

ORAU TEAM Dose Reconstruction Project for NIOSH

Oak Ridge Associated Universities I Dade Moeller & Associates I MJW Corporation

Page 1 of 35

Document Title:		Document Number:	ORAUT-OTIB-0038	
Internal Dosimetry Coworker Data for		Revision:	00	
Rocky Flats	Environmental Technology	Effective Date:	08/03/2006	
Site		Type of Document:	OTIB	
		Supersedes:	None	
Subject Experts: Matthew Arno, Robert N. Cherry, and Joseph C. Lochamy				
Document Ow Approval:	ner <u>Signature on File</u> John M. Byrne, Task 3 Manager	Approval Date	e:07/26/2006	
Concurrence:	Signature on File Edward F. Maher, Task 5 Manager	Concurrence	Date: 07/26/2006	
Concurrence:	Signature on File Kate Kimpan, Project Director	Concurrence	Date: 07/27/2006	
Approval:	Signature on File James W. Neton, Associate Director for So	Approval Date	e: <u>08/03/2006</u>	
\boxtimes	New 🗌 Total Rewrite	Revision	Page Change	
FOR DOCUM	ENTS MARKED AS A TOTAL REWRITE, F	REVISION, OR PAGE CHAN	GE. REPLACE THE PRIOR	

REVISION AND DISCARD / DESTROY ALL COPIES OF THE PRIOR REVISION.

PUBLICATION RECORD

UMBER	DESCRIPTION
	New technical information bulletin for assigning Rocky Flats Environmental Technology Site internal doses based on coworker bioassay data. First approved issue. There is no change to the assigned dose and no PER is required. Training required: As determined by the Task Manager. Initiated by Robert M. Cherry, Matthew Arno, and Joseph C. Lochamy.
-	

TABLE OF CONTENTS

SECTION	TITLE	PAGE
Acronyms and Abbreviations		7
1.0 Introduction		8
2.0 Purpose		8
3.0 Data Overview3.1 Bioassay Data Selection3.2 Analysis		9
 4.0 Intake Modeling 4.1 Assumptions 4.2 Bioassay Fitting 4.3 Material Types 4.3.1 Uranium 4.3.2 Plutonium 		
5.0 Assigning Intakes and Doses5.1 Intake Rate Summary5.2 Dose Assignment		
References		15

LIST OF TABLES

TABLE

TITLE

<u>PAGE</u>

5-1	Derived uranium intake rate, 1953 to 1988	13
5-2	Derived plutonium intake rates, 1952 to 1988	
A-1	Summary of annual uranium urinary excretion rate analyses, 1953 to 1989	
A-2	Summary of annual plutonium urinary excretion rate analyses, 1952 to 1988	17
A-2	Summary of annual plutonium urinary excretion rate analyses, 1952 to 1988	18
A-3	²⁴¹ Am lung count bioassay data for individualized ²³⁹ Pu Type S fits	18
B-1	IMBA-derived uranium intake rates, dpm/day	
B-2	IMBA-derived plutonium/americium intake rates, Type M	33
B-3	IMBA-derived plutonium/americium intake rates, Type S	35

LIST OF FIGURES

FIGUR	<u>TITLE</u>	PAGE
B-1	Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1976, 50th-percentile, Type F	19
B-2	Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	
B-3	1/1/1977 to 12/31/1988, 50th-percentile, Type F Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots) from all	
B-4	intakes 1/1/1953 to 12/31/1988, 50th-percentile, Type F Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	
B-5	1/1/1953 to 12/31/1988, 84th-percentile, Type F Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	
B-6	1/1/1953 to 12/31/1976, 50th-percentile, Type M Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	
B-7	1/1/1977 to 12/31/1988, 50th-percentile, Type M Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots) from all	21
B-8	intakes 1/1/1953 to 12/31/1988, 50th-percentile, Type M Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	22
B-9	1/1/1953 to 12/31/1988, 84th-percentile, Type M Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	22
B-10	1/1/1953 to 12/31/1958, 50th-percentile, Type S Predicted uranium bioassay results (line) calculated using IMBA-derived U	23
B-11	intake rates compared with measured uranium-in-urine results (dots), 1/1/1959 to 12/31/1960, 50th-percentile, Type S Predicted uranium bioassay results (line) calculated using IMBA-derived U	23
B-12	intake rates compared with measured uranium-in-urine results (dots), 1/1/1961 to 12/31/1963, 50th-percentile, Type S Predicted uranium bioassay results (line) calculated using IMBA-derived U	24
B-13	intake rates compared with measured uranium-in-urine results (dots), 1/1/1964 to 12/31/1976, 50th-percentile, Type S Predicted uranium bioassay results (line) calculated using IMBA-derived U	24
B-14	intake rates compared with measured uranium-in-urine results (dots), 1/1/1977 to 12/31/1988, 50th-percentile, Type S Predicted uranium bioassay results (line) calculated using IMBA-derived U	25
B-15	intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1958, 84th-percentile, Type S Predicted uranium bioassay results (line) calculated using IMBA-derived U	25
	intake rates compared with measured uranium-in-urine results (dots), 1/1/1959 to 12/31/1960, 84th-percentile, Type S	26

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 5 of 35

B-16	Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	
B-17	1/1/1961 to 12/31/1963, 84th-percentile, Type S Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	26
	1/1/1964 to 12/31/1976, 84th-percentile, Type S	27
B-18	Predicted uranium bioassay results (line) calculated using IMBA-derived U intake rates compared with measured uranium-in-urine results (dots),	
	1/1/1977 to 12/31/1988, 84th-percentile, Type S	27
B-19	Predicted uranium bioassay results (line) calculated using IMBA-derived U	
	intake rates compared with measured uranium-in-urine results (dots) from all intakes 1/1/1953 to 12/31/1988, 50th-percentile, Type S	28
B-20	Predicted uranium bioassay results (line) calculated using IMBA-derived U	20
D-20	intake rates compared with measured uranium-in-urine results (dots) from all	
	intakes 1/1/1953 to 12/31/1988, 84th-percentile, Type S	28
B-21	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to	
	12/31/1961, 50th-percentile, Type M	29
B-22	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), 1/1/1962 to	
	12/31/1969, 50th-percentile, Type M	29
B-23	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), 1/1/1970 to	20
B-24	12/31/1979, 50th-percentile, Type M Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	30
D-24	intake rates compared with measured Pu-in-urine results (dots), 1/1/1980 to	
	12/31/1988, 50th-percentile, Type M	30
B-25	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to	
	12/31/1961, 84th-percentile, Type M	31
B-26	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), 1/1/1962 to	
	12/31/1969, 84th-percentile, Type M	31
B-27	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), 1/1/1970 to	20
B-28	12/31/1979, 84th-percentile, Type M Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	32
D-20	intake rates compared with measured Pu-in-urine results (dots), 1/1/1980 to	
	12/31/1988, 84th-percentile, Type M	32
B-29	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
2 20	intake rates compared with measured Pu-in-urine results (dots), from all	
	intakes 1/1/1952 to 12/31/1988, 50-percentile, Type M.	33
B-30	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), from all	
	intakes 1/1/1952 to 12/31/1988, 84th-percentile, Type M	33
B-31	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu	
	intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to	. .
	12/31/1988, 50-percentile, Type S.	
B-32	Predicted plutonium bioassay results (line) calculated using IMBA-derived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to	
	12/31/1988, 84th-percentile, Type S	3/1

Document No. ORAUT-OTIB-0038 Revision No. 00 Effective Date: 08/03/2006 Page 6	of 35

B-33	Predicted Am bioassay results (line) calculated using IMBA-derived Am	
	intake rates compared with measured Am lung burden results (dots),	
	1/1/1952 to 12/31/1988, 50th-percentile, Type S	35
B-34	Predicted Am bioassay results (line) calculated using IMBA-derived Am	
	intake rates compared with measured Am lung burden results (dots),	
	1/1/1952 to 12/31/1988, 84th-percentile, Type S	35

