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Background

• Multiple imputation (MI) is a popular 
approach to missing data problems

• A lack of principled diagnostic procedures 
for imputations

• Practitioners tend to compare the 
distribution of observed with imputed data

• These ad-hoc comparisons can be based 
on erroneous assumptions and reach 
misleading conclusions



Goal and Motivation

• Comparing the distribution of observed and 
imputed data is a natural diagnostic strategy

• The key is to assess the balance between the 
imputed and observed data

• The balancing of covariates also necessitates 
valid causal inference in observational 
studies, assisted by the propensity score

• Aim to establish some principled diagnostic 
procedures for imputation, borrowing the idea 
of propensity score analysis in observational 
studies



Set-up and Notations

• Consider a single incomplete variable Y and 
fully observed covariates X

• X can be multidimensional
• Ymis and Yobs are the missing and observed 

case of Y
• R is the response indicator, R=1 if Y is 

observed and 0 otherwise
• The missingness of Y is strongly ignorable
• Define the response propensity score is 

Pr(R=1|X)=g(X), 0<g(X)<1
• Yimp denote the imputations for Ymis



Main Logic

• Establish some balancing relationships 
between Ymis and Yobs in the considered 
scenario

• If Ymis is correctly imputed by Yimp ,then we 
would expect Yimp also satisfies these 
balancing relationships

• Considerable violations of the balancing 
relationships between Yimp and Yobs would 
suggest some inadequacy of the former



Balancing Properties

• From a Bayesian perspective, suppose Yimp is 
drawn from a correctly specified imputation 
model, then as the sample size increases with 
a fixed proportion of missingness,

Pr(Yimp |g(X),R=0)→Pr(Yobs |g(X),R=1)         
(5)

Pr(X|Yimp , g(X),R=0) → Pr(X|Yobs, 
g(X),R=1) (6)

• The lack of strict equivalence in Eqs. (5) and 
(6) (as opposed to Eqs. (3) and (4)) is due to 
the uncertainty of the estimation in the 
imputation model parameter



Comparing the Imputed with Observed Data

• Eq. (5) suggests that
• Compare Pr(Yimp |g(X),R=0) and Pr(Yobs |g(X),R=1), 

the conditional distribution of the outcome Y on g(X)
• Eq. (6) suggests that 
• Compare Pr(X|Yimp , g(X),R=0) and Pr(X|Yobs, 

g(X),R=1), the conditional distribution of the 
covariates X on Y and g(X)

• A considerable lack of similarity in either case would 
suggest some inadequacy of the imputations

• For the 2nd comparison, we can consider some 
meaningful scalar functions f(X) for comparison

• f(X) could be each of the covariates or interactions 
among them



Practical Implementations

• Comparing two conditional distributions is not a 
simple task

• Do not take an hypothesis testing approach to this 
problem

• In observational studies, diagnostic procedures 
have been developed to assess whether the 
estimated propensity score balances the 
distribution of covariates 

• In our cases, suppose g(X) is correctly estimated, 
then it should balance between the imputed and 
observed values, as implied by Eqs. (5) and (6)

• Take advantage of these diagnostics procedures in 
our setting



Comparison through Matching

• Usually the missingness proportion is less than 50%
• Estimate the propensity score g(X) and check its 

adequacy by assessing the balance of covariates
• Compare Pr(Yimp |g(X),R=0) and Pr(Yobs |g(X),R=1): 

construct a one-to-one matched sample between 
missing and observed cases using g(X), and compare 
Yimp and Yobs on the matched sample

• Compare Pr(X|Yimp , g(X),R=0) and 
Pr(X|Yobs,g(X),R=1): construct a one-to-one matched 
sample between missing and observed cases using 
both Y and g(X), and compare the respective f(X) on 
the matched sample



Balancing Diagnostic Statistics

• Many diagnostics statistics are available in observational 
studies

• We focus on two
• The standardized difference between the matched sample 

(STDDIFF)
• The variance ratio between the matched sample (VARRATIO)
• The evidence of balance is strong if STDDIFF is close to 0 and 

VARRATIO is close to 1
• Common criteria: e.g., balance achieved if STDDIFF < 10%
• In our context, we average these diagnostics over multiply 

imputed datasets
• We calculate the frequency (probability) that these diagnostics 

exceed some thresholds



Numerical Example

• A 10% random subset of 2002 US Natality public-
use data (sample size around 40K)

• The incomplete variable Y is gestational age 
(DGESTAT), the rate of missing is around 18%

• Covariates X include a wide variety of demographic 
and health characteristics

• The covariate birthweight (DBIRWT) has the 
largest correlation with DGESTAT

• The relationship between DGESTAT and DBIRWT 
appears to be nonlinear

• The propensity score is estimated using covariate 
information



Working MI Models
• Illustrative MI models focus on the effect of 

DBIRWT on predicting DGESTAT
• Model I: including all the covariates except 

DBIRWT
• Model II: model I plus including DBIRWT as a 

linear predictor
• Model III: model I plus including the quadratic 

term of DBIRWT
• Model IV: models I-III treat DGESTAT as 

continuous and the imputed values can be 
fractional numbers. Yet the original unit is integer 
(days). Implement the predictive mean matching 
version of model III so that the imputed values are 
all integers



Summery of Results

• Model I omits an important predictor, we see many 
flags (of imbalance) between the matched sample 
of observed and imputed data

• Model II significantly improves over model I, yet 
we still see some differences at the tail of DBIRWT. 
This is due to the fact that a linear predictor does 
not fully capture the nonlinear relationship 
between the two

• Model III and IV improve further, leave only one or 
two places flagged by the difference of the 
variance



Balancing Properties

• Under the strongly ignorable assumption
Pr(Ymis |X,R=0)=Pr(Yobs |X,R=1)           (1)

• By the property of the propensity score
Pr(X|g(X),R=0)=Pr(X|g(X),R=1)           (2)

• However, Eq. (1) has a limited practical use if X is 
multidimensional

• With Eq. (2), Eq. (1) is equivalent to
Pr(Ymis |g(X),R=0)=Pr(Yobs |g(X),R=1)   (3)   
Pr(X|Ymis , g(X),R=0)=Pr(X|Yobs, g(X),R=1) (4)

• From Eq. (1) to Eqs. (3) and (4), a p-dimensional 
problem is reduced to 1 and 2-dimensional 
problems



Conclusion

• The balancing relationships also hold if 
g(X) is replaced by a more general 
balancing score b(X)

• How to connect the diagnostic results to 
post-imputation inference

• Simulation studies demonstrate the utility 
of the proposed diagnostic strategy

• Extend to multivariate missing data 
situations in the future
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