8	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
	rates compared with bioassay results, 50th percentile, 1991–2007, type S52
B-9	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
	rates compared with bioassay results, 84th percentile, 1955–1990, type S
B-10	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
	rates compared with bioassay results, 84th percentile, 1991–2007, type S
B-11	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
D-11	
B-12	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake
	rates compared with bioassay results, 84th percentile, all intake periods, type S53

ATTACHMENT B COWORKER DATA FIGURES Page 2 of 39

B-13	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 50th percentile, type F	54
B-14	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 84th percentile, type F	54
B-15	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 50th percentile, type M	
B-16	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
B-17	rates compared with bioassay results, 84th percentile, type M Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
B-18	rates compared with bioassay results, 50th percentile, 1953, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
B-19	rates compared with bioassay results, 50th percentile, 1954, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	56
B-20	rates compared with bioassay results, 50th percentile, 1955–1956, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	56
B-21	rates compared with bioassay results, 50th percentile, 1957–1967, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	57
	rates compared with bioassay results, 50th percentile, 1968-1980, type S	57
B-22	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 50th percentile, 1981–1990, type S	57
B-23	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 50th percentile, 1991–2000, type S	58
B-24	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 50th percentile, 2001–2007, type S	58
B-25	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 84th percentile, 1953, type S	
B-26	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 84th percentile, 1954, type S	
B-27	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 84th percentile, 1955–1956, type S	
B-28	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates compared with bioassay results, 84th percentile, 1957–1967, type S	
B-29	Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
B-30	rates compared with bioassay results, 84th percentile, 1968–1980, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
B-31	rates compared with bioassay results, 84th percentile, 1981–1990, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	
B-32	rates compared with bioassay results, 84th percentile, 1991–2000, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	60
B-33	rates compared with bioassay results, 84th percentile, 2001–2007, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	61
B-34	rates compared with bioassay results, 50th percentile, all intake periods, type S Predicted uranium bioassay results calculated using IMBA-derived uranium intake	61
B-35	rates compared with bioassay results, 84th percentile, all intake periods, type S Predicted americium bioassay results calculated using IMBA-derived americium intake	61
	rates compared with bioassay results, 50th percentile, 1963-1967, type M	62
B-36	Predicted americium bioassay results calculated using IMBA-derived americium intake rates compared with bioassay results, 50th percentile, 1968–1972, type M	62

ATTACHMENT B COWORKER DATA FIGURES Page 3 of 39

B-37	Predicted americium bioassay results calculated using IMBA-derived americium intake rates compared with bioassay results, 50th percentile, 1973–1994, type M	. 63
B-38	Predicted americium bioassay results calculated using IMBA-derived americium intake	
	rates compared with bioassay results, 50th percentile, 1995–2007, type M	. 63
B-39	Predicted americium bioassay results calculated using IMBA-derived americium intake rates compared with bioassay results, 84th percentile, 1963–1967, type M	63
B-40	Predicted americium bioassay results using IMBA-derived americium intake rates	. 05
B 10		. 64
B-41	Predicted americium bioassay results calculated using IMBA-derived americium intake	-
	rates compared with bioassay results, 84th percentile, 1973-1994, type M	. 64
B-42	Predicted americium bioassay results calculated using IMBA-derived americium intake	
	rates compared with bioassay results, 84th percentile, 1995-2007, type M	. 64
B-43	Predicted americium bioassay results calculated using IMBA-derived americium intake	~~
D 44	rates compared with bioassay results, 50th percentile, all intake periods, type M	. 65
B-44	Predicted americium bioassay results calculated using IMBA-derived americium intake rates compared with bioassay results, 84th percentile, all intake periods, type M	65
B-45	Predicted curium bioassay results calculated using IMBA-derived curium intake rates	. 05
D 40	compared with bioassay results, 50th percentile, all intake periods, type M	. 66
B-46	Predicted curium bioassay results calculated using IMBA-derived curium intake rates	
	compared with bioassay results, 84th percentile, all intake periods, type M	. 66
B-47	Predicted californium bioassay results calculated using IMBA-derived californium	
	intake rates compared with bioassay results, 50th percentile, all intake periods, type M	. 67
B-48	Predicted californium bioassay results calculated using IMBA-derived californium	
D 40	intake rates compared with bioassay results, 84th percentile, all intake periods, type M	. 67
B-49	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	60
B-50	rates compared with bioassay results, 50th percentile, 1961–1964, type M Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	. 00
D-30	rates compared with bioassay results, 50th percentile, 1965–1967, type M	68
B-51	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1968–1969, type M	. 68
B-52	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1970–1974, type M	. 69
B-53	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1975–1979, type M	. 69
B-54	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	60
B-55	rates compared with bioassay results, 50th percentile, 1980–1990, type M Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	. 69
D-33	rates compared with bioassay results, 50th percentile, 1991–2007, type M	70
B-56	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	. 70
	rates compared with bioassay results, 84th percentile, 1961–1963, type M	.70
B-57	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1964–1965, type M	. 70
B-58	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1966–1967, type M	. 71
B-59	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	74
B.60	rates compared with bioassay results, 84th percentile, 1968–1969, type M	.71
B-60	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates compared with bioassay results, 84th percentile, 1970–1974, type M	71
	Taios comparou with bioassay results, ofth percentile, 1970-1974, type with minimum	. / 1

ATTACHMENT B COWORKER DATA FIGURES Page 4 of 39

B-61	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates compared with bioassay results, 84th percentile, 1975–1979, type M	72
B-62	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates compared with bioassay results, 84th percentile, 1980–1990, type M	72
B-63	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
B-64	rates compared with bioassay results, 84th percentile, 1991–2007, type M Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	72
		73
B-65	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 50th percentile, 1961–2007 cumulative, type M, whole-body count data	73
B-66	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1961–2007 cumulative, type M, urinalysis data	73
B-67	Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake	
	rates compared with bioassay results, 84th percentile, 1961-2007 cumulative, type M, urinalysis data, whole-body count data	74
B-68	Predicted strontium bioassay results calculated using IMBA-derived strontium intake	/ 4
	rates compared with bioassay results, 50th percentile, 1955–1965, type F	74
B-69	Predicted strontium bioassay results calculated using IMBA-derived strontium intake	
	rates compared with bioassay results, 50th percentile, 1991–2006, type F	75
B-70	Predicted strontium bioassay results calculated using IMBA-derived strontium intake rates compared with bioassay results, 84th percentile, 1955–1965, type F	75
B-71	Predicted strontium bioassay results calculated using IMBA-derived strontium intake	
	rates compared with bioassay results, 84th percentile, 1991-2006, type F	75
B-72	Predicted cesium bioassay results calculated using IMBA-derived cesium intake rates	
D 70	compared with bioassay results, 50th percentile, type F	76
B-73	Predicted cesium bioassay results calculated using IMBA-derived cesium intake rates compared with bioassay results, 84th percentile, type F	76
B-74	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	70
011	compared with bioassay results, 50th percentile, type M	77
B-75	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	
	compared with bioassay results, 84th percentile, type M	77
B-76	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	
D 77	compared with bioassay results, 50th percentile, type S	78
B-77	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates	70
B-78	compared with bioassay results, 84th percentile, type S Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	/ 8
D-70	compared with bioassay results, 50th percentile, 1972, type M	79
B-79	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, 1973 through 1989, type M	79
B-80	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
_	compared with bioassay results, 84th percentile, 1972, type M	79
B-81	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
000	compared with bioassay results, 84th percentile, 1973 through 1989, type M	80
B-82	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 50th percentile, all intakes	20
	נוווט נטוויףמופט אונד טוטמססמי ובסטונס נטטנס, סטנד פרטפונוופ, מוו וונמגפס	00

ATTACHMENT B COWORKER DATA FIGURES Page 5 of 39

B-83	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates.compared with bioassay results, 84th percentile, all intakes periods, type M	80
B-84	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates compared with bioassay results, 50th percentile, 1972, type S	
B-85	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	01
	compared with bioassay results, 50th percentile, 1973 through 1989, type S	81
B-86	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, 1972, type S	82
B-87	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, 1973 through 1989, type S	82
B-88	Predictedthorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 50th percentile, all intakes periods, type S	82
B-89	Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates	
	compared with bioassay results, 84th percentile, all intake periods, type S	83

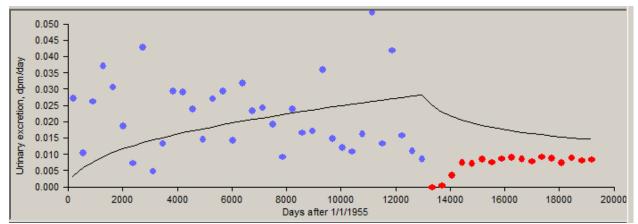


Figure B-1. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 50th percentile, 1955–1990, type M.