ACRONYMS AND ABBREVIATIONS

CEDR	Comprehensive Epidemiologic Data Resource
d DOE dpm	day Department of Energy disintegrations per minute
GSD	geometric standard deviation
hr	hour
ICRP IMBA IREP	International Commission on Radiological Protection Integrated Modules for Bioassay Analysis NIOSH Interactive RadioEpidemiological Program
mL µg	milliliter microgram
nCi NIOSH	nanocurie National Institute for Occupational Safety and Health
OCAS	Office of Compensation and Analysis
pCi PoC ppm	picocurie Probability of Causation parts per million
RFETS	Rocky Flats Environmental Technology Site
ТІВ	Technical Information Bulletin (also OTIB)

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 8 of 35
------------------------------	-----------------	----------------------------	--------------

1.0 INTRODUCTION

Technical Information Bulletins (TIBs) are general working documents that provide guidance concerning the preparation of dose reconstructions at particular sites or categories of sites. They will be revised in the event additional relevant information is obtained. TIBs may be used to assist the National Institute for Occupational Safety and Health in the completion of individual dose reconstructions.

In this document the word "facility" is used as a general term for an area, building, or group of buildings that served a specific purpose at a site. It does not necessarily connote an "atomic weapons employer facility" or a "Department of Energy¹ [DOE] facility" as defined in the Energy Employees Occupational Illness Compensation Program Act of 2000 [42 U.S.C. § 7384I(5) and (12)].

Analysis of Coworker Bioassay Data for Internal Dose Assignment (ORAUT 2004a) describes the general process used to analyze bioassay data for assigning doses to individuals based on coworker results. *Coworker Data Exposure Profile Development* (ORAUT 2004b) describes the approach and processes to be used to develop reasonable exposure profiles based on available dosimetric information for workers at DOE sites.

Bioassay results were obtained through the Comprehensive Epidemiologic Data Resource (CEDR), formerly a DOE public-use repository of data from occupational and environmental health studies of workers at DOE facilities and nearby communities. In 1990, the Department of Health and Human Services assumed responsibility for many aspects of the epidemiology programs and now provides CEDR data. The CEDR database used here contains approximately 300,000 bioassay records from Rocky Flats Environmental Technology Site (RFETS) and includes measurements for uranium, plutonium, and americium for the years 1952 through 1988. Based on a spot check, this data set coincides well with original RFETS paper records. It is appropriate for use only at RFETS. Furthermore, the database is representative of worker bioassay results at RFETS during a substantial part of the operating cycle at this site. However, its use is only appropriate for the specific time periods and radionuclides discussed later in this document.

The database results were labeled with units that varied among the radionuclides, analysis techniques, and measurement period. These units usually were disintegrations per minute per 24 hr but, for example, depleted uranium bioassay results were reported in units of micrograms per 24 hr from 1952 until April 1964. The specific units for each radionuclide are provided in the appropriate sections of this document.

A statistical analysis of the data was performed according to ORAUT (2004a) and its implementing procedure, ORAUT (2005). The results were entered in the Integrated Modules for Bioassay Analysis (IMBA) Expert[™] Office of Compensation and Analysis (OCAS)-Edition computer software to obtain intake rates for assigning dose distributions.

2.0 <u>PURPOSE</u>

Some employees at DOE sites were not monitored for internal ionizing radiation exposure or the records of such monitoring are incomplete or unavailable. In such cases, data from monitored coworkers can be used to estimate an individual's possible exposure. The purpose of this TIB is to

¹ References to DOE in this document include DOE and its predecessor agencies: the Manhattan Engineer District (1942 to 1946), the U.S. Atomic Energy Commission (1947 to 1975), the Energy Research and Development Administration (1975 to 1977), and DOE (1977 to the present).

Document No. ORAUT-OTIB-0038 Rev	vision No. 00 Effecti	ive Date: 08/03/2006	Page 9 of 35
----------------------------------	-------------------------	----------------------	--------------

provide monitored coworker information for calculating and assigning occupational internal doses to employees at RFETS for whom no or insufficient bioassay monitoring records exist.

3.0 DATA OVERVIEW

This section provides information on the general selection characteristics of the data and the methods of analysis. More detailed radionuclide-specific information is provided in section 4.

3.1 BIOASSAY DATA SELECTION

Urinalysis data for uranium and plutonium from 1952 to 1988 were extracted from a Microsoft[®] Access table named "RFFACW02_BIOASSAY." There were just over 300,000 records in the urinalysis database. Four cases had a date prior to 1952: one each in 1950 and 1951 and two that appeared to be date errors (years incorrectly entered as 1911 and 1923).

In most cases, both the uranium and plutonium results were recorded as dpm/24 hr. However, the depleted uranium units are date-dependent: through April 1964 the units were μ g/24 hr; from May 1964 to 1988, the units were dpm/24 hr. Micrograms of uranium were converted to dpm by a 0.89 multiplier determined from the isotopic abundances specified for depleted uranium in IMBA. Once converted to dpm, the uranium data were assumed to be entirely U-234. See section 4.1 for additional discussion on using U-234 for the analyses.

All of the uranium and plutonium urinalysis results were recorded either as positive numbers or zeros. In general, a zero entry meant the result was less than some reporting level; however, after April 6, 1970, actual results were reported according to *Technical Basis Document for the Rocky Flats Plant* – *Occupational Internal Dose* (ORAUT 2004c). Zeros were reported in 176,900 records, a little over half of the results for all measurements. The technical basis document (TBD; ORAUT 2004c) states that uranium and plutonium urinalysis data with a "1" flag in the "nocalc" column of the database (about 2,500 records out of roughly 300,000) should be (and were) excluded from analysis because the data did not meet quality objectives.

*In vivo*²⁴¹Am lung data from 1965 to 1988 were extracted from a Microsoft[®] Access table named "RFFACW02_RFWB." There were just fewer than 80,000 ²⁴¹Am records in the lung database. From 1965 through 1971, all results (about 4,000) were reported as zero, with no explanation of what those values might have meant. Therefore, no analyses were performed on those data. Furthermore, the TBD (ORAUT 2004c) mentions that the ²⁴¹Am activities were quantified only if a known plutonium incident occurred. However, the TBD also says that results were sometimes recorded (in counts per minute) when no known incident had occurred. Some results were also recorded in micrograms or nanocuries. Thus, careful interpretation of the data units was imperative. After 1971, positive values began to appear but there still were no exclusion instructions for when 0 values were reported. (See the "nocalc" discussion above.) Therefore, 0 results were treated as zeros because no better information was available. Calculations of the lung plutonium values recorded with the ²⁴¹Am lung data were determined by using the ²⁴¹Am data and an assumed concentration of 100 ppm (by weight) of ²⁴¹Am in the plutonium.

In both the urinalysis and lung counting data sets, badge numbers (column "ID") are associated with most records. However, in the urinalysis data, 55,200 records had a "0" in the badge-number column. It was not determined what a "0" badge ID meant other than, perhaps, to identify unbadged personnel. For the urinalysis data, about 34,000 of the "0" badges were plutonium records; 15,000 were gross alpha, "A;" and 6,000 were "U". It was decided to treat "0" badge numbers as one individual when

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 10 of 35
------------------------------	-----------------	----------------------------	---------------

counting the number of unique individuals in any period. The "sdate" column provided the date of each analysis in YYMMDD order.

