Fernald SEC Petition Review

Focused SC&A Status Update: SEC Issue 6B – Use of Chest Counts to Reconstruct Th-232 Intakes (1968–1978)

Presented by John Stiver, SC&A

Presented to the Advisory Board on Radiation and Worker Health

Full Board Meeting Teleconference

April 26, 2012

Description of Issue 6B - Review

- No DWE data after MIVRML introduced in 1968 therefore completely dependent on integrity of chest count data thereafter
- 1968–1978 results reported in mass units (milligrams thorium) with no raw data
- 1979–1988 results reported in activity of progeny (nCi Pb-212 and Ac-228)

Status of issue

- White papers exchanged; issue discussed in detail at April 19, 2011; August 11, 2011; and February 9, 2012, WG meetings.
- Full Board meeting February 2012
 - SC&A Position: <u>1968–1978</u> data reported in milligrams thorium likely inadequate for DR (SEC)
 - 1. Large uncertainties related to how the mg thorium data were derived (potentially underestimated actual by factor of 100; overestimated background level by 1,000)
 - 2. "Technical shortfall" issue (deferred: program-wide issue of "sufficient accuracy" under review by SEC Issues Subcommittee)

- February 2012 (before Board meeting) NIOSH posts set of documents claimed to be *"relevant references related to the estimation of thorium-232 [Th-232] intakes for Fernald workers using in vivo data from the* Y-12 *mobile counter (MIVRML)"*
 - NIOSH white papers and other documents that describe different approaches that could have been used to calculate Th-232 lung for 1968–1978
- SC&A response delivered April 6, 2012, "Summary of SC&A Concerns Regarding the Latest Documents Posted by NIOSH to Complement their White Papers on In-vivo Thorium Bioassay"
 - Conclude NIOSH white papers based on unsupported assumption that Pb-212 was measured and Th-232 burdens in mg were calculated using those measurement results

- Inconsistencies between mg Th-232 and nCi Pb-212 for period of overlap (1978, 1979) suggest that Pb-212 was not used to derive mg Th-232 (next slide)
 - Three highest mg Th-232 correspond to negative Pb-212 results
 - Nine values in 1979 reported as 2.1 mg but Pb-212 ranged from 0.19 to 0.40 nCi and Ac-228 from 0.33 to 0.7 nCi. These data are suspect. Only 1 Pb-212 result was less than the stated MDL of 0.23 nCi (1987).
 - Expect proportionality between Th-232 and progeny in 1979 data (divided by plant work and by dates) because the source was probably the same.
 - **Results highlighted green**: workers co-located and measured in June, yet results of Pb-212 varied from 0.25 to 0.40 nCi with the same result in mg of Th-232.
 - **Results highlighted pink**: workers in Plant 4 monitored in October, yet results varied from 0.19 nCi of Pb to 0.40 nCi, with the same result in mg of Th-232.

Reported Thorium Result (mg)	Reported Pb-212 Activity (nCi)	Reported Ac-228 Activity (nCi)	Monitoring Date	Location or Plant #
-5.00	-0.04	-0.02	8/29/1974	7 or Pilot
-0.60	-0.08	0.03	06/08/88	Maintenance
-0.54	-0.18	-0.01	06/12/86	5
-0.16	-0.16	-0.09	06/23/87	5
-0.12	0.06	0.01	07/10/73	6
-0.05	-0.05	0.02	05/02/87	Maintenance
-0.01	-0.01	0.05	12/09/86	No Information
0.01	-0.06	-0.08	05/02/77	Mech
0.30	0.15	0.06	04/06/77	6
1.81	-0.10	0.04	08/09/85	5
2.10	0.25	0.35	06/02/79	7 or Pilot
2.10	0.30	0.5	06/09/79	7 or Pilot
2.10	0.40	0.7	06/12/79	7 or Pilot
2.10	0.40	0.65	06/19/79	7 or Pilot
2.10	0.40	0.5	10/08/79	4
2.10	0.19	0.33	10/22/79	4
2.10	0.27	0.33	10/29/79	4
2.10	0.28	0.41	10/17/79	4
2.10	0.29	0.39	10/15/79	4
2.20	-0.10	-0.1	04/13/77	Mech
4.30	-0.04	0.05	04/26/71	Inspection
5.10	-0.04	0.01	06/04/80	Mech
Source: Table 1. SC&A Final Position on the Th-232 In-vivo Data Quality and Adequacy for FEMP Workers				