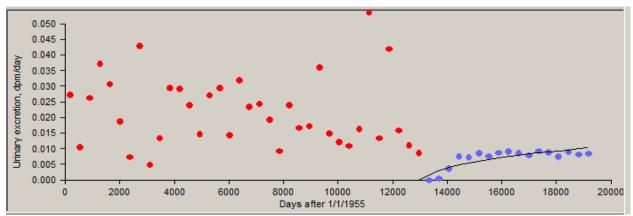


Figure B-2. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 50th percentile, 1991–2007, type M.

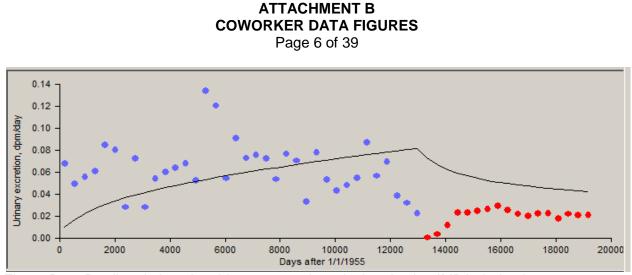


Figure B-3. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 84th percentile, 1955–1990, type M.

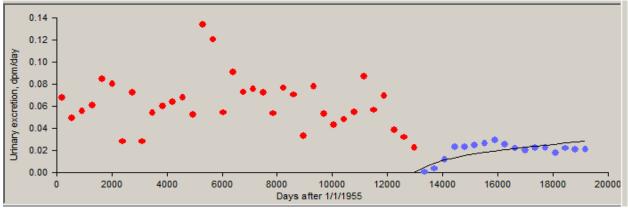


Figure B-4. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 84th percentile, 1991–2007, type M.

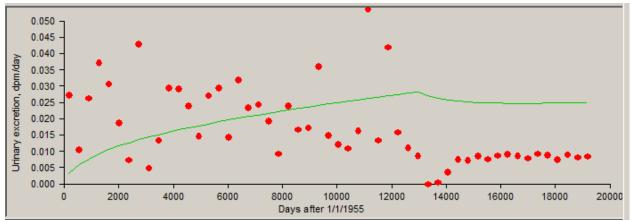


Figure B-5. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 50th percentile, all intake periods, type M.

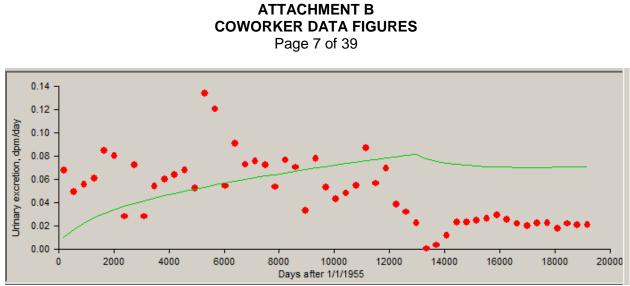


Figure B-6. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 84th percentile, all intake periods, type M.

Table B-1.	Summary	of plutoniu	m type M i	intake rates	(dpm/d)
and dates.					

Years	50%	84%	GSD	Adj GSD	95%
1955–1990	1.77	5.103	2.88	3.00	10.8
1991–2007	0.930	2.542	2.73	3.00	5.67

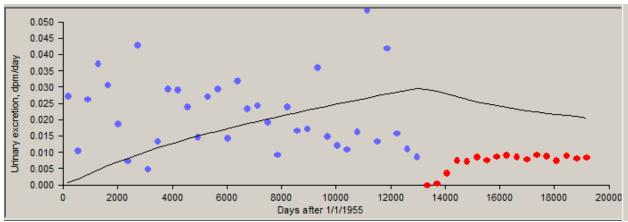


Figure B-7. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 50th percentile, 1955–1990, type S.

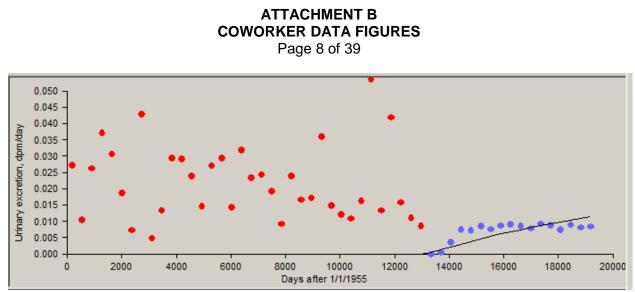


Figure B-8. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 50th percentile, 1991–2007, type S.

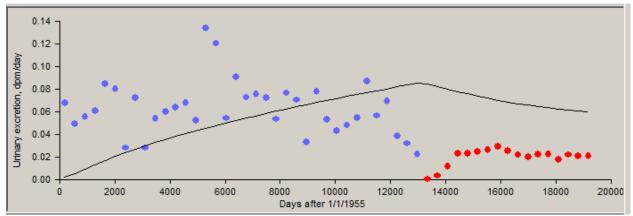


Figure B-9. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 84th percentile, 1955–1990, type S.

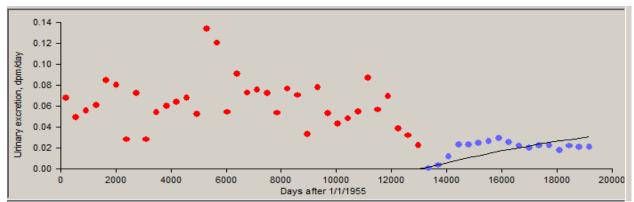
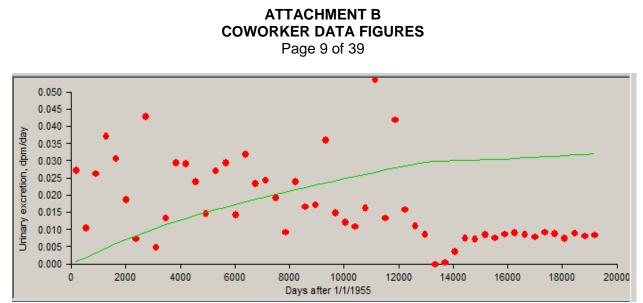



Figure B-10. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 84th percentile, 1991–2007, type S.

Page 53 of 83

Figure B-11. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 50th percentile, all intake periods, type S.

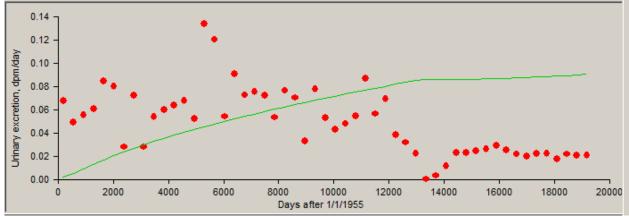


Figure B-12. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with bioassay results (dots), 84th percentile, all intake periods, type S.

an	and dates.								
	Years	50%	84%	GSD	Adj GSD	95%			
1	955–1990	20.69	59.53	2.88	3.00	126			
1	991–2007	13.6	36.57	2.69	3.00	82.9			

Table B-2. Summary of plutonium type S intake rates (dpm/d) and dates.