3.2 ANALYSIS

Bioassay data were analyzed by quarter or year, depending on the amount of data available during the periods. A lognormal distribution was assumed. As mentioned in the previous section, a large fraction of the uranium and plutonium urinalysis data were entered as zeros. In many cases, this fact made analysis of the data difficult, since so few positive values were reported. Thus, where a reporting level was specified in the site Technical Basis Document (ORAUT 2004c) and where zeros were inserted for the actual values (below the reporting level) in the original data, a linear distribution between zero and the reporting level was substituted for the zeros. The linear distribution had the form, c/n, 2c/n, 3c/n,..., nc/n, where n is the number of zero values less than the reporting level, c. Using R² as the goodness-of-fit criterion, this linear distribution (alone) fits a lognormal transformation by better than 80% and typically significantly improves the goodness of fit for the entire data set. Furthermore, the linear distribution has an average equal to half of the reporting value, consistent with the general dose reconstruction practice of assigning half of the lower limit of detection for missed dose calculations. Consequently, substituting a linear distribution for these zero entries appears reasonable.

Whenever a linear distribution was substituted for values below a reporting level, the reporting levels given in the version of ORAUT (2004c) used to develop this document were used. For enriched uranium, these reporting levels were 8.8 dpm/24 hr through 1963, and 20-28 dpm/24 hr after 1963. For depleted uranium, the reporting levels were 5.8 dpm/24 hr through April 1964, 20-28 dpm for May 1964-79, and actual measured values thereafter. For plutonium, these reporting levels were 0.88 dpm/24 hr through 1961, 0.2 dpm/24 hr for 1962-April 1970, and actual measured values after April 1970. The reporting level fro gross alpha through 1963 was 8.8 dpm/24 hr (assigned as enriched uranium) and 0.9 dpm/24 hr thereafter (assigned as plutonium). No reporting level was given for americium-in-lung measurements.

After log transforming the data, the 50th and 84th percentiles were determined for each period using the method described in ORAUT (2004a). Tables A-1, A-2, and A-3 in Attachment A show the statistical analysis results for uranium, plutonium, and ²⁴¹Am, respectively.

4.0 INTAKE MODELING

This section discusses intake modeling assumptions, intake fitting, and the intake materials (uranium and plutonium).

4.1 ASSUMPTIONS

Each result used in the intake calculations was assumed to be normally distributed. A uniform absolute error of 1 was applied to all results, thus assigning the same weight to each result. IMBA requires results to be in units of activity per day; therefore, all urinalysis results were normalized, as needed, to 24-hr samples, using 1,400 mL, the volume of urine excreted by Reference Man in a 24-hr period.

Because of the nature of work at RFETS, it is possible that intakes could have been either chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and were assumed to occur through inhalation, using a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution.

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 11 of 35
------------------------------	-----------------	----------------------------	---------------

For intake modeling purposes, all uranium activity was assumed to be ²³⁴U. This assumption does not affect the fitting of the data for intake determination because all uranium isotopes behave the same biokinetically and the isotopes considered in this analysis all have long half-lives in relation to the assumed intake period. International Commission on Radiological Protection (ICRP) Publication 68 dose coefficients (also referred to as dose conversion factors) for ²³⁴U are 7% to 31% larger than those for ²³⁵U, ²³⁶U, and ²³⁸U (ICRP 1995). Therefore, the assumption that the intake is 100% ²³⁴U provides a claimant-favorable result.

For plutonium, ²³⁹Pu was assumed for the intake modeling. Prior to the mid-1970s, plutonium urinalysis was performed by chemical separation followed by the counting of all alpha-emitting isotopes of plutonium (i.e., ²³⁸Pu, ²³⁹Pu, and ²⁴⁰Pu). In the mid-1970s, alpha spectroscopy was used to differentiate between the various alpha-emitting plutonium isotopes. For this modeling, the gross-plutonium alpha results are assumed to represent only alphas from ²³⁹Pu, which results in approximately a 2% overestimate of the modeled intakes. This assumption is made to enable consistent modeling of data from both types of urinalysis.

Starting in 1972, lung counts were performed to determine the lung burden of ²⁴¹Am. These lung counts can be used to determine the intake of plutonium. For each plutonium material type, the more limiting value of the intakes as determined by the americium lung counts or plutonium urinalysis was used. Use of the higher value (from the less sensitive bioassay method for a given material type) would be inconsistent with the available bioassay records since a higher intake would result in higher-than-observed bioassay results from the more sensitive bioassay method.

4.2 BIOASSAY FITTING

The IMBA Expert OCAS-Edition computer program was used to fit the bioassay results to a series of inhalation intakes. Data from 1952 through 1988 were fit as a series of chronic intakes.

The intake assumptions were based on patterns observed in the bioassay data. Periods with constant chronic intake rates were chosen by selecting periods where the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, 1952 through 1988 was divided into multiple chronic intake periods.

4.3 MATERIAL TYPES

ORAUT (2004c) discusses Rocky Flats internal dosimetry data for the dose reconstructor, including guidance for the appropriate use of that information. Workers at Rocky Flats had the potential to receive intakes of plutonium, americium, enriched uranium, and depleted uranium. Site-specific internal dosimetry information for other radionuclides is rare or not available (ORAU 2004c).

4.3.1 <u>Uranium</u>

Because the uranium isotopes present at RFETS have very long radiological half-lives, and the material is retained in the body for long periods, excretion results are not independent. For example, an intake in the 1950s could contribute to urinary excretion in the 1980s and later. To avoid potential underestimation of intakes for people who worked at RFETS for relatively short periods, each chronic intake was fit independently, using only the bioassay results from the single intake period for Type S solubility. For Type M and F solubility, this approach was used where it was determined that earlier intake rates significantly biased later intake rates. This method will result in an overestimate of intakes for exposures extending through multiple assumed intake periods. Only the results within the

intake period were selected for use in fitting each period. Excluded results are shown in light gray in the figures in Attachment B.

Uranium urinalysis results were analyzed with IMBA to derive intake rates for 1953 to 1988. Excretion data are shown in Table A-1. The solid lines in Figures B-1 and B-2 show the individual fits to the 50th-percentile excretion rates for type F material. Figure B-3 is the combined fit for all the intake periods. Figure B-4 shows the overall fit to the 84th-percentile excretion rates for type F material. The same intake periods were applied for both percentiles because the values followed a similar pattern. Similarly, Figures B-5 and B-6 show the individual fits to the 50th-percentile excretion rates for type M material. Figure B-7 is the combined fit for all the intake periods. Figure B-8 shows the overall fit to the 84th-percentile excretion rates for type M material. Figures B-9 to B-13 and B-14 to B-18 show the individual fits to the 50th-and 84th-percentile predicted excretion rates, respectively. Figures B-19 and B-20 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type S intakes. Table B-1 tabulates the derived intake rates for Types F, M, and S materials at both the 50th and 84th percentiles levels along with the associated GSDs.

4.3.2 <u>Plutonium</u>

Plutonium urinalysis results were analyzed with IMBA using type M and S materials to derive intake rates for 1952 to 1988. Type M intakes should be applied to all systemic organs. Type S must be considered for non-systemic (i.e., lung and GI tract) cancers.

Plutonium Type M—The solid lines in Figures B-21 to B-24 and B-25 to B-28 show the individual fits to the 50th- and 84th-percentile excretion rates for type M materials, respectively. The same intake periods were applied for both percentiles because the values followed a similar pattern. Figures B-29 and B-30 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type M intakes. In addition, intake rates for Type M plutonium based on lung counting measurements of the associated americium-241 were also derived. The plutonium urinalysis results were determined to be more limiting and thus were used for the final values. Table B-2 lists the 50th percentile and 84th percentile intake rates along with the associated GSD determined from plutonium urinalysis. For comparison, the intake rate determined from the americium lung counts at the 50th percentile level are also given.