- April 9, 2012 NIOSH posts PowerPoint presentation titled, *"Bounding Thorium-232 Intakes Using MIVRML Data,"* and reference summary to support their position
 - March 15, 2012 NIOSH Interviewed L. Max Scott, PhD., Principal designer and developer of the MIVRML (Board and SC&A not notified)
 - MIVRML patterned after fixed Y-12 system and calibrated and operated in exactly the same manner as the fixed system
 - Same calibration standard used for both systems: Th-232/Ra-228 = 1.67 (60% equilibrium); Th-232/Th-228 = 1.27 (80% equilibrium)
 - Note : these ratios are not possible for a single purified thorium source. Indicates Ra-228 contamination.
 - REMAB phantom
 - 20 minute counts
 - Used empirical "sum of ratios" method to derive mg values (next slide)
 - NIOSH position unchanged
 - Thorium mass reporting methodology is not an SEC issue
 - Thorium intakes estimated from MIVRML measurements are plausible, claimant favorable, and bounding

MIVRML Empirical Equation for Calculating Mg Thorium Values

$$mg_{Th} = \left(\left(\frac{ROI_{0.208-0.248}}{ROI_{0.249-0.295}} + \frac{ROI_{0.299-0.395}}{ROI_{0.396-0.547}} + \frac{ROI_{0.775-0.930}}{ROI_{0.931-1.077}} \right) - 3.23 \right) * 8.84$$

- Based on Y-12 method and "Rule of Thumb" document (letter from L. Max Scott to C.M. West dated November 21, 1961)
- Where "ROI" is the total count in a region of interest. For example:
 - ROI_{0.208-0.248} is the count in the portion of the spectrum between 0.208 MeV and 0.248 MeV (from Pb-212) and
 - ROI_{0.249-0.295} is the "background" count in the adjacent higher energy portion of the spectrum between 0.249 MeV and 0.295 MeV
- 3.23 (3.23 ± 0.7) is an average value of summed ratios of counts in the three ROIs obtained for about 1,100 non-exposed persons (Table 1, Scott 1966)
 - Variation (3.23 ± 0.7) represents 95^{th} percentile confidence interval
- 8.84 is a coefficient to convert the summed ratios to units of mass (milligrams thorium)
 - Specific to the calibration source and conditions at Y-12

Sample spectra for exposed and non-exposed workers showing ROIs and adjacent higher energy "background" regions (West 1965)

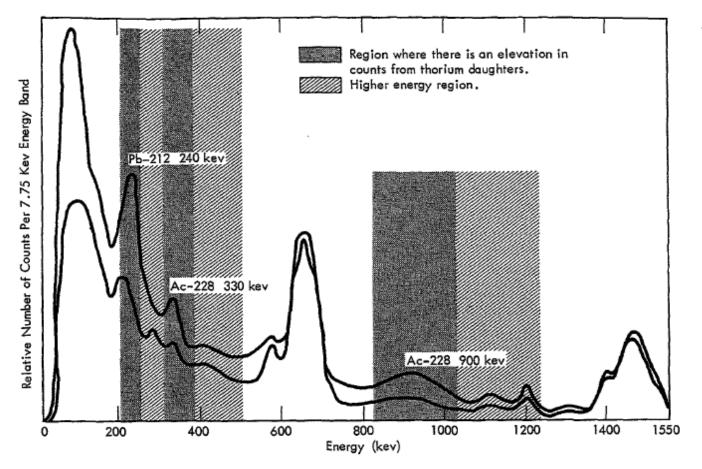


Figure 13. SCHEMATIC REPRESENTATION OF THE THORIUM IN VIVO SCREENING TECH-NIQUE.

April 17, 2012 – SC&A responds to NIOSH presentation with a memo titled, "SC&A Comments on Slide 7 of NIOSH Presentation"

- "Thorium coefficient" of 8.84 is an empirical value that converts the dimensionless sum of ratios to thorium mass <u>for the sources and conditions of calibration at Y-12</u>, as indicated in the "Rule of Thumb" document (letter from L. Max Scott to C.M. West dated November 21, 1961)
 - *Health Physics Considerations Associated with Thorium Processing* (West 1965) states that a rise in the ratio of 1 is equivalent to 33% of the lung burden of the listed mixture. Indicates applicability to the particular mixture of daughters of the source he was using.
 - "Rule of Thumb" document does not explain how the coefficient was derived or its limitations as a screening tool
 - Coefficient varies depending on the equilibrium rates from Th-232 and daughters for the sources comprising the lung burden in any given worker
- MDA issue: mean sum of ratios of 3.23 for non-exposed persons has a variation of 0.7
 - Used to derive the "MDA" for Th-232 in the lung (6 mg). All results between -0.7 and 0.7 * 8.84 (-6 mg to 6 mg), produce values within the variation of the population, with a mean of 0
 - Stated MDA of 6 mg is an empirical value not based on the counting statistics of the MIV system