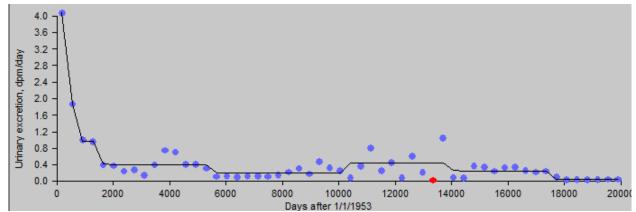


Figure B-13. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, type F.

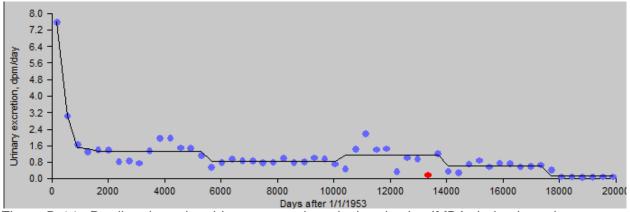


Figure B-14. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, type F.

dates.					
Years	50%	84%	GSD	Adj GSD	95%
1953	15.15	28.15	1.86	3.00	92.3
1954	6.762	10.9	1.61	3.00	41.2
1955–1956	3.489	5.258	1.51	3.00	21.3
1957–1967	1.407	4.707	3.35	3.35	10.3
1968–1980	0.686	2.931	4.27	4.27	7.48
1981–1990	1.559	4.144	2.66	3.00	9.50
1991–2000	0.8747	2.113	2.42	3.00	5.33
2001–2007	0.1384	0.4005	2.89	3.00	0.843

Table B-3.	Summary of uranium type F intake rates (dpm/d) and
dates.	

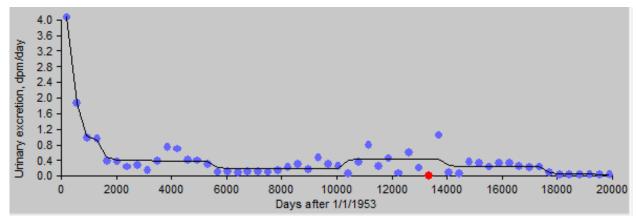


Figure B-15. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, type M.

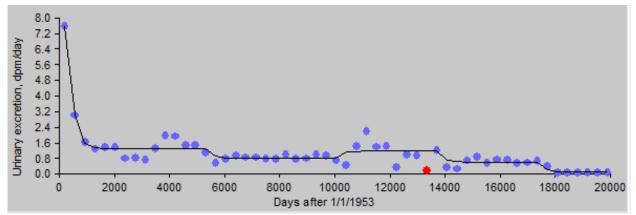


Figure B-16. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, type M.

uales.					
Years	50%	84%	GSD	Adj GSD	95%
1953	73.3	136.2	1.86	3.00	447
1954	20.78	30.95	1.49	3.00	127
1955–1956	13.08	19.61	1.50	3.00	79.7
1957–1967	5.623	19.14	3.40	3.40	42.2
1968–1980	2.731	11.84	4.34	4.34	30.5
1981–1990	6.473	17.07	2.64	3.00	39.4
1991–2000	3.575	8.621	2.41	3.00	21.8
2001–2007	0.4823	1.386	2.87	3.00	2.94

Table B-4. Summary of uranium type M intake rates (dpm/d) and dates.

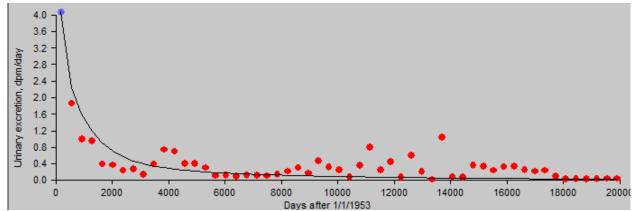


Figure B-17. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 1953, type S.

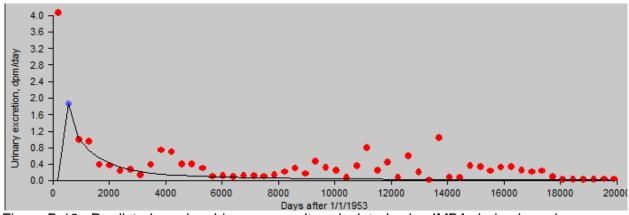


Figure B-18. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 1954, type S.

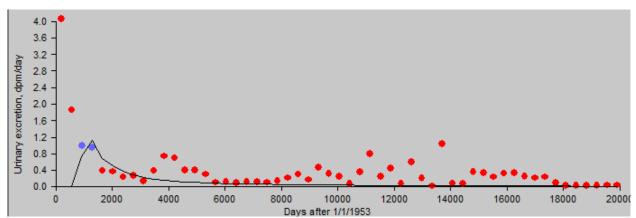


Figure B-19. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 1955–1956, type S.

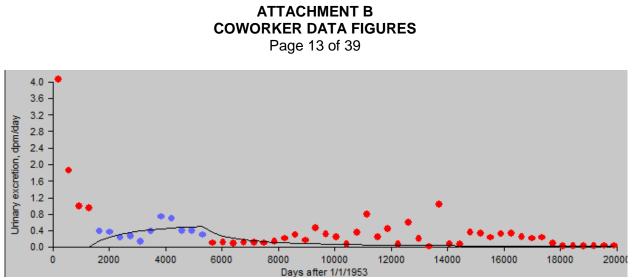


Figure B-20. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 1957–1967, type S.

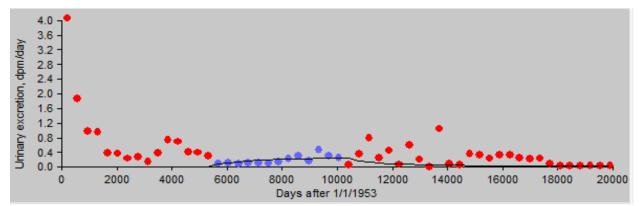


Figure B-21. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 1968–1980, type S.

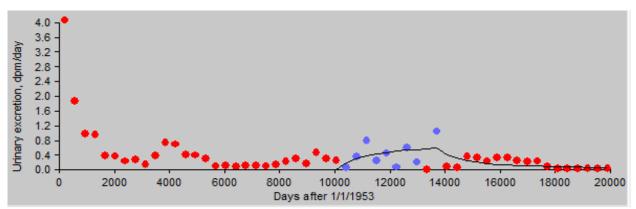


Figure B-22. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 1981–1990, type S.

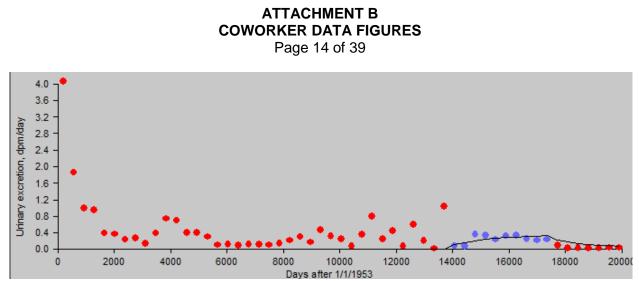


Figure B-23. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 1991–2000, type S.

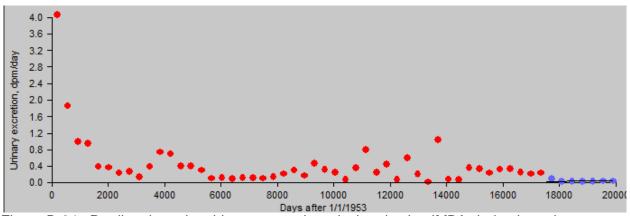


Figure B-24. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, 2001–2007, type S.

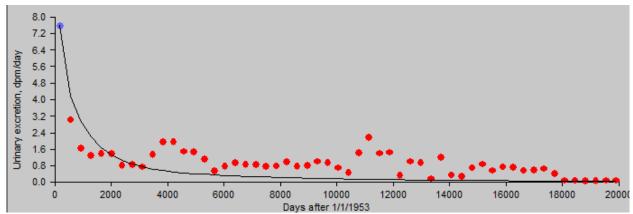


Figure B-25. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 1953, type S.