Plutonium Type S—Because type S plutonium clears slowly from the lungs, the plutonium exposure was fit as a single chronic intake based on the bioassay measurements from 1983 through 1988. This period was used because the measurements were relatively consistent; in addition, as the most recent measurements, they had the lowest minimum detectable activity and, therefore, are presumably the most accurate. During this time, the plutonium urinalysis results were more limiting for type S intakes and were, therefore, used to determine these intakes. Figures B-31 and B-32 show the 50th- and 84th-percentile predicted plutonium 50th- and 84th-percentile excretion rates, respectively. Figures B-33 and B-34 show the corresponding predicted ²⁴¹Am lung burdens, respectively, for comparison to the lung count data. Table B-3 lists the 50th percentile and 84th percentile intake rates along with the associated GSD determined from the plutonium urinalysis. For comparison, the intake rate determined from the americium lung count results at the 50th percentile level are also given.

The type S intake rate can only be used as an *underestimate*. If an *overestimate* or best estimate is needed for type S material, an individualized fit to the bioassay data for the specific work period of the energy employee being evaluated must be performed. Tables A-2 and A-3 provide the bioassay data to be used to perform the individualized fit.

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 13 of 35

5.0 ASSIGNING INTAKES AND DOSES

This section describes the derived intake rates and provides guidance for assigning doses.

5.1 INTAKE RATE SUMMARY

Five intake periods were fit to the derived 50th- and 84th-percentile uranium excretion data. Table 5-1 summarizes the derived uranium intake rates that produced the fits. Where the geometric standard deviation was less than 3, the value was set to a minimum of 3 to account for biological variation when determining dose. Subsequently, because many of the GSDs were relatively similar, they were further combined and the largest value within a given timeframe was assigned for simplicity. Actual GSDs are provided in Tables B-1 through B-3 located in Appendix B after Figures B-20, B-30, and B-34 respectively.

	Type F	material	terial Type M material		Type S material	
	50th	Geometric	50th	50th Geometric		Geometric
	percentile	standard	percentile	standard	percentile	standard
Period	(dpm/d)	deviation	(dpm/d)	deviation	(dpm/d)	deviation
1953-1958	13.37	3.48	54.8	3.38	937	3.36
1959	19.7	3.48	103	3.38	2,770	3.36
1960	27.23	3.48	103	3.38	2,770	3.36
1961	21.62	3.48	71.9	3.38	1,680	3.36
1962	16.27	4.05	71.9	3.38	1,680	3.36
1963	16.27	3.48	71.9	3.38	1,680	3.36
1964	27.26	3.48	113	3.38	1,630	3.36
1965-1976	27.26	3.48	113	3.38	1,630	3.36
1977-1988	0.597	5.03	2.44	3.38	28.6	5.4

Table 5-1. Derived uranium intake rates, 1953 to 1988.

Four intake periods were fit to the data for type M material and one was fit for type S material to the derived 50th- and 84th-percentile plutonium excretion and americium lung burden data. Table 5-2 summarizes the derived plutonium intake rates that produced the fits. Where the geometric standard deviation was less than 3, the value was set to 3. Because of the interdependence between the bioassay results, it is not possible to fit type S plutonium to the data in a manner that would be representative of all individuals for all time periods. Therefore, only a minimizing intake has been calculated for type S plutonium. Type M plutonium should be applied for all systemic organs.

	Type M material				
	50th percentile	Geometric standard			
Period	(dpm/d)	deviation			
1952-1961	121	3			
1962-1969	43.5	3			
1970-1979	7.05	4.23			
1980-1988	1.62	5.49			
	Type S mate	rial (underestimate)			
	50th percentile	Geometric standard			
Period	(dpm/d)	deviation			
1952-1988	8.142	5.39			

Table 5-2. Derived plutonium intake rates, 1952 to 1988.

For *non-systemic* (respiratory and GI tracts) organs, the following shall be done:

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 14 of 35
------------------------------	-----------------	----------------------------	---------------

- 1. Run the type M intakes. If this action does not result in a PoC >50% (which is determined by the Department of Labor),
- 2. Run the minimizing type S intake. If this action still does not yield a PoC >50% then
- 3. Manually fit the coworker bioassay data for the time frame of interest for the employee, using the assumption of type S material.

Standard fitting techniques should be used to fit the plutonium urinalysis and americium lung count data from the employee's work period contained in Tables A-2 and A-3. Acute or chronic intakes can be assigned, depending on the patterns in the data. Both the 50th- and 84th-percentile data must be fit using the same intake dates or periods; the 50th-percentile intakes are used to assign the intake and the 84th-percentile is used to determine the GSD for each intake. For input into IREP, the dose from each intake must be determined separately.

4. The more claimant-favorable doses from the type M and S fits should be assigned.

5.2 DOSE ASSIGNMENT

For most cases, doses to be assigned to individuals are calculated from the 50th-percentile intake rates. Dose reconstructors should select the material type that is the most claimant-favorable.

The lognormal distribution is selected in the NIOSH Interactive RadioEpidemiological Program (IREP), with the calculated dose entered as Parameter 1 and the associated GSD as Parameter 2. The GSD is associated with the intake, so it is applied to all annual doses determined from the intake period.

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 15 of 35
------------------------------	-----------------	----------------------------	---------------

REFERENCES

- ICRP (International Commission on Radiological Protection), 1995, *Dose Coefficients for Intakes of Radionuclides by Workers*, Publication 68, Pergamon Press, Oxford, England.
- ORAUT (Oak Ridge Associated Universities Team), 2004a, *Analysis of Coworker Bioassay Data for Internal Dose Assignment*, ORAUT-OTIB-0019, Rev. 00, Oak Ridge, Tennessee.
- ORAUT (Oak Ridge Associated Universities Team), 2004b, *Coworker Data Exposure Profile Development*, ORAUT-PLAN-0014, Rev. 00, Oak Ridge, Tennessee.
- ORAUT (Oak Ridge Associated Universities Team), 2004c, *Technical Basis Document for the Rocky Flats Plant – Occupational Internal Dose*, ORAUT-TKBS-0011-5, Oak Ridge, Tennessee.
- ORAUT (Oak Ridge Associated Universities Team), 2005, Generating Summary Statistics for Coworker Bioassay Data, ORAUT-PROC-0095, Rev. 00, Oak Ridge, Tennessee.

