Vitamin D Intakes & Status among US Children Aged 1-18 Years: Do Obese and Racially/Ethnically Diverse Youth Need More Vitamin D?

> Lauren Au, MS, RD USDA Doctoral Fellow in Obesity Tufts University Lauren.au@tufts.edu

NATIONAL CONFERENCE ON HEALTH STATISTICS 20012

Background: Vitamin D

 Institute of Medicine identified research needs in vitamin D, particularly in children and amongst racial/ethnic groups

Background: Vitamin D Status

- Low serum vitamin D may be associated with risk factors for several chronic diseases
- Prevalence of vitamin D deficiency is greater among:
 - Obese compared to healthy weight children (50% vs 22%)¹
 - Non-Hispanic (NH) Black compared to NH White children (32% vs 3%)²

¹Olson et al., *JCEM*, 2011 ²Looker et al., *NCHS Data Brief*, 2011

Background: Dietary vitamin D

- Dietary vitamin D intake varies by weight status & race/ethnicity
 - Obese children have lower vitamin D intakes compared to non-obese children (218 IU vs 338 IU)³
 - Mexican American children were most likely to meet or exceed the Adequate Intake (200 IU) compared to NH Black children (69% vs 48%)⁴

EAR: 400 IU/d

³Rajakumar et al., *Obesity*, 2008 ⁴Moore et al., *J Nutr*, 2005

Objective

To examine the influences of **weight status** and **race/ethnicity** on the association between vitamin D intake and serum vitamin D in US children aged 1-18 years

Methods

- 2005-2006 NHANES cross-sectional study of 2,487 children aged 1-18 years
- SAS (version 9.2; SAS Ins, Cary, NC)
 proc surveyfreq, proc surveymeans, proc surveylogistic
- SUDAAN (version 10.0; Research Triangle Ins, Research Triangle Park, NC)
 - proc regress
- Restricted PSU & Strata

Measurements

Variable	Measurement Tool	Categorization				
Serum 25OHD	Radioimmunoassay kit after extraction with acetonitrile (Diasorin, Stillwater, MN)	Dichotomous (inadequate: <20 ng/mL & adequate: ≥20 ng/mL)				
Dietary vitamin D	Two 24-h recalls & Dietary Supplement Questionnaire	Dichotomous (EAR*: 0 to <400 IU/day & ≥400 IU/day)				
Weight status	Height (stadiometer) & weight (Toledo digital scale); BMIz based on CDC classifications	Dichotomous (healthy weight: BMI <85 th percentile & overweight/obese: BMI ≥85 th percentile)				
Race/ethnicity	Computer Assisted Personal Interview (CAPI) Questionnaire	Categorical (NH White, NH Black, Mexican American, Multi-racial/other)				

Measurements

Variable	Measurement Tool	Categorization
Sedentary time	CAPI* Questionnaire	Continuous (hours/day)
SES	CAPI Questionnaire	Categorical (PIR: <130%,130-350%, ≥350%)
Season	CAPI Questionnaire	Dichotomous (Summer: May 1 – Oct 31 & Winter: Nov 1 – Apr 30)
Latitude	Geocode from Research Data Center (restricted)	Dichotomous (North: ≥35 N & South: <35 N)

Other measurements: Age, gender, total dietary energy, total dietary fat, and waist circumference

*CAPI = Computer Assisted Personal Interview Questionnaire

Dietary vitamin D

- Total usual dietary vitamin D intake
 - = usual dietary intake + dietary supplements
 - National Cancer Institute (NCI) method was used to estimate usual dietary vitamin D intake^{5,6}
 - Vitamin D from dietary supplements⁶
- Dichotomized into above/below EAR (400 IU/day)

⁵Tooze et al., *J Am Diet Assoc*, 2006 ⁶Bailey et al., *J Nutr*, 2010

Dietary vitamin D and serum 250HD in US children by vitamin D status; 2005-2006 (n=3310)

	Total		At risk of inadequacy (<20 ng/ml) [N=1204]		Adequate (20-<30 ng/ml) [N=1463]		Optimal (≥30 ng/ml) [N=643]		
	Mean	95% CI	Mean	95% CI	Mean	95% CI	Mean	95% CI	P-value ¹
Dietary vitamin D (IU/day) ²	281	272-290	213	199-228	298	284-314ª	312	288-338ª	P<0.0001
250HD (ng/mL)	26.0	25.5-26.5	14.6	14.3-14.9	25.0	24.7-25.2 ^a	35.8	35.1-36.4ª	P<0.0001