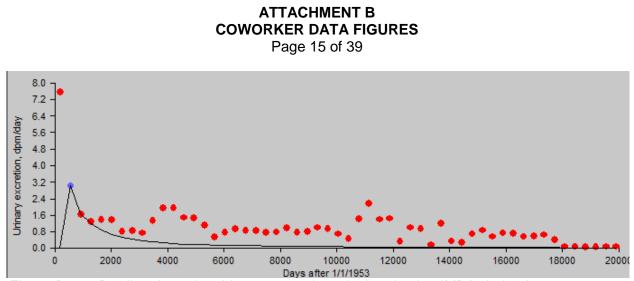


Figure B-26. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 1954, type S.

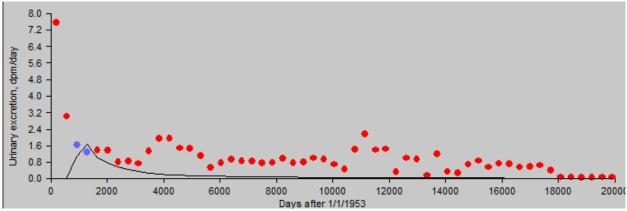


Figure B-27. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 1955–1956, type S.

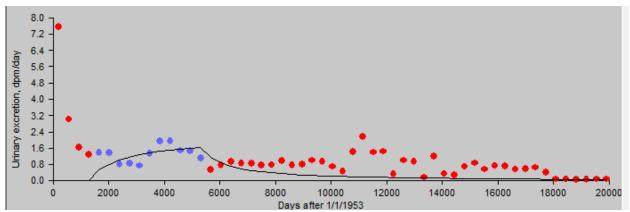
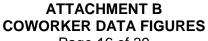



Figure B-28. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 1957–1967, type S.

Page 16 of 39

Figure B-29. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 1968–1980, type S.

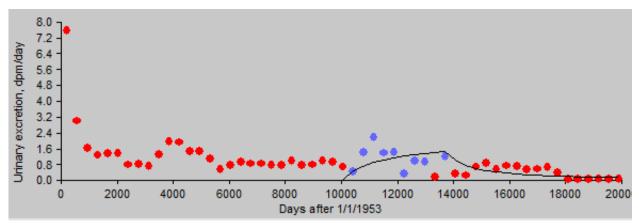


Figure B-30. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 1981–1990, type S.

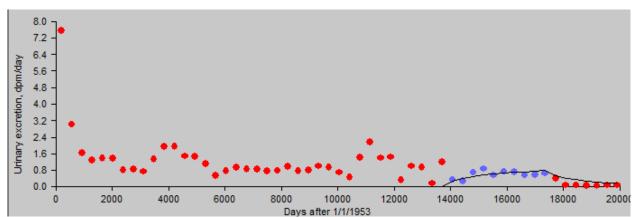


Figure B-31. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 1991–2000, type S.

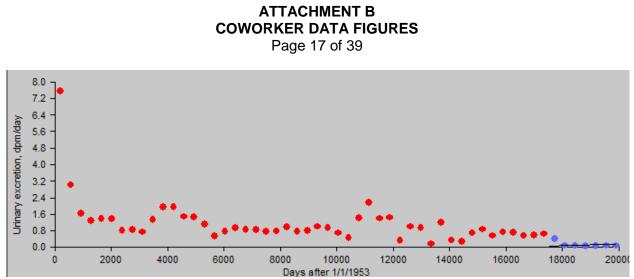


Figure B-32. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, 2001–2007, type S.

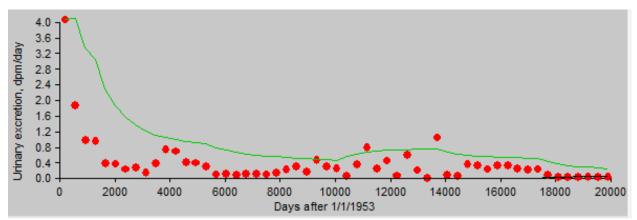


Figure B-33. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 50th percentile, all intake periods, type S.

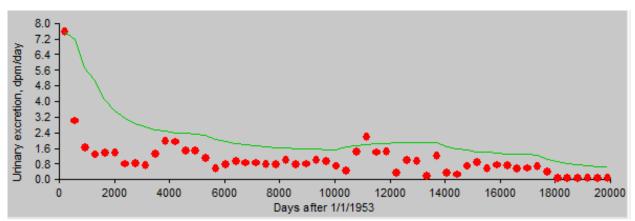


Figure B-34. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with bioassay results (dots), 84th percentile, all intake periods, type S.

Page 18 of 39

Table B-5. Summary of uranium type S intake rates (dpm/d) and dates.

Years	50%	84%	GSD	Adj GSD	95%		
1953	2,293	4,261	1.86	3.00	13972		
1954	1,050	1,700	1.62	3.00	6398		
1955–1956	407.8	604.4	1.48	3.00	2485		
1957–1967	89.38	290.9	3.25	3.25	623		
1968–1980	41.24	174.7	4.24	4.24	443		
1981–1990	107.1	264.2	2.47	3.00	653		
1991–2000	58.73	141.1	2.40	3.00	358		
2001-2007	10.89	27.35	2.51	3.00	66.4		

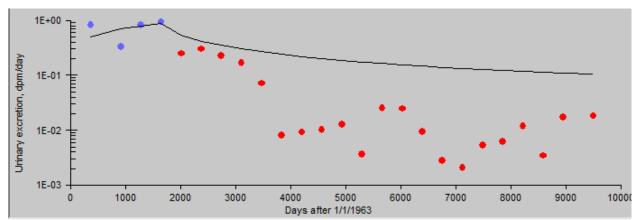


Figure B-35. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 50th percentile, 1963–1967, type M.

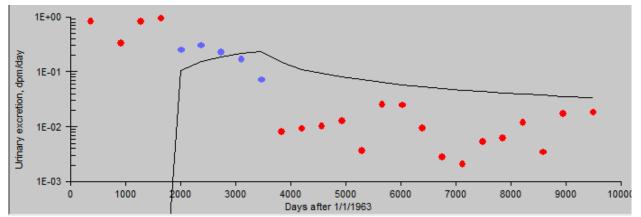


Figure B-36. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 50th percentile, 1968–1972, type M.

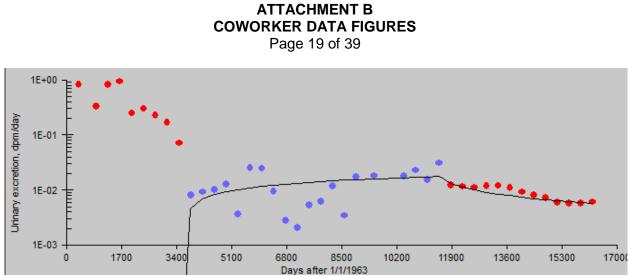


Figure B-37. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 50th percentile, 1973–1994, type M.

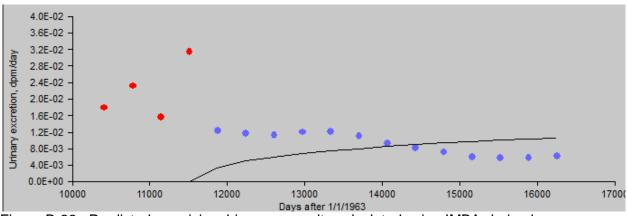


Figure B-38. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 50th percentile, 1995–2007, type M.

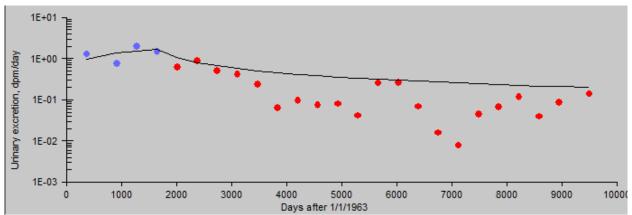


Figure B-39. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 84th percentile, 1963–1967, type M.