ATTACHMENT A. COWORKER DATA TABLES

Table A-1.	Summar	y of uraniur	n urinary excreti	ion rate an	alyses, 19	53 to 1988
	50th				50th	
Effective	percentile	84th		Effective	percentile	84th
sample	(dpm/24	percentile		sample	(dpm/24	percentile
date	hr)	(dpm/24 hr)		date	hr)	(dpm/24 hr)
7/1/1953	3.727	10.008		11/15/1964	8.297	23.535
2/15/1954	3.866	10.362		7/1/1965	7.823	20.789
5/15/1954	4.161	11.472		7/1/1966	7.432	18.360
8/15/1954	3.732	10.074		7/1/1967	7.445	18.440
11/15/1954	3.409	9.389		7/1/1968	7.430	18.459
2/15/1955	3.225	9.019		7/1/1969	7.509	18.518
5/15/1955	3.333	9.487		7/1/1970	7.440	18.275
8/15/1955	3.434	9.406		7/1/1971	7.421	18.131
11/15/1955	3.442	9.875		7/1/1972	7.316	18.176
2/15/1956	3.310	9.039		7/1/1973	7.403	18.059
5/15/1956	3.497	9.843		7/1/1974	7.388	18.084
8/15/1956	3.635	10.213		7/1/1975	7.378	18.104
11/15/1956	3.302	9.121		7/1/1976	7.418	18.037
2/15/1957	3.460	9.894		7/1/1977	0.172	0.538
5/15/1957	3.492	10.173		7/1/1978	0.893	2.355
8/15/1957	3.655	10.781		7/1/1979	0.444	2.037
11/15/1957	3.700	10.996		7/1/1980	0.241	1.049
2/15/1958	4.089	12.575		7/1/1981	0.178	1.109
5/15/1958	3.739	10.593		2/15/1982	0.237	1.152
8/15/1958	3.907	11.266		5/15/1982	0.062	0.677
11/15/1958	4.705	14.316		8/15/1982	0.016	0.211
2/15/1959	4.381	13.159		11/15/1982	0.112	0.741
5/15/1959	5.518	17.908		2/15/1983	0.221	1.062
8/15/1959	5.544	16.566		5/15/1983	0.432	1.330
11/15/1959	5.887	19.134		8/15/1983	0.327	1.576
2/15/1960	8.806	33.071		11/15/1983	0.072	0.646
5/15/1960	6.856	22.227		2/15/1984	0.273	1.400
8/15/1960	7.476	24.214		5/15/1984	0.221	1.330
11/15/1960	6.602	23.668		8/15/1984	0.133	0.997
2/15/1961	5.944	20.258		11/15/1984	0.065	0.464
5/15/1961	5.722	18.628		2/15/1985	0.034	0.410
8/15/1961	5.574	18.290		5/15/1985	0.030	0.281
11/15/1961	6.598	22.669		8/15/1985	0.040	0.511
2/15/1962	5.862	20.451		11/15/1985	0.037	0.415
5/15/1962	4.692	15.380		2/15/1986	0.029	0.357
8/15/1962	5.654	16.742		5/15/1986	0.033	0.339
11/15/1962	4.397	13.827		8/15/1986	0.018	0.207
2/15/1963	4.166	13.230		11/15/1986	0.022	0.316
5/15/1963	4.175	13.154		7/1/1987	0.057	0.467
8/15/1963	3.841	12.283		7/1/1988	0.059	0.412
11/15/1963	3.601	11.507			0.000	V.TIA
2/15/1964	6.354	18.506				
5/15/1964	8.368	23.389				
8/15/1964	8.161	22.172				
	0.101		l			

Table A 1	Cummon	v of uropium	urinony	overstion	roto opolyor	es, 1953 to 1988.
I dule A-I.	Summary	v ol ulaniun	unnarv	excletion		25. 1900 10 1900.
			· • · · · · • • · · · · · · · · · · · ·			

All results shown in **bold** are annual averages rather than quarterly averages.

		ry or plutor
Effective	50th	84th
sample	percentile	percentile
date	(dpm/24 hr)	(dpm/24 hr)
7/1/1952	2.514	8.198
7/1/1953	0.716	1.046
7/1/1954	0.575	1.053
7/1/1955	0.469	0.919
7/1/1956	0.615	1.264
7/1/1957	2.610	12.006
2/15/1958	2.173	10.041
5/15/1958	1.037	2.872
8/15/1958	1.295	3.801
11/15/1958	0.919	2.581
2/15/1959	0.709	1.542
5/15/1959	0.942	2.276
8/15/1959	0.945	2.482
11/15/1959	0.560	1.211
2/15/1960	0.614	1.353
5/15/1960	0.596	1.221
8/15/1960	0.453	0.955
11/15/1960	0.573	1.528
2/15/1961	0.728	1.625
5/15/1961	0.691	1.377
8/15/1961	0.754	2.035
11/15/1961	0.656	1.645
2/15/1962	0.337	0.809
5/15/1962	0.326	0.735
8/15/1962	0.271	0.589
11/15/1962	0.220	0.431
2/15/1963	0.250	0.467
5/15/1963	0.248	0.496
8/15/1963		0.432
	0.238	
11/15/1963	0.252	0.562
2/15/1964	0.296	0.810
5/15/1964	0.249	0.483
8/15/1964	0.379	1.668
11/15/1964	0.334	1.066
2/15/1965	0.283	0.757
5/15/1965	0.348	1.085
8/15/1965	0.221	0.417
11/15/1965	0.266	0.646
2/15/1966	0.293	0.821
5/15/1966	0.237	0.554
8/15/1966	0.213	0.430
	0.213	0.625
11/15/1966		
2/15/1967	0.251	0.622
5/15/1967	0.240	0.565
8/15/1967	0.199	0.413
11/15/1967	0.236	0.535
2/15/1968	0.228	0.526
5/15/1968	0.205	0.461
8/15/1968	0.252	0.585
11/15/1968	0.278	0.724
2/15/1969	0.292	0.692
5/15/1969	0.266	0.606
8/15/1969	0.240	0.519
11/15/1969	0.264	0.558
2/15/1970	0.242	0.515
5/15/1970	0.165	0.623
8/15/1970	0.100	0.423
11/15/1970	0.120	0.470
2/15/1971	0.091	0.366
5/15/1971	0.055	0.209
8/15/1971	0.073	0.293
11/15/1971	0.061	0.249
11/13/18/1	0.001	0.243

rate analyses, 1952 to 1988.						
Effective		84th				
sample	•	percentile				
date	(dpm/24 hr)					
2/15/1972		0.398				
5/15/1972		0.442				
8/15/1972		0.199				
11/15/197	2 0.028	0.168				
2/15/1973	3 0.024	0.145				
5/15/1973	3 0.033	0.180				
8/15/1973	3 0.067	0.305				
11/15/197	73 0.061	0.268				
2/15/1974	0.060	0.224				
5/15/1974	0.049	0.189				
8/15/1974	0.033	0.144				
11/15/197	74 0.016	0.109				
2/15/1975	0.021	0.104				
5/15/1975	5 0.019	0.095				
8/15/1975		0.200				
11/15/197	75 0.015	0.097				
2/15/1976		0.144				
5/15/1976		0.102				
8/15/1976		0.104				
11/15/197		0.184				
2/15/1977		0.262				
5/15/1977		0.245				
8/15/1977		0.190				
11/15/197		0.188				
2/15/1978		0.307				
5/15/1978		0.199				
8/15/1978		0.195				
11/15/197		0.134				
2/15/197		0.134				
		0.237				
5/15/1979						
8/15/1979		0.087				
11/15/197	79 0.029	0.139				
2/15/1980		0.106				
5/15/1980		0.064				
8/15/1980		0.061				
11/15/198		0.035				
2/15/1981		0.037				
5/15/1981		0.006				
8/15/1981		0.036				
11/15/198		0.056				
2/15/1982						
5/15/1982						
8/15/1982	2 1.37E-04	0.004				
11/15/198		0.006				
2/15/1983		0.017				
5/15/1983		0.008				
8/15/1983		0.016				
11/15/198		0.029				
2/15/1984		0.050				
5/15/1984		0.222				
8/15/1984		0.071				
11/15/198		0.196				
2/15/1985		0.080				
5/15/1985	0.025	0.100				
8/15/1985	5 0.014	0.081				
11/15/198	0.017	0.100				
2/15/1986		0.033				
5/15/1986	6 0.004	0.038				
8/15/1986		0.038				
11/15/198		0.042				
2/15/1987		0.030				
5/15/1987		0.036				

Document No. ORAUT-OTIB-0038	Revision No. 00	Effective Date: 08/03/2006	Page 18 of 35
			1 490 10 01 00

Table A-2 (Continued).	Summary of plutonium urinary excretion r	ate analyses, 1952 to
1988.		-

Effective	50th	84th	Effective	50ti
sample	percentile	percentile	sample	percentile
date	(dpm/24 hr)	(dpm/24 hr)	date	(dpm/24 hr)
3/15/1987	0.008	0.051	5/15/1988	0.002
11/15/1987	0.008	0.050	8/15/1988	0.005
2/15/1988	0.003	0.032	11/15/1988	0.006

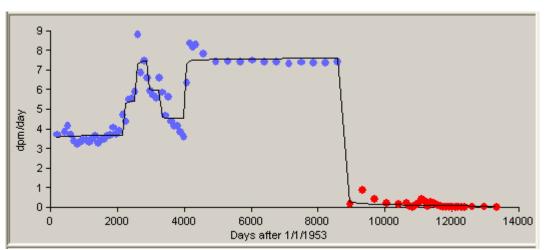

All results shown in **bold** are annual averages rather than quarterly averages. Very large results for: badge 395943 excluded from 1964-1965; badges 164455 and 184168 excluded from quarter 3, 1971; 164455 and 184169 excluded from quarter 4, 1971; badge 184106 excluded from quarter 2, 1976. Results for quarter 2, 1981, all of 1982, and quarter 2, 1983 were not used in calculations—too few results.