¹Analyzed with LSMEANS (SUDAAN)

²Values are geometric mean \pm 95% CI dietary vitamin D because of skewed distribution ^aMean is significantly different from at risk of vitamin D inadequacy group, P<0.0001

Serum vitamin D in US children aged 1-18 years by weight status; 2005-2006

*Weighted (excludes underweight)

Serum vitamin D in US children aged 1-18 years by race/ethnicity; 2005-2006

*Weighted

Results

- Children who did not meet the EAR for vitamin D intake were 2.5 times more likely to have inadequate serum vitamin D than those who met it (95% CI: 1.38-4.46; P<0.01)
- The association between meeting the EAR and vitamin D status was modified by weight status (P=0.01) & race/ethnicity (P=0.02)

The association between meeting the EAR on the odds of being inadequate in serum 250HD (<20ng/ml) by weight status*

*Adjusted for age, gender, race/ethnicity, SES, dietary energy, sedentary time, season & latitude

The association between meeting the EAR on the odds of being inadequate in serum 250HD (<20ng/ml) by race/ethnicity*

*Adjusted analyses

Discussion

- Dietary vitamin D intake was low:
 74% failed to meet the EAR of 400 IU/day
- Almost 40% of children had inadequate serum vitamin D levels (<20 ng/ml)
- Fewer than 20% achieved optimal status (>30 ng/ml)

Discussion

- Vitamin D status varied by weight status and race/ethnicity:
 - 21% of healthy weight children were optimal in vitamin D status compared to 7% overweight/obese children (P<0.0001)
 - 25% of NH Whites had optimal vitamin D status, whereas fewer than 1% of NH Blacks achieved this level (P<0.0001)

Strengths:

- Current dietary recommendations
- At-risk populations
- Latitude

Limitations:

- 2-year NHANES cycle
- Estimates of dietary & supplement intake
- Serum 25OHD collection

Conclusions

- Most children did not meet Dietary Guidelines for vitamin D and few achieved optimal vitamin D status.
- Overweight/obese and NH Black children are more likely to be inadequate in serum 250HD when vitamin D intakes are low.
- Future research examining vitamin D intake recommendations in these at-risk populations is needed.

Acknowledgments

- Jennifer Sacheck, PhD (advisor)
- Johanna Dwyer, DSc, RD
- Susan Harris, DSc
- Paul Jacques, DSc
- Gail Rogers, MA
- Martha Morris, PhD
- Regan Bailey, PhD, RD

Supported by the USDA Doctoral Fellowship in Obesity & Frances Stern Nutrition Center (Tufts Medical Center, Boston, MA)

Thank You!

Lauren Au, MS, RD USDA Doctoral Fellow in Obesity Tufts University Lauren.au@tufts.edu

 Table 1. Selected characteristics by vitamin D status in children ages 1-18 in NHANES 2005-2006 (N=3310)