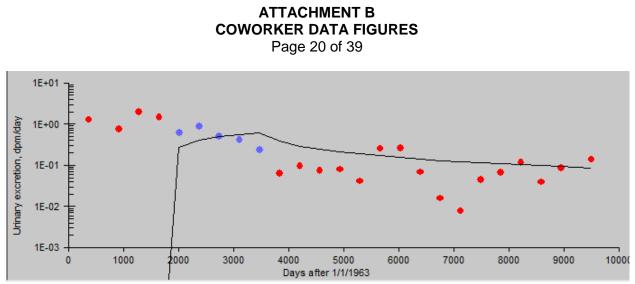


Figure B-40. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 84th percentile, 1968–1972, type M.

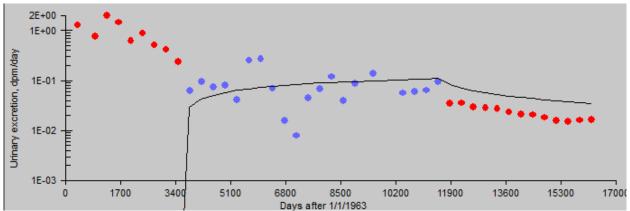


Figure B-41. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 84th percentile, 1973–1994, type M.

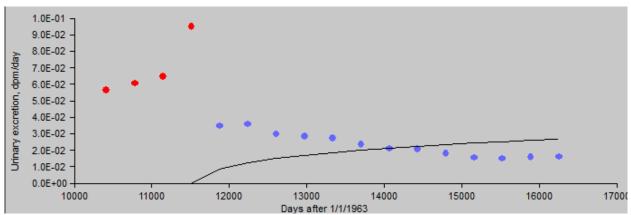


Figure B-42. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 84th percentile, 1995–2007, type M.

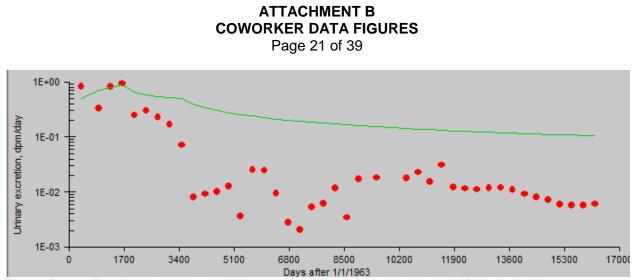


Figure B-43. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 50th percentile, all intake periods, type M.

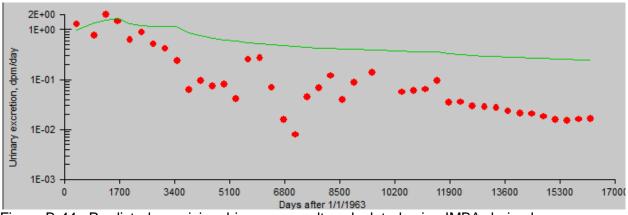


Figure B-44. Predicted americium bioassay results calculated using IMBA-derived americium intake rates (line) compared with bioassay results (dots), 84th percentile, all intake periods, type M.

(upin/u) and dates.							
Years	50%	84%	GSD	Adj GSD	95%		
1963–1967	70.7	134.8	1.91	3.00	431		
1968–1972	18.9	49.53	2.62	3.00	115		
1973–1994	0.826	5.142	6.23	6.23	16.7		
1995–2007	0.599	1.523	2.54	3.00	3.65		

Table B-6. Summary of americium type M intake rates (dpm/d) and dates.

ATTACHMENT B COWORKER DATA FIGURES Page 22 of 39

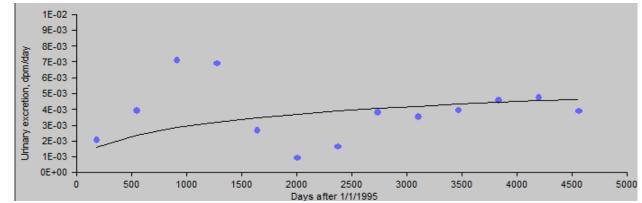


Figure B-45. Predicted curium bioassay results calculated using IMBA-derived curium intake rates (line) compared with bioassay results (dots), 50th percentile, all intake periods, type M.

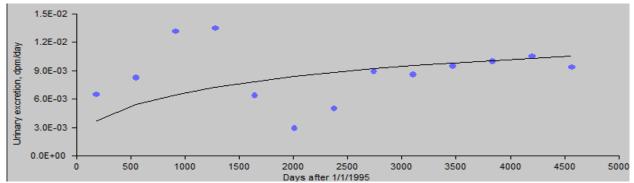


Figure B-46. Predicted curium bioassay results calculated using IMBA-derived curium intake rates (line) compared with bioassay results (dots), 84th percentile, all intake periods, type M.

Years	50%	84%	GSD	Adj GSD	95%
1995–2007	0.291	0.6621	2.28	3.00	1.77

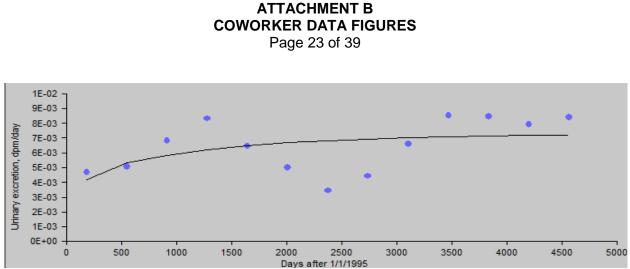


Figure B-47. Predicted californium bioassay results calculated using IMBA-derived californium intake rates (line) compared with bioassay results (dots), 50th percentile, all intake periods, type M.

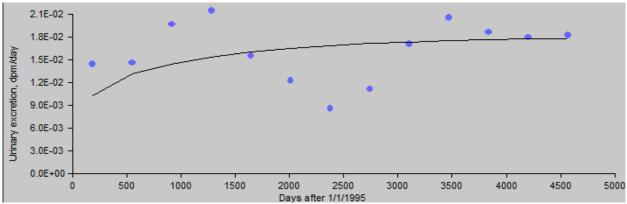


Figure B-48. Predicted californium bioassay results calculated using IMBA-derived californium intake rates (line) compared with bioassay results (dots), 84th percentile, all intake periods, type M.

Table B-8. Summary of californium type M intake rates (dpm/d) and dates.

Years	50%	84%	GSD	Adj GSD	95%		
1995–2007	1.551	3.827	2.47	3.00	9.45		

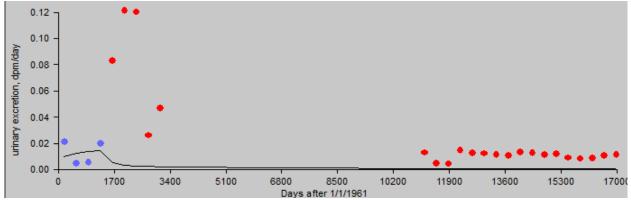


Figure B-49. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1961–1964, type M.

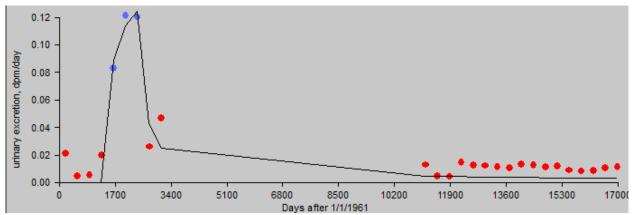


Figure B-50. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1965–1967, type M.

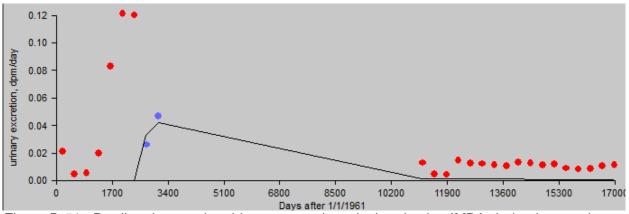


Figure B-51. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1968–1969, type M.