Table A-3. ²⁴¹Am lung count bioassay data for individualized ²³⁹Pu Type S fits

Effective	50 th percentile	84 th percentile
Sample date	(nCi)	(nCi)
7/1/1972	6.73E-05	0.003
2/15/1973	0.005	0.059
5/15/1973	0.010	0.107
8/15/1973	0.025	0.188
11/15/1973	0.009	0.095
2/15/1974	0.005	0.067
5/15/1974	0.007	0.080
8/15/1974	0.007	0.079
11/15/1974	0.007	0.079
2/15/1975	0.017	0.150
5/15/1975	0.027	0.180
8/15/1975	0.039	0.244
11/15/1975	0.048	0.278
2/15/1976	0.043	0.261
5/15/1976	0.044	0.254
8/15/1976	0.017	0.133
11/15/1976	0.012	0.111
2/15/1977	0.010	0.097
5/15/1977	0.008	0.082
8/15/1977	0.007	0.061
11/15/1977	0.004	0.051
2/15/1978	0.008	0.083
5/15/1978	0.007	0.070
8/15/1978	0.007	0.066
11/15/1978	0.004	0.045
7/1/1979	0.012	0.108
2/15/1980	0.026	0.195
5/15/1980	0.020	0.159
8/15/1980	0.021	0.171
11/15/1980	0.027	0.207
2/15/1981	0.018	0.151
5/15/1981	0.016	0.140

u	ualized ²⁰⁰ Pu Type S fits.							
	Effective	50 th percentile	84 th percentile					
	Sample date	(nCi)	(nCi)					
	8/15/1981	0.016	0.138					
	11/15/1981	0.016	0.136					
	2/15/1982	0.013	0.126					
	5/15/1982	0.011	0.111					
	8/15/1982	0.010	0.102					
	11/15/1982	0.009	0.081					
	2/15/1983	0.006	0.066					
	5/15/1983	0.002	0.031					
	8/15/1983	0.005	0.055					
	11/15/1983	0.008	0.063					
	2/15/1984	0.005	0.058					
	5/15/1984	0.006	0.058					
	8/15/1984	0.005	0.054					
	11/15/1984	0.008	0.067					
	2/15/1985	0.004	0.042					
	5/15/1985	0.005	0.051					
	8/15/1985	0.003	0.035					
	11/15/1985	0.003	0.037					
	2/15/1986	0.004	0.049					
	5/15/1986	0.007	0.054					
	8/15/1986	0.005	0.057					
	11/15/1986	0.004	0.043					
	2/15/1987	0.008	0.072					
	5/15/1987	0.005	0.051					
	8/15/1987	0.009	0.091					
	11/15/1987	0.009	0.072					
	2/15/1988	0.006	0.061					
	5/15/1988	0.008	0.073					
	8/15/1988	0.005	0.043					
	11/15/1988	0.004	0.042					

All results shown in **bold** are annual averages rather than quarterly averages.

ATTACHMENT B. COWORKER DATA FIGURES

Figure B-1. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1976, 50th-percentile, Type F.

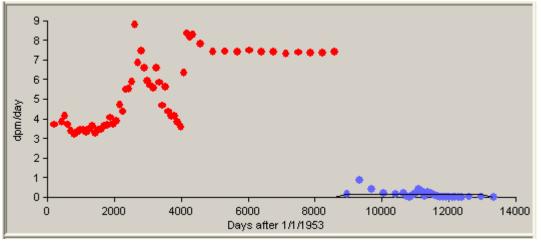


Figure B-2. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1977 to 12/31/1988, 50th-percentile, Type F.

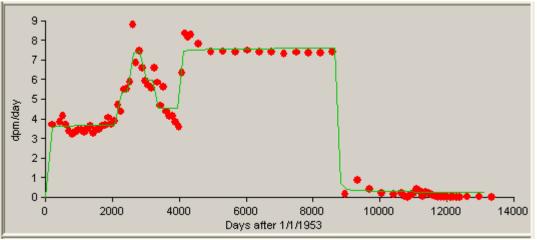


Figure B-3. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots) from all intakes 1/1/1953 to 12/31/1988, 50th-percentile, Type F.

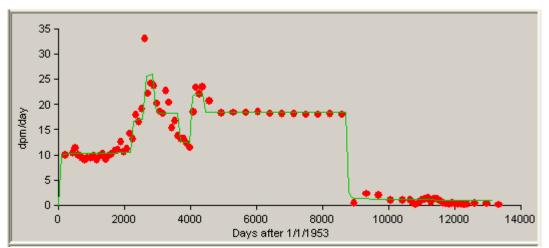


Figure B-4. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1988, 84th-percentile, Type F.

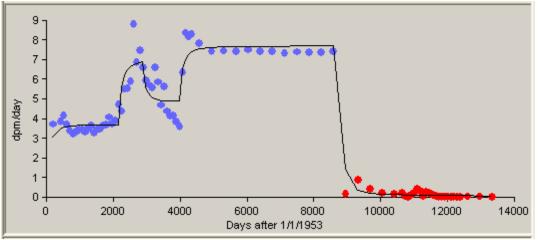


Figure B-5. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1976, 50th-percentile, Type M.

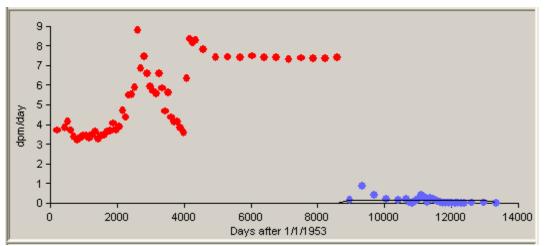


Figure B-6. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1977 to 12/31/1988, 50th-percentile, Type M.

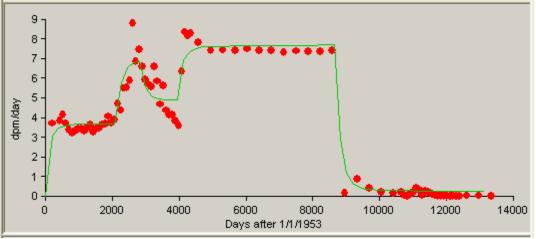


Figure B-7. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots) from all intakes 1/1/1953 to 12/31/1988, 50th-percentile, Type M.

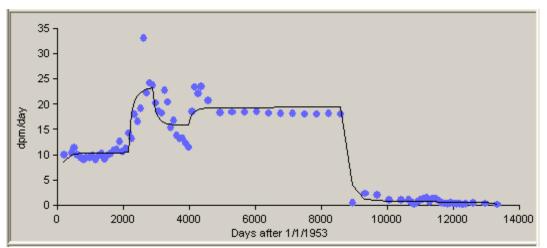


Figure B-8. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1988, 84th-percentile, Type M.

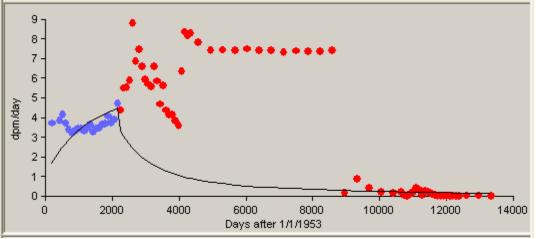


Figure B-9. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1958, 50th-percentile, Type S.