April 17, 2012 – SC&A response (continued)

- SC&A hypothetical example using "Rule of Thumb" method: Worker exposed to Type M thorium source for 60 days then monitored on the MIVRML. Assume he was monitored in the year he was working with thorium, on one of these dates:
 - The middle of his exposure period (30 days after the first day of exposure)
 - The last day of exposure
 - 90 days, 120 days, 180 days or 360 days after first day of exposure
 - Assume 0.23 nCi Pb-212 and 0.24 nCi Ac-228 (post-1978 values)
- If 10 mg measured, daily intake ranges from 17 to 137 Bq
- If source in equilibrium, Pb-212 and Ac-228 = 1.1 nCi on all dates and sum of the counts in all three regions of the Pb-212 and the Ac-228 peaks would be higher than background
- Triple purified (NIOSH worst-case assumption) → large disequilibrium ratio of Th-232 to Th-228 (1:0.19): activities of Pb-212 and Ac-228 corresponding to 10 mg lung burden NOT distinguishable from background
- **Single purification:** Activities of Pb-212 in the lung corresponding to 10 mg Th-232 lung burdens would vary from 0.81 to 1.0 nCi. The activities of Ac-228 in the lung corresponding to 10 mg Th-232 lung burdens vary from 0.003 to 0.0674 nCi, all below detection limits.
 - Only peak region that has higher counting than from non-exposed people is the Pb-212 peak
- In reality, there is no hook back to Pb-212 activity. We don't know the count ratios, and the thorium conversion factor (8.84) depends on the conditions of system calibration and cannot be adjusted for other sources.

April 17, 2012 – SC&A response (concluded)

- Three main issues remain concerns to SC&A:
 - The sum of ratios can potentially miss very large intakes, depending on the number of purifications and the age of the source since separation.
 - The thorium coefficient of 8.84 is narrowly defined for a set of conditions unique to Y-12 and is not transferrable to FMPC or any other facility.
 - Th-232 was present at FMPC in both soluble Type M (TNT) and insoluble Type S (oxide and metal) materials. Ra-228 produced in a Type S matrix leaves the lung more rapidly than thorium and exhibits properties closer to Type M. These physico-chemical disparities are not captured by the sum of ratios screening method.
- Lack of Coherence between Slide 6 and Slide 7
 - Slide 6 of the presentation proposes the use of a correction factor of 5.25 to be applied to measured results. <u>This factor of 5.25 was derived assuming that Pb-212 was measured, and that</u> <u>the Pb-212 result was used to derive the mg of Th-232 results</u>. <u>The same correction factor is not</u> <u>applicable to the empirical method described in slide 7</u>.
- **In summary**, if the empirical equation in slide 7 of the NIOSH presentation was applied without modifications to account for the source terms encountered at FMPC, then the mg Th-232 results were not derived correctly and carry huge uncertainties that cannot be reconciled.
- SC&A believes that the thorium lung burdens reported in units of mg from 1968–1978 cannot be reconstructed or associated with meaningful intakes and, therefore, it does not appear possible to place a scientifically sound and plausible upper bound on the thorium body burdens for some workers.

April 19, 2012 – Work Group Teleconference

- NIOSH presents position (slides and references) and SC&A responds (as stated herein)
- Work Group discussion
 - Issues with "Rule of Thumb" sum of ratios method
 - Only mg value reported; counts and/or ratios not reported or available.
 - Coefficient for converting dimensionless sum of ratios to mg value varies for every potential source. Therefore, 8.84 cannot be applied to sources at FMPC.
 - Unknowns in the empirical equation as applied to FMPC sources include: ratios and sum of ratios for exposed workers, source-specific conversion coefficient(s), background sum of ratio distribution likely different for MIVRML (higher background) – cannot "deconvolute."
 - Lung burdens in the 10's of mg could have been missed altogether (SC&A example).
 - SC&A Table 1 showing Pb-212 and Ac-228 values >MDA are not proportional and are not proportional to stated mg values (Slides 4 and 5)
 - High values followed by very low values do not comport with known biokinetic processes
 - Given the current state of knowledge regarding the methods employed and the lack of available raw data (ROI counts, efficiencies, source characteristics), the <u>Work Group</u> <u>does not believe that a plausible upper bound can be applied to the mg thorium</u> <u>data for the period 1968–1978</u>

Questions?