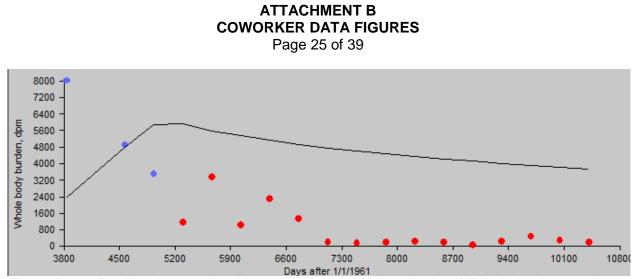


Figure B-52. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1970–1974, type M.

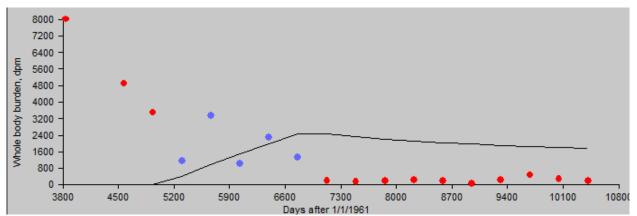


Figure B-53. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1975–1979, type M.

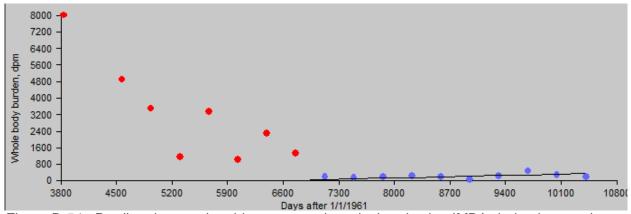


Figure B-54. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1980–1990, type M.

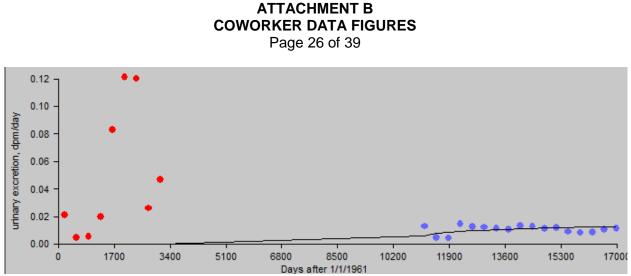


Figure B-55. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1991–2007, type M.

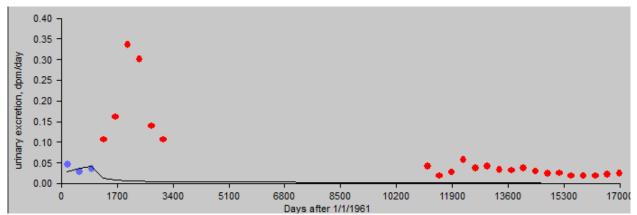


Figure B-56. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1961–1963, type M.

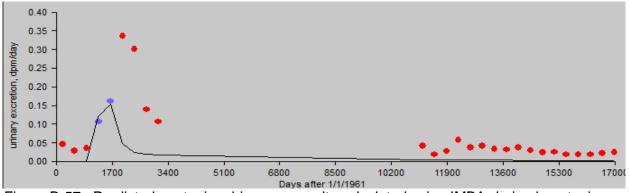


Figure B-57. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1964–1965, type M.

Page 27 of 39

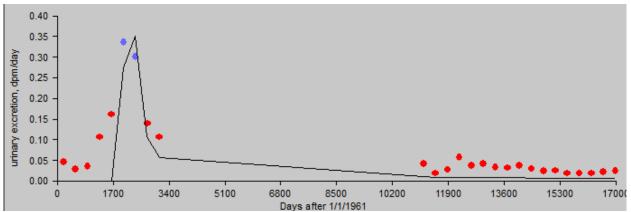


Figure B-58. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1966–1967, type M.

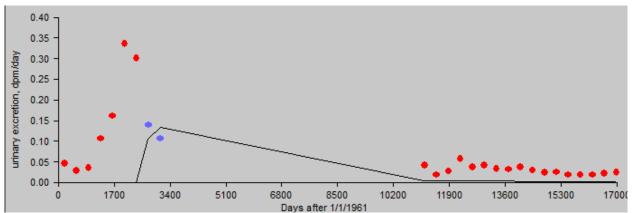


Figure B-59. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1968–1969, type M.

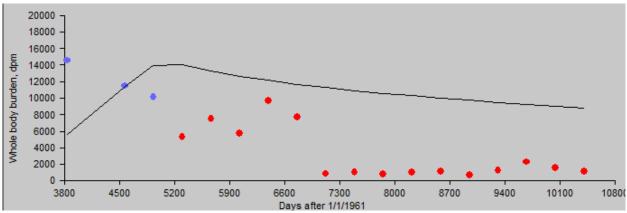
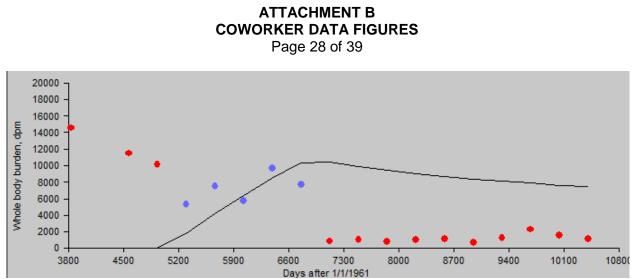
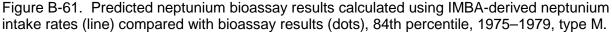




Figure B-60. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1970–1974, type M.

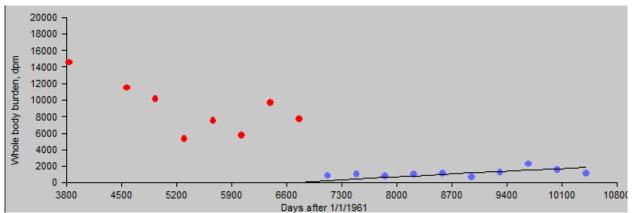


Figure B-62. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1980–1990, type M.

Figure B-63. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1991–2007, type M.

Page 73 of 83

Page 29 of 39

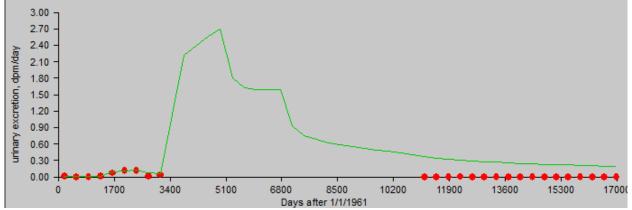


Figure B-64. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1961–2007 cumulative, type M, urinalysis data.

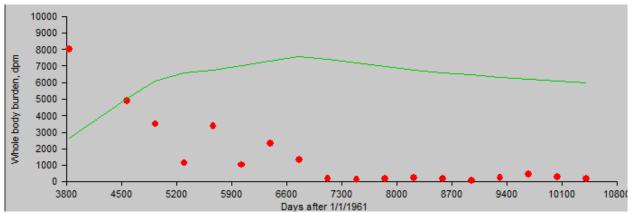


Figure B-65. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 50th percentile, 1961–2007 cumulative, type M, whole-body count data.

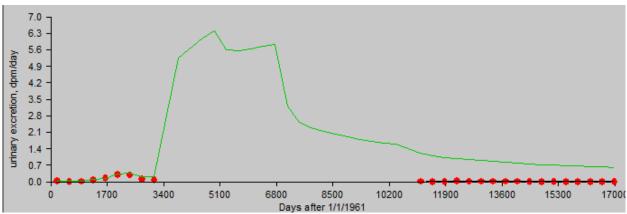


Figure B-66. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results (dots), 84th percentile, 1961–2007 cumulative, type M, urinalysis data.

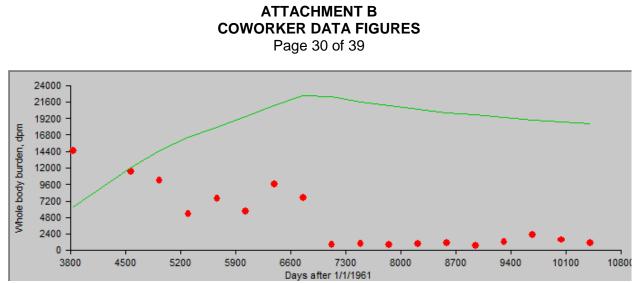


Figure B-67. Predicted neptunium bioassay results calculated using IMBA-derived neptunium intake rates (line) compared with bioassay results, 84th percentile, 1961–2007 cumulative, type M, urinalysis data, whole-body count data.