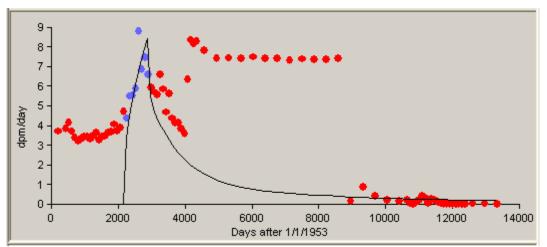


Figure B-10. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1959 to 12/31/1960, 50th-percentile, Type S.

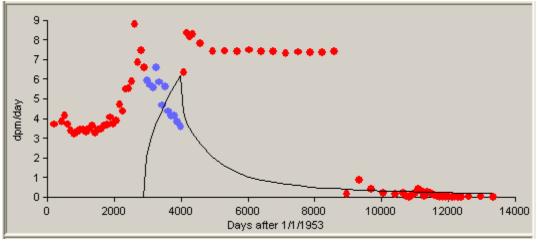


Figure B-11. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1961 to 12/31/1963, 50th-percentile, Type S.

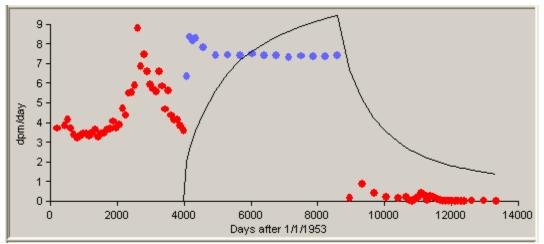


Figure B-12. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1964 to 12/31/1976, 50th-percentile, Type S.

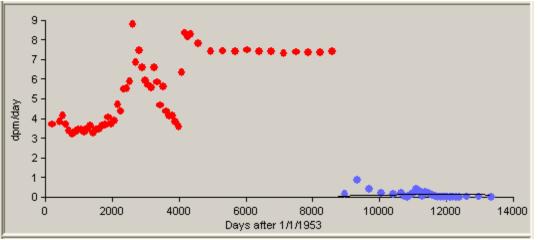


Figure B-13. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1977 to 12/31/1988, 50th-percentile, Type S.

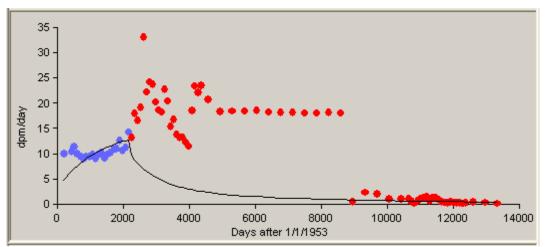


Figure B-14. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1953 to 12/31/1958, 84th-percentile, Type S.

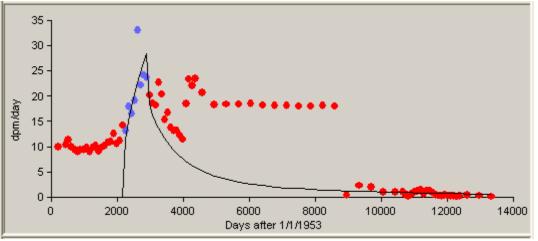


Figure B-15. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1959 to 12/31/1960, 84th-percentile, Type S.

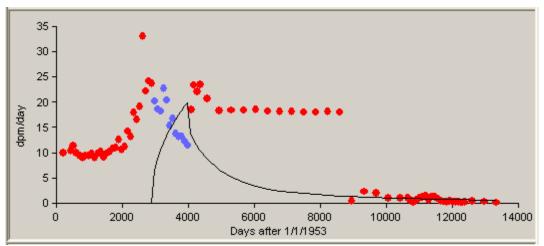


Figure B-16. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1961 to 12/31/1963, 84th-percentile, Type S.

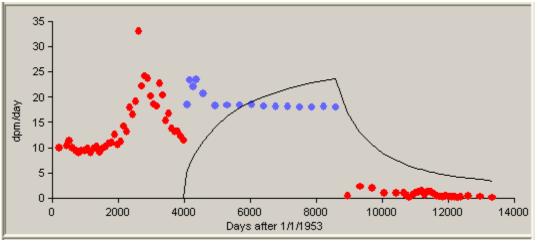


Figure B-17. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1964 to 12/31/1976, 84th-percentile, Type S.

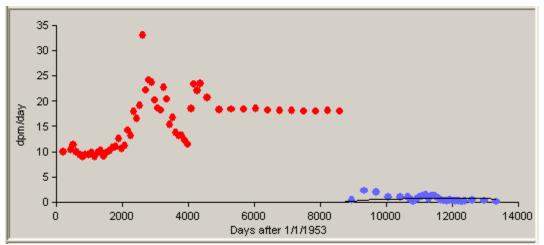


Figure B-18. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots), 1/1/1977 to 12/31/1988, 84th-percentile, Type S.

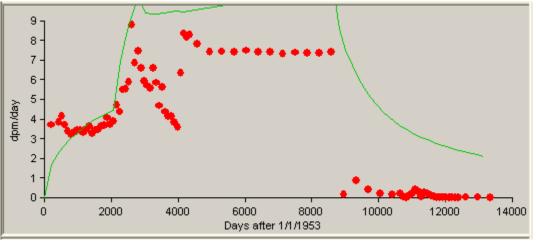


Figure B-19. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots) from all intakes 1/1/1953 to 12/31/1988, 50th-percentile, Type S.

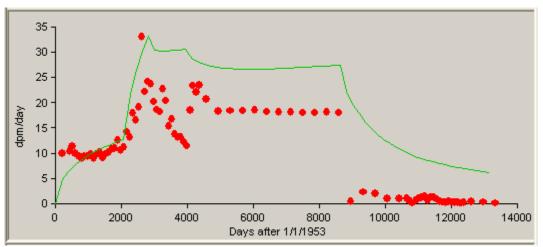


Figure B-20. Predicted uranium bioassay results (line) calculated using IMBAderived U intake rates compared with measured uranium-in-urine results (dots) from all intakes 1/1/1953 to 12/31/1988, 84th-percentile, Type S.

Туре F			Туре М			Type S			
Years	50%	84%	GSD	50%	84%	GSD	50%	84%	GSD
1953-1958	13.37	37.91	2.84	54.75	154.8	2.83	936.9	2,676	2.86
1959	19.7	61.99	3.15	102.7	347.5	3.38	2,768	9,300	3.36
1960	27.23	94.74	3.48	102.7	347.5	3.38	2,768	9,300	3.36
1961	21.62	65.97	3.05	71.85	234.2	3.26	1,680	5,438	3.24
1962	16.27	65.97	4.05	71.85	234.2	3.26	1,680	5,438	3.24
1963	16.27	44.36	2.73	71.85	234.2	3.26	1,680	5,438	3.24
1964	27.26	80.39	2.95	112.8	284.2	2.52	1,630	4,086	2.51
1965-1976	27.26	66.26	2.43	112.8	284.2	2.52	1,630	4,086	2.51
1977-1988	0.597	3.004	5.03	2.443	6.263	2.56	28.6	154.3	5.40

Table B-1. IMBA-derived uranium intake rates, dpm/day

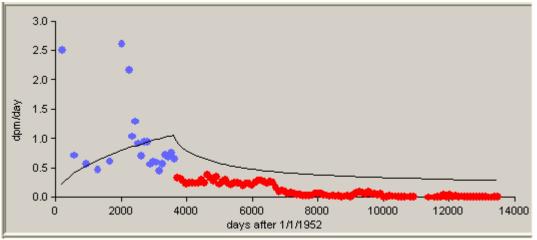


Figure B-21. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to 12/31/1961, 50th-percentile, Type M.