	Total		At risk of inadequacy (<20 ng/ml) [N=1204]		Adequate (20-<30 ng/ml) [N=1463]		Optimal (<u>></u> 30 ng/ml) [N=643]		P-value ¹
	Ν	% (SE)	Ν	% (SE)	Ν	% (SE)	Ν	% (SE)	
Age 1-8 y 9-18 y	1218 2092	39.5 (1.5) 60.5 (1.5)	187 1017	3.7 (0.3) 18.3 (1.2)	642 821	19.1 (1.2) 28.2 (1.2)	389 254	16.7 (1.3) 14.1 (1.2)	<0.0001
Sex Male Female	1653 1657	52.2 (1.0) 47.8 (1.0)	533 671	9.6 (0.7) 12.4 (0.8)	781 682	25.2 (1.1) 22.1 (1.5)	339 304	17.5 (1.5) 13.3 (0.9)	0.03
Race/Ethnicity NH White NH Black Mexican American Other	908 994 1107 301	61.2 (1.4) 14.2 (0.8) 13.6 (0.6) 11.1 (0.8)	99 694 405 96	6.2 (1.0) 8.3 (0.5) 4.2 (0.3) 3.3 (0.4)	457 326 534 146	29.9 (1.3) 5.1 (0.4) 6.9 (0.4) 5.5 (0.7)	352 64 168 59	25.1 (1.2) 0.8 (0.2) 2.4 (0.2) 2.3 (0.4)	<0.0001
Weight Status (n=2789) Underweight Healthy Overweight Obese	75 1707 430 577	2.6 (0.6) 64.6 (1.4) 15.3 (1.1) 17.4 (1.2)	25 600 196 314	0.7 (0.2) 13.0 (0.9) 4.0 (0.5) 6.4 (0.7)	35 757 173 216	0.8 (0.2) 30.6 (1.1) 7.3 (0.7) 7.8 (0.8)	15 350 61 47	1.2 (0.5) ² 21.0 (1.0) 4.0 (0.6) 3.3 (0.8)	<0.0001
Poverty-income ratio <130% 130% - <350% <u>></u> 350%	1432 1166 712	29.9 (1.1) 38.6 (1.4) 31.5 (1.8)	564 451 189	9.3 (0.7) 7.9 (0.6) 4.8 (0.7)	643 496 324	13.7 (0.7) 19.1 (1.0) 14.5 (1.0)	225 219 199	7.0 (0.7) 11.6 (0.9) 12.2 (1.2)	<0.0001
Season (n=3167) Winter Summer	1511 1656	47.6 (7.7) 52.5 (7.7)	555 430	10.3 (2.2) 11.7 (2.0)	674 731	23.4 (3.3) 24.0 (3.8)	282 325	13.8 (2.4) 16.7 (2.4)	0.33
Latitude South North	1018 2292	30.9 (4.5) 69.1 (4.5)	362 842	6.2 (1.4) 15.8 (1.4)	460 1003	15.7 (1.8) 31.6 (2.3)	196 447	9.0 (1.4) 21.7 (1.9)	0.17

¹Analyzed with Rao-Scott Chi-square test

²The relative SE is >30%; this estimate is unreliable

Table 2. Serum 250HD, anthropometrics, dietary intake, and sedentary time by vitamin D status in children ages 1-18 in NHANES 2005-2006 (N=3310)

	Total		At risk of inadequacy (<20 ng/ml) [N=1204]		Adequate (20-<30 ng/ml) [N=1463]		Optimal (<u>></u> 30 ng/ml) [N=643]			
	Mean	95% CI	Mean	95% CI	Mean	95% CI	Mean	95% CI	P-value ¹	
250HD (ng/mL)	26.0	25.5-26.5	14.6	14.3-14.9	25.0	24.7-25.2 ^a	35.8	35.1-36.4 ^a	P<0.0001	
Height (cm), (n=3108)	143	141-145	153	151-155	143	140-145 ^a	136	132-140ª	P<0.0001	
Weight (kg), (n=3300)	43.9	42.4-45.4	57.1	52.6-61.5	43.2	40.6-45.8ª	35.6	32.1-39.0ª	P<0.0001	
Waist Circumference (cm), (n=3082) ²	68.0	67.4-69.1	76.1	73.4-78.9	68.0	66.5-69.5ª	63.1	60.9-65.6ª	P<0.0001	
Total dietary vitamin D (IU/day) ²	281	272-290	213	199-228	298	284-314ª	312	288-338ª	P<0.0001	
Total dietary energy (kcals/day) ²	1,861	1,821-1,905	1,837	1,773-1,904	1,893	1,824-1,963	1,834	1,770-1,900	P<0.0001	
Total fat (g/day) ²	67.6	65.7-69.7	67.7	65.1-70.4	68.2	64.9-71.7	66.9	64.2-69.8	P<0.0001	
Sedentary time (hrs/day) (n=3131)	1.3	1.3-1.4	1.7	1.5-1.9	1.4	1.3-1.5 ^b	1.0	0.9-1.2 ^a	P<0.0001	

¹Analyzed with LSMEANS (SUDAAN)

²Values are geometric mean <u>+</u> 95% CI for waist circumference, dietary vitamin D, dietary energy and dietary fat because of skewed distribution. Need to exp (logged mean) to get geometric mean; exp (logged 95% CI) to get transformed 95% CI ^aMean is significantly different from at risk of vitamin D inadequacy group, P<0.0001 ^bMean is significantly different from at risk of vitamin D inadequacy group, P<0.001