(dph/d) and dates.							
Years	50%	84%	GSD	Adj GSD	95%		
1961–1963	0.528	1.59	3.02	3.02	3.24		
1964	0.528	6.53	12.37	12.37	33.0		
1965	4.84	6.53	1.35	3.00	29.5		
1966–1967	4.84	14.9	3.08	3.08	30.9		
1968–1969	1.79	5.74	3.21	3.21	12.2		
1970–1974	93.5	221	2.37	3.00	570		
1975–1979	38.7	164	4.25	4.25	418		
1980–1989	2.90	15.8	5.46	5.46	47.2		
1991–2007	0.336	0.920	2.74	3.00	2.05		

Table B-9. Summary of neptunium type M intake rates (dpm/d) and dates



Figure B-68. Predicted strontium bioassay results calculated using IMBA-derived strontium intake rates (line) compared with bioassay results (dots), 50th percentile, 1955–1965, type F.

ATTACHMENT B COWORKER DATA FIGURES Page 31 of 39

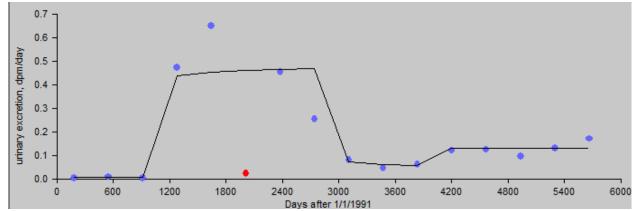


Figure B-69. Predicted strontium bioassay results calculated using IMBA-derived strontium intake rates (line) compared with bioassay results (dots), 50th percentile, 1991–2006, type F.

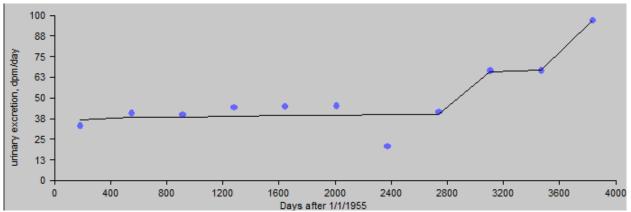
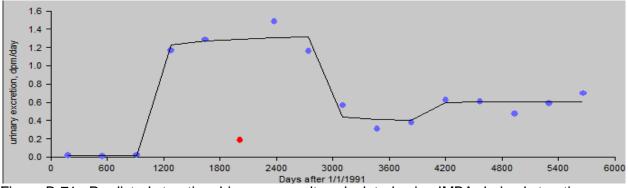
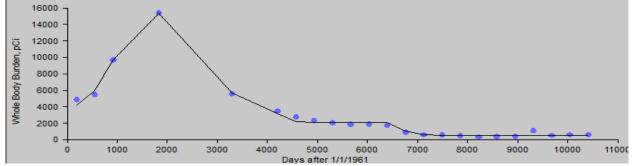
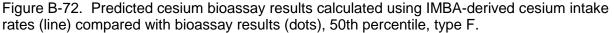


Figure B-70. Predicted strontium bioassay results calculated using IMBA-derived strontium intake rates (line) compared with bioassay results (dots), 84th percentile, 1955–1965, type F.


Figure B-71. Predicted strontium bioassay results calculated using IMBA-derived strontium intake rates (line) compared with bioassay results (dots), 84th percentile, 1991–2006, type F.

Page 32 of 39

Table B-10. Summary of strontium type F intake rates (dpm/d) and dates.

Years	50%	84%	GSD	Adj GSD	95%
1955–1962	58.93	166.3	2.82	3.00	359
1963–1964	168	283.1	1.69	3.00	1,024
1965	350	417	1.19	3.00	2,132
1991–1993	0.0393	0.09039	2.30	3.00	0.239
1993–1998	1.98	5.556	2.80	3.00	12.07
1999–2001	0.177	1.552	8.79	8.79	6.31
2002-2006	0.517	2.441	4.72	4.72	6.64

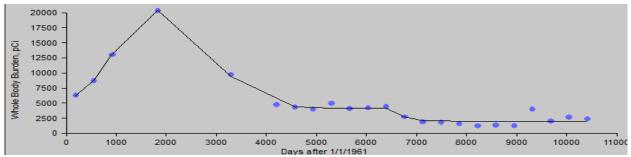


Figure B-73. Predicted cesium bioassay results calculated using IMBA-derived cesium intake rates (line) compared with bioassay results (dots), 84th percentile, type F.

dates.					
Years	50%	84%	GSD	Adj GSD	95%
1961-1962	89.27	131.5	1.47	3.00	544
1963	164.8	216.7	1.31	3.00	1,004
1964-1967	224.1	296.4	1.32	3.00	1,366
1968–1971	80.89	135.8	1.68	3.00	493
1972–1978	30.76	61.25	1.99	3.00	187
1979–1989	7.979	29.37	3.68	3.68	68.1

Table B-11.	Summary of cesium type F intake rates (pCi/d) an	d
dates.		

ATTACHMENT B COWORKER DATA FIGURES Page 33 of 39

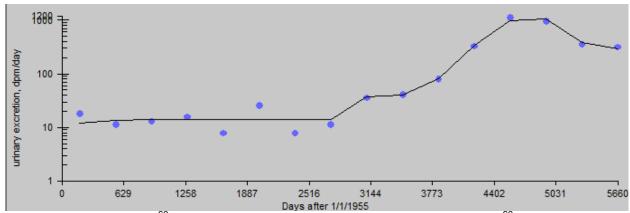


Figure B-74. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with bioassay results (dots), 50th percentile, type M.

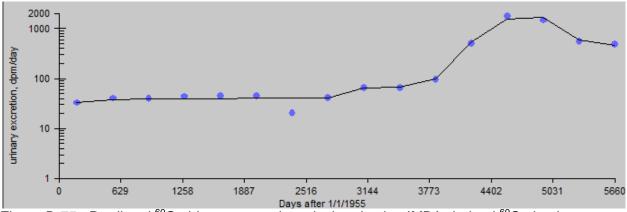


Figure B-75. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with bioassay results (dots), 84th percentile, type M.

Years	50%	84%	GSD	Adj GSD	95%
1955–1962	169.4	480.3	2.84	3.00	1,032
1963–1964	499.7	833	1.67	3.00	3,045
1965	1,050	1,236	1.18	3.00	6,398
1966	4,743	7,391	1.56	3.00	28,901
1967–1968	13,290	20,600	1.55	3.00	80,982
1969–1970	3,189	4,946	1.55	3.00	19,432

Table B-12.	Summary of ⁶⁰ Co type M intake rates (dpm/d) and
dates.	

ATTACHMENT B COWORKER DATA FIGURES Page 34 of 39

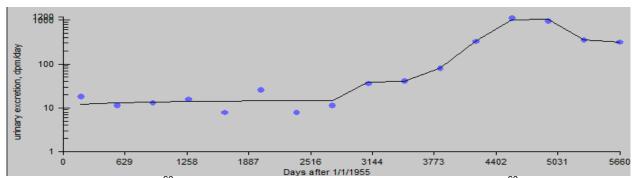


Figure B-76. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with bioassay results (dots), 50th percentile, type S.

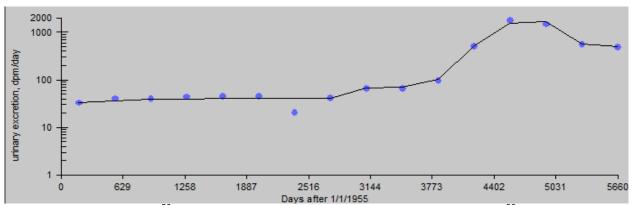


Figure B-77. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with bioassay results (dots), 84th percentile, type S.