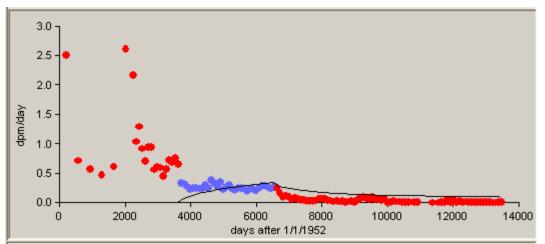


Figure B-22. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1962 to 12/31/1969, 50th-percentile, Type M.

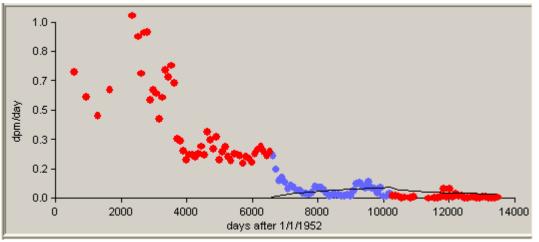


Figure B-23. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1970 to 12/31/1979, 50th-percentile, Type M.

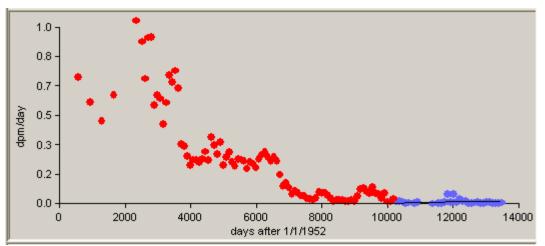


Figure B-24. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1980 to 12/31/1988, 50th-percentile, Type M.

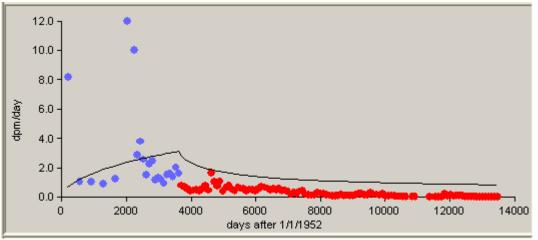


Figure B-25. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to 12/31/1961, 84th-percentile, Type M.

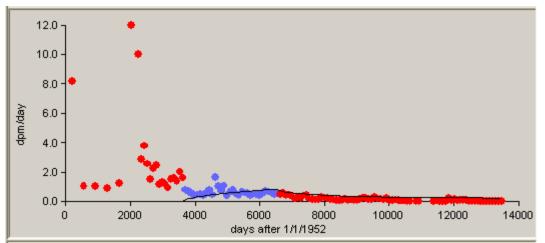


Figure B-26. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1962 to 12/31/1969, 84th-percentile, Type M.

Figure B-27. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1970 to 12/31/1979, 84th-percentile, Type M.

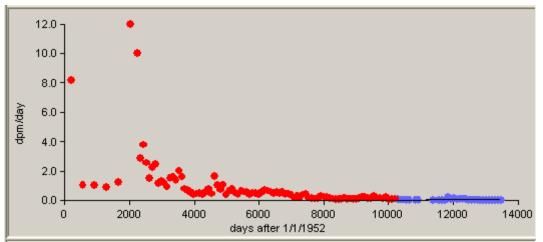
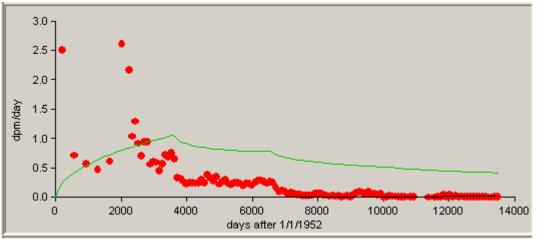
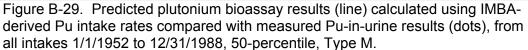




Figure B-28. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1980 to 12/31/1988, 84th-percentile, Type M.

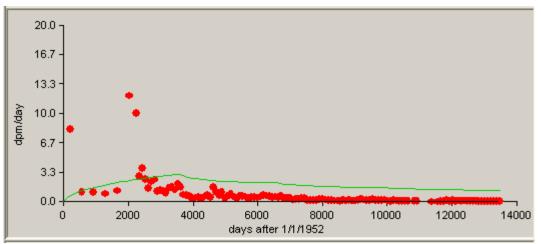


Figure B-30. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), from all intakes 1/1/1952 to 12/31/1988, 84th-percentile, Type M.

Table B-2. IMBA-derived plutonium/americium intake rates, Type M.								
	Pluton	ium urinaly	ysis-	Americium Iu	ing count-based			
	based r	esults, dpr	n/day	results, 50	Oth percentile			
Year	Pu 50%	Pu 84%	GSD	Am, pCi/day	Pu, dpm/day			
1952-1961	121	357.3	2.95					
1962-1969	43.5	106.5	2.45					
1970-1971	7.05	29.82	4.23					
1972-1976	7.05	29.82	4.23	1.845	871.5			
1977-1979	7.05	29.82	4.23	1.154	545.1			
1980-1982	1.622	8.907	5.49	1.154	545.1			
1983-1988	1.622	8.907	5.49	0.513	242.5			

Table B-2. IN	/IBA-derived	plutonium/americium	intake rates,	Type M.
---------------	--------------	---------------------	---------------	---------



Figure B-31. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to 12/31/1988, 50-percentile, Type S.

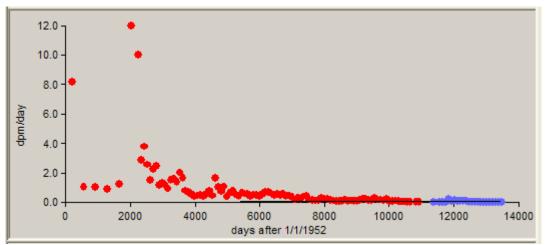


Figure B-32. Predicted plutonium bioassay results (line) calculated using IMBAderived Pu intake rates compared with measured Pu-in-urine results (dots), 1/1/1952 to 12/31/1988, 84th-percentile, Type S.

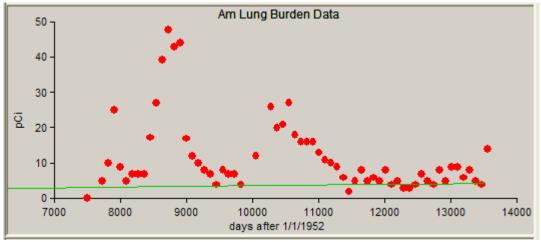


Figure B-33. Predicted Am bioassay results (line) calculated using IMBA-derived Am intake rates compared with measured Am lung burden results (dots), 1/1/1952 to 12/31/1988, 50th-percentile, Type S.

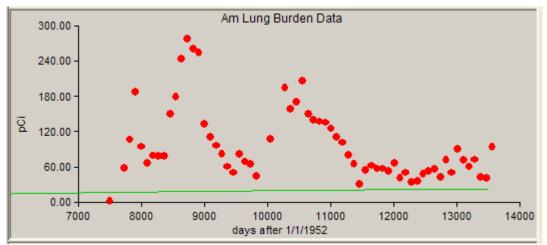


Figure B-34. Predicted Am bioassay results (line) calculated using IMBA-derived Am intake rates compared with measured Am lung burden results (dots), 1/1/1952 to 12/31/1988, 84th-percentile, Type S.

Table B-3.	IMBA	-derived	plutonium/ame	ricium inta	ike rates,	Type S.
-					- · · · /	

Intake rate modeling type	50%	84%	GSD
Plutonium from Am lung counts, dpm/day	11.83	113.4	9.58
Americium from Am lung counts, pCi/day	0.025	0.240	9.58
Plutonium from Pu urinalysis dpm/day	8.142	43.87	5.39
Americium from Pu urinalysis, pDi/day	0.017	0.093	5.39