Years	50%	84%	GSD	Adj GSD	95%
1955–1962	667	1882	2.82	3.00	4064
1963–1964	2004	3294	1.64	3.00	12211
1965	4221	4963	1.18	3.00	25721
1966	18150	28180	1.55	3.00	110596
1967–1968	53580	83080	1.55	3.00	326488
1969–1970	11680	18110	1.55	3.00	71172

Table B-13. Summary of ⁶⁰Co type S intake rates (dpm/d) and dates

ATTACHMENT B COWORKER DATA FIGURES Page 35 of 39

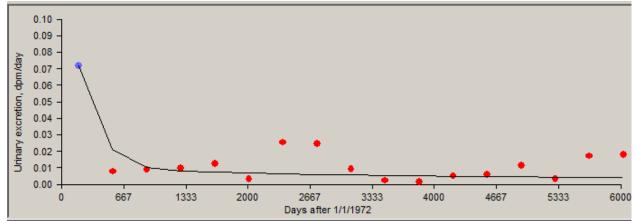


Figure B-78. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 50th percentile, 1972, type M.

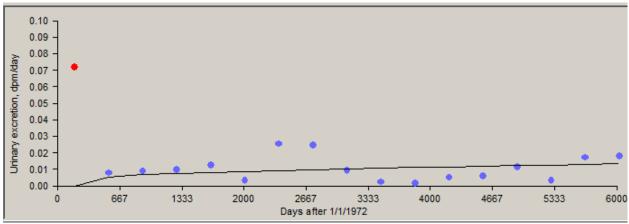


Figure B-79. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 50th percentile, 1973 through 1989, type M.

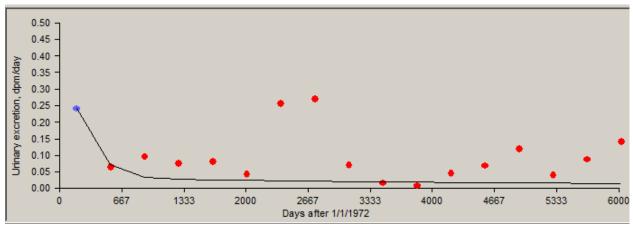


Figure B-80. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 84th percentile, 1972, type M.

ATTACHMENT B COWORKER DATA FIGURES Page 36 of 39

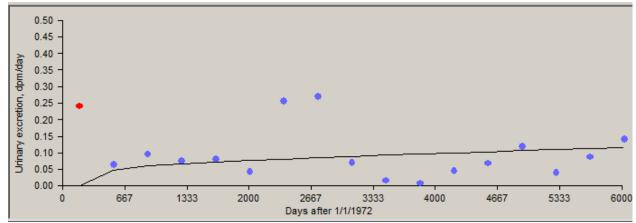


Figure B-81. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 84th percentile, 1973 through 1989, type M.

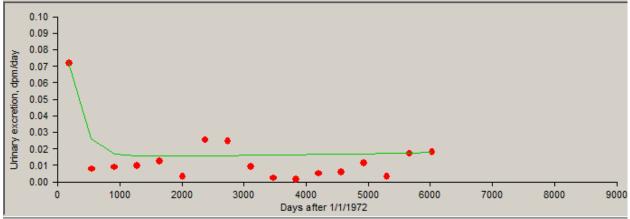


Figure B-82. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 50th percentile, all intakes periods, type M.

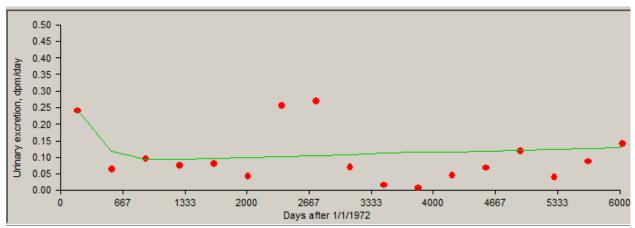


Figure B-83. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 84th percentile, all intakes periods, type M.

Page 37 of 39

Table B-14. Summary of thorium type M intake rates

(dpm/d) and dates.

Years	50%	84%	GSD	Adj GSD	95%
1972	15.31	51.16	3.34	3.34	111.4
1973–1989	1.149	9.758	8.49	8.49	38.8

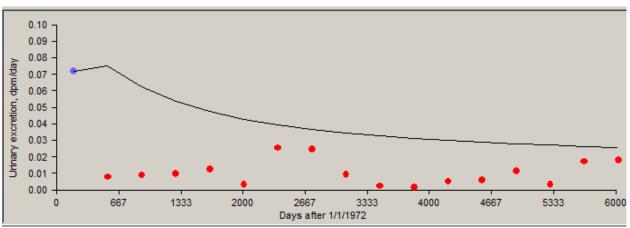


Figure B-84. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 50th percentile, 1972, type S.

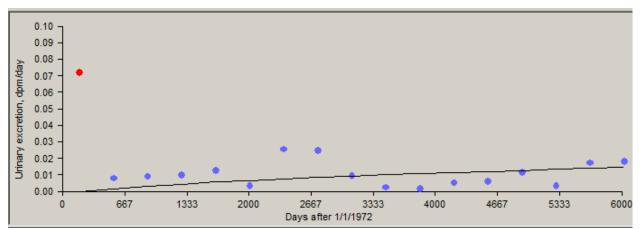


Figure B-85. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 50th percentile, 1973 through 1989, type S.

ATTACHMENT B COWORKER DATA FIGURES Page 38 of 39

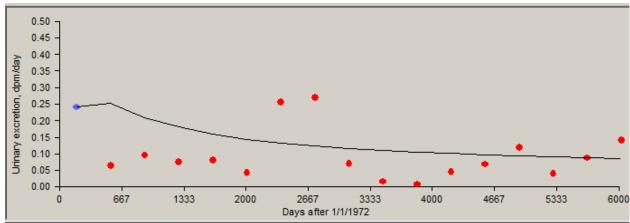


Figure B-86. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 84th percentile, 1972, type S.

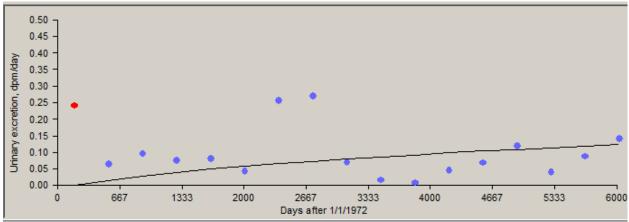


Figure B-87. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 84th percentile, 1973 through 1989, type S.

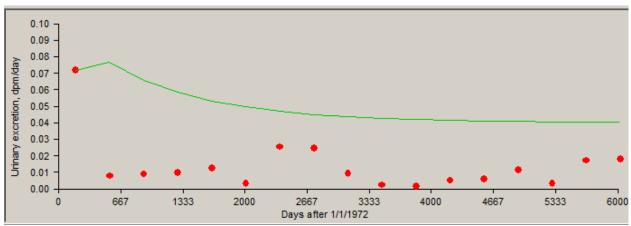


Figure B-88. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 50th percentile, all intakes periods, type S.

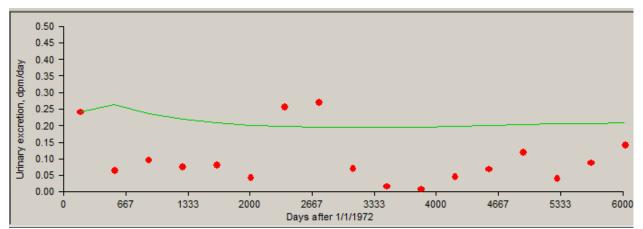


Figure B-89. Predicted thorium bioassay results calculated using IMBA-derived thorium intake rates (line) compared with bioassay results (dots), 84th percentile, all intakes periods, type S.

Table B-15.	Summary	of thorium	type S	intake rates
(dnm/d) and	dates			

(upin/u) and dates.						
Years	50%	84%	GSD	Adj GSD	95%	
1972	725.5	2,425	3.34	3.34	5,281.3	
1973–1989	15.9	133.7	8.41	8.41	527.9	